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Phases ofHe-*He mixtures in two dimensions
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We calculate the phase diagram e-*He mixtures in two dimensions as a function of density ahie
concentration. A number of features distinguish this system significantly from its three-dimensional counter-
part. Specifically, we find that théHe phase consists, at lo#He concentrations and positive pressures, of
loosely bound dimers. The dimerized liquid phase separates®ateaconcentration of 2—3 % because the
chemical potential of théHe component in the mixture exceeds the chemical potential in the pure phase.
Atomic *He-*He mixtures can be found only in a metastable state in a concentration regime above 3%, where
the mixture is stable against infinitesimal concentration fluctuations. The softening of concentration-fluctuation
modes with decreasingHe concentration is accompanied by a divergence of Hie hydrodynamic effective
mass, and the magnetic susceptibility vanishes. We verify, wherever possible, that our results are consistent
with simulation data and exact estimates.
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[. INTRODUCTION nature of monolayer mixture films. Among others, we calcu-
late the dynamic structure function in a simple approxima-
Two-dimensional mixtures of the quantum liquidsle  tion, and compute the effective mass and the magnetic sus-
and “He can, under certain circumstances, serve as modeteptibility of the 3He component.
for atomic monolayers ofHe and*He on strongly attractive
subst(ates. These s_ystem§ have drawn much theoretical ang \aR|ATIONAL THEORY AND CORRELATED-BASIS
experimental attention during the past two decdd&©ur FUNCTIONS
paper describes a systematic application of modern many-
body technology to this family of physical systems. We shall Many ground-state properties dHe-*He mixtures, in
see that the two-dimensional mixture is in many aspectparticular the energetics of the system and the local structure,
quite dis-similar to its three-dimensional counterpart, in parare today quite well understood both experimenfatiynd
ticular we find that, at zero temperature, the only stabldheoretically from a microscopic point of viévin three di-
phase is a mixture of very loosely bourtie dimerswithin ~ mensions. With “microscopic” we mean that one postulates
a *He host liquid® no more knowledge than the empirical Hamiltonian
We utilize for our studies the optimized variational theory

described in detail in Ref. 6. This method has been applied Na p2 5 1 N“’Nf
extensively to homogeneous and inhomogeneous bosonic H=—2 2 RV‘ +§ 2 E V(aﬁ)(|ri_rj|)
quantum liquids and liquid mixtures, reaching agreement a 1=1 o @p b

with simulation data or experiments at the percent level or 2.3

better. The theory has been reviewed extensively, there ishat contains only a local two-body interaction; recent work

therefore, no need to describe the theoretical tools in detail;ses most frequent versions of the Aziz interacfin.

Instead, we shall only mention in the next section the basic Tq specify our notation we use in the following Greek

steps necessary for the implementation of the theory, angdypscriptsa, 3, . . . {3,4} to refer to theparticle speciesa

highlight only those aspects and relationships that are imporye or 34He particle, and Latin subscriptsj, . .. as in the

tant for the discussion of its physical content. r; to refer to the individual particles. The prime on the sum-
~We then turn to the application of the theory, and, alongmation symbol in Eq(2.1) indicates that no two pairs (@),

with that, a step-by-step verification of our results with simu- i,8) can be the same. The number of particles of each

lation data where available. Two calculations are presente 'pecies isN,,, andN=N;+N, is the total number of par-

We first calculate the properties single *He atoms in the  figjes in theasystem. In terms of thidHe concentratiorx we

host liquid, as well as the effective interactions between, 5o

pairs of 3He atoms. We show that this effective interaction is

sufficiently attractive to cause a loosely bound dimeride Na=xN, Ny=(1—x)N 2.2

atoms. We then study the properties and the stability of the ' '

mixture at finite concentrations ofHe. The actual calcula- and the corresponding partial densities,

tion then shows that a locally stable homogeneous mixture

can exist onlyabovea concentration of a few percent. Global p3=xXp, pa=(1—X)p, (2.3
energy considerations then show that this phase is unstable
againstmacroscopiaconcentration fluctuations. are proportional to the total number density: N/}, where

We finally discuss the ramifications of our findings for the () is the volume occupied by the whole fluid.
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The Jastrow-Feenberg variational metfod and its ex- Related to the pair-distribution functions are the static-
tensions within the theory of correlated-basis functfBns structure functions
(CBF) provides the necessary tools for a precise ground-state
calculation. When applied to fermions, two steps are essen- @ _ 2.1 (a irk
tial that we shall describe briefly below. These dikethe S (k)= Sapt Vpaps f d’r[gtP(r)—1]e"*.
construction and optimization of a suitable variational wave (2.9
function, and(ii) the improvement of the description of the

system by CBF perturbation theory. Relationships between the correlation functions

uA)(r;,r;) and the distribution functiong!“?(r; r;) are
provided by the[Fermi) hypernetted-chaif(F)HNC] hierar-
chy of integral equations. We are interestecifie-*He mix-

We start with a variational ansatz for the ground-stateures with a dilute®He component. The closest where this
wave function that incorporates both pair and triplet-can be achieved experimentally are atomic monolayers. For

A. Optimized variational wave functions

correlation functions in the form such low concentrations, the simplest version of the FHNC
equations?>*® dubbed FHNC//0, is adequate to describe the

P ({r‘(a)}):exp{lu({r(a)})}@ {rén) correlations between théHe particles. This version of the
oLt 2 ! ot IR FHNC theory sums self-consistently all chain and parallel-

connected diagrams, but omits propagator corrections that

1 NaMs have some quantitative effetfsin pure He. Practical

U({rih= o0 > > ueB(rr) implementations of the Euler equatiof®5) use the(F)HNC
FaB relationships to eliminate the correlation functions and to
1 N, .Ng.N, express the Euler equations entirely in terms of the physi-

+— > > u@BI (1 r ). cally observable distribution- and structure functions.
3l agy ik ) For mixtures, it is convenient to introduce a matrix nota-
2.4 tion, for example,
Here ®o({r®}) is the Slater determinant of plane waves S(k)=[S"A)(k)] (2.9

ensuring the antisymmetry of the fermion componeni, e static structure functions. The static structure function

i i (aB)(y. . . . . .
of the wave function. The functiona’®™(r;,rj) and o the poninteractingmixture has only a nontrivial (33)
u®A(r; ,r;,ry) are the pair and triplet correlations; the SPe- component

cies superscripts determine the type of correlation. An essen-

tial part of the method is the optimization of the ground-state Se(k) O
correlations by the variational principfés* SF(k)E( 0 1), (2.10
= ~0 = _0. @5 where Se(k) is the static structure function of the noninter-
SuCB)(r, r;) S suleBI(r, D) o ' acting Fermi system,
where 2
— (arcsink+xy1—x?) if x=k/2kg<1
Se(k)=41 7 (211
=w (2.6 1 otherwise
O (V| W) ' '

. . . . For further reference, we also need the matrix of “dressed”
is the variational energy expectation value. Details of the ) T2 = (ap) _
procedure, and the necessary working formulas, have bediprrelation functiond’(k) =[1"*”(k)] that is related to the

discussed in Ref. 6. In particular the treatment of triplet cor-Structure-function matrix by
relations and elementary diagrams is a reasonably unpleasant ~
task that provides little physical insight. We shall therefore S(k) = Se(k) + Se(K)I'(K) Se(k). (2.12
restrict the discussion to pair correlations and only point OUzenerally, we use the tilde notation for the dimensionless
the_z modifications and corrections introduced by triplet correqrier transform, i.e..
lations where appropriate.
The key ingredients of the theory are the correlation func- - _
tions u(“A(r; ,r;), the partial densitiep,,, and the pair dis- f(“ﬁ)(k)EVPaPﬁf d2rf(@A)(r)e' k. (2.13
tribution functions
Without going into further details of the derivations, we as-

Pappd P (1)=ppsa P (Ir—r']) sert that the coupled Euler equatiofs5) for the u(®#)(r)
N N5 (o] (11— ) 8(r B — )| W) are equivalent
B EJ (W4 W) ' [ST'HIS (K —[SHS (0 =2V, 1K), (214
(2.7 where
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h2k?
-~ 0
2ms, ts(k) O
Hl(k)= hzkz =( 0 t4(k)) (215)
2my

is the kinetic energy matrix, and
Vo) =[Vi (0] (216

is the so-callegarticle-hole interactionf/p_h(k) has the co-
ordinate space form

VER(D) =[ 14 T (1) VA () + AVER ()]

7?2 #°
+ R}W \/1+F[“Bj(r)|2
B

+TEA(ryw*A(r),

+

2m,

(2.17

Equation (2.17) defines a static, effective interaction
Vﬁ,‘_’f)(r). The quantitiesAV(“A)(r) are corrections due to

PHYSICAL REVIEW B 64 054504

pearance of Pauli-projection operators in the intermediate
states. These are, within the variational framework, mani-
fested by the factor§:* in Eq. (2.19.

B. Correlated-basis functions

The Jastrow-Feenberg theory fbosonsis a systematic
method that leads, in principle, to the exact-wave function.
The same is not the case for a Fermi system. The most ap-
parent reason for this is that the wave functi@) has the
nodes of the wave function of the free Fermi gas; but there is
no reason that the exact-wave function should have the same
nodes. This is so far an observation, but it makes no state-
ment on how interactions move the nodes of the many-body
wave function. This information is provided by comparing
the results of the Jastrow-Feenberg variational theory with
what perturbation theory would predict. The bottom-line
conclusion is that the Jastrow-Feenberg functigm) re-
places the particle-hole propagator by a ‘“collective” or
“mean spherical” approximatioMSA).1®1°This is already
seen in the weakly interacting limit and has, among others,

elementary diagrams and triplet correlations; they must behe consequence that the wave functi@m) does not repro-
calculated individually and are, in this sense, an external induce the correct high-energy limit of the correlation energy

put to the theory. The “induced interaction” is

~ - 1 - -
wi(K)= =V (k) — E[s;lHln TH.S (k). (2.18

of the electron gas. It also has consequences for the stability
of the mixture, which we will discuss below.

