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Multilevel genetic-algorithm optimization of the thermodynamic analysis of the incommensurate
phase in ferroelectric SpP,Se;
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Interesting experimental properties of the incommensurate phase in ferroelegiP}S&rare explained in
the framework of Landau-type phenomenological theory. The unique procedure of multilevel genetic-algorithm
optimization is implemented to find parameters of the thermodynamic potential. It is shown that the tempera-
ture dependence of the polarization wave number in the incommensurate phase can be correctly described
simultaneously with the anomalous heat capacity only when the nonlinear properties of the order parameter
distribution are taken into account.
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[. INTRODUCTION monics are expected to manifest themselves near the lock-in
transition. More peculiar is that the mod@), being applied
Sn,P,Se; ferroelectric is of great interest at the momentto the full set of experimental data, fails to qualitatively pre-
(see the review in Refs. 1 and 2 and references therkin dict the sign of the curvature of the temperature dependence
belongs to the family of SiP,(SeS, _,)s solid solutions for of the wave number in the full range of IC phase
which the Lifshitz point is not only predicted, but actually —stabilityX%*
observed experimentally in the concentration diagram at the These data motivate one to question the applicability of
point z=0.28. one-harmonic approximation in the case under study. In our
The incommensurateIC) phase in uniaxial proper previous papéf we have developed a mathematical proce-
Sn,P,Se; ferroelectric appears under normal pressure at thelure which allows one to generate the families of nontrivial
temperatureT=T,=221K as a result of the second-order and essentially nonlinear spatial distributions of the OP in the
phase transition from the high-temperature paraelectric stal€ phase. We have argued that in the case of type-Il ferro-
with P2,/c symmetry. The order parameté®P) ¢(x) is  electrics, a more correct approximation for the equilibrium
one dimensional and corresponds to the component of therder parameter in the incommensurate phase is the elliptic
spontaneous polarizatidh In the IC phase the polarization Jacobi sinus
P(x) is modulated along the wave vect@rlying in the
crystal symmetry plane perpendicular to flid0] axis. The
long-period IC structure is 12—14 times larger than the initial e(x)=asrbx,u], 0=<u?<1, 2
crystal cell. With cooling, the modulation wave number
=|k| continuously decreases and abruptly becomes equal to ) o _
zero atT=T, ~193K. At this point, SpP,Se; undergoes a which gives a deeper global minimum to the thermodynamic

first-order phase transition into a ferroelectt@mmmensu- Potential(TP), as against the modél). .
rate state withPc symmetry. In the framework of this approacf,high harmonics of

According to the classification introduced in Ref. 4,the OP modulation are consistently taken into account and
Sn,P,Se; belongs to the so-called type-Il ferroelectrics for their contr|_but|on t?4var|ous thermodynamic characteristics
which the phenomenological approd€his applicable for ~can be estimatetf“ One of the features of the modkis
theoretical description of the IC phase properties. Experithat, in comparison with the one-harmonic approach, the de-
ments show that polarization modulation in $R,Se does Pendence of the wave number on temperature is unique
not essentially differ from a sinusoidal one even in the vicin-(‘nonlinear”). It is remarkable that these properties of the
ity of the phase transition from the IC into the commensuraténodel (2) are generated by a single additional variation pa-

(C) phase. That is why the one-harmonic approximation igameter u, unlike the large set of additional optimization
widely used for a description of the OP spatial parameters arising when a harmonic series is tisEuere-

distributiorf-8-19 fore, we may hope that our model will succeed in describing

the mentioned experimental anomalies.
e(x)=asin(bx). ) Unfortunately, the mode(2) does not allow one to esti-
mate analytically the equilibrium parameters of the IC phase
At the same time, dielectric, birefringence, and dilationat arbitrary temperaturéexcept for the limiting caseg

measurements clearly reveal an “anomalous,” from the—0,1). Thus, in Refs. 12-14, the grid method was applied

viewpoint of one-harmonic predictions, low-temperature befor numerical minimization of the TP with respect to the

havior of several important characteristics of the systemmodel parameters, b, andu. In order to analyze the experi-

(such as integrated satellite intensity, susceptibility, heat camentally measured data for $%5Se;, we should additionally

pacity, etc), which seems quite natural because high harmake an optimization of the TP parameters. So the general
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optimization procedure becomes two level: for every trialBesides, one can combine GAs with gradient and other de-
set of TP parameters, we must find the equilibrium set of ORerministic methods, but these hybrids are still more of an art
ones. than a science.

