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Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition
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The Kosterlitz-Thouless phase transition is described by the nonperturbative renormalization flow of the
two-dimensionak* model. The observation of essential scaling demonstrates that the flow equation incorpo-
rates nonperturbative effects that have previously found an alternative description in terms of vortices. The
duality between the linear and nonlineamodel gives a unified description of the long-distance behavior for
O(N) models in arbitrary dimensiod. We compute critical exponents in first order in the derivative expan-
sion.
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I. INTRODUCTION Il. THE RG EQUATIONS

. - We employ the concept of the effective average aclipn
'_I'he Koste_r_lltz-ThouIe_s$KT) ph_ase tran5|_t|0’nmz_;\y de- (Ref. 9, which equals the effective actidn apart from the
scribe the critical behavior of various two-dimensional sys-

. . fact that in the former only fluctuations with momenta larger
tems. Some examples include thin superconduétstser-

T : ) . 4 than k are included. Thud", interpolates between micro-
fluid films,” the melting of two-dimensional crystdl@rrays  gcqpic and macroscopic scaleskasoves from large values

of Josephson contactsand thin liquid-crystal films. The 5 zero, Sincd o=T is the generating functional for the 1PI

KT transition poses a challenge to our theoretical undersorelation functions it specifies directly the quantities of in-
standing due to several uncommon features. The lowggrest like the correlation length=mg®. The flow of I'y

temperaturéLT) phase exhibits a massless Goldstone bosongheys arexactRG equatior?,
like excitation despite the fact that the glob&l(1)
symmetry is not spontaneously broken by a standard-order 1
parameter. In this phase the critical exponents depend on the W'l el= ETT{(F%)[QD]"' R 1R} (1)
temperature. In the high-temperatufedT) phase the ap-
proach to the transition is not governed by critical exponentsereI'(?) is the second functional derivative, denotes the
but rather by essential scaling. logarithmic derivativekd/dk, and the tracdin momentum

The transition is well understood by considering vorticesspace reads T3, [d%/(27)9. The cutoffR,(g?) sup-
as the dominant degrees of freedbfhproceeds from a state presses the low-momentum modes. We use a cutoff of the
of tightly bound vortex-antivortex pairs at low temperature form
to a plasma of interacting vortices at high temperature. On
the other hand renormalization-groRG) methods under- 79>
stand the critical phenomena in three-dimensional systems in Re(0?)=Z,q%r (q°/k?) = I 1’
terms of the universal behavior 6f(N) symmetrice* theo- expa/k)
ries. The success of the vortex picturedr2, N=2 in-  where the wave-function renormalizatiafy will be fixed
spired many authors to search for a description in terms ofater. In order to solve Eqd) numerically, one has to trun-
vortices also for phase transitionsdir=3 (Ref. 7. Thus in  cate the most general form &% . We introduce dimension-
three dimensions there exists a dual view of criticality. In thisjess renormalized ~ fields, ¢,=2Z@ 924, 5
note we try to explore this duality in the opposite direction. _ ~ ~ . L . :

. : . =(12)p,¢,, and parametriz&’, in first order in a deriva-

Modern nonperturbative RG methods give already a satlsfacﬁve expansion by
tory qualitative picture of the phase below the critical KT
temperaturé We extend this analysis to the essential scaling 1
in the HT phase and provide for a_qu_antltatlvely_ accurate rsz ddx[ kdUk(p)+§kd722k(p)§ﬂ¢aﬁ#¢a
discussion of the LT phase. These findings establish duality
as a valid concept fal=2, N=2. We also present a univer- 1
sal RG description of models witb(N) symmetry in arbi- + k4 2y (p)3,pd .p+O(5") | . 3
trary dimension. The good quantitative agreement of our re- 4
sults W'th. theqry and experiment for varlouﬂ.sand N 'S " The flow ofI"y is then given by the flow of the dimensionless
encouraging with respect to further computations of univer- . ~ . L~
sal properties like the critical equation of state. Moreover, théuncﬂons u, z andy that depend on th@(N)—lnvarlantp
only missing ingredient for an examination of nonuniversaland onk. lNe denote by« the running minimum of the po-
properties of a specific system is its translation into a microfential u(p) and fixZ, by requiringz,(«)=1.
scopic action of thep* type. In our language, this simply The functionsu, z, andy obey the partial differential
corresponds to an initial condition for the RG equations.  equation$™**

)
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c?tZ=

(9{22

The momentum integration of Eql) is contained in the
“threshold functions”

fined by

1
2

with X=1, y(3,p)?, y(3,p)?, ydyp for I, m, m, n, respec-
tively. We have definedi’
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TABLE I. Nonabelian nonlinear sigma model i 2. We show the ratio between the renormalized mass
mg and the nonperturbative scalezgrge in comparison with the known ratiRef. 12 invoking Aws:
Ceree=Mgr/Agrce, Cvis=Mg/Ajs, Cs=mg/ks. We also display the expansion coefficients for the beta

function.