The formally systematic way to go beyond the Jastrow-
Feenberg theory is CBF theoty?° The theory extends the

Equation(2.14) is known as the PPA equation from its first US€ Of the correlation operator €4p({r(})] to generate a

derivation by the “paired-phonon analysi¥. For any given

choice of elementary diagrams and three-body correlations,

the equation$2.14), (2.17), and(2.18 form a closed set of

equations that can be solved by iteration until convergence is

nonorthogonal basis of the Hilbert space

reached. Given the resulting distribution- and structure-

functions, the variational energy expectation val@ed) is
then calculated as described in Ref. 6.

|\1fm>=I,;&42expBU<{rf“>}> [Pr), (220
o= (Pl XHU({r{ VD ]| D), (222

For reference, and also for discussing one of the key medvhere{|®p)} is a complete set of Slater determinants. The
sages of this paper, we also display the coordinate-spad®/rPose of CBF theory is, in our context, to relax the “mean

form of the Euler equation§2.14 and (2.18. Adding the

particle-hole interactiorT/p_h(k) to both sides of Eq(2.18),
we obtain

1 - =~ ~ ~
—§[SE1H1F+FHlsEl](k)=Vp.h(k)+W|(k)- (2.19

If theS;1 were absent on the left-hand side of E219, we

spherical” approximation for the particle-hole propagator.
The relationship to the variational and CBF theory is not
immediately obvious, and the actual calculations are quite
tedious since they require both 8HNC analysié' of the
effective interactions defined by CBF theory and an analysis
of ring diagrams in correlated-basis functién® all orders.
Nevertheless, the result is quite plausible: The effect of sum-
ming all ring diagrams in CBF theory is simply to remove

could rewrite it in coordinate space in the form of an effec-the collective approximation, in other words one obtains an

tive Schralinger equation for/1+ ' (*A)(r),

h? K2
( oy LN O
=[V(r)+ AVEA () +w*A(r) ] 1+ T @A (r),

(2.20

energy correction
— MSA
AEgrpa=Erpa— Erpa

1 d?kd(Aw)
= Z|m f Wln[D(k,w)/DMSA(k,w)],

(2.23

While such a Schidinger-type equation for the determina- Where
tion of the short-range behavior of the correlations is naively a3 (33 » ~as
plausible, we point out that the short-range structure of theD(k, @) =[1— x5k, &) VEI(K)I[1— x5k, 0) VE(K)]

wave function is determined by the Bethe-Goldstone equa-
tion, which differs from the Schatinger equation by the ap-

ko VER O (224
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Here)(g33)(k,w) is the Lindhard function, angg“"')(k,w) the  sicingredients. Alternatively, one may start from the mixture

response function of the noninteracting Bose system equations, and expand these equations to first and second
order in the concentratior. We shall follow this route be-
(49) e o) = 2t,(k) 59 cause it also gives us the freedom to consider the case that
Xo (k) (ho+in)?—t3(k)’ (229 ihe impurities are a dilute gas of weakly correlated fermions

MSA . . at low density. In any case, we need to review the definitions
D™ (k,w) is the same as expressid@.24), where the f the hasic ingredients of the theory, point out their physical

Lindhard function Xg)sls)(‘f,yw) is replaced by the “mean- interpretation, and highlight cases where the definitions de-
spherical approximation viate from those of the mixture theory.

In the limit that we have only onéHe atom in the fluid of
2t3(k) 4 : > ; .

(33 Kk w)= (2.26 He particles, the wave function is obtained from the mix-
Xo,MSA( o) SN2 72 271y . . . . .

(ho+in) —hw3(k) ture wave function by omitting all correlation functions con-
taining two or more®He indices, and by setting the Slater
determinant equal to one. As a convention we denote in this

hwz(k)=t3(k)/Sg(k) (2.270  section the impurity coordinate withy, in distinction from
the “He particle coordinates; where I<i<N,=N. The

is an effective collective energy, determined such that th‘\a‘/vave function of the impurity plus background system is

X 5Hisa satisfies the first two energy-weighted sum rules. The

same corrections are also introduced in tti@HNC-EL Wh1(FoaF1, -2 TN)
(Euler-Lagranggequations as described in detail in Ref. 6;
the effect of introducing CBF corrections to infinite order is (34) ' (a8
that the PPA equatiori2.14) is replaced by an ordinary =expy 2 u (fo,fj)+§,2 utto(rg,ry)
random-phase approximatigRPA) equatior?® In the mix- ST

where

N N

i=1

ture, the density-density response function is>@@2matrix, 1 N
which is given, in the RPA, by + o > u(344)(ro,r,- D)
lif=1
x(k, @)= xo(k, ) + xo(k, )V 1K) x(k,0), (2.28 L
where +— > u® |, (3.9
3lijk=1
33
_ X6k, w) 0 and its chemical potential
0 1
_(PalHhal ) (WY
The static structure function is then calculated from the #3~ <q,| |\If' ) REN N+1 EN-
dynamic structure function NN 32
1 Here, Hy is the Hamiltonian of theN-particle background
Stk,w)=——Im x(k, ), (230 |iquid, and H!,,, the Hamiltonian of the N+ 1)-particle
. o system consisting ofl ‘He background atoms and one im-
through the fluctuation-dissipation theorem purity.
- The impurity correlations are again determined by the
s(k):f d(Aw)SK,). (2.31) variational principle. Since the background energy does not
0

depend on the impurity concentration, the Euler equation for
the impurity correlations is equivalent to minimizing the
chemical potential

Using the “mean-spherical approximationysgsa(k, ) in-

stead of the Lindhard function in E¢2.28 leads immedi-
ately to the Euler equatiof2.14) of the (F)HNC-EL theory. s s
We shall return to the issues raised by CBF theory in the O o P o 33
next section, when it comes to the interpretation of effective SuC(ro,ry) 0 SuC(rg,ry.ry)

interactions. , , .
The impurity structure function is calculated from the

lll. SINGLE-IMPURITY AND TWO-IMPURITY LIMITS pair-distribution function as
It is instructive for the analysis of mixtures to study also 3(34)(k):p4J dzreik.r[g(34)(r)_9(34)(00)]_ (3.4)

its low-concentration limit, to examine the properties of only

one impurity, and to calculate the effective interactions benote that the normalization factor of the impurity structure

tween isolated pairs of impurities. The calculation can be,nction is ps and not\/ﬁ as in the mixture case. The

carried out in two ways: The normal approach is to startae of the impurity structure function at the origin is the
again with a variational wave for the system with one or two, ;| me excess factf

impurities, and to develop the Euler-Lagrange theory for this
case. This method provides operational definitions of the ba- SCY0+)=-B. (3.5

054504-4
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The two-body Euler equations for the single impurity can

be obtained directly from the mixture Euler equati¢®sl4)
by settingSg(k) =S (k)=gI(r)=1,

r@A(r)y=gl«A(r)-1, (3.6)

and observing the above change in normalization. For the
purpose of our analysis we prefer, however, to be slightly
more flexible and allow for a dilute gas of weakly correlated

fermions. The low-concentration limit of Eq$2.14 and

(2.18 is then taken such that all quantities contain no more

than one(or two for the two-impurity casedynamical im-

purity correlations, but they may still be correlated statisti-
cally to arbitrary orders. This implies, among others, that

SB(k) = S:(K) T ®4(k). The rigorous single-impurity limit
is then obtained by settin§-(k)=1.

PHYSICAL REVIEW B 64 054504

a1 \?
vy = | | _
VE(K) am, 8(44)(k)) 1 (3.10
we find, in the limitk— 0+
VED0+)
SENO+)=— P "= _p (3.12
ViRo+)

The relation to the volume excess factor in the last equality

comes from the identification of the interactigff)(0+) as

the effective 3He-*He interaction used by Bardeen, Baym

and Pine¥" see also Chap. 11.5 in Ref. 10.

Finally, we turn to the effective interaction between pairs
of impurities. One can again start from a variational wave
function that contains two impurities, and then calculate the

To see how this works, we start from the mixture Eulercorrelations by minimizing the second-order energy differ-

equation(2.14). The single-impurity limit implies that there

cannot be two*He atoms dynamically correlated, hence we

can setl’ ®3(k)=0 and S (k) = Sc(k). The (34)-channel
equation then reads explicitly

T(34)( K= — 2'\7{0361)( k) S(44)( k) { - Se( k)['f‘(34)( k)]zl 2
hws(K)+ €4(k) 5(44)( K)
VED(k)SU(k)

T sk + ek’ S

where e,(k) =t,(k)/S“¥(k) is the Feynman excitation en-
ergy, and the last step follows from the dictum to omit all

contributions that contain more than one correlated—impurin{

atom. Alternatively, one may start with E(.28 that reads,
in the single-impurity limit,

XAk, 0) = x5k, ) VEN(K) Y *(k,w), (3.8

use the “mean-spherical approximation(2.26 for the
Lindhard function, and calculat8®?(k) by the frequency
integration (2.31). This leads to the same resyB.7). In
the strictly low-concentration limitSg(k)=1, S®9(k)
=TGKk), we recover the familiar single-impurity Euler
equatio®

VER (0 S“(k)

(34) —_ o P 7
STR= "2 e

(3.9

with the particle-hole potentidgR.17) and the induced poten-
tial,

1 SB9(k) (S (k)—1)
E 5(44)( k)
X [t3(K) +14(K) + €4(k)].

w(*(k) =~

(3.10
Equations(3.9), (3.10, and(2.17 form a closed system of

equations that can be solved by iteration, given a practical
choice for the contributions of the elementary diagrams

and triplet correlations to the particle-hole potential,
AVEY(rg,ry).
Using the PPA equatiof2.14) for the background liquid

ence

APE=E],,—2E},,+Ey\. (3.13

However, this energy difference is only of secondary inter-
est; the physically more relevant quantity is the effective
interaction between impurities that can be obtained, in the
same manner as outlined above, from the induced interaction
(2.18. We proceed again by allowing first for no more than
two dynamically correlated impurity particles. Since we are
interested in the two-impurity limit of the coordinate-space
equation (2.20 that contains already a common factor
' 33(r), we must not allow for dynamically correlated pairs
of impurities in the induced potential. For calculating the
nduced potential, we must interpret the particle-hole inter-
action matrix appearing in Eq2.18 as being expressed by
the PPA equatiori2.14). Expanding thg33) component of

w(®)(k) then leads to

[Te9(k) 12

S CO N e
(k) 2510

[2hws(K)+es(K)]. (3.14

As a further approximation, one may again also ignore sta-
tistical correlations by settin§-(k) =1. Then, one arrives at

[SPU0P?