Therefore, in general, the parameter space of our problem Therefore, application of the modé2) to the thermody-
is highly dimensional, highly nonlinear, and has unknownnamic analysis of the IC phase in ferroelectric,5$e
and unpredictable topography. The grid methods can explor&ces the general problem of correct implementation of a
an arbitrary search space with evidently arbitrary precisionMultilevel GA optimization. _
but take for that eventually infinite time. The gradient meth- 1 he structure of the present paper is as follows.
ods are much quicker than the grid ones, but often become In Sec. Il we briefly formulatg the thermodynamlc theory
stuck in a local minimum. Besides, such methods can acciRf structural phase transitions in ferroelectric,Bise;. A
mulate the errors of function evaluations because each neW?taHEd dl?SC”ptIOH Of thg unique multilevel GA scheme,
test point in the parameter space depends on the previoydthout which the application of the mode2) to the analy-
one. Random search methods are stable against the meHS of experimental data would not be possible, is presented

tioned disadvantage and can “hop” from one minimum to N Sec. lll. Results and a discussion are given in Sec. IV.
another, but are very time intensive. Conclusions are summarized in Sec. V.

The approach proved to perform efficiently on such com-
plicated problem spaces is a genetic algoritt@A).*>~ Il. PHENOMENOLOGICAL ANALYSIS

The GA treats the optimization problem as a selection of the =~ OF THE INCOMMENSURATE PHASE IN Sn ,P,Se

fittest set of parameters under the optimization. But the GA

does not simply use the Darwinian idea of biological evolu-

e e e o ethe phenomencogicalaporoach praposed n Rel. S and 6.

! . . P The TP for type-II ferroelectrics has the form

tion and heredity. From the evolutionary point of view, the

gradient methods of optimization are totally hereditive be- 1 (L[é

cause each new function evaluation is wholly determined by ® = Ef [

the previous one. At the same time, random search ap-

proaches are absolutely mutative because any consequent

function evaluations are totally independent. Following the + g(ps

biological example, the GA encapsulates mutation and he-

redity in a way which can be easily tuned to fit almost anywhere ¢(x)=P(x) is the OP;¢’'(X)=d@/dx. The OP is

optimization problent®-2° modulated along th®x axis, andL is the crystal length in
GA's are best performing on problems which admit thethe Ox direction. The material parametes>0, >0, §

use of a satisfactory solution instead of a perfect one becauseo, 3,<0, and y>0 are not assumed to depend on the

it cannot guarantee to produce the lattée inherent nonde- temperatureT, but a=a(T—T,), where a7 and T, are

terminism of the GA itself On the one hand, this is an some constants.

advantage because the GA can quite quickly find a “good”  Analysis of the experimental data shows that inFS8e;

solution where the traditional search for a perfect one wouldhe paramete, must be negative, and the diregirtual)

take years of computing time on a supercomputer. But on thghase transition from the paraelectric state into the C phase is

other hand, this feature can substantially reduce the field ab be of first ordef. As a consequence, a positiy€ term

The phase transition sequence from disordered to IC and
C states in SjP,Se; can be described in the framework of

