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Time evolution of tetragonal-orthorhombic ferroelastics
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We study numerically the time evolution of two-dimensional~2D! domain patterns in proper tetragonal-
orthorhombic~T-O! ferroelastics. Our equations of motion are derived from classical elasticity theory, aug-
mented by nonlinear and strain-gradient terms. Our results differ from those found by other dynamical meth-
ods. We study first the growth of the 2D nucleus resulting from homogeneous nucleation events. The later
shape of the nucleus is largely independent of how it was nucleated. In soft systems, the nucleus forms a
flowerlike pattern. In stiff systems, which seem to be more realistic, it forms an X shape with twinned arms in

the 110 and 1̄10 directions. Second, we study the relaxation that follows completion of the phase transition; at
these times, the T phase has disappeared and both O variants are present, separated by walls preferentially in
110-type planes. We observe a variety of coarsening mechanisms, most of them counterintuitive. Our patterns
are strikingly similar to those observed in transmission electron microscopy of the improper T-O ferroelastic
YBa2Cu3O7.

DOI: 10.1103/PhysRevB.64.064101 PACS number~s!: 81.30.Kf, 68.35.2p, 62.20.Dc
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I. INTRODUCTION

Ferroelastics1,2 are crystalline solids that undergo a shap
changing phase transition, usually first order, to a state
lower symmetry with decreasing temperatureT. A prominent
example is the tetragonal-orthorhombic~T-O! ferroelastic
YBa2Cu3O7.2,3At the transition temperatureTc , the unit cell
of the parent~high-T! phase distorts spontaneously in one
several equivalent directions. Each of these degenerate
tortions corresponds to a differently orientedvariant of the
product ~low-T) phase. BelowTc , all variants are usually
present, separated from each other by domain walls w
preferred orientations. Domain patterns in ferroelastics di
greatly from those in ferromagnets, gainsaying the anal
responsible for the very name ferroelastic1 and confounding
intuition based on conventional order-parameter systems
the final analysis, ferroelastic patterns are different beca
the strains are not independent order parameters but ra
are linked by compatibility relations.

The theory of proper ferroelastics~where the strain is the
primary order parameter! extends the classical theory of ela
tic continua by adding higher-order terms in the strains a
also derivatives of the strains. This strain-only theory w
first used4 in one dimension~1D!; its first important result
was a remarkable solution5 for the twin wall of cubic-
tetragonal~C-T! materials. It has since been used to stu
various aspects of~i! T-O materials,6–12 ~ii ! the 1D
problem,13 ~iii ! cubic-tetragonal~C-T! materials,14–16 and
~iv! hexagonal-orthorhombic~H-O! and related materials.17

Although the strain-only theory applies strictly only
proper ferroelastics, it has nevertheless succeeded in exp
ing a wide variety of domain patterns also in improper T
~Ref. 12! and H-O~Ref. 17! materials. A much larger litera
ture~examples are Refs. 18–24! includes order parameters i
addition to the strains or applies more phenomenological
proaches.

No consensus exists regarding the description of
roelastic dynamics. Our equations of motion are based
0163-1829/2001/64~6!/064101~7!/$20.00 64 0641
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classical elasticity theory;25 this formalism has been use
only infrequently, to study 1D,13 C-T,14 and H-O ~Refs. 17
and 26! systems. Fundamentally different dynamic
schemes were used in the strain-only theories of Refs. 7
11,15, and 21, often only as a tool to find static structure

The following presents the application of the classic
equations of motion25 to the dynamics of proper T-O fer
roelastics. The study was motivated in part by the electr
microscopy results2,3 available for YBa2Cu3O7; this is an
improper material~the orthorhombic distortion is a second
ary effect of the oxygen ordering!, but the success of the
static strain-only theory12 for YBa2Cu3O7 warrants an exten-
sion to the dynamics. Computational resources allow us
consider only 2D structures, with possible application to th
films, particularly to the patterns of Refs. 2 and 3.