M= s

[2ta(k) +ea(k)],  (3.19

which is the induced interaction derived, among others, by
Owen?®

An alternative derivation, which provides an interpreta-
tion of Jastrow—Feenberg theory in terms of Green’s func-
tions, is offered by the localizing approximations of parquet-
diagram theory/~?*The energy-dependent effective interac-
tion between two impurities that is mediated by the exchange
of phonons is generally

Vern(k, ) =VEI(K) + VED(k) x4k, ) VED(k)

2t4(k) ~
TP TeaT o

(3.1
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The prescription from parquet-theory to make this energythe dimer. Since the inclusion of CBF corrections is neces-
dependent interaction local is as follows: Construct the RPAsarily perturbative, it is nod priori clear whether the energy-
static structure function dependent effective interactiof3.24 actually improves
upon the physical description.
*d(hw)
K== ——Im[xFk,0)
pal [xo (K, @
o IV. STABILITY ANALYSIS, COLLECTIVE EXCITATIONS,

(33) - (33) AND DIMER FORMATION
+ x5 (K, ) Ver(K, 0) x5 (K,w)]. (3.17) _ _ _
° of _ _0 One of the attractive featur®sof modern microscopic
Also, construct the ladder approximation for the same quanmany-body theories is that the underlying equations do not

tity in terms of a different and yet unspecified local effective have solutions for configurations that are physically unstable.

interaction, say/, (k) The mixture would, for example, be unstable against the con-
centration fluctuations if Fermi statistics was turned off. It is
(33) (1= _ »d(hw) | (33) | therefore not only from the viewpoint of the physical phe-

Staddef K) = mxg™ (k) nomenon, but also from a purely theoretical perspective in-

teresting to study the indications for phase separation and
+ X8k, 0)V (k) x$3(k,w)]. (3.18  potentially other phase transitions in the mixture and the re-
_ flections of such phase separations in the theory. The two-
Now choose an average frequensgk) such that these two dimensional mixture differs in a number of significant ways

forms of the static structure function aigentical for from its three-dimensional analog.
~ ~ _ When studying the stability of the quantum-liquid mix-
VL(K) = Veii(k, 0 (K)). (3.19  ture, we have to distinguish betweglobal andlocal insta-

The calculation can be carried out in closed form in the col-b'“tl(efr'1 Afglcib\?vl '?Str?b:“ty r?(ieat\nsvm?thayhother fhnise r?frthe h
lective approximation, leading to system ot a fower energy exists, which the System can reac
by a macroscopicperturbation of its configuration. In our
~ 2h w3(K) + €4(K) case, when the chemical potential oflde atom in the mix-
VL(k):Vﬁ)(k)—2[foﬁ)(k)]28(44)(k)[hw CEP)L ture becomes higher than the chemical potential of the atom
s 4 in bulk 3He, the mixture will phase separate, but it takes a
: inite external perturbation to initiate the transition. Theoreti-

from which we conclude cally, one can detect such an instability only by comparing
the ground-state energies of the two different phases.
\7v|(33)(k)=VL(k)—V§f’r3,)(k), (3.2 A local _ins_tal_)il_ity occurs Whe_n the system becQ_me_s un-
o ) ) stable againsinfinitesimalfluctuations about its equilibrium
which is seen to be identical to E(B.14). configuration. Such an instability is indicated by the soften-

The comparison with an energy-dependent interaction nghg of a collective excitation and should also be reflected in
only offers an interpretation of the effective interaction de-a divergence of the theory_ Experimenta”y, itis very difficult
fined by the Jastrow-Feenberg theory in terms of lineartp get close to this second type of an instability since it
response theory, it also offers a way to relax its approximainyolves generating an oversaturated mixture. Theoretically,
tions. Our analysis shows that Eq2.20 is a static this instability is the more interesting one since it provides a

approximation for theenergy-dependerchralinger equa-  consistency test for the theoretical description.
tion

2 A. Hydrodynamic stability
2 — . . e e s .
- m_3V +Vseal Ep.1) |(N)=Epg(r),  (3.29 The mixture is stable againstfinitesimalchanges of the
density and the concentration, if the second derivative matrix
where of the energy with respect to the concentration and the par-

ticle density is positive definite. We write the total energy as

=\/(33 (33) 33
Vscal Ep 1) =VEr) + W™ Ep 1)+ AVE(T) a function of “He and®He densities

(3.23
with E=Te+Edpa.pal, (4.
2t,(Kk) whereE; is the correlation energy, arig: the kinetic energy
w)E, ,k)zvgfﬁ)(k) . 4 2\~/§)f_’>;]‘)(k) (3.24  of the noninteracting fermion component.
Ep—[ea(k)] We then calculate thincompressibility tensor

is the energy-dependengffective potential. The Jastrow-

2
Feenberg wave function approximates this effective interact /—=  .2p ) \“/(33)(0 )+ M3CE
ap

VEI0+)

tion with an energy-independent effective interaction suc PaPp

that the static structure function is the same. This is by con- Q dpadpg VGY0+) VAN (0+)
struction appropriate for the static structure function; it also

gives an variational upper bound for the binding energy of 4.2
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wherem,cZ/2=%2kZ/2m; is the incompressibility of the free exists in the long wavelength and zero-frequency limits

Fermi gascg=7%kg/m;s its Fermi velocity, and when the Lindhard function is used fap(k, o).
To highlight the difference between the two- and the
B0+ _VPaPp a=" 4.3 three-dimensional system, we assume, for the time being,
(0+)= QO ,gpa,gpﬁ' : that a low-concentration mixture exists. We may then further

assume that the main concentration dependence of the effec-
The eigenvalues of the matri@.2) can be related to the tive interactions is due to the density factors occurring in the
ordln:a}ry so,t,md' velocitg, and the second sound veloctty.  definitions of thei'/é,‘_’f)(q), cf. Eq.(2.16), and in the Fermi
The “large” eigenvalue gives the bulk incompressibility ye|ocity c-. We can therefore write
m4c§; it is always positive in the density regime where the

!!qmd ”IS . stable agalnzsj[ bulk density fluctuations. The vg_lﬁ)(oJr):(l_X)V(M)(oJr)
small” eigenvaluemsc; is related to the second sound ve-
locity that describes concentration fluctuations of thée T/Efﬁ)(OJr): X(1—x) VB3 (0+)

component. We must require;cs>0 to guarantee the sta-
bility of the mixture against phase separation. For the posi-
tivity of the “small” eigenvalue, it is sufficient that the de-
terminant of the matrix4.2) is positive,

VED(0+)=xVE)0+) (4.9

with V@B (0+)=p[d?rV(*A)(r) and assume that the

h2ps VAN 0+) V(A)(0+) do not depend significantly on the concentration
T my [\7(34)(0+)]2_\7(33)(0+)\7(44)(0+)>1 x. We then get from Eq(4.6) the stability condition

(4.4) 3 fizp V(44)(0+) -
8 mg [VEN0+)12—VEI0+) Vi 0+)
4.9

Unlike the three-dimensional analog, it is seen that this sta-

er:)ility condition isindependenbf the concentratiom. Hence,

the stability condition of the mixture is changed from its
N 1 zero-concentration limit only by a significant change in the
Vpnt ESF_ H St (4.5  effectiveinteractions themselves as a function of concentra-

tion and not just by changing the ratio between the Fermi

is positive definite. An instability against density- and con-kinetic energy and potential energy as is the case in three

centration fluctuations will first show at small momenta, wedimensions.

therefore calculate the zero-momentum limit,

where we have used thb.i=27rp3.

