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Phases of3He-4He mixtures in two dimensions

E. Krotscheck,1 J. Paaso,2 M. Saarela,2 and K. Scho¨rkhuber1
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2Physical Sciences/Theoretical Physics, P.O. Box 3000, FIN-90014 University of Oulu, Finland
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We calculate the phase diagram of3He-4He mixtures in two dimensions as a function of density and3He
concentration. A number of features distinguish this system significantly from its three-dimensional counter-
part. Specifically, we find that the3He phase consists, at low3He concentrations and positive pressures, of
loosely bound dimers. The dimerized liquid phase separates at a3He concentration of 2–3 % because the
chemical potential of the3He component in the mixture exceeds the chemical potential in the pure phase.
Atomic 3He-4He mixtures can be found only in a metastable state in a concentration regime above 3%, where
the mixture is stable against infinitesimal concentration fluctuations. The softening of concentration-fluctuation
modes with decreasing3He concentration is accompanied by a divergence of the3He hydrodynamic effective
mass, and the magnetic susceptibility vanishes. We verify, wherever possible, that our results are consistent
with simulation data and exact estimates.
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I. INTRODUCTION

Two-dimensional mixtures of the quantum liquids3He
and 4He can, under certain circumstances, serve as mo
for atomic monolayers of3He and4He on strongly attractive
substrates. These systems have drawn much theoretica
experimental attention during the past two decades.1–4 Our
paper describes a systematic application of modern ma
body technology to this family of physical systems. We sh
see that the two-dimensional mixture is in many aspe
quite dis-similar to its three-dimensional counterpart, in p
ticular we find that, at zero temperature, the only sta
phase is a mixture of very loosely bound3He dimerswithin
a 4He host liquid.5

We utilize for our studies the optimized variational theo
described in detail in Ref. 6. This method has been app
extensively to homogeneous and inhomogeneous bos
quantum liquids and liquid mixtures, reaching agreem
with simulation data or experiments at the percent leve
better. The theory has been reviewed extensively, there
therefore, no need to describe the theoretical tools in de
Instead, we shall only mention in the next section the ba
steps necessary for the implementation of the theory,
highlight only those aspects and relationships that are im
tant for the discussion of its physical content.

We then turn to the application of the theory, and, alo
with that, a step-by-step verification of our results with sim
lation data where available. Two calculations are presen
We first calculate the properties ofsingle 3He atoms in the
host liquid, as well as the effective interactions betwe
pairs of 3He atoms. We show that this effective interaction
sufficiently attractive to cause a loosely bound dimer of3He
atoms. We then study the properties and the stability of
mixture at finite concentrations of3He. The actual calcula
tion then shows that a locally stable homogeneous mix
can exist onlyabovea concentration of a few percent. Glob
energy considerations then show that this phase is uns
againstmacroscopicconcentration fluctuations.

We finally discuss the ramifications of our findings for t
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nature of monolayer mixture films. Among others, we calc
late the dynamic structure function in a simple approxim
tion, and compute the effective mass and the magnetic
ceptibility of the 3He component.

II. VARIATIONAL THEORY AND CORRELATED-BASIS
FUNCTIONS

Many ground-state properties of3He-4He mixtures, in
particular the energetics of the system and the local struct
are today quite well understood both experimentally7 and
theoretically from a microscopic point of view6 in three di-
mensions. With ‘‘microscopic’’ we mean that one postulat
no more knowledge than the empirical Hamiltonian

H52(
a

(
i 51

Na \2

2ma

¹ i
21

1

2
(
a,b

( 8
i , j

Na ,Nb

V(ab)~ ur i2r j u!

~2.1!

that contains only a local two-body interaction; recent wo
uses most frequent versions of the Aziz interaction.8,9

To specify our notation we use in the following Gree
subscriptsa,b, . . . P$3,4% to refer to theparticle species~a
3He or a4He particle!, and Latin subscriptsi , j , . . . as in the
r i to refer to the individual particles. The prime on the su
mation symbol in Eq.~2.1! indicates that no two pairs (i ,a),
( j ,b) can be the same. The number of particles of ea
species isNa , andN5N31N4 is the total number of par-
ticles in the system. In terms of the3He concentrationx we
have

N35xN, N45~12x!N, ~2.2!

and the corresponding partial densities,

r35xr, r45~12x!r, ~2.3!

are proportional to the total number densityr5N/V, where
V is the volume occupied by the whole fluid.
©2001 The American Physical Society04-1
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The Jastrow-Feenberg variational method10,11 and its ex-
tensions within the theory of correlated-basis function10

~CBF! provides the necessary tools for a precise ground-s
calculation. When applied to fermions, two steps are ess
tial that we shall describe briefly below. These are~i! the
construction and optimization of a suitable variational wa
function, and~ii ! the improvement of the description of th
system by CBF perturbation theory.