The paper is organized as follows. Section II gives t
expression for the T-O strain energy in 2D and then finds
equations of motion. We distinguish between soft and s
systems according to the energy cost for wall directions
optimal. The strain-only theory predicts softening with d
creasingT, perhaps with observable consequences. Sec
III applies this formalism to investigate the growth of O n
clei from the supercooled T phase. We find that the dev
oped nuclei are largely independent of the nucleation mec
nism; in both soft and stiff systems they differ marked
from the nuclei in other theories.11,22 In soft systems, nucle
are flowerlike; they simply expand without generating mu
additional structure. In stiff systems, they form an X sha
with twinned arms in the major growth directions~110 and
1̄10); additional structure forms near the center and pro
gates outward along the arms. Section IV examines
coarsening mechanisms that follow completion of the ph
transition, including domain-wall merges, formation, a
disappearance of island domains, rank formation of ribb
tips and their coordinated retraction, and tip splitting~in stiff
systems!. Section V provides a summary and proposals
further investigations.
©2001 The American Physical Society01-1
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II. EQUATIONS OF MOTION

A. Expansion of the strain energy

The energy of proper ferroelastics is expressed solel
terms of the strains. These are combinations of derivative
the displacementu(x) of a material point from its positionx
in the high-T symmetric phase. We discuss only structu
uniform in the tetragonal fourfold (x3) direction. We define
the three strains in 2D by

e15~h111h22!/A2, ~1a!

e25~h112h22!/A2, ~1b!

e35~h121h21!/2, ~1c!

where the components of the strain tensorh are

h i j 5
1

2
~ui , j1uj ,i1uk,iuk, j !; ~2!

hereui , j5]ui /]xj5] jui and repeated indices are summe
All three strains vanish in the T phase. The deviatoric str
e2 is the primary order parameter of the T-O transformati
In the lowest-energy product state,e2 takes one of two de-
generate values6e20 corresponding to a stretch in either th
x1 or the x2 direction. The dilatational and shear strainse1
ande3 vanish for these two states, and also for twin band6

but not for the complex domain patterns formed by collidi
bands.

At this stage in the theory of ferroelastics, one wants
examine the simplest possible form for the energy densityF,
to include only those terms required by symmetry, for sta
ity, and to explain experiments. This simplest form is

F5
1

2
@A1e1

21A2~T!e2
21A3e3

2#1
B2

4
e2

41
C2

6
e2

6

1
d2

2
~¹e2!2; ~3!

all terms are invariant under the symmetry operations of
T group. The dilatational, deviatoric, and shear stiffnes
A1 , A2(T) andA3 in the first term are related to the elast
constants. Stability requiresA1>0 and A3>0. But A2(T)
softens with decreasingT, asA2(T)5a(T2T0), and the T
phase is unstable forT,T0. To describe the phase transitio
we need the terms ine2

4 and e2
6; we assume a first-orde

transition (B2,0), and soC2.0 for stability. At high T,
namely A2(T).B2

2/4C2, only the T minimum exists. At
lower T, two O minima occur ate256e20(T), where

e20~T!5@~2B21AB2
224A2~T!C2!/~2C2!#1/2. ~4!

At the transition temperatureTc , found from A2(Tc)
53B2

2/16C2, the three minimae250, 6e20(Tc) are degen-
erate; heree20(Tc)5A23B2/4C2. Finally, the gradient term
is responsible for the wall energy; the other derivat
invariants27 are unimportant,7,12,27 largely because the pri
mary physical spatial dependence is ine2.
06410
in
of

s

.
n
.

,

o

l-

e
s

The parameters of the theory are not well known for a
material. To reduce the number of unknown parameters,
possibly obtain a universal theory that applies qualitativ
to many materials, we transform variables by

ej→@e20~Tc!3103#ej , ~5!

xi→Ad2 /A2~Tc!xi , ~6!

F→A2~Tc!@e20~Tc!3103#2F; ~7!

also, we define the dimensionless temperaturet
5A2(T)/A2(Tc)5(T2T0)/(Tc2T0) and dimensionless
stiffness parametersz15A1 /A2(Tc) and z35A3 /A2(Tc).
The scale factor in Eq.~5! is chosen so that the deviator
strain atTc is 1023, an arbitrary value; the hidden but ne
essary assumption here is that the strains are small and s
nonlinear term in Eq.~2! can be neglected. The energy de
sity in terms of the new variables is

F5
1

2
~z1e1

21te2
21z3e3

2!1
b

4
e2

41
c

6
e2

61
1

2
~¹e2!2, ~8!

whereb5243106 andc5331012. If temperatures nearTc
are accessible, the three parameters in Eq.~8! can be deter-
mined from the elastic constants just aboveTc , the straine2
at Tc , and theT dependence ofe2. For YBa2Cu3O7, typical
values at lowT are28 an orthorhombic distortion of 2(b
2a)/(a1b)50.017 ~giving e2050.012), and a wall width
of '1.3 nm.