B. Microscopic stability

A necessary condition for the existence of solutions of th
PPA equation(2.14) is that the 2<2 matrix

C. Dimerization

~ 1
lim |Vt Esnglsgl It was pointed out by Bashkihthat pairs of*He atoms in
k—0+ a dilute *He-*He mixture will form weakly bound dimers
2 mac? when their motion is restricted to quasi-two dimensions. In
V§J§§)(0+)+W_ S-F V/Sﬁ)(oﬂ particular, the dimerization should occur in a low-density
= 8 2 . (4.6 two-dimensional mixture. The effectiviHe-*He interaction
\N/S’ﬁ)(OJr) vg}ﬁ)(oJr) is a candidate for producing such bound states, to which we

shall refer as “Bashkin-states.” To prove their existence, we
Comparison of Eqs(4.2) and (4.6) suggests the identifica- must demonstrate that the sum of the bare interaction, the
tion T/E)‘_’f)(OﬂL):\A/(“ﬁ)(OJr). In fact, theV(®A)(0+) are the induced interaction, and the correction originating from el-
same as the long-wavelength limits of the particle-hole interémentary diagrams and triplets appearing in E20 is
actions%‘_f)(OJr) if the Jastrow-Feenberg wave function is sufficiently attractive. It is relatively easy to see that the el-

- . . . 76

optimized for alln-body correlations, and if all elementary emiomai‘;y(iﬁgrrmr%c;m"rlgu?ﬁg Lﬂlrse C?watg:alsssa m'(l'ie, isame
diagrams are included, in other words in an exact theory. f . i : : .
we identify these interaction terms, the matridds?) and proof IS also poss@le, but quite tedious, for the_ correction
(4.6 differ only in the (33-channel ' The positivity of the from triplet correlations. To calculate the large-distance be-
matrix (4.2) is clearly the correct stability condition; the dis- \r/]va\\//lolr gf trir:]??{ﬁ?d m:leriréctrlog tnerm, we fStllIJdVB\/l t.he long-
crepancy in th€33)-matrix element of the matricdd.2) and aveleng - '€ considerations go as 1ollows.
(4.6) is due to the “mean-spherical approximation” dis- . F|rst,. we [Sﬁ“ze from(gl%)q(Z.l?) that the partlcle—h_ole
cussed above. It is cured by including CBF ring diagrams td"t€ractionsVp.y(r) and\/_péh (r) are short—ranged_ functpns
all orders in the optimization and requiring that the inversethat fall off at least ag~> asr—o, hence their Fourier
of the density-density response matrix in E2.28 transforms go as

[xo(k, @)1 1=V (k) (4.7 VR (K) =245+ bagk®+O(K?), (4.10
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where we can identifya,,=m,c5 and as,= Sm,c3, cf. Eq. 0.2
(3.12), wherecy is the speed of sound. Inserting these ex- 0.0
pansions into Eq(3.15 yields a smalk expansion "
= (33 2 ﬂzh3m4 -0.4 )
w®)(k) = — B2m,c3+ constx k?— pre K3+ O(kY, g ™ =
3Co = <
(4.1 z 0 =
: 0.8 =
from which we conclude that
-1.0
~ 98°h3%m,
(33) _ -5 -6 -12
w rN~————=—r >+0(r as r , 4.1
0~ Grpmics (r°) as Foe, (412

_1'4 1 1 1 1 1 _2
. : _ _ 0035 0040 0045 0050 0055 0060 0.065
in other words, thephonon-inducednteraction dominates o (A2

the effective interaction for—« and is attractive.

Things change, as they should, if Fermi statistics is in- FIG. 1. The figure shows the HNC-EL results for the energy per
cluded. First, the “Schidinger-equation” (2.20 for the  particle E/N, (solid line, left scalg the pressure per density p
coordinate-space correlations is no longer rigorously valid agong-dashed line, right scalend the chemical potentia, (short-
pointed out above. But even if one ignores this, it is nodashed line, right scaleAlso shown are DMC data from Ref. 34
longer possible to prove that{*¥(r) is attractive and domi- for the energy(+ symbols, the pressure per densigrossesand
nates for large distances. Using E¢&14) and(3.7) instead the (.:hemlcal potentia(starg. All energies are given in degrees
of Egs.(3.15 and(3.9), one finds that the smatiexpansion  Kein.

of W*3(k) has only even powers up td. In other words, tis not auit fect as th btained for th
the phonon-induced interaction gets effectively screened b greement s no .qlé' € as perfect as Ine one obtaned for the
Fermi statistics. In practice one has, of course, a smoot Ider Aziz potential, but it is still quite satisfactory. The

transition between the rigorously dilute limit and the case ofame holds for th_e derived quant|t|_es, pressure per d?”s'ty
a weakly interacting Fermi gas, the crossover beingHe p/p and the chemical potential, which are also shown in

concentrations where the size of the dimer becomes compg-'g' 1.' Note that. the HNC'E.L results .for the pressure and Fhe
rable to the inverse of the Fermi wave vector. chemical potential were derived by diagrammatic differentia-

One might therefore expect that dimerization is a rathelt'on.Of I;ched_\f/}/orklrlg tf_ornmlas of t?e thefzorty,t and not by nu-
exotic effect that happens only at very small concentrationsme”.ca. y diférentiating the equaton or state.
Similarly good agreement between our HNC-EL results

and in the microkelvin regime. Our stability analysis of the : . o .
previous section comes to bear at this juncture: If thie am)DMC data is Obt?"”ed for the pa'rfd's(m)bu“_on _functlon
component forms a two-body bound state, then it can als§ (r) and the static structure _functlo)B (k). Fig. .2
form a many-body bound state that would be detected as pows, as an example, a compansprgiﬁf (r) at. three dif-
spinodal decomposition of the mixture. Above, we have e_:rent_den5|t|es._The agreement Is quite sausfactory espe-
shown that it needs macroscopic changes of the effectiv lally n the regime up to the nearest-nmg_hbor p_eak. At
arger distances, our results appear to be shifted slightly in-

interactions to change the inequali@.9). Therefore, while ds. Fi 3'sh ; f the static struct
superficially a subtle effect, we expect a rather robust pheWar S. Figuré 5 Snows a comparison or the statc structure

nomenon. functions; consistent with the slight shift of the oscillations
In conclusion of this section, we point out that a very

similar dimerization effect has been discussed in astrophysi- 15L

cal “He plasmas, where an instability of the coordinate-space

Euler equation was interpreted as a phase transition to stable D

8Be matter>®

1.0 1

V. GROUND-STATE RESULTS

g

p=0.0412 [A?] ——
p=0.0490 [A?] —— A
p=0.0643 [A?] ——

A. *He in two dimensions

To demonstrate the validity of the predictions of the semi- 05T

analytic microscopic methods of the kind presented here we

can utilize simulation data for the two-dimensional liquids

“He and®He. The best results available today are the diffu- 0.0

sion Monte Carlo(DMC) calculations for*He of Giorgini 0 2 4A

et al>* and some very recent restiftson two-dimensional r[al

®He. FIG. 2. The HNC-EL results for the pair-distribution function
Figure 1 shows the two-dimensional equation of state calg“4(r) (solid lineg are compared with DMC datémarkers at

culated from the Aziz-l potential of Ref. 9 and comparesthe three densitiesp=0.0412 A2, p=0.0490 A2, and p

with the Monte Carlo evaluation of Giorgirét al3* The  =0.0643 A2
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15+ ) .
2D L] ..
210t
3
) .
p=00412 [A?] ——
05 L p=0.0490 [A2] —— |
7 p=0.0643 [A7] ——
0.0 ! ! ! 3035 0640 0645 0(;50 0(;55 00I60 0.065
" O 1 . ! o 5 o 5 o

k [1&2—1] 3 4 p [A_2]

FIG. 3. The HNC-EL results for the static structure function ~ FIG. 4. The kinetic energy of two-dimensiondHe resulting
S“4(k) (solid lineg are compared with DMC datémarkers  from our HNC-EL calculation(solid line) is compared with the
at the three densitiesp=0.0412 A2, p=0.0490 A2, and DMC results of Ref. 34stars.

p=0.0643 A2, , ) )
energies agree equally well. Figure 4 shows the comparison

of g“¥(r) we find a slight outward shift of the peak of thatis evidently accurate for all practical purposes.
S“4)(k) in the HNC-EL calculation. In Figure 5 we compare the full calculation of tiéle
chemical potential with the ACA result. The gain in energy
due to relaxing the ACA is about 0.2-0.3 K in the whole
density range. As expected, Monte Carlo results for the ACA
The calculation of the chemical potential of a sindlde  are slightly below our approximate result and thus we can
impurity proceeds along the same lines as in the threeconclude that our full calculation gives a reliable upper
dimensional cas® Since the physical effects to be describedpound forul.
here are quite delicate, and since no simulation data are After these rigorous estimates of the impurity chemical
available at this time for a direct comparison, we need to b%otential we are ready to Compa@ with the chemical po-
particularly careful with the verification of our results. tential of the puré’He gasu8""®. Recent Monte Carlo simu-

“ The accuracly tqf our resul_ts c?np:g:s:yfmatedl b3|’ L,:.S'ng thf?;ltions are available for the energy per particle as a function
average-correlation approximatiohCA)" for calculating ¢ density’® from which we can calculatg5""§P). In Fig. 6
a rigorous upper bound for the impurity chemical potential as

follows: Let Wy, (T, ... ry) be the ground-state wave we show thedifferencebetween these chemical potentials,
function of N+144He atoms, aanfLHl'(ro, e ,rN) the Au(P)= ph(P)— ub"(P), (5.2)
ground state oN “*He and one®He impurity, approximated, ) ] o

for example, by the variational functid@.1). Then, the im- as a function of pressure for different approximations. A

B. Single-impurity calculation

purity chemical potential; can be estimated s’ positive Au indicates phase separation, whereas a negative
=W Hye 1| Phe ) = (W HN W) g L I I

<(WpialHys | W) = (W Hy W) s

_ (M4 _ ACA

_<m3 1)<T4>+M4_M3 ' (51) g 4

o

where (T,) is the kinetic energy per particle of thtHe = al
component, andu, is the *He chemical potential. Both
quantities can be obtained from simulatithsvithout re- 0
course to semianalytic theories, but, of course, also within N
our theoretical framework. That way, we can reassure the 5 , ,
accuracy of our calculations in two ways. First, by asserting ) 0.04 0.05 0.06
that our ACA estimate for théHe chemical potential agrees A2
sufficiently well with what one would obtain from Ref. 34. P [A¥]
Second, the relevant quantity is only timereaseof the “He FIG. 5. The®He impurity chemical potentials as a function of

binding due to relaxing the ACA, and the energy differencesjensity. The result of the full calculatiofsolid line) is compared
gained by relaxing the ACA should be more accurate tharith the average-correlation approximatitang-dashed ling The

the absolute energies. Since we have already verified abowgars give the average-correlation approximation of the Monte Carlo
that the chemical potential of tHftHe component agrees well simulations Ref. 34. Also plotted in the figure is the pressure/
with those of Ref. 34, we only need to show that the kineticdensity(short dashed line
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FIG. 7. The HNC-EL results for the’He impurity pair-
distribution functionsg®¥(r) (solid line9 for two densitiesp
=0.0412 A 2 andp=0.0643 A 2. The higher peak corresponds to
the higher density. For comparison we have plotted also’the
pair distribution functionsg®¥(r) at the same densitieglashed
lines).