_’/22r2§/252@4
02(¢)+2(<P90)+2(<P)+2€0+4<P

dx, (3

possible applications of GA's. should be added in the expressi@, providing global sys-
For instance, if the problem implies a multilevel optimi- tem stability®
zation, where the results of optimization on fhie level are The stable IC phase originates from competition and com-

considered as input data for{1)th one(as in our case  promise between they(’)?, £>0, and (')?, §<0, gradient
then the errors of optimization will have a tendency to accuinvariants in Eq.(3).>%! The gradient term ¢¢')?, 5>0,
mulate and the final result will be unpredictable. Unfortu- provides coupling of the wave numbkmwith the order pa-
nately, such optimization problems are not rare. Describingameter amplitudea and is of great importance when de-
the state or behavior of complex systefireustrial, physi-  scribing the temperature dependence of the wave number
cal, biological, social, et we usually implement math- and the low-temperature behavior of susceptibfity*2
ematical models which have a number of variation paramoreover, in the case of $R,Se; (as well as for NaNg),
eters. The search for solutions may appear to be Sge (p¢')? invariant causes the paraelectric-IC phase transi-
complicated that we will be forced to substitute the “exact” tion to be of second order, although a direct transition from
solution by the model one with its own set of optimization the paraelectric to the ferroelectric state is of first orgler
parametersas in our case Therefore, in order to predict and memberg,<0).-%*
control such a complex system, we should carry out a mul- | ong-range elastic forces play an important role in struc-
tilevel optimization. tural phase transitiongsee, e.g., Ref. 11 and references
The situation can be partially improved by performing atherein. Taking into account the elastic interactions leads to

set of optimization runs with different initial populations and 3 simple renormalization g8, coefficient in Eq.(3):
different population sizes, but it is difficult to predict how

many runs, generations, and individuals would be needed. Bo— B. (4)
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Renormalization is different for homogeneous strdite B can be obtained from the experimental dafan our cal-
case of the C phaseaand for inhomogeneous deformation culations, it is used to characterize the quality of the theoret-
(the case of the IC stateln the isotropic approximation, the ical description ofAC,.
difference(“gap”) The choice of the goodness-of-fit parameten the form

(6)—(9) is conditioned by the following two reasons. First,
A= Binc— Beom (5 the linear dependence gfon the values of® ¢, Kineor, and

between the coefficieng, . for the IC phase and the param- Bineor Makes the problem space smoother, which is important

eter Boom for the C state depends only on the electrostrictiveP€cause this space has unpredictable topography. Second, the
constant, bulk, and shear elastic modisté. values of AT, Keyp, and Be,, are measured with different

As mentioned in the Introduction, the description of the ©Chniques in separate experiments; thus, if we want all these
IC phase in type-Il ferroelectrics requires taking into accountl@t@ to be fitted simultaneously, we should addyathagni-
the deviation of the OP modulation from the pure one-tudes(7)—(9) together.
harmonic wave(1). A way to consider higher harmonics is
proposed in Ref. 12. Detailed descriptions of this approach I1l. MULTILEVEL MODIFICATION OF THE GENETIC

are given in Refs. 12-14 and 22. Here it is important to ALGORITHM
emphasize that the OR) is an approximate solution of the _ -
variational equation for the functioné). Therefore, the am- The essentials of the traditional GA are as follows. Every