This Landau theory, with all parameters butA2 assumed
independent ofT, is in principle restricted in its validity to
the immediate vicinity ofTc ; the prediction that the homo
geneous straine20 does not saturate with decreasingT is
particularly doubtful. We note, however, that the prima
strain need not saturate rapidly; from Figs. 1.5 and 4.3
Ref. 2, the strains in lead phosphate (Tc5453 K) and
As2O5 (Tc5578 K) are still increasing at room temper
ture. Whether the simplest Landau theory is adequateT
well below Tc can, it seems, be decided only on a case-
case basis. We should mention a second weakness o
Landau theory, namely that the use of strain-gradient term
questionable when the wall width is only a few atomic sep
rations@as in YBa2Cu3O7 ~Refs. 3 and 28!#.

Static structures predicted by Eqs.~3! @or ~8!# are dis-
cussed in Refs. 6, 8, and 12. Domain walls have lowest
ergy (e1 ande3 are zero! when in the T 110 and 11̄0 planes.
The walls link the variants but also rotate them by an an
proportional toe2. The rotation, which has no counterpart
conventional order-parameter systems, gives rise to unu
effects when orthogonal walls collide; for example, the
sual wall length increases in the collision region, due to va
ant narrowing12 resulting from formation of a disclination.

Different structures are found in soft or stiff systems, d
pending on whether the energy cost is small or large for w
directions off the optimal 110 and 11̄0 planes. The relevan
parameters are the ratiosz1 /z2 andz3 /z2 of the dilatational
and shear stiffnesses to the deviatoric stiffnessz25t
13be20

2 15ce20
4 . The energy cost for wall orientations o
1-2
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TIME EVOLUTION OF TETRAGONAL-ORTHORHOMBIC . . . PHYSICAL REVIEW B64 064101
the 110 and 1̄10 planes increases with both these rati
though more strongly withz1 /z2 it seems. We point out tha
z2 increases asT decreases, fromz254 at t512 to z2
5238 at t5250, for example. Surprisingly then, in thi
theory systems should soften asT decreases~we assume tha
parametersA1 and A3 have no strongT dependence!. As a
result, features like split tips characteristic of stiff syste
may disappear on cooling~if the system is moderately stif
just belowTc , low enough temperatures are accessible,
the relaxation is not too sluggish!.

B. Time evolution

The Lagrangian density is

L5T2V5
1

2
r~ u̇i !

22F, ~9!

whereu̇i5]ui /]t andF is the strain-energy density. To rep
resent the nonconservative forces in the system, we u
Rayleigh dissipative function,25 with density

R5
1

2
~A18ė1

21A28ė2
21A38ė3

2!. ~10!

This form respects the symmetry of the T phase. The imp
tant point is that Eq.~10! leads to dissipative forces that a
functions of the spatial derivatives of the velocity, as o
would expect, since uniform motion of the material cann
dissipate energy. Then the equations of motion are25

rüi2s ik,k8 2s ik.k50, ~11!

where

ski8 5
]R

]u̇i ,k

, ~12!

ski5
]F

]ui ,k
. ~13!

The zeroth Fourier component in Eq.~11! should be consid-
ered separately since the last two terms are then zero;
the inertial termrüi tells us that the motion is uniform, de
termined by the initial values.

Effects of the inertial term have been considered pre
ously, for example in Ref. 13. This term is of course imp
tant at acoustic-phonon frequencies~say 1011 Hz) and it is
necessary to describe also rapid domain-wall motion~for ex-
ample the ‘‘twin cry’’ in certain materials!. But the frequen-
cies corresponding to domain-wall relaxation are expecte
be much smaller and so we neglect the inertial term in
following. By the same argument, the viscosity coefficie
Ai8 in Eq. ~10! are not those measured in ultrasonic atten
tion; they are instead effective coefficients appropriate
the mechanisms responsible for domain-wall relaxation.
glect of the inertial term is occasionally criticized on th
grounds that the sound velocity is then in effect infinite; t
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criticism is quite irrelevant when, as here, the formalism
used only to discuss much slower phenomena.

