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Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition

G. v. Gersdorff* and C. Wetterich†

Institut für Theoretische Physik, Philosophenweg 16, 69120 Heidelberg, Germany
~Received 16 March 2001; revised manuscript received 25 April 2001; published 12 July 2001!

The Kosterlitz-Thouless phase transition is described by the nonperturbative renormalization flow of the
two-dimensionalw4 model. The observation of essential scaling demonstrates that the flow equation incorpo-
rates nonperturbative effects that have previously found an alternative description in terms of vortices. The
duality between the linear and nonlinears model gives a unified description of the long-distance behavior for
O(N) models in arbitrary dimensiond. We compute critical exponents in first order in the derivative expan-
sion.
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I. INTRODUCTION

The Kosterlitz-Thouless~KT! phase transition1 may de-
scribe the critical behavior of various two-dimensional s
tems. Some examples include thin superconductors,2 super-
fluid films,3 the melting of two-dimensional crystals,4 arrays
of Josephson contacts,5 and thin liquid-crystal films.6 The
KT transition poses a challenge to our theoretical und
standing due to several uncommon features. The l
temperature~LT! phase exhibits a massless Goldstone bos
like excitation despite the fact that the globalU(1)
symmetry is not spontaneously broken by a standard-o
parameter. In this phase the critical exponents depend on
temperature. In the high-temperature~HT! phase the ap-
proach to the transition is not governed by critical expone
but rather by essential scaling.

The transition is well understood by considering vortic
as the dominant degrees of freedom.1 It proceeds from a state
of tightly bound vortex-antivortex pairs at low temperatu
to a plasma of interacting vortices at high temperature.
the other hand renormalization-group~RG! methods under-
stand the critical phenomena in three-dimensional system
terms of the universal behavior ofO(N) symmetricw4 theo-
ries. The success of the vortex picture ind52, N52 in-
spired many authors to search for a description in terms
vortices also for phase transitions ind53 ~Ref. 7!. Thus in
three dimensions there exists a dual view of criticality. In t
note we try to explore this duality in the opposite directio
Modern nonperturbative RG methods give already a satis
tory qualitative picture of the phase below the critical K
temperature.8 We extend this analysis to the essential scal
in the HT phase and provide for a quantitatively accur
discussion of the LT phase. These findings establish dua
as a valid concept ford52, N52. We also present a unive
sal RG description of models withO(N) symmetry in arbi-
trary dimension. The good quantitative agreement of our
sults with theory and experiment for variousd and N is
encouraging with respect to further computations of univ
sal properties like the critical equation of state. Moreover,
only missing ingredient for an examination of nonuniver
properties of a specific system is its translation into a mic
scopic action of thew4 type. In our language, this simpl
corresponds to an initial condition for the RG equations.
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II. THE RG EQUATIONS

We employ the concept of the effective average actionGk
~Ref. 9!, which equals the effective actionG apart from the
fact that in the former only fluctuations with momenta larg
than k are included. ThusGk interpolates between micro
scopic and macroscopic scales ask moves from large values
to zero. SinceG05G is the generating functional for the 1P
correlation functions it specifies directly the quantities of
terest like the correlation lengthj5mR

21 . The flow of Gk

obeys anexactRG equation,9

] tGk@w#5
1

2
Tr$~Gk

(2)@w#1Rk!
21] tRk%. ~1!

HereGk
(2) is the second functional derivative,] t denotes the

logarithmic derivativek]/]k, and the trace~in momentum
space! reads Tr5(a51

N *ddq/(2p)d. The cutoffRk(q
2) sup-

presses the low-momentum modes. We use a cutoff of
form

Rk~q2!5Zkq
2r ~q2/k2!5

Zkq
2

exp~q2/k2!21
, ~2!

where the wave-function renormalizationZk will be fixed
later. In order to solve Eq.~1! numerically, one has to trun
cate the most general form ofGk . We introduce dimension-
less, renormalized fields, w̃a5Zk

1/2k(22d)/2wa , r̃

5(1/2)w̃aw̃a , and parametrizeGk in first order in a deriva-
tive expansion by

Gk5E ddxH kduk~ r̃ !1
1

2
kd22zk~ r̃ !]mw̃a]mw̃a

1
1

4
kd22ỹk~ r̃ !]mr̃]mr̃1O~]4!J . ~3!

The flow ofGk is then given by the flow of the dimensionles
functionsu, z, and ỹ that depend on theO(N)-invariant r̃
and onk. We denote byk the running minimum of the po-
tential uk( r̃) and fix Zk by requiringzk(k)51.

The functionsu, z, and ỹ obey the partial differential
equations9–11
©2001 The American Physical Society13-1
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] tu52du1~d221h!r̃u812vd~N21!l 0
d~w,z,h!12vdl 0

d~w̃,z̃,h!, ~4!