A. Optimized variational wave functions

We start with a variational ansatz for the ground-st
wave function that incorporates both pair and tripl
correlation functions in the form

C0~$r i
(a)%!5expF1

2
U~$r i

(a)%!GF0~$r i
(3)%!,

U~$r i
(a)%!5

1

2!
(
ab

( 8
i , j

Na ,Nb

u(ab)~r i ,r j !

1
1

3!
(
abg

( 8
i , j ,k

Na ,Nb ,Ng

u(abg)~r i ,r j ,r k!.

~2.4!

Here F0($r i
(3)%) is the Slater determinant of plane wav

ensuring the antisymmetry of the fermion compone
of the wave function. The functionsu(ab)(r i ,r j ) and
u(abg)(r i ,r j ,r k) are the pair and triplet correlations; the sp
cies superscripts determine the type of correlation. An es
tial part of the method is the optimization of the ground-st
correlations by the variational principles12–14

dE0

du(ab)~r i ,r j !
50,

dE0

du(abg)~r i ,r j ,r k!
50, ~2.5!

where

E05
^C0uHuC0&

^C0uC0&
~2.6!

is the variational energy expectation value. Details of
procedure, and the necessary working formulas, have b
discussed in Ref. 6. In particular the treatment of triplet c
relations and elementary diagrams is a reasonably unplea
task that provides little physical insight. We shall therefo
restrict the discussion to pair correlations and only point
the modifications and corrections introduced by triplet cor
lations where appropriate.

The key ingredients of the theory are the correlation fu
tions u(ab)(r i ,r j ), the partial densitiesra , and the pair dis-
tribution functions

rarbg(ab)~r ![rarbg(ab)~ ur2r 8u!

5 ( 8
i , j

Na ,Nb ^C0ud~r i
(a)2r !d~r j

(b)2r 8!uC0&

^C0uC0&
.

~2.7!
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Related to the pair-distribution functions are the stat
structure functions

S(ab)~k!5dab1ArarbE d2r @g(ab)~r !21#ei r•k.

~2.8!

Relationships between the correlation functio
u(ab)(r i ,r j ) and the distribution functionsg(ab)(r i ,r j ) are
provided by the~Fermi! hypernetted-chain@~F!HNC# hierar-
chy of integral equations. We are interested in3He-4He mix-
tures with a dilute3He component. The closest where th
can be achieved experimentally are atomic monolayers.
such low concentrations, the simplest version of the FH
equations,15,16 dubbed FHNC//0, is adequate to describe t
correlations between the3He particles. This version of the
FHNC theory sums self-consistently all chain and paral
connected diagrams, but omits propagator corrections
have some quantitative effects17 in pure 3He. Practical
implementations of the Euler equations~2.5! use the~F!HNC
relationships to eliminate the correlation functions and
express the Euler equations entirely in terms of the ph
cally observable distribution- and structure functions.

For mixtures, it is convenient to introduce a matrix not
tion, for example,

S~k![@S(ab)~k!# ~2.9!

for the static structure functions. The static structure funct
of the noninteracting mixture has only a nontrivial (33)
component,

SF~k![S SF~k! 0

0 1D , ~2.10!

whereSF(k) is the static structure function of the noninte
acting Fermi system,

SF~k!5H 2

p
~arcsinx1xA12x2! if x[k/2kF,1

1 otherwise.

~2.11!

For further reference, we also need the matrix of ‘‘dresse
correlation functionsG̃(k)5@G̃ (ab)(k)# that is related to the
structure-function matrix by

S~k!5SF~k!1SF~k!G̃~k!SF~k!. ~2.12!

Generally, we use the tilde notation for the dimensionle
Fourier transform, i.e.,

f̃ (ab)~k![ArarbE d2r f (ab)~r !ei r•k. ~2.13!