N CERGE C_s Cs ,35(1) ,3&2)

3 2.81+-0.30 2.94 1.00 1.00 0.79
9 1.22+0.03 1.25 1.05 1.00 0.84
100 1.08£0.04 1.02 1.06 1.00 0.87

du=—du+(d—2+ 7)pu’ +2v4(N—1)I (W Z, 77)+2vdlo(w Z,7), 4
nz+pz' (d—2+7)—(4vg/d)p~H{m3 W,z 7)—2mf (W,W,2,Z, %)+ M AW,Z,7)} —2v4(z—2)p~ HI$(W,Z,7)

—(2/d)(z—2)15"%(W,Z, )} — 2v4z' {(N— 1)I§(w,z, 7) — (8d)ng (W, W,2,Z, %) + (5+22"p/z")I{(W,Z, 7)

—(4ld)zplS} 2(w,W, 2,2, )}, (5)
nz+pz' (d—2+ ) —2v4(z' +2p2")1{(W,z, 7)

+8ugpz’ (U + 2pu") YW, Z, 7) +4v4(2+ 1/d) p(z' )23+ 2(W,Z, 7)

— (8Id)vgp(3u”+2pu")’mi(W,z, 7) — (16/d)v gpz’ (3U” +2pu") My 2(W,z, 7) — (8/d)v4p(z')°m§ " *(W,Z, 7)
+(N=Dvg{—2[z' —p~ H(z—2)]1{(W,2,7)— (8/d) p(u")°mi(w,z, ) — (16/d) pu"z' my**(w,z, 7)
—(8Id)p(2')?my (W, z,7) +4(z= 2)u"15(W,2,9) + 4[2 (2= 2) + (Ld) p(2')*]15 "2 (.2, )} (6)

sion leads to quantitatively accurate results. For a numerical

Iﬂ s md ,omd andnn o, de- solution we specify the initial values at a microscopic scale
the integral 27 gt 2 k=A. For k>1 the evolution is dominated by thd—1
Goldstone modes N>1). More precisely, the threshold
o B X functions at the minimum vanish rapidly fav=2xu"(x)
- —f dyyd2-15, — ~—, (7)  >1.ForN>2 the coupling of the nonlinear model for the
0 [p(y)+w]™[p(y) +w]" Goldstone bosons is given by .

We concentrate first od=2, where the universality of
the B8 function for the nonlinear coupling implies fa=1 an

=duldp and we use the short- asymptotic form N=2)

handsvg'=29"17921(d/2), w=u’, w=u’+2pu", z=z
+py, p(y)=y[z+r(y)], and p(y)=y[z+r(y)]. The de- 0 N-=2 N-2 | o
rivative 9, only acts on thek dependence of the cutoR,, Iie=P= A * 6772 +O(. ®

ie.,
ddyp=27

defined by the ruleg+w) "—
for the anomalous dimension= —d,In Z, can be obtained

from the
=7.

Etp(y)——y[nr(y)+2yar(y)] and we note that

In the linear description one can easily obtain an equation for
x by usingd;u,( x,) =0 together with Eq(4). By evaluating

the above equations for largeit is possible to compare it
with Eq. (8). Previously it was fountf that in a much sim-
pler truncation one already obtains the correct lowest order
in the above expansion. On the other hand E4s-(6) do

not contain all contribution®(«~2). In order to reproduce
the exact two-loop result one has therefore to go even be-
yond the truncatiori3).

yp. Finally we abbrewatded =% etc., wherd is

Iog(p+w) The expression

identity 9,z (k,)=0. For N=1 one hasy=0, z

Ill. RESULTS

These equations are valid in arbitrary dimension. In the From Eq.(8) we expect thak will run only marginally at

very simple approximatiorz=z=1, u=:\(p—«)? these

equation
symmetr

large k. As a consequence the flow of the action follows a
single trajectory for large-t and can be characterized by a
single scale. Notice that the perturbati@efunction of the

s already give a correct qualitative picture@gN)
ic models in arbitrary dimensiéhThe present ver-
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FIG. 2. Essential scaling fod=2, N=2. The renormalized
FIG. 1. The beta function fod=2, N=2. The inner plot shows massmg, is plotted as a function ok, =k, —H(T—Tj).