plitude a, coefficientb, and elliptic modulusx in the formula  parameter under optimization is represented by a 16-bit
(2) should be defined by minimizing the TP with respect tostring called a gene, so that the parameter range is divided
them. into 2! parts, which is usually sufficiently precise. A set of
Our analysis aims to search for the set of TP and equilibgenes representing optimization parameters is called a ge-
rium OP parameters which reproduce as good as possible ti@me (an individua). Selective quality of an individual is
following experimentally measured data: the temperaturealled fitness. The population consists of a fixed number of
range of the IC phase stabilityT=T,— T =28 K, the tem- individuals. Evolution begins from the initial population
perature dependences of the OP and wave nukpémand filled with randomly chosen genomes. For each individual
the anomalous heat capacityC,= —To?d/9T2.18 As a  the function under optimization is evaluated and the fitness is
first step in our study, we have decided to use the experimer@ttached. Two individualgparent$ are chosen randomly ac-
tally measured value akC,,(T,) because, first, this value is cording to their fitnesses to produce offsprings. Mating of
derived with high precision and, second, we would like toparents uses two key GA operators: the mutation and cross-
estimate the abilities of our approach to describe, at leasgver. Mutation means the inversion of a gene’s bits, while
some anomalous data. crossover is the exchange of portions of bits between off-
The search process consists of two levels. On the first o3prings. After replication, offsprings are tested to acquire fit-
them, for the given set of TP parameters, we look for the sefiess. If the given offspring has a better fitness than the worst
of equilibrium OP parametera, b, and u generating the individual in the population, then the latter is substituted by
global minimum of the functiom;,. which is the TP of the  the former to keep the population size. Next, a pair of parents
IC phase in the modéPR).}? On the second level, by varying is chosen and so forth. The algorithm terminates when the
the TP parameters we find their geind the corresponding best fitness of the population is found to be equal to the
set of equilibrium OP parametenshich minimizes gy mag- ~ worst one so that no further improvement should be ex-

nitude in the form pected.
Implementation of the multilevel GA faces two general

X:XAT+Xk+XACpa (6) problems: (i) the inherent nondeterminism of the GA,
meaning that using it we cannot count on obtaining a perfect
solution, which may make the final result incorre@t) the

) (7) number of function evaluations increases approximately as
n' wheren is the mean number of function evaluations on a
single level and is the number of optimization level& n

Kineol Tn) — Kexp( Tr)| ® ~ 10* andl =2, then we have to make 10° function evalu-

Kexpf Tn) | ations and application of the GA appears impraciical
To handle the probleni), we have to take care of the
so-called “hamming cliffs” phenomeno(see, e.g., Ref. 33
' (9 which is a characteristic feature of the binary encoding
widely used in the majority of GA applications in natural
where @, is the TP of the C phasésee, e.g., Ref. 31 sciences. The matter is that the configurations of bits of two

Kineo Tn) @ndKe,o{Tr) are the calculated and measured waverandomly chosen nearest-neighbor integer numkgeses,

numbers at the experimental temperature poififs and  the values of which differ by unilycan appear so diverse

BineorandBe,p are the theoretical and experimental values ofthat the transformation of them into each other can require a

the magnitudeB= B;,.+ 2 7k?(T,).'* The magnitudeB is  number of highly correlated bit inversions made simulta-

correlated with the anomalous heat capacity in the IC phasgeously. To ameliorate this problem, gray codes are used.
atthe poinfT=T,: AC,(T)) =T,a$/(3B). The value of These have th&esirablé property that for any two adjacent