Equation~11! then simplifies to

s ik,k8 52s ik,k . ~14!

The summation on the indexk prevents integration of thes
equations, except in 1D. In 1D, the constant of integration
crucial, for it represents boundary conditions on the displa
ment, which may hold the system in a static configurat
that is not necessarily the unconstrained minimum of
strain energy.

The equations of motion~14! in terms of the strains are

A18ė1,11A28ė2,11
A38

A2
ė3,252~G1,11G2,11G3,2!,

~15a!

A18ė1,22A28ė2,21
A38

A2
ė3,152~G1,22G2,21G3,1!,

~15b!

whereGi5dF/dei and the individual functionals are

G15A1e1 , ~16a!

G25A2e21B2e2
31C2e2

52d2¹2e2 , ~16b!

G35A3e3 /A2. ~16c!

We emphasize that our equations of motion~15! are not
those of time-dependent Ginzburg-Landau~TDGL! theory.
Schematically, the latter are

ėi}2dF/dei , ~17!

with a nonlocal expression29 for the densityF; the major
difference is the additional space derivatives on both side
Eq. ~15!. Equation~17! has much intuitive appeal, not lea
because it continues the analogy with ferromagnets. Ne
theless, it cannot be correct in principle, and in fact its p
dictions disagree with those of Eq.~15!. We illustrate the
point by considering a material with short-range intern
forces, uniformly stretched by external forces applied at
ends. When the forces are abruptly released, relaxation
gins at the ends and propagates inward, taking a fi
amount of time to reach any point in the bulk; the ions~ex-
cept those near the ends! feel equal but opposite forces from
their neighbors until the disturbances reach their vicin
Equations~15! have the correct behavior, whereas Eq.~17!
predicts instantaneous response.

Equations~15! differ also from the dynamics

u̇i}2dF/dui ~18!

of Refs. 7 and 10, the former atT50. Not having examined
physical settings comparable to those where Eq.~18! was
used, we cannot compare its results with those of Eq.~15!.
The right-hand side of Eq.~18! agrees with that of Eq.~14!;
but the left-hand side, a dissipative force proportional to
velocity, cannot be correct in principle.
1-3
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S. H. CURNOE AND A. E. JACOBS PHYSICAL REVIEW B64 064101
From Eqs.~15!, the equations of motion for the two com
ponents ofu are

S ~A181A28!]1
21A38]2

2/2 ~A182A281A38/2!]1]2

~A182A281A38/2!]1]2 ~A181A28!]2
21A38]1

2/2
D S u̇1

u̇2
D

522S G1,11G2,11G3,2

G1,22G2,21G3,1
D . ~19!

By solving these equations, we satisfy automatically the
compatibility relation

¹2e12~]1
22]2

2!e22A8]1]2e350 ~20!

in the small-strain approximation. This necessary and su
cient requirement that the strains be derivable from the
placement can be obtained by starting fromui ,125ui ,21.

The three viscosity parametersAi8 are not known from
experiment, though of course all must be>0; it is then rea-
sonable to consider the simplest possible theory. In choo
parameter sets, we should avoid those that give a vanis
determinant,

Det5
1

2
~A181A28!A38~]1

41]2
4!1@4A18A282~A182A28!A38#]1

2]2
2

~21!

of the coefficients on the left-hand side of Eq.~19!; inspec-
tion shows that only one of theAi8 can vanish. Other cases o
interest are those for which the determinant factors, i.e.,

4A18A282~A182A28!A3856~A181A28!A38 , ~22!

giving three possibilities:~a! A1850, ~b! A3852A28 , and ~c!
A2850; a fourth, namelyA38522A18 fails on grounds dis-
cussed above. Sincee2 is the primary order parameter, w
should keepA28 ; the time scale is then adjusted so thatA28
51. The choicesA3852A28 ~the isotropic case! and A1850
are convenient, for then the left-hand sides of Eq.~19! de-
couple. We verified that takingA1851 vs A1850 has little
effect during the evolution; the fully relaxed configuratio
can differ, however.