] tz5hz1 r̃z8~d221h!2~4vd /d!r̃21$m2,0
d ~w,z,h!22m1,1

d ~w,w̃,z,z̃,h!1m0,2
d ~w̃,z̃,h!%22vd~ z̃2z!r̃21$ l 1

d~w̃,z̃,h!

2~2/d!~ z̃2z!l 2
d12~w̃,z̃,h!%22vdz8$~N21!l 1

d~w,z,h!2~8/d!n1,1
d ~w,w̃,z,z̃,h!1~512z9r̃/z8!l 1

d~w̃,z̃,h!

2~4/d!z8r̃ l 1,l
d12~w,w̃,z,z̃,h!%, ~5!

] tz̃5h z̃1 r̃ z̃8~d221h!22vd~ z̃812r̃ z̃9!l 1
d~w̃,z̃,h!

18vdr̃ z̃8~3u912r̃u-!l 2
d~w̃,z̃,h!14vd~211/d!r̃~ z̃8!2l 2

d12~w̃,z̃,h!

2~8/d!vdr̃~3u912r̃u-!2m̃4
d~w̃,z̃,h!2~16/d!vdr̃ z̃8~3u912r̃u-!m̃4

d12~w̃,z̃,h!2~8/d!vdr̃~ z̃8!2m̃4
d14~w̃,z̃,h!

1~N21!vd$22@ z̃82 r̃21~ z̃2z!# l 1
d~w,z,h!2~8/d!r̃~u9!2m4

d~w,z,h!2~16/d!r̃u9z8m4
d12~w,z,h!

2~8/d!r̃~z8!2m4
d14~w,z,h!14~ z̃2z!u9l 2

d~w,z,h!14@z8~ z̃2z!1~1/d!r̃~z8!2# l 2
d12~w,z,h!%. ~6!

TABLE I. Nonabelian nonlinear sigma model ind52. We show the ratio between the renormalized mass
mR and the nonperturbative scaleLERGE in comparison with the known ratio~Ref. 12! invoking LMS :
CERGE5mR /LERGE, CMS5mR /LMS , Cs5mR /ks . We also display the expansion coefficients for the beta
function.

N CERGE CMS Cs bk
(1) bk

(2)

3 2.8160.30 2.94 1.00 1.00 0.79
9 1.2260.03 1.25 1.05 1.00 0.84
100 1.0860.04 1.02 1.06 1.00 0.87
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The momentum integration of Eq.~1! is contained in the
‘‘threshold functions’’l n1 ,n2

d , mn1 ,n2

d , m̃n1 ,n2

d , andnn1 ,n2

d de-

fined by the integral

2
1

2E0

`

dyy(d/2)21]̃ tH X

@p~y!1w#n1@ p̃~y!1w̃#n2
J , ~7!

with X51, y(]yp)2, y(]yp̃)2, y]yp for l, m, m̃, n, respec-
tively. We have definedu85]u/]r̃ and we use the short
handsvd

2152d11pd/2G(d/2), w5u8, w̃5u812r̃u9, z̃5z

1 r̃ ỹ, p(y)5y@z1r (y)#, and p̃(y)5y@ z̃1r (y)#. The de-
rivative ]̃ t only acts on thek dependence of the cutoffRk ,
i.e., ]̃ tp(y)52y@hr (y)12y]yr (y)# and we note that
]̃ t]yp5]y]̃ tp. Finally we abbreviatel n,0

d 5 l n
d etc., wherel 0

d is
defined by the rule (p1w)2n→2 log(p1w). The expression
for the anomalous dimensionh52] tln Zk can be obtained
from the identity] tzk(kk)[0. For N51 one hasỹ50, z

5 z̃.

III. RESULTS

These equations are valid in arbitrary dimension. In
very simple approximationz5 z̃51, u5 1

2 l( r̃2k)2 these
equations already give a correct qualitative picture forO(N)
symmetric models in arbitrary dimension.10 The present ver-
05451
e

sion leads to quantitatively accurate results. For a numer
solution we specify the initial values at a microscopic sc
k5L. For k@1 the evolution is dominated by theN21
Goldstone modes (N.1). More precisely, the threshol
functions at the minimum vanish rapidly forw̃52ku9(k)
@1. ForN.2 the coupling of the nonlinears model for the
Goldstone bosons is given byk21.

We concentrate first ond52, where the universality of
theb function for the nonlinear coupling implies fork@1 an
asymptotic form (N>2)

] tk5bk5
N22

4p
1

N22

16p2
k211O~k22!. ~8!

In the linear description one can easily obtain an equation
k by using] tuk(kk)50 together with Eq.~4!. By evaluating
the above equations for largek it is possible to compare i
with Eq. ~8!. Previously it was found10 that in a much sim-
pler truncation one already obtains the correct lowest or
in the above expansion. On the other hand Eqs.~4!–~6! do
not contain all contributionsO(k22). In order to reproduce
the exact two-loop result one has therefore to go even
yond the truncation~3!.