XAT= (I)inc_ (bcom
AT (I)com

1
Xk:NE X ox=

Btheor_ Bexp

XAc, =
P Bexpt
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integers they differ by exactly 1 bitso no hamming cliff final stage, where the pressure of selection is very strong,
existy. They do not have further potentially desirable prop-gives an opportunity to approach the minimum close enough.
erties such as that changing any single bit in a gray code (b) Real problem spaces are usually highly dimensional
produces an integer within some small distance from thend have complex landscapes. Efficient exploration of such
original one, etc. In fact, there is no possible encoding whiclspaces implies that the GA is able to change a number of
can possess this desired sort of property. To avoid the prolptimization parameters at once. If the frequency of mutation
lem with hamming cliffs, so-called “phenotypic mutation” is low, then the probability of simultaneous bit inversions in
operators are also used. Mutation of integers is commonlgeveral genes is very small. On the contrary, a high fre-
done using uniformly or normally distributed changes in thequency of mutation automatically guarantees a multipoint
integer domain, with various methods for preventing over-mutation event.
flow from the boundaries of the finite integer domain of the  Unfortunately, the higher mutation rate, the smaller num-
problem. ber of offsprings survives. To minimize harmful conse-
To fix the problem with hamming cliffs within the raw quences of highly inexact replication, we have modified the
binary codes, we have implemented a rebuilding of the bibit inversion procedure itself. Traditional mutation operation
nary configuration of a gene as a first stage of the mutatiomssumes that the probability of inversion of a bit in a gene is
operation. The problem usually appears if the given gene hadistributed uniformly, so that the probability of a drastic
its n lowest bits as units or zeros so that the increase ochange is equal to the probability of a slight one. By altering
decrease of the gene value by 1 takes-(L)-bit inversions the shape of that distribution, we can, in principle, decrease
made at once. Thus, before the conventional inversion othe probability of lethal changes even if the mutation rate in
bits, it is worthwhile randomly shifting the value of gene by the genome is very high. In biological genetics a similar
—1, 0, and+1. Our comparative tests on the minimization of alteration is called degeneracy of the genetic code and leads
simple functions show that the binary code with correctedto similar result$? It is impossible to calculate or predict the
mutation procedure improves the gray code for small popudistribution in closed form. Therefore, we introduce 16-bit-
lations and maintains its performance for large ones. inversion-weight genegone gene for every bit in a 16-bit
In order to efficiently deal with the problefii), we have string. These genes are incorporated in a genome and treated
to find a way of reducing the number of function evaluationsas optimization parameters as the problem parameters are.
needed on a single level of optimization. In other words, weThe initial values of the weight genes provide a uniform
should optimize the basic GA parameters and operators witHistribution of the mutation probability in a gene. Our ex-
respect to the number of function evaluations, keeping th@eriments show that under a high frequency of mutation the
quality of optimization along with that. weight genes rapidly adapt and the final number of function
Mutation is a major GA operator making the evolution evaluations substantially reduces. In other words, we observe
possible. Without crossover the GA usually works well, buta dynamic degeneration of the binary code, meaning that
without mutation it does not work at all. The frequency of during evolution the magnitude of changes caused by muta-
mutation determines the degree of inheritance: if it is toctions substantially decreases. As we have mentioned above,
high, the heredity is almost absent and the GA becomes ortkere is no possible encoding which possesses the property
of the stochastic methods; if it is too low, the heredity isthat changing any single bit in a code produces an integer
almost total and the GA appears to be one of the determinwithin some small distance from the original one. But now
istic approaches. The maximum speed of evolutionini-  we see that the binary, gray, or any other possible encodings,
mum number of function evaluationsccurs when the fre- being equipped with the dynamic degeneration technique
quency of mutation acquires some optimum value at theroposed, acquire that property.
middle. This value cannot be estimated in general for any Crossover is a GA operator which is usually considered to
problem. Hence we treat it as a parameter under optimizamprove the convergence of algorithm, i.e., to reduce the
tion, as well as we do with the problem parameters. number of function evaluations. However, investigating the
In our approach the frequency of mutation is implementedoint action of the new mutation operator described above
as a number of replicated genes, one of which, on averagend the traditional crossover procedure, we have found the
has only 1 bit flipped. That number is allowed to be a gendatter not improving the convergence, but even making it
having an initial value of 1every gene in the genome would worse. The following reason for this is possible. In biology,
be changed During replication, the mutation genes of the crossing over does not change genes: it only makes different
parent and its offspring are randomly changeddly, O, and  versions of the same gene able to replace each ¢ihdrift)
+1. Efficiency of the approach is conditioned by the follow- in the population. The existence of a gene as a self-
ing two advantages. replicative unit of selection is possible just because crossing
(a) For real problems it is impossible to predict the opti- over does not destroy its internal structuiiore precisely,
mum population size. Thus we should admit that it is alwayshe probability of cutting the gene by crossover is very small
smaller than the optimum one. If the frequency of mutationbecause the mean distance between genes substantially ex-
is low and constant, then the actual search space is strongbeeds the mean length of gene itgelfOn the contrary, in
reduced. On the contrary, if the frequency of mutation isthe GA crossover always changes the gene value: thus, it can
floating, then its high value at the initial stage of evolution, be treated as a special kind of mutation. Since the frequency
where the pressure of selection is weak yet, allows one tof mutation in our approach is much higher than that in the
explore the whole search space, while its low value at theraditional GA, the crossover-caused “mutation” additionally
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increases the actual frequency of mutation, making it highes 10 Jm C 2K %,  y=8.5x10°JnPC 8, Bom=—4.8
than the optimum one and therefore decreasing the numbet108 JnPC4, andA=1.7x1 JnP C~* The others, i.e.,
of offsprings surviving. Hence we do not use the crossoveys, ¢ and 7, should be optimized. Note that the procedure of
operator in our approach. extractingB.om in Refs. 8 and 25 is not quite reliable; thus,
Further reduction of the number of function evaluations isywe have decided to varg.,, as well. When the values af