We imposed periodic boundary conditions on the d
placementu, thereby forcing domain walls into the system
the equilibrium states are a single twin band, optimally w
only a pair of walls. We solved Eqs.~19! using a finite-
difference, fast-Fourier-transform method. At the beginn
of each time step, the displacement field was known at e
point of the space grid. Finite-difference approximatio
~centered on a 535 grid! were used to compute the deriv
tives and so to obtain the right-hand sides in real space.
latter were then Fourier transformed. The Fourier com
nents on the left-hand sides were found using the sa
finite-difference approximations and then advanced in ti
using the Euler method~with time step 1025 or so!. The
results were then Fourier transformed back to real spac
begin the next step.
06410
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III. T-O NUCLEUS IN TWO DIMENSIONS

This section studies the nucleus resulting from perturb
the supercooled T phase in various ways. All results are fo
grid of 5123512 points, with step size 0.4.

We first present results obtained by displacing a sin
point off a high-symmetry direction. Figure 1 shows sna
shots fort5250 (z25238) and for four sets of values o
z1 and z3, all at time t50.18 after identical nucleation
events; the viscosity parameters areA1850, A2851, andA38
52. Figure 2 shows snapshots of the same systems a
later time t50.24. Very little is known about the relativ
importance of the stiffnessesz1 and z3 and so we investi-
gated some extreme cases; we find stronger dependenc
z1 than onz3. Parts~a! and ~b! of Figs. 1 and 2 show sof
systems (z151), with z351 and 1000, respectively, wherea
parts~c! and ~d! show moderately stiff systems (z151000),
again withz351 and 1000, respectively. The important poi
is that the nucleus has very different shapes in soft and
systems; one notes also the more rapid growth in the lat

In the soft systems, the domain walls lie off the optim
directions; the nucleus retains its flower shape as it expa
In the stiff systems, the domain walls are much closer to
optimal orientations. The nucleus has a striking X shape w
arms in the 110 and 11̄0 directions; growth transverse to th
arms results from the appearance of new variants near
nucleation site and their subsequent growth along the ar

Other sets of simulations started from point displaceme
in high-symmetry directions~100 and 110!, and others from
displacements of small areas. Every soft system gav

FIG. 1. Greyscale snapshots of orthorhombic~O! nuclei grow-
ing after identical perturbations of the supercooled tetragonal~T!
phase. The twoO variants are white and black, theT matrix grey.
Parts~a! and ~b! show soft systems (z151) with z351 and 1000,
respectively; parts~c! and ~d! show moderately stiff systems (z1

51000), again withz351 and 1000, respectively. All four snap
shots are at the same timet50.18 following the nucleation event.
1-4
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TIME EVOLUTION OF TETRAGONAL-ORTHORHOMBIC . . . PHYSICAL REVIEW B64 064101
flower with eight or more distinct domains emanating fro
the disturbed area; every stiff system gave the X sha
nucleus.

Yet more sets of simulations started from circular regio
containing several parallel stripes in one direction. The
tention was in part to examine the stability, under our d
namics, of a nucleus like that found in Ref. 11 using TDG
dynamics; we must point out, however, that our simulatio
and those of Ref. 11 differ in respects other than the dyn
ics. We find that the circular regions are unstable in both s
and stiff systems, that they evolve rapidly to configuratio
much like those~described above! resulting from point per-
turbations. Figures 3~a1! and 3~a2! show the growth proces
for a soft system; the nucleus grows longitudinally~parallel
to the stripes!, but also transversely, developing side lob
and so evolving toward the flowerlike patterns in Figs. 1~a!
and 1~b! and 2~a! and 2~b!. Figures 3~b1! and 3~b2! show the
evolution of a stiff system. The faster growth occurs in t
longitudinal direction, but twinned jets shoot out tran
versely, thereby evolving the system toward the X shape
Figs. 1~c! and 1~d! and 2~c! and 2~d!. The two sets of jets are
more asymmetric here, because the rapid longitudinal gro
exaggerates the greater asymmetry in the starting config
tion. Nevertheless, it is clear that even this starting confi
ration is also unstable toward the formation of perpendicu
jets and evolution to the X shape. For both systems, we
that growth is primarily along the 110 and 11̄0 directions;
growth in the 100 and 010 directions is slow.