FIG. 6. The difference\u between the’He impurity chemical
potentials and the purdHe chemical potential is shown as a func-
tion of pressure. The solid line shows the result of the fully opti-
mized (F)HNC-EL calculation. The short-dashed line is our ACA
estimate(5.1), the long-dashed line is the ACA estimafel) from
Monte Carlo simulations of puréHe, and the dotted line is the

estimate forAu obtained by supplementing the ACA from Monte

. . 72
Carlo results by our enhancement of the binding due to relaxing th&h€se two r2eprese_ntat|ve densitips-0.0412 A and p
ACA as defined in Eq(5.3). =0.0643 A2 we find B=1.63 andB=1.25, respectively.

The peaks of théHe structure functions are also lower than
Au indicates mixing. The ACA using Monte Carlo yields a for “He.
rigorous upper limit for the impurity chemical potential that
is less than 0.1 K aboveb"{P) for pressureP>0.002 C. Two impurities

dyn/cm. Our result foj, gives a slightly higher upper limit We have discussed in Se@V C) the mechanism of the

as also shown in Fig. 6. dimer formation from the point of view of the long-range

The situation changes when the impurity-background cor o
relations are optimized. As pointed out earlier, the chemicaf"ttr"’wtIon induced by the phonon exchange. The phonon ex-

. : change is sufficient to bindHe dimers. However, the much
potential is lowered by 0.2—0.3 K by relaxing the ACA. At - T
zero pressure, théHe impurity chemical potential is still shorter-ranged contributiohV**(r) causes a quantitatively

" . , ignificant increase of the dimer binding energy, which is
ositive, us~ + 0.1, whereas the chemical potential of the signi : .9
gure 3Hgsgas approaches zero proportiongl {. This strongly density dependent as shown in Fig. 9. When only

. : the bare interaction and induced potenti@**(r) from
means that no stable mixture can exist at zero pressure. B L . ST .
with increasing pressure, théHe chemical potential in NC ‘approximation are mcluded, the binding energy is
. ’ . . adbout two orders of magnitude smaller than from the full
the pure phase increases faster than that of the impurity, an

: calculation. Yet, one should realize that the saturation den-
the mixture beco”.‘es stable_for pressulPes0.00Z dyn/pm. ._sity in the HNC approximation is at much lower density,
The maximum difference in the chemical potentials is

~_0.25K at P=0.1 dyn/cm: we can therefore conclude 0.032 A2, and at that density the dimer binding is 23K.

. . In the full calculation zero pressure corresponds to the
that the mixture is stable at pressui®s 0.002 dyn/cm and density p=0.043 A 2 in agreement with simulations. The
phase separates at very low pressures.

The most realistic estimate is obtained by :;upplementing(;j”ner binding at that density is-26 uK. The binding en-

the ACA from Monte Carlo data with our correction of the
chemical potential due to relaxing the ACA, i.e., we define

Aﬂopt(MC)EAMACA(MC)+[AMopt(HNC)
—Apaca(HNC)]. (5.3

s

This leads to the dotted line in Fig. 6, which favors mixing
most strongly over a wide regime of pressures.

Differences between the radial distribution functions
g®I(r) and g®¥(r) after the full optimization are quite -
visible as shown in Fig. 7. The height of the pealgf®(r) 0 1
is clearly lower and slightly shifted towards largerwhich

2
k [A]
is consistent with the fact that dHe impurity makes a FIG. 8. The HNC-EL results for théHe impurity-structure
bigger correlation hole than #He atom due to the stronger fynctions SB9(k) (solid lines for two densitiesp=0.0412 A 2
zero-point motion. The effect is seen more clearly in theand p=0.0643 A 2. The higher peak corresponds to the higher

static structure functions of Fig. 8. The val@3¥(0+) density. For comparison we have plotted aB6¥(k)—1 at the
= — B gives the volume excess factor for the impurity. At same densitiegdashed lings
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FIG. 9. The binding energy of a dimer GHe atoms within FIG. 11. Comparison of the energy-dependent induced potential

two-dimensional*He in logarithmic scale as a function of density. f;om Eg. (I3d2I4) (sholrt da;hed I,irie‘r’\]’ithbthe (FHNC relsu!t of Eq:
The solid line is the result of the full calculation, the dashed Iine( 15 (solid ling). Also shown is the bare two-particle interaction

shows the result from the HNC approximation, omitting the correc-(daShed ling:
tions AVE3)(r) from the elementary diagrams and triplet correla-

tions An alternative derivation of the effective interaction based

on Green'’s functions led to the energy-dependent interaction
ergy decreases with increasing density; one reason for this PsLEq' (3.16. Slncg the dimer binding 'S a very lOW. energy
phenomenon one is tempted to approximate the binding en-

that the attraction of the asymptotic tail of the phonon—erlgy in the energy-dependent interactiGi24 by zero. This

induced interaction decreases since the volume-excess faCtaearly gives an induced potential that is more attractivie in

e e o koo, ioweve, s ncrease i th atracton s, cofi
fective interaction build up; they extend further and further.ratlon space, hidden behind the strong repulsion of the bare

out into the tail and also reduce the binding. Since the dimej tcraction at smalf as shown in Fig. 11. Thus we find no

. . . bound state in that zero-energy limit. Since the variational
is very weakly bound, its wave function decays very slowly_.theory produces an upper bound for the binding energy, we

Figure 10 shows the wave function for three different densi- . S S
ties. They show a maximum at4 A that coincides with the conclude that relaxing the approximations implicit to that

' ; e . theory—specifically the “localization” of effective interac-
first maximum of the radial distribution function of the pure tions by introducing an average energy—do not necessarily

4 i -
He. From the Wa\:ﬁ funfctgond\-/ve c_z_an crill_lﬁulate.the root improve the physical description of the system.

m.gaf?'sq“arﬁf]ms? ra |us|, of the |fme <rh>. .F rr;alrr]] con- Fermi statistics is expected to screen the interaction be-
tribution to the integral comes from the tail of the wave y qen pairs of impurities at finite concentrations. We can

function ¢(r) ~Ko(/2ms|Ep|/7%r) and that gives a simple  egimate this effect by using the induced interaction from Eq.

approximation (3.14) together with Eq(3.7) and get the low-concentration
5 dependence of the dimer binding energy. This estimate is
<>~ h (5.9) valid only up to 2-3% concentrations, because we have

3m,|Ey|’ assumed that the particle-hole interactiow&)(k) and

o . . VE(k) as well as the higher-order correlation effects,
which is accurate within 3% for the whole density range. The p"z4(4)) W (34) |g_ . I
value of the rms radius increases from 70 A at the density®V" (K) and AV*(k) remain independent of concentra-

0.035 A2 to 1000 A at 0.065 A2 ion. The result; are shown in Fig. 12. At one percent con-
centration the binding energy has dropped roughly to half. In

h10.04 32 105 |

100542

IBy| [K]

5e-06

hl? (©)

FIG. 12. The concentration dependence of the binding energy of
a 3He dimer within two-dimensionafHe for three different densi-

FIG. 10. The square of théHe wave function for three different ties, 0.045, 0.055, and 0.065 A&, marked in the figure. These
“He densities as marked in the figure. results were obtained assuming a dilute Fermi gadHs atoms.

r[A]
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the full finite concentration mixture calculation discussed in 0.4
the next section we find that the homogeneat@mic mix-
ture becomes stable at concentrations above 2—-3 % and the
dimer binding vanishes. 00l x
We have shown that the binding energy of the dimer de- _
pends very strongly on the density and the best possibility of #-02
finding a dimer state is at very low densities and concentra- 5_0.4
tions. The estimate for the concentration dependence in the =
low-concentration limit complements the discussion of the 0.6 |
next section in the sense that it demonstrates, agaimothe
bustnesof the dimerization effect showing that it does not

disappear at infinitesimal concentrations. 1.0 . . . .
Y0 5 10 15 20 25

*

08 |

D. Finite-concentration mixtures FIG. 13. The energy per particle of the two-dimensional mixture

The examination of the single- and two-impurity limits is shown, for the densities=0.045, 0.050, 0.055, and 0.060 A,
and the comparison of the energetics and effective intera@s a function of concentration The highest line corresponds to the
tions has lead to two conclusions: First, at slightly positivehighest density, the boxes at the left margin are the results for pure
pressures, the chemical potential of a singfe impurity in two-dimensional “He. The unstable area between the zero-
the mixture is less than that in the two-dimensiofkle at  concentration limit and the estimated spinodal point for phase sepa-
the same pressure, which means that the mixture will no'iation is dashed, the estimated spinodal concentrations are indicated
phase separate into disjoint regions4bfe and3He. Second, by heavy dots, whereas the end point of our numerical calculations

. . . . s is indicated by an open circle. Also shown are (REHNC results
the effective interaction between pairs Hfle impurities is ot o “3a"0 "o Gonciies 0,045, 0.50, and 0.60 22,
sufficiently attractive such that these impurities form dimers.

Both of these conclusions were independent of the theoret'&-Ions coming from above. Figure 15 shows, for three differ-

cal tools and based on either simulation data or rigoroug, t densities, the long-wavelength limitic2 as a function

;EZi;nt?]%u;?;t'ufgfoggeoghn%rfl’_'glg e}gixz'zi(:ﬁg](;?os;rsa;zthgf concentration for both thé)HNC-EL calculation and the
at sufficiently low concentrations L,Jnstable against dimeriza-CBF corrected calculations. Itis very difficult to get close to
. y ; ' . 9 the actual phase transition because this instability is driven
tion, but stable against phase separation.