Without going into further details of the derivations, we a
sert that the coupled Euler equations~2.5! for the u(ab)(r )
are equivalent to6

@S21H1S
21#~k!2@SF

21H1SF
21#~k!52Ṽp-h~k!, ~2.14!

where
4-2
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H1~k![S \2k2

2m3
0

0
\2k2

2m4

D [S t3~k! 0

0 t4~k!
D ~2.15!

is the kinetic energy matrix, and

Ṽp-h~k![@Ṽp-h
(ab)~k!# ~2.16!

is the so-calledparticle-hole interaction.Ṽp-h(k) has the co-
ordinate space form

Vp-h
(ab)~r !5@11G (ab)~r !#@V(ab)~r !1DV(ab)~r !#

1F \2

2ma
1

\2

2mb
G u¹A11G (ab)~r !u2

1G (ab)~r !wI
(ab)~r !. ~2.17!

Equation ~2.17! defines a static, effective interaction
Vp-h

(ab)(r ). The quantitiesDV(ab)(r ) are corrections due to
elementary diagrams and triplet correlations; they must
calculated individually and are, in this sense, an external
put to the theory. The ‘‘induced interaction’’ is

w̃I~k!52Ṽp-h~k!2
1

2
@SF

21H1G̃1G̃H1SF
21#~k!. ~2.18!

Equation~2.14! is known as the PPA equation from its fir
derivation by the ‘‘paired-phonon analysis.11’’ For any given
choice of elementary diagrams and three-body correlatio
the equations~2.14!, ~2.17!, and~2.18! form a closed set of
equations that can be solved by iteration until convergenc
reached. Given the resulting distribution- and structu
functions, the variational energy expectation value~2.6! is
then calculated as described in Ref. 6.

For reference, and also for discussing one of the key m
sages of this paper, we also display the coordinate-sp
form of the Euler equations~2.14! and ~2.18!. Adding the
particle-hole interactionṼp-h(k) to both sides of Eq.~2.18!,
we obtain

2
1

2
@SF

21H1G̃1G̃H1SF
21#~k!5Ṽp-h~k!1w̃I~k!. ~2.19!

If theSF
21 were absent on the left-hand side of Eq.~2.19!, we

could rewrite it in coordinate space in the form of an effe
tive Schrödinger equation forA11G (ab)(r ),

S \2

2ma
1

\2

2mb
D¹2A11G (ab)~r !

5@V~r !1DV(ab)~r !1wI
(ab)~r !#A11G (ab)~r !.

~2.20!

While such a Schro¨dinger-type equation for the determin
tion of the short-range behavior of the correlations is naiv
plausible, we point out that the short-range structure of
wave function is determined by the Bethe-Goldstone eq
tion, which differs from the Schro¨dinger equation by the ap
05450
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pearance of Pauli-projection operators in the intermed
states. These are, within the variational framework, ma
fested by the factorsSF

21 in Eq. ~2.19!.

B. Correlated-basis functions

The Jastrow-Feenberg theory forbosonsis a systematic
method that leads, in principle, to the exact-wave functi
The same is not the case for a Fermi system. The most
parent reason for this is that the wave function~2.4! has the
nodes of the wave function of the free Fermi gas; but ther
no reason that the exact-wave function should have the s
nodes. This is so far an observation, but it makes no st
ment on how interactions move the nodes of the many-b
wave function. This information is provided by comparin
the results of the Jastrow-Feenberg variational theory w
what perturbation theory would predict. The bottom-lin
conclusion is that the Jastrow-Feenberg function~2.4! re-
places the particle-hole propagator by a ‘‘collective’’
‘‘mean spherical’’ approximation~MSA!.18,19This is already
seen in the weakly interacting limit and has, among othe
the consequence that the wave function~2.4! does not repro-
duce the correct high-energy limit of the correlation ener
of the electron gas. It also has consequences for the stab
of the mixture, which we will discuss below.

The formally systematic way to go beyond the Jastro
Feenberg theory is CBF theory.10,20 The theory extends the

use of the correlation operator exp@ 1
2U($r i

(a)%)# to generate a
nonorthogonal basis of the Hilbert space

uCm&5Imm
21/2expF1

2
U~$r i

(a)%!G uFm&, ~2.21!

Imm5^Fmuexp@U~$r i
(a)%!#uFm&, ~2.22!

where$uFm&% is a complete set of Slater determinants. T
purpose of CBF theory is, in our context, to relax the ‘‘me
spherical’’ approximation for the particle-hole propagato
The relationship to the variational and CBF theory is n
immediately obvious, and the actual calculations are qu
tedious since they require both an~F!HNC analysis21 of the
effective interactions defined by CBF theory and an analy
of ring diagrams in correlated-basis functions22 to all orders.
Nevertheless, the result is quite plausible: The effect of su
ming all ring diagrams in CBF theory is simply to remov
the collective approximation, in other words one obtains
energy correction

DERPA5ERPA2ERPA
MSA

5
1

2r
Im E d2kd~\v!