a fit to Eq.(12).

value of . This in turn drives the expectation value of the
nonlinear sigma model vanishes fbi=2 since the Gold- unrenormalized field to zer@ven for a nonvanishing renor-
stone bosons are not interacting in the abelian case. Thus fefialized expectation value),
large k one expects a line of fixed points that can be param-
etrized byk. This fact plays a major role in the discussion of po=klZy~ k(KIA)7. (10

the KT transition below. It is responsible for the temperature

dependence of the critical exponents. We have evaluate}& €an observe this line of fixed points to a good approxi-
B.=BUO(N=2)/(47)+ BP kY N-2)/(167)+--- nu- mation(cf. Fig. 1), although the vanishing ¢8,. is not exact

; ~_ —5,.—1 -2 ; ;
merically from the solution of Eqg4)—(6) and extracted the [W? find B~ 410 K"+ O0(x )]'. The line of f|xed_
expansion coefficients for large (see Table )l points ends at a critical value, at which the phase transi-

For the nonabelian nonlinear sigma mO'de|dFF2 N tion occurs. There exists a critical trajectory towards this

>2 there exists an exact expressiofor the ratio of the point corresponding to an initial vaIueA.*. In order to
renormalized massig and the scale\ys that characterizes verify essentlal scaling we h‘f’“’e to examine the flow fo_r val-
the two-loop running coupling in th&1S scheme by dimen- gieesm?fKSArA:ﬁt;:Iovyvéhitasglglm:f(ﬁl’:j_?';ﬁ [fli)r:eiuil-
sional transmutation. The flow E@L) together with a choice y A A /- K

of the cutoff R, and the initial conditions also defines a crosses zero at the scadgand we find the mass by continu-

o ; ing the flow in the symmetric regim@ninimum at«=0). In
renormalization scheme. The corresponding parametq.gig. 2 we pIot[In(m);/A)]‘z aga?nr;(tfc,\ and findKexc<)-:tIIent

A.ERGE Sp?_uﬁes_ Ehe_ tv_\:o—lct)o;j\frt_urtt)sm%valuhe of th_?_hrun'agreement with the straight lir).
ning couplingx ~ simrar 10 Agys I e Ms SCheme. The "4, qoesp, have to look like in order to yield essential

nu:nerlc/a[I\ squtlor_;_ of tlhe flow equation [?dertr)mts UZ tg fcom'scaling? Since there is only one independent scale near the
putemg/Agrge. (Two-loop accuracy would be neede Ora transition, one expectsr(T)=Cky(T), whereks denotes

quantitative determination ohgrge/Aws.) In Table | we the scale at which vanishes, i.e.x(ks,T)=0. For « close

compare our resullts with the exact _valuemﬁ/ Aws: We 5 and belowk, we parametrizes, (this approximation is
also report the rationg/ks with kg defined byx(ks) =0. not valid for very smallc)

The abelian casé&y =2, exhibits the above-mentioned KT
transition® The characteristics of this transition are a massive 1
HT phase and a LT phase with divergent correlation length B.=—(k,— k)L, (12)
but zero magnetization. The anomalous dimensiprde- v

pends onT below T, and is zero above. It takes the exact For conventional scaling one expedts 0 and the correla-

value 7, =0.25 at the transition. The most distinguishing ;o length exponent is given by. Integrating Eq.(11)
feature is essential scaling for the temperature dependenceﬁ Ids for ¢ #0, Sk=Kk—x, :
) * -

Mg just aboveT,
TABLE II. Critical exponentsy and n for d=2. We compare

1 .
— b/(T*Tc){ [~ > ) each value with the exact result.
N v n
We have already mentioned the existence of a line o 0.70 0.75 0.222 0.2@8. ..
fixed points for large values o€, which is relevant for the 1 0.92 1 0.295 0.25
LT phase. The contribution of a masslé&oldstong boson 2 0.287 0.25

in the RG equatiofw(k)=0] is responsible for the finite
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TABLE IV. Couplings for the scaling solution fad=2 andN
=0,1.