_3 1 1
As the concentration is increased, one expects that thtéy the appearance of thiHe-"He dimer. This can be seen

dimers dissolve and an atomic mixture is formed. A full |,

microscopic theory is required for calculating the properties ' ' ' ' '

of such a mixture. The accuracy of our calculation of the  '90f 1

“He component has been demonstrated above, there isther oo} Poos,

fore only need to estimate the concentrations for which we o LI |

expect that the calculations of th#e component are reli- ’

able. We have used the version of ttf@HNC-EL theory 70 F T

explained in detail in Ref. 6. The method implies, for the @ 6ol EP=°'3

fermion channels, a simplified version of the FHNC-EL o e RTINS

equation that is not sufficiently accurate for a quantitative SOF 7

description of pure®He in three dimensions. We can indi- 40| -

rectly assess the expected accuracy of our calculations a ;| )

follows: In the three-dimensional mixture, we have demon- T sss— ob=ll——

strated the accuracy of our results for the energy upto 20 atn ~ 20¢™ ]

pressure, corresponding to a density of approximately 0.02¢ 1o} P=00 .

A3 and up to 10% concentration. The average distance — e

between3He atoms is, at this density, abou4A . This ) . . . . ]
0.0 25 5.0 75 10.0 12,5 15.

translates to @He density of 0.016 A2 in two dimensions,
which is about 25% of the solidification density of 0.065 x [%]

A 2. A conservative estimate would then lead us to expect FIG. 14. The chemical potential of tiéHe component of the
that our calculations are similarly accurate as those of Ref. ?wo-dimensional mixture is shown, as a function of concentratjon

up to about 25% concer_ltratlon. . for the pressures 0.0, 0.1, 0.3, and 0.5 dyn/cntFHNC-EL cal-
Res.ults for tge equation of stalgp,x)/N, the chemical culation and in the CBF-corrected calculation. The results have
potential of the“He-componenfus(p,x), and the speed of peen smoothly interpolated through the unstable region to match the
second soundnc; are shown in Figs. 13, 14, and 15. The x=0 value. The interpolated region is drawn as dashed lines and
most interesting result is the concentration dependence of théhded by markers. The CBF-corrected chemical potentials are
second sound speed. As pointed out above, it is unavoidablgightly higher. Four dotted horizontal lines show the chemical po-
that the system exhibits lacal instability at low concentra- tentials of the puréHe gas at the indicated pressures from Ref. 35.
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FIG. 15. The speed of second sound of the two-dimensional

. . - FIG. 16. The figure shows the extrapolated critical concentration
mixture is shown, for the densitigs=0.045, 0.055, and 0.065 %,

i ) g where the atomic mixture becomes unstable against infinitesimal

as a function of concentrationfor both the(F)HN_C-EL calculation concentration fluctuations. The squares and circles show the actu-

(+ symbols an.d the CBF-corrected calcu!aﬂdnrossgs Also ally extrapolated values from the CBF and FHNC-EL calculation,

shown are the fits to these data that determine the estimates for ﬂl’@spectively; the long dashed and the solid line give a smooth in-

lowest concentration that is stable against concentration ﬂucwaﬁor{%rpolation of these results. The short-dashed line marked with filled

(dashed and solid lines, respectively dots gives the upper bound of the concentration below which the
) . . mixture is globally stable.

from Eq.(2.19 as follows: In the small concentration limit,

the factorS: (k) in Eq.(2.19 can be ignored, and the equa- much farther and has, hence, larger uncertainties. This is also

tion turns into an ordinary Schinger equation with an ef- clearly seen from Fig. 16 from the larger scatter of the re-

fective potential. The boundary condition in a many-bodysylts.

system isy1+T44(r)—1 asr—«. On the other hand, the The horizontal lines in Fig. 14 show the chemical poten-

solution of Eq.(2.20 diverges logarithmically unless the in- tial of pure 3He gas at the indicated pressures. At finite pres-

tegral sures and low concentrations the mixtureglebally stable
against phase separation. When the concentration increases,
* T the *He chemical potential in the mixture exceeds the one in
L dr rVsea{ 1) V1+Tadr), (5.9 the pure®He gas. These critical concentrations vary between

zero and 2.5% depending on the pressure. Figure 16 shows a
of the effective interaction is zero. However, the above inteimore complete set of results that determine the upper bound
gral cannot be zero because the interaction has demonstratityr the globally stable mixture at zero temperature.

a bound state at—0. This means that the solutions of the ~ Compared with the stability of the mixture, its energetics
Euler equations start to build up a much stronger long-rangei$ of lesser interest because, in reality, the energetics of an
behavior than in three dimensions. This is the reason why iatomic monolayer is dominated by its external holding po-
is very difficult to get close to the spinodal density since thistential. Figure 13 shows the energy per particle as a function
would require huge simulation volumes. To remain practicalof density and concentration. We only show the variational
we have worked here with a cut-off radius of0L8 . One  results; the CBF corrections are, on the scale of the figure,
must therefore rely on an extrapolation in order to determingoo small to be distinguishable. This is not unexpected be-
the critical concentration, which implies some numerical un-cause the approximations underlying the Jastrow-Feenberg
certainty. wave function(specifically, the “mean-spherical” or “col-
For the purpose of this extrapolation, we have fitted thdective” approximation discussed in Sec. |) Bre particu-
mc in the regime where the calculations could be done witHarly good when it comes to calculating integrated quantities

a reasonable effort to a polynomial of the order like the energy, whereas they are particularly poor when it
comes to calculating effects for which the existence of a
MCa(X) = a(x—Xq) + b(x—Xg)2. (5.6  Fermi surface is important.

Figure 13 also shows the energetics of the two-
Our estimates for the critical concentration, as a function otlimensional*He liquid to demonstrate that both calculations
density, are shown in Fig. 16. With all the caution thatare consistent; the unstable regime between the estimated
should be exercised when relying on extrapolations, we asspinodal concentration and the zero-concentration limit has
sert that the FHNC-EL approximation predicts a critical con-been bridged by a smoothly interpolating dashed line. We
centration of 1-2 %, below which the atomic mixture is un-also show the results of a recent similar calculation by Um
stable. A better CBF calculation predicts a somewhat steepest al3® This calculation uses parametrized pair and triplet
functional form ofmtﬁ(x) and, hence, a higher critical con- correlation functions that are the same for all combinations
centration. Because of this steeper behavior, it is numericallpf *He and*He atoms “ACA,” and a “scaling” procedure
even harder to get close to the spinodal point. The CBFor the elementary diagrams similar to that introduced in Ref.
results have been derived from an extrapolation that reachdsto reproduce the equation of state of two-dimensidii.
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SCY(k,w)
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FIG. 17. The dynamic structure functid*4(k,w) is shown
for a density of 0.050 A% and 10% concentration ofHe atoms.
Note that theS““(k,w) axis points downward, the units in that sjons. The sound mode is discrete; to show its strength in the
direction are arbitrary. three channels, we have artificially broadeneddtfanction

describing the dispersion relation by a Gaussit? K width
It is not the purpose of this work to discuss @sandcons  and the strength of thé function.
of various approximation schemes, but it seems to us that the |n particular, we see in th@4) channel that the contribu-
ACA is the main reason that the equation of state comes outon of the particle-hole continuum is significant. We believe
stiffer in that work. Recall also that we needed to abandonhat the relative strength between the discrete sound mode
the ACA in order to demonstrate that tHéle impurity in  and the particle-hole continuum is reasonably well repre-
“He has, at finite pressure, a lower chemical potential than igented by the RPA, but a definite resolution of the problem
pure *He. The much richer physics coming out of the opti- can, of course, be obtained by extending the CBF theory of
mized (F)HNC-EL gives striking testimony for the power of collective excitation® to the case of fermions and mixtures.
the method, considering, in particular, that the technical ef-
fort going into the calculation is comparable.

FIG. 18. Same as Fig. 17 f8®9(k, w).

B. Hydrodynamic effective mass

Time-dependent pair correlations are also necessary to de-
scribe the motion of impurities in the liquid. The theory has
been worked out for this simple system in much more detail

A part of the theoretical description of the mixture is the than for the dynamic structure functi®@{k,») of the finite-
calculation of dynamic features; and we include a discussiogoncentration boson-fermion mixture since thdeminant
of these features for completeness. We note, however, thahysical effect is the hydrodynamic backflow. Fermi-liquid
the discussion that follows applies isnlatedatoms ancho-  effects are less important and can, hence, be dealt with in a
mogeneousitomic mixtures; an experimental verification of simpler approximation.
these features depends therefore on whether one succeeds inA natural generalization of the wave functi¢8.1) for a
dissolving the®He dimers or by stabilizing the metastable moving impurity atom is to allow fotime-dependentorre-
finite-concentration regime. Scenarios for how such a syshations. Thekinematic and dynamic correlations are sepa-
tems could be formed will be discussed at the end of thigated by writing the wave function in the form
paper.

VI. DYNAMICS OF SINGLE IMPURITIES
AND THE MIXTURE

S (k,w)

A. Dynamic structure functions =

It is seen from Eq(2.28 that the calculation of an RPA
for the dynamic structure functio®(k,w) is an integral part
of the theory. The RPA is, of course, a fairly simple approxi-
mation and reproduces the dynamics of the mixture only
qualitatively, typically within a factor of 2 in the energy
scale. For a description that is both qualitatively more accu- 30
rate and physically more complete, it is necessary to allow
for time-dependerpair correlation® su*A)(r; r;;t).

