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Time evolution of tetragonal-orthorhombic ferroelastics
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We study numerically the time evolution of two-dimensioi2D) domain patterns in proper tetragonal-
orthorhombic(T-O) ferroelastics. Our equations of motion are derived from classical elasticity theory, aug-
mented by nonlinear and strain-gradient terms. Our results differ from those found by other dynamical meth-
ods. We study first the growth of the 2D nucleus resulting from homogeneous nucleation events. The later
shape of the nucleus is largely independent of how it was nucleated. In soft systems, the nucleus forms a
flowerlike pattern. In stiff systems, which seem to be more realistic, it forms an X shape with twinned arms in
the 110 and 10 directions. Second, we study the relaxation that follows completion of the phase transition; at
these times, the T phase has disappeared and both O variants are present, separated by walls preferentially in
110-type planes. We observe a variety of coarsening mechanisms, most of them counterintuitive. Our patterns
are strikingly similar to those observed in transmission electron microscopy of the improper T-O ferroelastic

YBa,Cuz0;.
DOI: 10.1103/PhysRevB.64.064101 PACS nuniger81.30.Kf, 68.35-p, 62.20.Dc
[. INTRODUCTION classical elasticity theor§? this formalism has been used

i 3 T4 i}
Ferroelastics? are crystalline solids that undergo a shape—Only infrequently, to study 10, C-T, aqd H-O(Refs. 17.
:fmd 26 systems. Fundamentally different dynamical

changing phase transition, usually first order, to a state o . : .
. ) . schemes were used in the strain-only theories of Refs. 7,9—
lower symmetry with decreasing temperatilited prominent . .
. . 11,15, and 21, often only as a tool to find static structures.
example is the tetragonal-orthorhomhb{€-O) ferroelastic . o )
23 I . The following presents the application of the classical
YBa,Cu;0,.7° At the transition temperaturg., the unit cell equations of motio® to the dvnamics of prooer T-O fer
of the parenthigh-T) phase distorts spontaneously in one of q y prop

. s roelastics. The study was motivated in part by the electron-
several equivalent directions. Each of these degenerate dis- y b y

tortions corresponds to a differently orientedriant of the icroscopy resulfs’ available for YBaCuOy; this is an

_ . lth horh L e i
product (low-T) phase. BelowT., all variants are usually improper materialthe orthorhombic distortion is a second

. ary effect of the oxygen orderifngbut the success of the
present, separated from each other by domain walls with,” .. .
! X ) . : ... _static strain-only theory for YBa,Cu;O; warrants an exten-

preferred orientations. Domain patterns in ferroelastics differ . . ;
sion to the dynamics. Computational resources allow us to

greatly f_rom those in feromagnets, gainsaying the ahalog%onsider only 2D structures, with possible application to thin
responsible for the very name ferroelab@émd confounding ﬂlms particularly to the patterns of Refs. 2 and 3

intuition based on conventional order-parameter systems. | . . ! .
The paper is organized as follows. Section Il gives the

the final analysis, ferroelastic patterns are different because ) ) i X
pression for the T-O strain energy in 2D and then finds the

the strains are not independent order parameters but rathBfPe: X IS .
are linked by compatibility relations. equations of motion. We distinguish between soft and stiff

The theory of proper ferroelasti¢where the strain is the SYyStems according to the energy cost for wall directions off
primary order parameteextends the classical theory of elas- Optimal. The strain-only theory predicts softening with de-
tic continua by adding higher-order terms in the strains angreasingT, perhaps with observable consequences. Section
also derivatives of the strains. This strain-only theory wad!! applies this formalism to investigate the growth of O nu-
first used in one dimension(1D); its first important result ~clei from the supercooled T phase. We find that the devel-
was a remarkable solutibnfor the twin wall of cubic- ©oped nuclei are largely independent of the nucleation mecha-
tetragonal(C-T) materials. It has since been used to studyniSm; in both soft and stiff systems they differ markedly
various aspects ofi) T-O material$~12 (i) the 1D from the nuclei in other theorigs:*In soft systems, nuclei
problem®® (iii) cubic-tetragonal(C-T) materialst*~*® and  are fl_owerllke; they S|mply expand without generating much
(iv) hexagonal-orthorhombi¢H-O) and related materiald. ~ @dditional structure. In stiff systems, they form an X shape
Although the strain-only theory applies strictly only to With twinned arms in the major growth directiofs10 and
proper ferroelastics, it has nevertheless succeeded in explaifhid0); additional structure forms near the center and propa-
ing a wide variety of domain patterns also in improper T-Ogates outward along the arms. Section IV examines the
(Ref. 12 and H-O(Ref. 179 materials. A much larger litera- coarsening mechanisms that follow completion of the phase
ture (examples are Refs. 18—piicludes order parameters in transition, including domain-wall merges, formation, and
addition to the strains or applies more phenomenological apdisappearance of island domains, rank formation of ribbon
proaches. tips and their coordinated retraction, and tip splittingstiff