~2p!3 ln@D~k,v!/DMSA~k,v!#,

~2.23!

where

D~k,v!5@12x0
(33)~k,v!Ṽp-h

(33)~k!#@12x0
(44)~k,v!Ṽp-h

(44)~k!#

2x0
(33)~k,v!x0

(44)~k,v!@Ṽp-h
(34)~k!#2. ~2.24!
4-3
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Herex0
(33)(k,v) is the Lindhard function, andx0

(44)(k,v) the
response function of the noninteracting Bose system

x0
(44)~k,v!5

2t4~k!

~\v1 ih!22t4
2~k!

. ~2.25!

DMSA(k,v) is the same as expression~2.24!, where the
Lindhard function x0

(33)(k,v) is replaced by the ‘‘mean
spherical approximation’’

x0,MSA
(33) ~k,v!5

2t3~k!

~\v1 ih!22\2v3
2~k!

, ~2.26!

where

\v3~k![t3~k!/SF~k! ~2.27!

is an effective collective energy, determined such that
x0,MSA

(33) satisfies the first two energy-weighted sum rules. T
same corrections are also introduced in the~F!HNC-EL
~Euler-Lagrange! equations as described in detail in Ref.
the effect of introducing CBF corrections to infinite order
that the PPA equation~2.14! is replaced by an ordinary
random-phase approximation~RPA! equation.23 In the mix-
ture, the density-density response function is a 232 matrix,
which is given, in the RPA, by

x~k,v!5x0~k,v!1x0~k,v!Ṽp-h~k!x~k,v!, ~2.28!

where

x0~k,v!5S x0
(33)~k,v! 0

0 x0
(44)~k,v!

D . ~2.29!

The static structure function is then calculated from
dynamic structure function

S~k,v!52
1

p
Im x~k,v!, ~2.30!

through the fluctuation-dissipation theorem

S~k!5E
0

`

d~\v!S~k,v!. ~2.31!

Using the ‘‘mean-spherical approximation’’x0,MSA
(33) (k,v) in-

stead of the Lindhard function in Eq.~2.28! leads immedi-
ately to the Euler equation~2.14! of the ~F!HNC-EL theory.
We shall return to the issues raised by CBF theory in
next section, when it comes to the interpretation of effect
interactions.

III. SINGLE-IMPURITY AND TWO-IMPURITY LIMITS

It is instructive for the analysis of mixtures to study al
its low-concentration limit, to examine the properties of on
one impurity, and to calculate the effective interactions
tween isolated pairs of impurities. The calculation can
carried out in two ways: The normal approach is to st
again with a variational wave for the system with one or t
impurities, and to develop the Euler-Lagrange theory for t
case. This method provides operational definitions of the
05450
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sic ingredients. Alternatively, one may start from the mixtu
equations, and expand these equations to first and se
order in the concentrationx. We shall follow this route be-
cause it also gives us the freedom to consider the case
the impurities are a dilute gas of weakly correlated fermio
at low density. In any case, we need to review the definitio
of the basic ingredients of the theory, point out their physi
interpretation, and highlight cases where the definitions
viate from those of the mixture theory.

In the limit that we have only one3He atom in the fluid of
4He particles, the wave function is obtained from the m
ture wave function by omitting all correlation functions co
taining two or more3He indices, and by setting the Slate
determinant equal to one. As a convention we denote in
section the impurity coordinate withr0, in distinction from
the 4He particle coordinatesr i where 1< i<N4[N. The
wave function of the impurity plus background system is

CN11
I ~r0 ,r1 , . . . ,rN!

5exp
1

2
F (

j 51

N

u(34)~r0 ,r j !1
1

2!
( 8

i , j 51

N

u(44)~r i ,r j !

1
1

2!
( 8

i , j 51

N

u(344)~r0 ,r j ,r k!

1
1

3!
( 8

i , j ,k51

N

u(444)~r i ,r j ,r k!G , ~3.1!

and its chemical potential

m35
^CN11

I uHN11
I uCN11

I &

^CN11
I uCN11

I &
2

^CNuHNuCN&

^CNuCN&
[EN11

I 2EN .

~3.2!

Here, HN is the Hamiltonian of theN-particle background
liquid, and HN11

I the Hamiltonian of the (N11)-particle
system consisting ofN 4He background atoms and one im
purity.