conditioned only by the decrease of the po_pulation size. Thand ¢ are known, the parametd, is given by the relation
smaller population size, the faster evolution and, unfortu-

nately, the higher error percentage along with that.
In our problem, on the first level of optimization we de- To=Ti— Aéar (10

rive the set of equilibrium OP parameters which gives the ] ]

global minimum to®,,.. On the second level, the tempera- This formula follows from t_he expression for_gffectlve tem-

ture T, of the IC-C phase transition is obtained as a point Oﬂ)elratzurelzof the paraelectric-IC phase transitior= a(T))

the closest approach ob,,. and ®.,,. If T>T,, then =207/& -

@ o> Do, but whenT<T,, then® o < ®;,c. The error The I’eSlélétS of op;:lmlzatlor; are as follogvvs:

on the first level means that the derivéid, is greater than £=2.35<10 #°+1.53x10 *JnPC 2 2=2.30x10

the equilibrium one. When this error occursTat T, , ithas = 1-53><210714 Jm'C™, 6= —4.52¢ 1073111 1-5335 1071°

no harmful consequences, but if it happensTatT,, the JINMC % Beom= —4.43x10°+1.53<10 *InPC™%. The

@, value becomes wrongly closer t.m, xat, EQ. (7) temperaturel is equal to 207.4 K. The quality of the fit is

becomes mistakenly small and, as a result, the evolution betar=10"", xk=9.4X10"%, xac =3.1xX10"", and x=9.4

comes infinite. Similar problems arise when calculating X103,

Eq. (8). The errors in the fitted parameters are determined by di-
To find and fix errors automatically, we have devised theviding the range of variation of a given parameter by the

following very simple algorithm. If on the second level of number of grid points, which is equal td%= 65 536(for the

optimization the parent and its offspring are clorte TP~ 16-bit genes

genes match they must be clones on the first level tal We see thay, dominates the goodness-of-fit parameter

OP genes must matghlf this requirement is not fulfilled, The following reasons for that are possible. First, the values

then the OP genes corresponding to higibg|. are substi- of AT and B, are extracted in Refs. 1 and 8 with high

tuted by the ones generating low®,,.. This recipe is used precision, while the values df,, are measured in Refs. 2

to correct calculations of both the temperature range of thand 7 with an average error per point up to 10%. Second, this

IC phase and the values of wave numbers at experimentfct can appear as the feature of our ma@glnote the twist

temperatures. In our experiments this algorithm has shownf the solid curve in Fig.  which needs further investiga-

excellent performancéconvergenceeven under conditions tion.

when the percentage of the first-level unsuccessful runs is In order to estimate the reasonableness of the fit, we

close to 50% regardless of the magnitude of the deviatioshould note that the values of parameters found are typical of

from the true minimum. This observation has allowed us tatype-II ferroelectrics TP’s which containgf term!! Along-

substantially reduce the population size and, consequently, wide with that, we should emphasize the substantial differ-

additionally shorten the number of function evaluations. Theences between our parameters and those obtained in Refs. 8

error correction procedure proposed is a quite general anand 25 and further used in Ref. 10 for the attempt to describe

easily applicable key operator of any multilevel GA imple- the full set of data on ferroelectric ghSe; ¢=4.4

52

mentation. X1027JnPC 2, 5=1.2x108Jm C™* and 6=-4.0
x 10 1°J P C 2. The origin of this discrepancy is the fol-
IV. ANALYSIS OF EXPERIMENTAL DATA FOR lowing. The experimental data on the temperature beh_ayior
SnP,Sa; RESULTS AND DISCUSSION of the modulation wave number in the full range of stability

of the IC phase, used in our study, are more up to tata.