Simulations at temperatures betweent52100 and t
525 gave results qualitatively similar to those described
Figs. 1–3; the major difference is that the nucleus gro
more slowly at higherT, as expected. The important point
that the flower/X shapes were found for soft/stiff systems
all T. We were unable to nucleate the low-T phase abovet
525 ~well below the stability limitt50 of the T phase!

FIG. 2. The nuclei of Fig. 1 at a later timet50.24.
06410
d

s
-
-

s
-

ft
s

s

-
in

th
ra-
-
r
d

n
s

t

and so we could not examine the parameter set of Ref.
Because the gross features are independent of the sta

configurations and temperature, we believe that we h
found the nucleus of the T-O transformation in 2D, at le
below t525. Application should be immediate to thi
films, and it is reasonable to expect thatx-y cuts through the
3D T-O nucleus will resemble our 2D nucleus.

None of our simulations~with any starting configuration
with either soft or stiff parameters, at any temperature! gave
a nucleus resembling that found using TDGL theory in t
strains. The 2D T-O nucleus of Ref. 11 accords with on
intuition based on conventional systems. It is compact, el
tical in shape~with axes along the 110 and 11̄0 directions!,
and internally twinned~with walls parallel to the major axis!;
the twinning generates both positive and negative displa
ments which largely cancel overall. Transverse growth
curs by adding walls and variants, whereas existing varia
grow only longitudinally. Although other aspects are diffe
ent ~Ref. 11 studied soft systems, used a somewhat diffe
strain-energy functional, and worked at higherT, namelyt
50.3), it is likely that the different results reflect the diffe
ent dynamics.

None of our simulations gave a nucleus like that in t

FIG. 3. Snapshots ofO nuclei growing in aT matrix, for ~a! soft
and ~b! stiff parameters. The dimensions of the two systems
identical. The starting configuration for both was a circular reg
of twinnedO material; the area was about one-fourth smaller in~b!.
Parts~a1! and ~a2! show the nucleus at times 0.12 and 0.24 for
soft system (A1850, A2851, A3852, z15z351, t5250); the
earlier snapshot shows little change from the starting configurat

whereas the later shows growth in both 110 and 11̄0 directions.
Parts~b1! and ~b2! show the nucleus at times 0.12 and 0.18 for
stiff system (A1850, A2851, A3852, z15z351000, t5250).
The circular region is unstable in both cases; the soft sys
evolves toward the flower pattern in Figs. 1 and 2, and the s
system toward the corresponding X pattern.
1-5
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S. H. CURNOE AND A. E. JACOBS PHYSICAL REVIEW B64 064101
more phenomenological study of Ref. 22, namely growth
an untwinned square which then flowers.

To our knowledge, the only previous use of the equatio
of motion ~14! to examine nucleation was in a study of H-
ferroelastics;17 these systems are dominated by disclinatio
In soft systems the nucleus is flowerlike, as in T-O syste
but has 12 arms; in stiff systems it branches early in
growth, without forming the long arms seen above in T
systems.

IV. COARSENING

This section studies the coarsening phenomena that o
after completion of the phase transition. The most interes
feature is that we find behavior very different from that o
served in conventional order-parameter systems; altho
the deviatoric strain is a conventional order parameter at
level of the Landau free-energy expansion, the compatib
relations, combined with the dilatational and shear energ
deny the utility of guides such as total wall length in predi
ing the time evolution.

Simulations started from systems with orthogonal tw
bands, relaxed internally but not in the collision regions. T
initial relaxation from these artificial high-energy configur
tions is rapid and of no interest; we present results at l
times, but well before equilibrium is reached.