The impurity correlations are again determined by t
variational principle. Since the background energy does
depend on the impurity concentration, the Euler equation
the impurity correlations is equivalent to minimizing th
chemical potential

dm3

du(34)~r0 ,r1!
50,

dm3

du(344)~r0 ,r1 ,r2!
50. ~3.3!

The impurity structure function is calculated from th
pair-distribution function as

S(34)~k!5r4E d2reik•r@g(34)~r !2g(34)~`!#. ~3.4!

Note that the normalization factor of the impurity structu
function is r4 and notAr3r4 as in the mixture case. Th
value of the impurity structure function at the origin is th
volume excess factor,24

S(34)~01 !52b. ~3.5!
4-4
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The two-body Euler equations for the single impurity c
be obtained directly from the mixture Euler equations~2.14!
by settingSF(k)5S(33)(k)5g(33)(r )51,

G (ab)~r !5g(ab)~r !21, ~3.6!

and observing the above change in normalization. For
purpose of our analysis we prefer, however, to be sligh
more flexible and allow for a dilute gas of weakly correlat
fermions. The low-concentration limit of Eqs.~2.14! and
~2.18! is then taken such that all quantities contain no m
than one~or two for the two-impurity case! dynamical im-
purity correlations, but they may still be correlated statis
cally to arbitrary orders. This implies, among others, th

S(34)(k)5SF(k)G̃ (34)(k). The rigorous single-impurity limit
is then obtained by settingSF(k)51.

To see how this works, we start from the mixture Eu
equation~2.14!. The single-impurity limit implies that there
cannot be two3He atoms dynamically correlated, hence w
can setG (33)(k)50 andS(33)(k)5SF(k). The ~34!-channel
equation then reads explicitly

G̃ (34)~k!522
Ṽp-h

(34)~k!S(44)~k!

\v3~k!1e4~k! F12
SF~k!@G̃ (34)~k!#2

S(44)~k!
G 2

'22
Ṽp-h

(34)~k!S(44)~k!

\v3~k!1e4~k!
, ~3.7!

wheree4(k)5t4(k)/S(44)(k) is the Feynman excitation en
ergy, and the last step follows from the dictum to omit
contributions that contain more than one correlated-impu
atom. Alternatively, one may start with Eq.~2.28! that reads,
in the single-impurity limit,

x (34)~k,v!5x0
(33)~k,v!Ṽp-h

(34)~k!x (44)~k,v!, ~3.8!

use the ‘‘mean-spherical approximation’’~2.26! for the
Lindhard function, and calculateS(34)(k) by the frequency
integration ~2.31!. This leads to the same result~3.7!. In
the strictly low-concentration limitSF(k)51, S(34)(k)
5G̃ (34)(k), we recover the familiar single-impurity Eule
equation25

S(34)~k!522
Ṽp-h

(34)~k!S(44)~k!

t3~k!1e4~k!
, ~3.9!

with the particle-hole potential~2.17! and the induced poten
tial,

w̃I
(34)~k!52

1

2

S(34)~k!~S(44)~k!21!

S(44)~k!

3@ t3~k!1t4~k!1e4~k!#. ~3.10!

Equations~3.9!, ~3.10!, and ~2.17! form a closed system o
equations that can be solved by iteration, given a pract
choice for the contributions of the elementary diagra
and triplet correlations to the particle-hole potenti
DV(34)(r0 ,r1).

Using the PPA equation~2.14! for the background liquid
05450
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Ṽp-h
(44)~k!5

\2k2

4m4
F S 1

S(44)~k!
D 2

21G ~3.11!

we find, in the limitk→01

S(34)~01 !52
Ṽp-h

(34)~01 !

Ṽp-h
(44)~01 !

52b. ~3.12!

The relation to the volume excess factor in the last equa
comes from the identification of the interactionṼp-h

(34)(01) as
the effective 3He-4He interaction used by Bardeen, Bay
and Pines24; see also Chap. 11.5 in Ref. 10.

Finally, we turn to the effective interaction between pa
of impurities. One can again start from a variational wa
function that contains two impurities, and then calculate
correlations by minimizing the second-order energy diff
ence

D (2)E[EN12
II 22EN11

I 1EN . ~3.13!