From Eq.~8! we expect thatk will run only marginally at
large k. As a consequence the flow of the action follows
single trajectory for large2t and can be characterized by
single scale. Notice that the perturbativeb function of the
3-2
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NONPERTURBATIVE RENORMALIZATION FLOW AND . . . PHYSICAL REVIEW B64 054513
nonlinear sigma model vanishes forN52 since the Gold-
stone bosons are not interacting in the abelian case. Thu
largek one expects a line of fixed points that can be para
etrized byk. This fact plays a major role in the discussion
the KT transition below. It is responsible for the temperatu
dependence of the critical exponents. We have evalu
bk5bk

(1)(N22)/(4p)1bk
(2)k21(N22)/(16p2)1••• nu-

merically from the solution of Eqs.~4!–~6! and extracted the
expansion coefficients for largek ~see Table I!.

For the nonabelian nonlinear sigma model ind52, N
.2 there exists an exact expression12 for the ratio of the
renormalized massmR and the scaleLMS that characterizes
the two-loop running coupling in theMS scheme by dimen
sional transmutation. The flow Eq.~1! together with a choice
of the cutoff Rk and the initial conditions also defines
renormalization scheme. The corresponding param
LERGE specifies the two-loop perturbative value of the ru
ning couplingk21 similar to LMS in the MS scheme. The
numerical solution of the flow equation permits us to co
putemR /LERGE. ~Two-loop accuracy would be needed for
quantitative determination ofLERGE/LMS .! In Table I we
compare our results with the exact value ofmR /LMS . We
also report the ratiomR /ks with ks defined byk(ks)50.

The abelian case,N52, exhibits the above-mentioned K
transition.1 The characteristics of this transition are a mass
HT phase and a LT phase with divergent correlation len
but zero magnetization. The anomalous dimensionh de-
pends onT below Tc and is zero above. It takes the exa
value h* 50.25 at the transition. The most distinguishin
feature is essential scaling for the temperature dependen
mR just aboveTc ,

mR;e2b/(T2Tc)z
, z5

1

2
. ~9!

We have already mentioned the existence of a line
fixed points for large values ofk, which is relevant for the
LT phase. The contribution of a massless~Goldstone! boson
in the RG equation@w(k)50# is responsible for the finite

FIG. 1. The beta function ford52, N52. The inner plot shows
a fit to Eq.~11!.
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value ofh. This in turn drives the expectation value of th
unrenormalized field to zero~even for a nonvanishing renor
malized expectation valuek),

r05k/Zk;k~k/L!h. ~10!

We can observe this line of fixed points to a good appro
mation~cf. Fig. 1!, although the vanishing ofbk is not exact
@we find bk'24•1025k211O(k22)#. The line of fixed
points ends at a critical valuek* at which the phase transi
tion occurs. There exists a critical trajectory towards t
point corresponding to an initial valuekL* . In order to
verify essential scaling we have to examine the flow for v
ues ofkL just below that point,kL5kL* 1dkL @for suffi-
ciently small dkL we have dkL;2(T2Tc)#. Then kk
crosses zero at the scaleks and we find the mass by continu
ing the flow in the symmetric regime~minimum atk50). In
Fig. 2 we plot @ ln(mR/L)#22 againstkL and find excellent
agreement with the straight line~9!.

How doesbk have to look like in order to yield essentia
scaling? Since there is only one independent scale nea
transition, one expectsmR(T)5Csks(T), whereks denotes
the scale at whichk vanishes, i.e.,k(ks ,T)50. Fork close
to and belowk* we parametrizebk ~this approximation is
not valid for very smallk)

bk5
1

n
~k* 2k!z11. ~11!

For conventional scaling one expectsz50 and the correla-
tion length exponent is given byn. Integrating Eq.~11!
yields for zÞ0, dk5k2k* :

TABLE II. Critical exponentsn and h for d52. We compare
each value with the exact result.

N n h

0 0.70 0.75 0.222 0.2083 . . .
1 0.92 1 0.295 0.25
2 0.287 0.25

FIG. 2. Essential scaling ford52, N52. The renormalized
massmR is plotted as a function ofkL5kL* 2H(T2Tc).
3-3
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G. v. GERSDORFF AND C. WETTERICH PHYSICAL REVIEW B64 054513
ln~k/L!5
n

z S 1

~2dk!z
2

1

~2dkL!zD . ~12!