No consensus exists regarding the description of fersystemg Section V provides a summary and proposals for
roelastic dynamics. Our equations of motion are based ofurther investigations.
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Il. EQUATIONS OF MOTION The parameters of the theory are not well known for any
material. To reduce the number of unknown parameters, and
possibly obtain a universal theory that applies qualitatively

The energy of proper ferroelastics is expressed solely ifo many materials, we transform variables by
terms of the strains. These are combinations of derivatives of

A. Expansion of the strain energy

the displacement(x) of a material point from its positior €—[ex0(Te) X 103]ej , (5)
in the highT symmetric phase. We discuss only structures
uniform in the tetragonal fourfoldxg) direction. We define Xi— o /Ax(T)Xi (6)
the three strains in 2D by
F—Ay(To)exo(Te) X 10°]2F; 7
6= (it 1l B, ta ~Ae(TellexdTe) <107 v
also, we define the dimensionless temperature
e,= (71— ,722)/\/5, (1b) =A(T)/A(T)=(T—Ty)/(T.—Ty) and dimensionless
stiffness parameterg,;=A/A,(T;) and {3=A3/A(T,).
e3=(71o+ 72112, (1o  The scale factor in Eq(5) is chosen so that the deviatoric
strain atT, is 10 3, an arbitrary value; the hidden but nec-
where the components of the strain tengoare essary assumption here is that the strains are small and so the

nonlinear term in Eq(2) can be neglected. The energy den-

. sity in terms of the new variables is
’7iJ:§(Ui,j+uj,i+uk,iuk,j)v i) y

b 1
(L1€l+ €3+ (aed) + g eot geat 5(Ver)?, (8

N -

c
hereu; j=du;/dx;=d;u; and repeated indices are summed. F= 3
All three strains vanish in the T phase. The deviatoric strain
e, is the primary order parameter of the T-O transformationyyhereb= —4x 10f andc=3x 102 If temperatures neaf,
In the lowest-energy product stai, takes one of two de- are accessible, the three parameters in(Bpcan be deter-
generate values e, corresponding to a stretch in either the mined from the elastic constants just abdve the straine,
ande; vanish for these two states, and also for twin bahds,yajues at lowT are® an orthorhombic distortion of yo
but not for the complex domain patterns formed by colliding — 5)/(a+b) =0.017 (giving e,,=0.012), and a wall width
bands. _ _ of ~1.3 nm.

At this stage in the theory of ferroelastics, one wants to  Thjs Landau theory, with all parameters bt assumed
examine the simplest possible form for the energy demSity independent off, is in principle restricted in its validity to
to include only those terms required by symmetry, for stabilthe immediate vicinity ofT; the prediction that the homo-

ity, and to explain experiments. This simplest form is geneous straire,, does not saturate with decreasifgis
particularly doubtful. We note, however, that the primary
F= E[AleerAz(T)ngrAseg]Jr Ee‘2‘+ &eg strain need not saturate rapidly; from Figs. 1.5 and 4.3 of
2 4 6 Ref. 2, the strains in lead phosphat& 453 K) and
d As,O5 (T,=578 K) are still increasing at room tempera-
+ ?Z(Vez)Z; (3)  ture. Whether the simplest Landau theory is adequafé at

well below T, can, it seems, be decided only on a case-by-
ase basis. We should mention a second weakness of the
andau theory, namely that the use of strain-gradient terms is
questionable when the wall width is only a few atomic sepa-
rations[as in YBaCu;O; (Refs. 3 and 28.