The dynamic structure functio®(k,w) defined in Eq.
(2.30 is calculated along with the calculation of the CBF
corrections to the energy. Figures 17, 18 and 19 show three-
dimensional plots of the componer8§*?)(k,w), the results
are qualitatively similar to those obtained in three dimen-
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D(t)=exp{ —iEn, /AP, 1(Fo,le, - . TN/ K(p,q) =ts(p) SN {[S®(|p—q|) + 1TUE*
V(PR (D), 6. X(p—d,~p,a)+S*|p—a))}
where W\ ,(ro,f1, ...ry;t) contains the time-dependent +e4(p)S*(Ip—q]). (6.8
correlations, The low-momentum limit of the dispersion relation defines

the hydrodynamiceffective mass
Wii1(FoaF1, - Tsh)

N h2k?
1 ho(k—0)=hwy= , 6.9
=expy| suP(ro;t)+ 2 suC(ro,r;;t) ek 0= e, N ©9
i=1
| which can be calculated from the self-energy,
XWnr1(Fosla, - fn)- (6.2
m 2m
The time-dependent components of the wave function are —f=1+ lim ﬁz—k‘ZE(‘”(k,wo). (6.10
determined by an action principle, searching for a stationary M k—0+

value of the action integral A particularly simple approximate form for the self-energy is

the so-called “uniform-limit approximation** where

Jd
= f AP Hiy 1+ Ul Toit) =i =D (D). Bicap(P) has the forrfF
(6.3 52 S(39)
B (P)=5—K-P ). (6.1
The details of the theory as well as the relationship of the no 2mg " S44(p)

resulting equations to Green'’s functions theories have bee

worked out in Ref. 41. The dispersion relation of the particleﬁ)1 this approximation, one obtains via equatidéss) and

(6.10 the “unrenormalized effective mass” derived by

is determined by the implicit equation Owen?2
7i%k? m?, 1
k)= —+3C(k, w(k)) (6.4) _HY
2mg mg/ —~ 1-1 .12
with the self-energy with
n? o d’p  k-pSPUp)BLp) 10 d [S*UP)P  ts(p)
3@k, w)= f > ' ) == 5 w . (6.13
2ms) (2m)%p4 [hw—ts(k+p)—es(p)] 2) (2m)%ps S49(p) ta(p)+e(p)

This simple form of the effective mass also results from a
The functionlg(k3i)(p) defined in Ref. 41 is related to the Green’s function theory as will be discussed below.
ratio of the Fourier transform of the fluctuating two-particle ~ In a slightly different approximatidii one ignores the in-
correlation function and the single-particle density,tegral termin Eq(6.7) and uses the effective mass approxi-

Spa(k, o) mation of Eqg.(6.9). That leads to the “renormalized effec-
tive mass”
B (P) 3pa(k,w) -
fiw—ta(k+p)— €a(p) ) =141, (6.14)
3 re
=P3P4J d?rod?rydtexd —i(k-ro+p-(ro—ry)—wt)] Results for the “unrenormalized” and “renormalized”
effective masses together with the full solution of the integral
X 5uC(rg,rq;t). (6.6) equation(6.7) are shown in Table |. From the structure of

o ) ) Eq. (6.12 it is clear that one has a divergence when the
In the limitk— 0, it can be calculated from the integral equa- -qrelations described by the self-energy correcti6ri3

tion become too large. This divergence is removed in the “renor-

malized” version and also in the full calculation which is

@,  kps®p) always between the “unrenormalized” and the “renormal-

Biwy(P)=fwo 5 S p) ized” result.
dzq p-q ,B(k?f))o(q)K(p,q) C. Fermi liquid effective mass
B (27)%p, p?  t3(0)+eq(q) 6.7 The hydrodynamic effective mass is a consequence of the
interaction of a single’He atom with the host liquid at low

with the kernel energies. Further interesting effects arise from the interaction
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TABLE I. The effective mass of théHe impurity in the low— #%ke  d
concentration limit. The second column shows the “unrenormal- = d—kﬁw(k) . (6.20
ized” effective masg6.12, which is also obtained in th&0W- k=kg

approximation. The third column shows the “renormalized” effec-

tive mass(6.14) and the last column the result with the full solution ~ The fermion generalization of the *“uniform-limit
of the integral equatiof6.7). approximation” (6.10 and (6.11) for the self-energy
3 G)(k,w) is the GOW-approximatiorf:>4

p[A7?] Unren. Ren. Full

[ dqd(e’) -
0.040 1.756 1.430 1.683 S(kw)=i | ———5—GO(k—gl,0— 0" )Ven(q,0'),
0.045 1.910 1.476 1.754 m)°p3
0.050 2.123 1.529 1.831 (6.2
0.055 2424 1.588 1.910 whereVn(g, ) has been defined in E¢6.18, and
0.060 2.883 1.653 1.994
0.065 3.694 1.729 2.086 . 1-ng, Nio

GOk, w)= . .
hwo—t3(K)+in ho—tz(kK)—inp

(6.22
between pairs ofHe atoms and the specific dynamics im- . ) ] ] )
posed on the’He component by the Pauli principle. The IS the frge smgle-pamcl_e Gre_en’s_ fgnctlon of thide impu-
most obvious manifestations of interactions betweer’tie  'ity- Taking the single-impurity limitn, ,=0 recovers the
atoms are magnetic properfidand corrections to the hydro- unrenormalized” effective mass mentioned abdve. _
dynamic mass. The appropriate framework to discuss these The single-particle spectrumo (k) is changed, from its

effects is Landau’s quasiparticle thedfy. smgle—impu_rity approxi_matiqr(§.4) and _(6.1]), by two ef-
The quasiparticle interaction normally contains a spin-f?0t55 One is the'Ferml ;tatlsucs, 'mann‘ested by thg occupa-
independent and a spin-dependent part, tion numbersy ,, in the single-particle Green’s function and
in the (33) component of the density-density response func-
f‘éirk,(r,:fi k,+f2k,o-. o, (6.15 tion. The second effect is due to the presence of the

o _ ) concentration-fluctuation mode. This mode becomes, as
where theo’s are Pauli spin matrices. Since both wave veC-shown above, soft as the spinodal concentration is ap-
tors k and k’ are on the Fermi surface, the quasiparticleprpached from above. Such a mode softening is accompanied
interaction depends only on the angle betwkeandk’. In  phy a singularity of the effective interaction, leading to a sin-
two dimensionsf;(k"",) is expanded in a Fourier serfés gular effective mass. Because of this, the two-dimensional

mixture is expected to display quite different effects than the

s(a)_ s(a) 0 three-dimensional analog: in three dimensions, the effective

fk""_% fm” codme), cosp=k-k'. (6.1 mass is always dominated by the hydrodynamic backflow, in
other words by the coupling of the impurity motion to the
ydensity fluctuationdn two dimensions, this coupling can be

overshadowed by the coupling tmncentration fluctuations.
om* We can still define a “hydrodynamic mass” at finite concen-
Fs@= N(O)ffn(a)=Tfrsn(a), (6.17 trations, which is obtained by keeping only ) compo-

m nent of the density-density response function in Ej18).
whereN(0) is the density of states at the Fermi surface, and'his hydrodynamic mass should provide a smooth back-
m* is the effective mass. In first approximation, the quasi-ground, whereas the coupling to concentration fluctuations
particle interaction can be identified with the matrix elementsdominates as the concentration is lowered. However, in the

of the energy-dependent effective interaction mixture, the purely hydrodynamic effects caused by
coupling-to-density fluctuations, and enhancement caused by

the coupling-to-concentration fluctuations are hard to disen-

The strength of the interaction relative to the kinetic energ
is measured by the dimensionless quantities

Vem(q,w)=Vé?ﬁ)(q)+;ﬁ VEI () x“P(q,0)VEP(9) tangle.
(6.18 Equation(6.4) should be solved self-consistently; the ef-
fective mass at the Fermi momentlp can then be calcu-
taken at zero energy, lated from Eq.(6.20. We have simplified the numerical task

e S by using an effective mass approximatia#i(k)=%2k?/
fiok,o= (ko k o' Ve 0=0) ko ko’ —k'o ’k2219) 2m? in the single-particle Green’s functiof.22. This is
' appropriate when the spectrum is real and reasonably struc-
Quantities of primary interest are the effective mass and theureless. Since significant quasiparticle damping sets in only
magnetic response of the system. when the energy of the quasiparticle approaches that of the
An alternative way to calculate the effective mass, whichrotorf! we consider this approximation sufficient for our pur-
will momentarily be seen to be more easily implemented inposes.
the present framework, is to calculate the single-particle The results shown in Fig. 20 are consistent with the above
spectrumz w(k) and to obtain the effective mass from discussion: When only density fluctuations are retained, the
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3.0 y y The resulting concentrations and total densities are—
! 0045 A7 considering the fact that the two-dimensional model becomes
' 0050 A? physically questionable above=0.055 A~2—beyond the
26 | 0055 A? o density where we have confidence in the two-dimensional
i fl';lé“:::s j model; hence much caution is needed for their interpretation.
24 Experiment  —— The results of our calculations and a comparison with
g22}f Tmp. Mass . some of the data from Ref. 48 are shown in Fig. 20. As
= " indicated above, the total densities for the experimental data
820 [ range between 0.1 A (the lowest concentration of 16.2%
sl . and 0.07 A2 (the highest concentration of 27.8%. One
’ *X‘)@)@)@x_ ~®f = : could shift the total densities somewhat by allowing for an
16} T E inert solid layer, but that would increase tAe concentra-
4 T tion to values of 50% and more.
12 , S 15 16 20 4 % D. Magnetic response
x [%] The magnetic response is determined by the change of the

quasiparticle energy when an external magnetic fléldis
applied. The spin susceptibility, is related to the Landau
parameteir§ by