In this section we apply the developed technique to reprodetermining the temperature range of the existence of the IC
duce the temperature dependences of thepQ8 and wave phaseAT, we have not used any additional simplifying as-
numberk, and the anomalous heat capac®yC,(T,) for  sumptions. In particular, unlike Refs. 8 and 25, we have not
ferroelectric SpP,Se;. suggested the validity of the one-harmonic approximation in

It should be noted that critical fluctuations are not takenthe full range of the IC phase and in the vicinity of the
into account in the theory under consideration. It means tharansition point to the ferroelectric state as well.
phenomena which have a fluctuation nat(gech as nonzero Figure 1 shows the spontaneous polarizatinin the
values ofAC, in the paraelectric state in a close vicinity of ferroelectric state and the amplitugle,| of the first Fourier
the point of the transition into the IC phaseill not be  harmonic of the OP modulation wave. The magnit{ield is
discussed. expressed through the OP amplitualen Egs.(1) and(2) by

To calculate the thermodynamic characteristics ofthe formula|P,|=3a. At the lock-in transition point, the
SnP,Se; in the IC phase, we must know the values of the TPelliptic modulus isu = (T, )=0.755. Using the technique
parametersrr, To, Beom: A, 7 6, € and . Some of these described in Refs. 14 and 22, we find that for sughthe
magnitudes can be found from analysis of theP38e; be-  ratio of the amplitudg P3| (|Psy|) of the third (fifth) har-
havior in the paraelectric or ferroelectric sff® a;=1.6  monic to the fundamental harmoniP,| is |Ps/|Py|
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FIG. 1. Temperature dependences of the spontaneous polariza- (K]
tion Py in the polar statédotted curvg and the amplitud¢P,| of FIG. 3. Anomalous heat capaciyC, as a function of tempera-
the first harmonic of the order parametgfx) in the IC phase for ture. The solid curve is for the mod@), the dashed curve is for the
the modelg2) and(1) (solid and dashed curves, respectively; they approach(1), and the dotted curve is calculated for the commensu-
lie very close to each otherThe vertical line indicates the location rate phase. The vertical line indicates the location of the lock-in
of the lock-in transition. transition. Experimental data are from Ref. 26.

=0.05 (Pg/|P\|=0.0026). Thes7e results are in good (ion (2) is P=4K(u)/b, whereK () is the complete elliptic
agreement with experimental daté! , integral of the first type. Hence the perigdand the wave
The temperature dependence of wave numibes pre- _ numberk=27/P depend not only on the coefficiebt but
sented in Fig. 2. According to recent neutron scattéringyss on the elliptic modulug. which controls the power of
experiments,the average error per experimental point of the,linearity of the modulation waw@). The result of such a
measurements of wave numbe(T) is about 10%. Bearing conirol is clearly seen in Fig. Gust compare the dotted line
this in mind, we may state that the mod@) reproduces the o1 y and the solid one fok): in spite of the small nonlinear
temperature behavior of the wave number inf58e Very  contribution to the OP structurelRg,l/|Py]), the conse-

well. . ) . quences of this contribution to tH€T) dependence should
In the proximity of the paraelectric-IC phase transition yo gqmitted as being essential.

point (T~218-221K), model(2) is close to the one- It is remarkable that the curvature of the wave number
harmonic approact) (the upper part of the dashed curve in i, model (2) changes its sign within the range of the IC
Fig. 2). With cooling, the “nonlinear” mechanism becomes yhase stability. Usually, the experimental temperature depen-
dominating in the wave number behavighe lower part of  jence of the wave number is assumed to be purely convex.
the S(_)I|d_ curve in F|g._)2 which leads to qualitative and The one-harmonic approximaticid) gives a wrong curva-
quantitative fit of experimental data. ture for thek(T) function®°?*Note that an analogous result