all terms are invariant under the symmetry operations of th
T group. The dilatational, deviatoric, and shear stiffnesse
A1, Ay(T) andAj in the first term are related to the elastic
constants. Stability require&;=0 and A;=0. But A,(T ! _ .
softens with decreyasinq@ as,&z(T)za(T?)— To), and tZFSe)T Static structures predicted by E(.ﬁ) [or (8)] are dis-

phase is unstable fd<T,. To describe the phase transition, CUSS€d in Refs. 6, 8, and 12. Domain walls have lowest en-
we need the terms 4 and eS; we assume a first-order €9y (61 andes are zero when in the T 110 and 10 planes.

transition B,<0), and soC,>0 for stability. At highT The walls link the variants but also rotate them by an angle

namely A,(T)>B2/4C,, only the T minimum exists. At proportional toe,. The rotation, which has no counterpart in
lower T tvzvo o) miznimzi'occur at,= *+ e,(T), where conventional order-parameter systems, gives rise to unusual

effects when orthogonal walls collide; for example, the vi-
TV=T(—B.+ VBZ—4A.(T 2 12 4 sual wall Ie_ngth increases in the coII|_5|on region, (_:Iue_to vari-
e T)=[(~ B, 2~ 4Aa(T)C/(2C,)] @ ant narrowind? resulting from formation of a disclination.
At the transition temperaturel,, found from A,(T.) Different structures are found in soft or stiff systems, de-
= 38%/1602, the three minima,=0, +e,((T.) are degen- pending on whether the energy cost is small or large for wall
erate; here,o(T.) =+ —3B,/4C,. Finally, the gradient term directions off the optimal 110 and1D planes. The relevant
is responsible for the wall energy; the other derivativeparameters are the ratids/{, and{3/{, of the dilatational
invariant¢’ are unimportant;'>? largely because the pri- and shear stiffnesses to the deviatoric stiffnegs= 7
mary physical spatial dependence isein +3bed,+5ce),. The energy cost for wall orientations off
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the 110 and 10 planes increases with both these ratios Criticism is quite irrelevant when, as here, the formalism is
though more strongly witlf; /, it seems. We point out that used only to discuss much slower phenomena.

¢, increases ag decreases, fronf,=4 at r=1" to {, Equation(11) then simplifies to

=238 at r=—50, for example. Surprisingly then, in this
theory systems should soften Bslecreasegve assume that
parametersA; and A; have no strondl dependengeAs a  The summation on the indekprevents integration of these
result, features like split tips characteristic of stiff systemsequations, except in 1D. In 1D, the constant of integration is
may disappear on coolin@f the system is moderately stiff crucial, for it represents boundary conditions on the displace-
just belowT,, low enough temperatures are accessible, aneghent, which may hold the system in a static configuration

Tik k=" ik k- (14

the relaxation is not too sluggish that is not necessarily the unconstrained minimum of the
strain energy.
B. Time evolution The equations of motiofil4) in terms of the strains are
The Lagrangian density is . . A},
. AlertAze; Ees,zz = (G111t Gy,11G3),
L=T-V=5p(u)*~F, (9) (159
whereu;=du; /ot and F is the strain-energy density. To rep- E

Aje1,— Asep ot —=€3,=—(G1 o~ Gyt Gs3),

resent the nonconservative forces in the system, we use a J2
Rayleigh dissipative functiofr, with density (15b)
1 whereG; = 6F/ de; and the individual functionals are
R=(Aje2+ALe3+As€3). (10)
2( 1*1 2%2 3%3 Glelela (163)
This form respects the symmetry of the T phase. The impor- Gy=Ase,+B,e3+Cre3—d,V2e,, (16b)
tant point is that Eq(10) leads to dissipative forces that are
functions of the_ spatial_ derivativ_es of the velocit_y, as one Gs=Ase,/ J2. (160
would expect, since uniform motion of the material cannot
dissipate energy. Then the equations of motiorf°are We emphasize that our equations of motid®) are not
those of time-dependent Ginzburg-Landa@DGL) theory.
pUi— ol = Tk k=0, (11)  Schematically, the latter are
where éioc — 5Fl 5e; , (17)
IR with a nonlocal expressiéh for the densityF; the major
ol=—, (12) difference is the additional space derivatives on both sides of
' U Eq. (15). Equation(17) has much intuitive appeal, not least
because it continues the analogy with ferromagnets. Never-
IF theless, it cannot be correct in principle, and in fact its pre-
oi=—— (13 dictions disagree with those of E@L5). We illustrate the