For k5ks the first term;(2dk)2z is small and independen
of T @since2dk(ks)5k* # and Eq.~12! yields the essentia
scaling relation~9! for z51/2. Usually, the microscopic
theory is such that one does not start immediately in
vicinity of the critical point and the approximation~11! is not
valid for k'L. However, if one is near the critical temper
ture the trajectories will stay close to the critical one,kc(t),
with kc(0)5kL* . This critical trajectory converges rapidl
to its asymptotic valuek* and bk gets close to Eq.~11! at
some scaleL8,L. As a result, one may use Eq.~12! only in
its range of validity (k,L8) and observe thatdkL8 is also
proportional toTc2T. The numerical verification of Eq.~11!
is quite satisfactory: Fitting our data yieldsk* 50.248, z
50.502, andn2152.54. The uncertainty forz is approxi-
mately60.05. The numerical values ofbk and the approxi-
mation ~11! are shown in Fig. 1.

One can use the information from Figs. 1 or 2 in order
determinek* and thereforeh* 5h(k* ), the anomalous di-
mension at the transition. Note that from Fig. 2 one c
determinekL* . Then k* can be found by following the

TABLE III. Critical exponentsn andh for d53 ~see Ref. 13 for
N51). For comparison we list in the third and fifth column a
‘‘average value’’ from various other methods~Ref. 14!.

N n h

0 0.590 0.5878 0.039 0.292
1 0.6307 0.6308 0.0467 0.0356
2 0.666 0.6714 0.049 0.0385
3 0.704 0.7102 0.049 0.0380
4 0.739 0.7474 0.047 0.0363
10 0.881 0.886 0.028 0.025
100 0.990 0.989 0.0030 0.003

FIG. 3. Temperature dependence of the anomalous dimensih
for the LT phase,d52 andN52. The line of fixed points is char
acterized byk and ends in the critical point for the KT phase tra
sition. We also show the flow towards the line of fixed points a
the flow in the HT phase away from the critical point~left!. The
spacing between the points indicates the speed of the flow.
05451
e
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corresponding trajectory towards the line of fixed points. W
plot h against k in Fig. 3. One reads offh* 50.287
60.007 where the error reflects the two methods used
computek* and does not include the truncation error. F
kL.kL* or T,Tc the running ofk essentially stops after a
short ‘‘initial running’’ towards the line of fixed points. One
can infer from Fig. 3 the temperature dependence of the c
cal exponenth for the LT phase. In the HT phase the pos
tivity of bk drives the system in the symmetric regime andh
vanishes. Thush jumps fromh* to 0 as we cross the critica
temperature from below. In summary all the relevant char
teristic features of the KT transition are visible within o
approach. Further quantities like the jump in superflu
density15 involve composite derivative operators not inves
gated here. Progress in this direction should be very inter
ing for a comparison with universal results in the topologic
approach.

We end this note by reporting the values of the critic
exponents obtained in our approximation~4!–~6! for the
‘‘standard’’ second-order phase transitions ford52, N
50,1, andd53, N>0. In Tables II and III they are com
pared with exact results or ‘‘averages’’~only for the simplic-
ity of the display! of results from various other methods.14

The agreement is very satisfactory. We also characteriz
Tables IV and V the scaling solution relevant for the seco
order transition by quoting k* , l* 5u

*
9 (k* ), u3*

5u
*
-(k* ) as well asz

*
8 (k* ) and z̃* (k* ). We conclude that

the first order in the derivative expansion of the exact fl
equation for the effective average action gives a quant
tively accurate picture of all phase transitions of scalar m
els in theO(N) universality class for arbitrary dimension
<d<4.

Our findings suggest that many interesting statistical s
tems withO(N) symmetry and effective long-range transl
tion and rotation symmetry could be translated to the l
guage ofw4-type models by computing the effective actio
GL at some short-distance scaleL. This first step does no

TABLE IV. Couplings for the scaling solution ford52 andN
50,1.

N k* l* u3* z
*
8 (k* )

0 0.151 5.33 61.6 20.085
1 0.265 5.88 65.4 0.868

TABLE V. Couplings for the scaling solution ford53 and vari-
ousN.

N k* l* u3* z
*
8 (k* ) z̃* (k* )

0 0.03009 7.399 78.84 20.192
2 0.05984 6.769 51.25 20.0415 1.0602
3 0.07651 6.256 39.46 20.0920 1.0695
4 0.09414 5.752 30.52 20.1107 1.0789
10 0.2162 3.365 8.17 20.0584 1.1144
100 2.2313 0.3779 0.0947 20.000759 1.1468
3-4
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involve the complications of long-distance coherent fluctu
tions. Our method then permits a detailed computation of
free energy~which is directly related9 to uk→0) in depen-
dence on the temperature and ‘‘microscopic couplings’’
an arbitrary shape of local short-distance interactions~pa-
,
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-
e

r

rametrized byuL). This procedure can be applied for arbi
trary dimensiond and arbitraryN, and nearby or at a phase
transition as well as away from it. A unified description o
many statistical-models emerges that goes beyond the u
versal critical behavior.
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