FIG. 20. The figure shows the effective mass ratio of thie
atom, for the three densities 0.045 A (+ symbolg, 0.050 A 2
(crossey and 0.055 A2 (circles, as a function of concentration
The dashed lines are results obtained by keeping4Ae-channel m
of the response function only, whereas the solid lines display the X'_"oz —
results of the calculation keeping both density- and concentration Xo M

fluctuations. The square boxes at the left margin show the ZeroS'nce the effective interaction is orovided by the around-
concentration limit, Column 2. of Table I. The crosses with error : Ve 1 : IS provi y grou

bars are results extracted from the experimental data of Ref. 48 ate calculation, we can directly calculate the Landau-
described in the text. parameter from Eq(6.18

*

m a m a
1+ Wﬂfo :F(l—'—FO)' (6.29

effective mass is moderate and extrapolates with reasonable
accuracy to the “unrenormalized” approximation in the
zero-concentration limit that was obtained in a completely
independent calculation. The concentration dependence j&s seen from Eq(6.17), two effects contribute to the sus-
visible, but moderate. However, the corrections due to ingeptibility. One is the density of states of the interacting
cluding concentration-fluctuations are, contrary to the threegermi gas at the Fermi surface, manifested in the effective
dimensional caseot small; they display the expected diver- maseqm* discussed in the previous section. The second is the

gence %S the system apprﬁacr:]hes the _instabilit¥ poifnt.8 quasiparticle interaction in the spin channel. To disentangle
In order to compare with the experiments of Ref. 48, Wey, o5 1o effects, we define an additional set of Landau pa-
must take into account that these were carried out on film

with finite thickness adsorbed to a substrate. Only experi?ameters by replacing the effective mass by the bare mass in

ments on very thin films are suitable for comparison with ourEd- (6.17), i.e., F = (m/m*),:.snga) , where .theEga) mea-
results: As the*He coverage is increased, thele impurity ~ sures the strength of the spin-channel interacti6r29
atoms will start populating Andreestates in the surface, and alone. The result is shown, as af_unction of concentration, in
the assumption of a two-dimensional mixture becomes infig. 21. At the spinodal point, the3(® diverges just as the
valid. This behavior can be seen experimentally in the fackffective mass ratio; however, as the concentration is low-

that the effective mass first increases, and then decreaseged, the rapid increase of the effective massis the domi-
with increasing coverage. The transition from a two-pgnt effect.

dimensional mixture to a system where fftée atoms popu- Finally, we show in Fig. 22 the total magnetic suscepti-
late Andrée states in the'He surface occufS at an areal pjjity of the two-dimensional mixture, as well as the suscep-
density of about 0.055 A?, this density is quite resilient tipjlity coming from the density of states alone, as a function
under changes of the substrate as long as its attaction is regf gensity and concentration. Clearly, the corrections from
sonably strong. Hence only data below that liquid coveragghe Fermi liquid interaction are strong, and in fact change the
are suitable for comparison. qualitative behavior of the magnetic susceptibility as a func-
, The experiments of Ref. 48 have been done at a constagipp of concentration. The same comments apply that were

He areal density;=0.019 A™%, and were given in terms made concerning the effective mass above. Some caution
of the thicknessD(p)=p/pex, Of the “He film. (pexp  should be applied when comparing these results with
=0.02185 A3 is the experimental equilibrium density of experiment® since the two-dimensional model does not al-
“He) The concentration is obtained from this by low for a (partia) geometric separation betweeile and
“He through the population of Andrestates. To verify our
results experimentally would take a different environment; a
possibility for this will be discussed momentarily.

1 do-
Ofg=-— 2_p3f Zveﬁﬂkl:_k'FLO)- (6.29

x—&— P3
P p3tps

(6.23
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T tion data hints towards the existence of a very interesting
05r 0.045 Ai . phase diagram: At lowHe concentrations, typically below
0.050 A:Z * 2%, we have shown thd@t) a mixture is energetically pref-
04T 0'0553 A? o ] erable over a phase-separated system, (Bhdhe mixture
Fp — does not exist in an atomic form, but rather in the form of
03 ) T ®He dimers within in the “He background (“Bashkin
= states.”) The existence of these states is caused by the long-
02 X wavelength properties of the phonon-mediated interaction as,
for example, discussed by Bardeenal?* It relies, in par-
01t ticular, on the specific many-body technique applied only in
the sense that the technique is consistent enough to reflect
00k the statements of Bardeeat al. Also, the energetic advan-
tage of the mixture over the phase-separated system is based
o on the analysis of simulation data féHe and “He in two
01972 4 6 8 10 12 14 16 18 20 dimensions as well as a very conservative estimate on the

x [%]

inaccuracies introduced by the “average-correlation approxi-
mation.”

FIG. 21. The figure shows the Landau paramé&gms a func-
tion of concentration at three different areal densifim®sses, and
lines as marked in the figureAlso shown are the quantities
obtained by setting the effective mass equal to the bare mass.

We have verified that our approximg©HNC-EL calcu-
lations are internally consistent and agree with simulation
data whenever such comparisons were possible. Based on
these calculations, we have shown that an atomic mixture
may be stable against infinitesimal concentration fluctuations
above a concentration of 2—-3%. This concentration ap-

We have, in this paper, examined the structure offroaches, however, the value where global energy compari-
3He-*He mixtures in two dimensions. This field has been asons would predict that the mixture phase separates. The

very active one over the past two decades, mostly in conneavhole rich scenario discussed here comes out as a conse-
tion with quantum-liquid mixture films. quence of the structure of our theory, in particular the opti-

VIl. SUMMARY

The assumption of a purely two-dimensional geometrymization of the correlations that prevent the theory from pre-
made in this paper is certainly an idealization. This approxidicting physically unstable situations. From the point of
mation may be justifiable in strongly bound mixture films, theory, this is yet another strong argument for optimization

for example on the firstHe liquid layer on graphifé or on

as compared with the use of parametrized correlation func-

the hydrogen plated graphitéIn such systems, and assum- tions. None of the above physics was prgdicted in the vyork
ing that the two-dimensional approximation is valid, a closeby Um et al. who have pursued, along with some technical
analysis of the basic physics and model-independent simul&implifications, this path.

As noted above, the assumption of a rigorously two-

3.0 dimensional geometry is an idealization, and it is time to
Full discuss the most likely consequences of this in respect to

28 b FE_ _ ] both the*He background and théHe component. We have
0(;)4;_ A-Z““ studied in Ref. 53 among others atonfide monolayers on

16k * j substrate potentials of varying strength, allowing for a full

©T 0050 A2

1.8

Lé6f

10 12 14 16 18 20
x [%]

symmetry breaking in the direction perpendicular to the sub-

strate. Expectedly, we found that the energy of the system is
lowered when the particles have more freedom to move in

the direction perpendicular to the surface. Such an energy
lowering has been found even in the first liquid layer above

the two solid layers on a rather strongly attractive graphite

substrate where one should expect that the two-dimensional
approximation is quite valid.

In an independent study of the binding of isolated pairs of
helium atom3* we have, among others, clarified the reason
for this. A pair of helium atoms is, independent of the spe-
cies, most strongly bound if the width of the holding poten-
tial is comparable to the width of the pair potential. The

FIG. 22. The figure shows the magnetic susceptibility of thelNcréase in binding energy can be quite dramatic, ranging

3He component for the three densities 0.045240.050 A~?, and
0.055 A"2 as a function of concentratior (solid lineg. Also

from a factor of 2 for*He dimers to over two orders of
magnitude forHe dimers. Thus, we expect that the dimer-

shown are the susceptibilities obtained from the density of stateization will be enhanced in a more realistic situation. On the

alone, ignoring the spin-channel interaction altogetf@ashed

lines).

other hand, we have shown above that rigorously two-
dimensional mixtures are, at the high concentrations studied
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in Ref. 48, unstable against phase separation. It is an opesis of both theoretical predictions and experimental data is
and quite interesting problem, to see if and how the finitecalled for to possibly detect the existence’tfe dimers, to
width of the film geometry, and the presence of an attractivesee, in the more realistic situation of atomic monolayers the
substrate, can stabilize the atomic mixture. consequences of ripplon coupling, and finally to study the

A second difference between atomic monolayers and theature of phase-separated mixture films where*tie atoms
two-dimensional approximation is the existence of surfaceeside not within, but on top, of a helium film. In conclusion,
excitations. In our studies of excitations of adsorbed films wave also mention a possibility to generate quasi-two-
found that, for low-coverage films with a surface coverage ofdimensional *He-*He mixtures that have no free surface:
less than 0.055 A?, the lowest excitation is basically a two- Hectorite is a silicate that consists of regular quasi-two-
dimensional sound wave with a speed that is comparable tdimensional layers of about 9.6-A thickness and an open
the one of a two-dimensional liquid. However, as the coverspacing of 17—20 A in between. These gaps can be filled
age increases, beyond 0.055 A the speed of this excitation with liquid “He; the first experiments on this confined quan-
drops rapidly, and the nature of the excitation turns from aum liquid were carried out by Wada and co-workers®
two-dimensional phonon into a ripplon. This cross-over cov-Preliminary calculation¥ indicate that®He impurities, when
erage of 0.055 A? is quite resilient to the nature of the brought into a hectorite gap filled withHe, are quite well
substrate potential. Since this excitation is much softer thaiocalized in the middle of a gap and form indeed a practically
the phonon, and since the main correction to the bare intetwo-dimensional Fermi liquid with no coupling to surface
action betweerfHe impurities is mediated by the excitations states.
of the background, we should expect a further enhancement
of the attraction between thdHe impurities>>>® Note, in
this connection, that the speed of sound appears in the de-
nominator of the longest—ranged part of the induced interac- The work was supported, in part, by the Austrian Science
tion (4.12. Fund (FWF) under project No. P12832-TPHE.K.), and the

In conclusion, we have highlighted here a scenario of théAcademy of Finland under Project No. 163388.S.. We
structure of quantum-liquid mixture films that appears muchwould like to thank V. Apaja, J. Boronat, M. D. Miller, and
richer than anticipated. We believe that a very careful analyd. Saunders for helpful discussions.
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