i point by considering a material with short-range internal
The zeroth Fourier component in E@.1) should be consid- forces, uniformly stretched by external forces applied at the
ered separately since the last two terms are then zero; théids. When the forces are abruptly released, relaxation be-

the inertial termpy; tells us that the motion is uniform, de- gins at the_ ends and propagates inward, .taklng a finite
termined by the initial values. amount of time to reach any point in the bulk; the ideg-

Effects of the inertial term have been considered previ-Cept those near the endsel equal but opposite forces from

ously, for example in Ref. 13. This term is of course impor—:Ehe&;t?;'g?f;ria‘i/gt'![htgecodr'rseté‘tr%aer;];?/?orre\?vchgr;h;s')ré’q'%'mty'
tant at acoustic-phonon frequenciesy 16 Hz) and it is q ’

necessary to describe also rapid domain-wall motfonex- predicts !nstantangous response. .
ample thg “twin cry” in certainpmateriabs But the frequen- Equations(15) differ also from the dynamics
cies corresponding to domain-wall relaxation are expected to .
be much smaller and so we neglect the inertial term in the Ui = 877U, (18
following. By the same argument, the viscosity coefficientsof Refs. 7 and 10, the former @t=0. Not having examined
A/ in Eq. (10) are not those measured in ultrasonic attenuaphysical settings comparable to those where @®&) was
tion; they are instead effective coefficients appropriate fouused, we cannot compare its results with those of (E§).

the mechanisms responsible for domain-wall relaxation. NeThe right-hand side of Eq18) agrees with that of Eq.14);
glect of the inertial term is occasionally criticized on the but the left-hand side, a dissipative force proportional to the
grounds that the sound velocity is then in effect infinite; thevelocity, cannot be correct in principle.
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From Eqgs.(15), the equations of motion for the two com-
ponents ofu are

(AL+ADG+AL3I2 (A= As+AL2)5:1d,)\ [ Uy
(AL=AL+ALY) 319, (Aj+AYd5+ALHIR)\ U,
G111t G111+ G3p
G122 G221+ Ga

. 19

By solving these equations, we satisfy automatically the 2D
compatibility relation

V2e,— (95— d5)ey— \[819,65=0 (20

in the small-strain approximation. This necessary and suffi-
cient requirement that the strains be derivable from the dis-
placement can be obtained by starting fram,=u; ;.

The three viscosity parametefs are not known from
experiment, though of course all must ®; it is then rea-
sonable to consider the simplest possible theory. In choosing
parameter sets, we should avoid those that give a vanishing
determinant,

FIG. 1. Greyscale snapshots of orthorhom@® nuclei grow-
ing after identical perturbations of the supercooled tetragéhgal
1 phase. The twd® variants are white and black, tiematrix grey.

At INAT( AA L A4 PAT (AT ATVATT 92 22 Parts(a) and(b) show soft systems{g=1) with {3=1 and 1000,
Det= 2(A1+A2)A3((91+a2)+[4A1A2 (A1~ A2)A3] 710 respectively; partgc) and (d) show moderately stiff systems{
(21 =1000), again with/3=1 and 1000, respectively. All four snap-
shots are at the same tinhe 0.18 following the nucleation event.
of the coefficients on the left-hand side of E9); inspec-

tion shows that only one of th&' can vanish. Other cases of IIl. T-O NUCLEUS IN TWO DIMENSIONS
interest are those for which the determinant factors, i.e., This section studies the nucleus resulting from perturbing
the supercooled T phase in various ways. All results are for a
AAIA;— (A1— A A=+ (AT +AY)A;, (22)  grid of 512512 points, with step size 0.4.