Figure 4 shows four pairs of snapshots. Parts~a! to ~c! are
for soft systems with different initial conditions, all with pa
rametersA185A285A3851, z15z3510, and t5250; the
times between the pairs are 0.5, 0.5, and 1.0, respectivel
part ~a!, the island at the center vanishes, but other isla
form as some narrow domains pinch off and retract. In p
~b!, one tip retracts to form rank with its neighbor; at th
lower right, other tips retract in unison, keeping the rank.
part ~c!, coarsening occurs by different kinds of coordinat
events; domain merges parallel to the smaller-scale patt
occur at the top left and perpendicular at the bottom rig
Part ~d! corresponds to a stiffer system, with parametersA18
5A2851, A3852, z15z35500, and t52100 (z25452);
the time difference is 0.6. The patterns are strikingly sim
to published transmission electron-microscopy pictures
YBa2Cu3O7, particularly Figs. 7.9 and 7.17~b! of Ref. 2@and
to a lesser extent Fig. 2~b! of the second part of Ref. 3#. One
sees the formation of a split tip and also the counterintuit
variant narrowing and wall wobbling found in the stat
theory.12 Related theories of needle twins and tip splitting a
given in Refs. 30 and 31.

The observation of tip splitting2,3 in YBa2Cu3O7 suggests
that this material is moderately stiff (z1*z2) at the tempera-
tures investigated. Values of the elastic constants sugges
Fe-Pd alloys~cubic-tetragonal! are also moderately stiff.16

These coarsening phenomena, like the nucleation p
nomena reported in Sec. III, confound intuition based
conventional order-parameter systems. The relaxation ca
be characterized by any simple rules; that is, the chan
from one snapshot to the next cannot be predicted by ins
tion of the strain patterns alone. The visible domain-w
length often increases. The relaxation is nonlocal;29 rapid
changes occur in one part of the system while other pa
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with no apparent major differences from the first, stay alm
unchanged. The tendency is toward coarser patterns, bu
casionally the topology becomes more complicated~as when
islands form!. The ribbons seldom retract immediately, ev
though retraction reduces the wall length. Particula
strange are the rank formation of tips and their linked wi
drawal, the variant narrowing and the splitting of tips. Tran
verse wall motion occurs only locally, for example in th
process of pinching off the other variant.

Our simulations resemble in some respects those of R
20, 23, and less those of Refs. 18, 9, 11. Coarsening me
nisms in simulations of H-O systems,17 also using Eqs.~14!,
differ from those in Fig. 4~again due to the disclinations i
H-O systems!.

V. SUMMARY

We have derived general equations of motion for pro
T-O ferroelastics including inertia, dissipation, and intern
elastic stress. These equations, and more importantly t

FIG. 4. Pairs of snapshots showing the time evolution of str
tures for four different initial conditions or parameter sets. Each p
is a 1283128 piece of a full 2563256 simulation with step size
0.2. Parts~a! to ~c! are soft systems (z15z3510) and part~d! stiff
(z15z35500). The times between the pairs aret50.5, 0.5, 1.0,
and 0.6, respectively.
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predictions, differ from those of all previous studies
proper T-O ferroelastics. We studied the growth of the
nucleus for both soft and stiff systems, in 2D. Soft syste
grow with time like a flower, while stiff systems assume
characteristic X shape, with twinning along the arms. W
studied also the coarsening mechanisms that relax th
phase toward local equilibrium, again in 2D. We observ
the formation and disappearance of island domains, tip
traction and domain merging, both parallel and perpendicu
to existing domain walls; in stiff systems we observed t
formation of split tips. Because the time scale is expected
be short, it will likely be difficult to observe details of th
time evolution in proper ferroelastics; as discussed abo
however, our results are consistent with patterns in quenc
samples. Details of the time evolution may be observable
improper systems, where the time scale may be lon
Again, our strain-only theory does not apply in principle
improper ferroelastics, but it explains many puzzling featu
of patterns reported in Refs. 2 and 3, and so perhaps it
shed light on the dynamics also.
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The above treatment should be extended to include th
mal noise. Without noise, the system cannot surmount ene
barriers during the relaxation stage, we cannot describe
tweed structure~which perhaps requires also composition
inhomogeneities! and we cannot address issues related to
early stages of nucleation such as the size, shape, kine
and energetics of the critical nucleus. For reasons discus
above however, we believe that we have found the nucleu
its growth stage~perhaps though only at lowerT).

The primary need in the field is, however,in situ obser-
vations of the dynamics in T-O systems; these are diffic
and correspondingly rare. The available studies31,32 cannot
decide the relative merits of the many theories.
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