The mentioned *nonlinearity” in the wave number ig 550 obtained for sodium nitrite NaN@or which the TP
behaviol*®* means that the modulation period of the func- has the same form as for $hSe, X

In the model(2) (as well as in the one-harmonic approxi-
mation), there exist such sets of material parameters which
provide convex behavior of the wave number. However, the
_ values of the anomalous heat capacityTat T, calculated
for these sets appear to be far away from the experimentally
. observed ones. We still do not know of any investigations in
which important characteristics such as wave number and
. anomalous heat capacity are simultaneously correctly de-
scribed in the framework of a model having only one addi-
tional fitting parameter as compared to the one-harmonic ap-
T proximation.
220 The nonlinear contribution also improves the description

of the AC,(T) behavior, particularly at the low-temperature
boundary of the IC phasérig. 3). Unfortunately, the ten-

FIG. 2. Temperature dependence of the wave nurkteirthe ~ 9€NCy OfAC, to increase with cooling is reproduced only
order parametep(x) in the IC phase. The solid curve is for the Partially, and the absolute values AC,, in the vicinity of
model (2), while the dashed one corresponds to the apprach lock-in transition pointT, are still smaller than the experi-
The dotted curve depicts the temperature behavior of the coefficiedfiental one$® However, an appropriate behavior is observed
b in the expressiori2). ¢* is the reciprocal lattice vector along the Somewhat lower thai (solid line in Fig. 3. A possible
modulation directiong* =27Xx0.1469 10°°m~* (Ref. 2. Experi- mechanism which can “shift” the theoretical region where
mental data are from Ref. 7. AC, increases inside the region of the IC phase and, hence,
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0.09 4
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T T T
190 200 210
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provides a more correct description of the experimental datahe TP for these systems containsp& invariant, making
is the temperature dependence of material param#tef®  them strongly nonlinear. As a consequence, the temperature
Remember that in the model given by E¢8) and (3) the  dependence of the wave number in the IC phase cannot be

parameters does not depend on the temperature. correctly described simultaneously with the anomalous heat
capacity without taking into account nonlinear properties of
V. CONCLUSIONS the IC order parameter. At the same time the contribution of

i i higher harmonics to the modulation wayéx) is relatively
In the present paper we have made the first step in applysmall.

ing the phenomenological model described by Hgs.and Surely, to make the role of nonlinear phenomena in the
(3) (Ref. 12 to explain some interesting experimental datagp,p,se, thermodynamics more illuminated one should take
for ferroelectric SpP,Se; in the IC phase. into consideration all experimentally measured points of
While implementing the genetic algorithm we have pro- ¢ and investigate the behavior of other important charac-
posed a simple way to avoid the “hamming cliffs” effect, teristics, such as the susceptibility. However, the susceptibil-
simulated the dynamic degeneracy of the binary code to rey, properties are not discussed in this paper because the
duce the number of function evaluations, and devised an efresent model should be modified for their correct descrip-
ror correction algorithm which makes the multilevel geneticiion Generally speaking, such a modification requires one to
optimization possible. The developed GA technique wasing nonlinear OP configurations corresponding to the equi-
originally suited for parallel computation, but it has appearedpyiym state in the presence of an external electric field. But

o) poyverful that it can be successfully used on a single sgpig study is beyond the scope of the current paper.
guential processor as well.

We have found a set of material parameters which allows
the order parametep(x), the wave numbek(T), and the
anomalous heat capacityC,(T,) to be well reproduced.

Our analysis shows that for g»Se; (and plausibly for The authors are deeply indebted to Y. M. Wsochanskii for
NaNO,, whose TP has the same strucjutlee role of non-  stimulating discussions and the opportunity to read some of
linear effects is more important than it is usually thought.his results before publication.
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