We first present results obtained by displacing a single
giving three possibilities(a) A;=0, (b) A;=2A;, and(c)  point off a high-symmetry direction. Figure 1 shows snap-
A5=0; a fourth, namelyA;=—2A] fails on grounds dis- shots forr=—50 ({,=238) and for four sets of values of
cussed above. Sing®, is the primary order parameter, we {; and {3, all at time t=0.18 after identical nucleation
should keepA;; the time scale is then adjusted so thgt  events; the viscosity parameters #@&g=0, A;=1, andA;
=1. The choicesA;=2A, (the isotropic caseand A;=0 =2. Figure 2 shows snapshots of the same systems at the
are convenient, for then the left-hand sides of Ef) de- later timet=0.24. Very little is known about the relative
couple. We verified that takind;=1 vs A]=0 has little ~ importance of the stiffnesse§ and {5 and so we investi-
effect during the evolution; the fully relaxed configurations 9ated some extreme cases; we find stronger dependence on
can differ, however. £, than on{s. Parts(a) and (b) of Figs. 1 and 2 show soft

We imposed periodic boundary conditions on the dis-systems {;=1), with {3=1 and 1000, respectively, whereas
placemenu, thereby forcing domain walls into the systems; parts(c) and(d) show moderately stiff systemg{=1000),
the equilibrium states are a single twin band, optimally withagain with{z=1 and 1000, respectively. The important point
only a pair of walls. We solved Eqg19) using a finite- is that the nucleus has very different shapes in soft and stiff
difference, fast-Fourier-transform method. At the beginningsystems; one notes also the more rapid growth in the latter.
of each time step, the displacement field was known at each In the soft systems, the domain walls lie off the optimal
point of the space grid. Finite-difference approximationsdirections; the nucleus retains its flower shape as it expands.
(centered on a &5 grid) were used to compute the deriva- In the stiff systems, the domain walls are much closer to the
tives and so to obtain the right-hand sides in real space. Theptimal orientations. The nucleus has a striking X shape with
latter were then Fourier transformed. The Fourier compoarms in the 110 and 10 directions; growth transverse to the
nents on the left-hand sides were found using the samarms results from the appearance of new variants near the
finite-difference approximations and then advanced in timenucleation site and their subsequent growth along the arms.

using the Euler methodwith time step 10° or so. The Other sets of simulations started from point displacements
results were then Fourier transformed back to real space o high-symmetry direction$100 and 11§ and others from
begin the next step. displacements of small areas. Every soft system gave a
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FIG. 2. The nuclei of Fig. 1 at a later tinte=0.24. FIG. 3. Snapshots dd nuclei growing in ar matrix, for(a) soft
and (b) stiff parameters. The dimensions of the two systems are
flower with eight or more distinct domains emanating fromident_ical. The start_ing configuration for both was a circular region
the disturbed area; every stiff system gave the X shapeﬂf twinnedO material; the area was about one-fourth smallgbin
nucleus. Parts(al) and (a2 show the nucleus at times 0.12 and 0.24 for a

Yet more sets of simulations started from circular regions™®ft_System £1=0, A;=1, A;=2, {;={3=1, 7=—50); the
containing several parallel stripes in one direction. The in_earller snapshot shows little chanqe from the starting f:onfl_guratlon,
tention was in part to examine the stability, under our dy_whereas the later shows growth in both 110 arid Hirections.
namics, of a nucleus like that found in Ref. 11 using TDGL Parts(b1) and(b2) show the nucleus at times 0.12 and 0.18 for a
dynamics; we must point out, however, that our simulation$t  System 8.=0, A;=1, A3=2, {,={5=1000, 7= ~50).
and those of Ref. 11 differ in respects other than the dynam-he circular region is unstable n bOFh cases; the soft system
ics. We find that the circular regions are unstable in both sof'tEVOIVeS toward the flower pattern in Figs. 1 and 2, and the stiff