N Ky )\* Uszx Z; (K* )
0 0.151 5.33 61.6 —0.085
1 0.265 5.88 65.4 0.868

corresponding trajectory towards the line of fixed points. We
plot » against k in Fig. 3. One reads offyp, =0.287
+0.007 where the error reflects the two methods used to
computex, and does not include the truncation error. For
KA Kp, OF T<T, the running ofx essentially stops after a
short “initial running” towards the line of fixed points. One

FIG. 3. Temperature dependence of the anomalous dimemsion can infer from Fig. 3 the temperature dependence of the criti-

for the LT phased=2 andN=2. The line of fixed points is char-

cal exponenty for the LT phase. In the HT phase the posi-

acterized by« and ends in the critical point for the KT phase tran- tjvity of g, drives the system in the symmetric regime and
sition. We also show the flow towards the line of fixed points andy,gnishes. Thusy jumps fromz, to 0 as we cross the critical

the flow in the HT phase away from the critical poifft). The
spacing between the points indicates the speed of the flow.

v( 1 1
L\ (=6k)8 (=oKp)t)
For k=K, the first term~ (— d«) ~ ¢ is small and independent

of T [since — 8k (k) =k, | and Eq.(12) yields the essential
scaling relation(9) for {=1/2. Usually, the microscopic

In(k/A)=

12

temperature from below. In summary all the relevant charac-
teristic features of the KT transition are visible within our
approach. Further quantities like the jump in superfluid
density® involve composite derivative operators not investi-
gated here. Progress in this direction should be very interest-
ing for a comparison with universal results in the topological
approach.

We end this note by reporting the values of the critical
exponents obtained in our approximatiom)—(6) for the

theory is such that one does not start immediately in theéstandard” second-order phase transitions fde=2, N

vicinity of the critical point and the approximatidal) is not
valid for k= A. However, if one is near the critical tempera-
ture the trajectories will stay close to the critical oreg(t),
with x.(0)=k,,. . This critical trajectory converges rapidly
to its asymptotic valuec, and 3, gets close to Eq(ll) at
some scale\’ <A. As a result, one may use E@.2) only in
its range of validity k<A') and observe thafx,. is also
proportional toT.— T. The numerical verification of Eq11)

is quite satisfactory: Fitting our data yields, =0.248, ¢
=0.502, andv~1=2.54. The uncertainty for is approxi-
mately = 0.05. The numerical values @f, and the approxi-
mation (11) are shown in Fig. 1.

=0,1, andd=3, N=0. In Tables Il and Ill they are com-
pared with exact results or “average&nly for the simplic-

ity of the display of results from various other methotfs.
The agreement is very satisfactory. We also characterize in
Tables IV and V the scaling solution relevant for the second-
order transition by quotingx,, M\,=uUj(k,), Uz,
=u(k,) as well asz (x,) andz, (,). We conclude that
the first order in the derivative expansion of the exact flow
equation for the effective average action gives a quantita-
tively accurate picture of all phase transitions of scalar mod-
els in theO(N) universality class for arbitrary dimension 2
=d=<4.

One can use the information from Figs. 1 or 2 in orderto oy findings suggest that many interesting statistical sys-

determinex, and thereforen, = n(«, ), the anomalous di-

tems withO(N) symmetry and effective long-range transla-

mension at the transition. Note that from Fig. 2 one canjon and rotation symmetry could be translated to the lan-

determinex,, . Then k, can be found by following the

TABLE lll. Critical exponentsy and n for d=3 (see Ref. 13 for
N=1). For comparison we list in the third and fifth column an
“average value” from various other methodRef. 14.

N v n

0 0.590 0.5878 0.039 0.292
1 0.6307 0.6308 0.0467 0.0356
2 0.666 0.6714 0.049 0.0385
3 0.704 0.7102 0.049 0.0380
4 0.739 0.7474 0.047 0.0363
10 0.881 0.886 0.028 0.025
100 0.990 0.989 0.0030 0.003

guage ofe*-type models by computing the effective action
I', at some short-distance scale This first step does not

TABLE V. Couplings for the scaling solution fat=3 and vari-
ousN.

N Ky N Uz, z, (k) E*(K*)
0 0.03009 7.399 78.84 —0.192

2 0.05984 6.769 51.25 —0.0415 1.0602
3 0.07651 6.256 39.46 —0.0920 1.0695
4 0.09414 5.752 30.52 -—-0.1107 1.0789
10 0.2162 3.365 8.17 —0.0584 1.1144
100 2.2313 0.3779  0.0947 —0.000759 1.1468
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involve the complications of long-distance coherent fluctua+ametrized byu,). This procedure can be applied for arbi-
tions. Our method then permits a detailed computation of thérary dimensiond and arbitraryN, and nearby or at a phase

free energy(which is directly relatedto u, o) in depen-

transition as well as away from it. A unified description of

dence on the temperature and “microscopic couplings” formany statistical-models emerges that goes beyond the uni-

an arbitrary shape of local short-distance interactigques-

versal critical behavior.
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