- - . .~ ~ system toward the corresponding X pattern.
and stiff systems, that they evolve rapidly to configurations
much like thosgdescribed aboveresulting from point per-
turbations. Figures(al) and 3a2 show the growth process and so we could not examine the parameter set of Ref. 11.
for a soft system; the nucleus grows longitudinglbarallel Because the gross features are independent of the starting
to the stripel but also transversely, developing side lobesconfigurations and temperature, we believe that we have
and so evolving toward the flowerlike patterns in Fige)1 found the nucleus of the T-O transformation in 2D, at least
and 1b) and Za) and 2b). Figures 8b1) and 3b2) show the below 7=—5. Application should be immediate to thin
evolution of a stiff system. The faster growth occurs in thefilms, and it is reasonable to expect tlxay cuts through the
longitudinal direction, but twinned jets shoot out trans-3D T-O nucleus will resemble our 2D nucleus.
versely, thereby evolving the system toward the X shape in None of our simulationgwith any starting configuration,
Figs. Xc) and Xd) and Zc) and 2d). The two sets of jets are with either soft or stiff parameters, at any temperatgave
more asymmetric here, because the rapid longitudinal growth nucleus resembling that found using TDGL theory in the
exaggerates the greater asymmetry in the starting configuratrains. The 2D T-O nucleus of Ref. 11 accords with one’s
tion. Nevertheless, it is clear that even this starting configuintuition based on conventional systems. It is compact, ellip-
ration is also unstable toward the formation of perpendiculagical in shape(with axes along the 110 andl@ directions,
jets and evolution to the X shape. For both systems, we findnd internally twinnedwith walls parallel to the major axis
that growth is primarily along the 110 andlQ directions; the twinning generates both positive and negative displace-
growth in the 100 and 010 directions is slow. ments which largely cancel overall. Transverse growth oc-

Simulations at temperatures between—100 and =  curs by adding walls and variants, whereas existing variants
= —5 gave results qualitatively similar to those described ingrow only longitudinally. Although other aspects are differ-
Figs. 1-3; the major difference is that the nucleus growsnt(Ref. 11 studied soft systems, used a somewhat different
more slowly at higheil, as expected. The important point is strain-energy functional, and worked at higliernamely 7
that the flower/X shapes were found for soft/stiff systems at=0.3), it is likely that the different results reflect the differ-
all T. We were unable to nucleate the Iwphase above  ent dynamics.
= —5 (well below the stability limit7=0 of the T phasge None of our simulations gave a nucleus like that in the
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more phenomenological study of Ref. 22, namely growth to
an untwinned square which then flowers.

To our knowledge, the only previous use of the equations
of motion (14) to examine nucleation was in a study of H-O
ferroelastics:’ these systems are dominated by disclinations.
In soft systems the nucleus is flowerlike, as in T-O systems,
but has 12 arms; in stiff systems it branches early in the
growth, without forming the long arms seen above in T-O
systems.

IV. COARSENING

This section studies the coarsening phenomena that occur
after completion of the phase transition. The most interesting
feature is that we find behavior very different from that ob-
served in conventional order-parameter systems; although
the deviatoric strain is a conventional order parameter at the
level of the Landau free-energy expansion, the compatibility
relations, combined with the dilatational and shear energies,
deny the utility of guides such as total wall length in predict-
ing the time evolution.

Simulations started from systems with orthogonal twin
bands, relaxed internally but not in the collision regions. The
initial relaxation from these artificial high-energy configura-
tions is rapid and of no interest; we present results at later
times, but well before equilibrium is reached.

Figure 4 shows four pairs of snapshots. Péafgo (c) are
for soft systems with different initial conditions, all with pa-
rametersA;=A;=Aj=1, {,={3=10, and r=—50; the
times between the pairs are 0.5, 0.5, and 1.0, respectively. In
part (a), the island at the center vanishes, but other islands
form as some narrow domains pinch off and retract. In part
(b), one tip retracts to form rank with its neighbor; at the ) ) ) )
lower right, other tips retract in unison, keeping the rank. In F!G- 4. Pairs of snapshots showing the time evolution of struc-
part (c), coarsening occurs by different kinds of Coordinated_tures for four dlﬁerent initial conditions or parar_neter'sets. Each part
events; domain merges parallel to the smaller-scale patterris 2 128¢128 piece of a full 256256 simulation with step size
occur at the top left and perpendicular at the bottom right. .Z;Paris(a) to () are soft systemsg’ﬁ—ga—_lO) and partd) stiff

. . . ({,={3=500). The times between the pairs are0.5, 0.5, 1.0,
Part(d) corresponds to a stiffer system, with paramet&fs and 0.6, respectively.
=A,=1, A;=2, {;={3=500, and 7=—100 ({,=452);
the time difference is 0.6. The patterns are strikingly similaryith no apparent major differences from the first, stay almost
to published transmission electron-microscopy pictures ofjnchanged. The tendency is toward coarser patterns, but oc-
YBa,Cu;0,, particularly Figs. 7.9 and 7.18) of Ref. 2[and  ¢asijonally the topology becomes more complicdgsiwhen
to a lesser extent Fig(&) of the second part of Ref]30ne  isjands form. The ribbons seldom retract immediately, even
sees the formation of a split tip and also the counterintuitivehough retraction reduces the wall length. Particularly
variant narrowing and wall wobbling found in the static strange are the rank formation of tips and their linked with-
theory.? Related theories of needle twins and tip splitting aregrawal, the variant narrowing and the splitting of tips. Trans-

given in Refs. 30 and 31. verse wall motion occurs only locally, for example in the
The observation of tip splittirfg’ in YBa,Cu;O; suggests  process of pinching off the other variant.

that this material is moderately stiff{(= {) at the tempera- Our simulations resemble in some respects those of Refs.

tures investigated. Values of the elastic constants suggest thad, 23, and less those of Refs. 18, 9, 11. Coarsening mecha-

Fe-Pd alloys(cubic-tetragonalare also moderately stiff. nisms in simulations of H-O system&also using Eqs(14),
These coarsening phenomena, like the nucleation phetiffer from those in Fig. 4again due to the disclinations in

nomena reported in Sec. Ill, confound intuition based onH-O systems

conventional order-parameter systems. The relaxation cannot

be characterized by any simple rules; that is, the changes V. SUMMARY

from one snapshot to the next cannot be predicted by inspec-

tion of the strain patterns alone. The visible domain-wall We have derived general equations of motion for proper
length often increases. The relaxation is nonldéalapid  T-O ferroelastics including inertia, dissipation, and internal

changes occur in one part of the system while other partglastic stress. These equations, and more importantly their
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predictions, differ from those of all previous studies of The above treatment should be extended to include ther-
proper T-O ferroelastics. We studied the growth of the Omal noise. Without noise, the system cannot surmount energy
nucleus for both soft and stiff systems, in 2D. Soft systemsarriers during the relaxation stage, we cannot describe the
grow with time like a flower, while stiff systems assume atweed structurdwhich perhaps requires also compositional
characteristic X shape, with twinning along the arms. Weinhomogeneitiesand we cannot address issues related to the
studied also the coarsening mechanisms that relax the @arly stages of nucleation such as the size, shape, kinetics,
phase toward local equilibrium, again in 2D. We observedand energetics of the critical nucleus. For reasons discussed
the formation and disappearance of island domains, tip reabove however, we believe that we have found the nucleus in
traction and domain merging, both parallel and perpendiculags growth stageperhaps though only at lowd).

to existing domain walls; in stiff systems we observed the The primary need in the field is, howevém, situ obser-
formation of split tips. Because the time scale is expected t@ations of the dynamics in T-O systems; these are difficult
be short, it will likely be difficult to observe details of the and correspondingly rare. The available studids cannot

time evolution in proper ferroelastics; as discussed abovejecide the relative merits of the many theories.

however, our results are consistent with patterns in quenched
samples. Details of the time evolution may be observable in
improper systems, where the time scale may be longer.
Again, our strain-only theory does not apply in principle to
improper ferroelastics, but it explains many puzzling features This research was supported by the Natural Sciences and
of patterns reported in Refs. 2 and 3, and so perhaps it caangineering Research Council of Canada. We are grateful to
shed light on the dynamics also. E. K. H. Salje, R. C. Desai, and V. Heine for discussions.
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