However, this energy difference is only of secondary int
est; the physically more relevant quantity is the effect
interaction between impurities that can be obtained, in
same manner as outlined above, from the induced interac
~2.18!. We proceed again by allowing first for no more tha
two dynamically correlated impurity particles. Since we a
interested in the two-impurity limit of the coordinate-spa
equation ~2.20! that contains already a common fact
G (33)(r ), we must not allow for dynamically correlated pai
of impurities in the induced potential. For calculating th
induced potential, we must interpret the particle-hole int
action matrix appearing in Eq.~2.18! as being expressed b
the PPA equation~2.14!. Expanding the~33! component of
w̃I

(33)(k) then leads to

w̃I
(33)~k!52

@G̃ (34)~k!#2

2S(44)~k!
@2\v3~k!1e4~k!#. ~3.14!

As a further approximation, one may again also ignore s
tistical correlations by settingSF(k)51. Then, one arrives a

w̃I
(33)~k!52

@S(34)~k!#2

2S(44)~k!
@2t3~k!1e4~k!#, ~3.15!

which is the induced interaction derived, among others,
Owen.26

An alternative derivation, which provides an interpret
tion of Jastrow–Feenberg theory in terms of Green’s fu
tions, is offered by the localizing approximations of parqu
diagram theory.27–29The energy-dependent effective intera
tion between two impurities that is mediated by the excha
of phonons is generally

Ṽeff\~k,v!5Ṽp-h
(33)~k!1Ṽp-h

(34)~k!x (44)~k,v!Ṽp-h
(34)~k!

5Ṽp-h
(33)~k!1Ṽp-h

(34)~k!
2t4~k!

~\v!22@e4~k!#2Ṽp-h
(34)~k!.

~3.16!
4-5
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The prescription from parquet-theory to make this ener
dependent interaction local is as follows: Construct the R
static structure function

SRPA
(33)~k!52E

0

`d~\v!

p
Im @x0

(33)~k,v!

1x0
(33)~k,v!Ṽeff~k,v!x0

(33)~k,v!#. ~3.17!

Also, construct the ladder approximation for the same qu
tity in terms of a different and yet unspecified local effecti
interaction, sayṼL(k)

Sladder
(33) ~k!52E

0

`d~\v!

p
Im @x0

(33)~k,v!

1x0
(33)~k,v!ṼL~k!x0

(33)~k,v!#. ~3.18!

Now choose an average frequencyv̄(k) such that these two
forms of the static structure function areidentical for

ṼL~k!5Ṽeff„k,v̄~k!…. ~3.19!

The calculation can be carried out in closed form in the c
lective approximation, leading to

VL~k!5Vp-h
(33)~k!22@Ṽp-h

(34)~k!#2S(44)~k!
2\v3~k!1e4~k!

@\v3~k!1e4~k!#2

~3.20!

from which we conclude

w̃I
(33)~k!5VL~k!2Vp-h

(33)~k!, ~3.21!

which is seen to be identical to Eq.~3.14!.
The comparison with an energy-dependent interaction

only offers an interpretation of the effective interaction d
fined by the Jastrow-Feenberg theory in terms of line
response theory, it also offers a way to relax its approxim
tions. Our analysis shows that Eq.~2.20! is a static
approximation for theenergy-dependentSchrödinger equa-
tion

F2
\2

m3
¹21Vscat~Eb ,r !Gf~r !5Ebf~r !, ~3.22!

where

Vscat~Eb ,r ![V(33)~r !1wI
(33)~Eb ,r !1DV(33)~r !

~3.23!

with

w̃I
(33)~Eb ,k!5Ṽp-h

(34)~k!
2t4~k!

Eb
22@e4~k!#2Ṽp-h

(34)~k! ~3.24!

is the energy-dependenteffective potential. The Jastrow
Feenberg wave function approximates this effective inter
tion with an energy-independent effective interaction su
that the static structure function is the same. This is by c
struction appropriate for the static structure function; it a
gives an variational upper bound for the binding energy
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the dimer. Since the inclusion of CBF corrections is nec
sarily perturbative, it is nota priori clear whether the energy
dependent effective interaction~3.24! actually improves
upon the physical description.

IV. STABILITY ANALYSIS, COLLECTIVE EXCITATIONS,
AND DIMER FORMATION

One of the attractive features30 of modern microscopic
many-body theories is that the underlying equations do
have solutions for configurations that are physically unsta
The mixture would, for example, be unstable against the c
centration fluctuations if Fermi statistics was turned off. It
therefore not only from the viewpoint of the physical ph
nomenon, but also from a purely theoretical perspective
teresting to study the indications for phase separation
potentially other phase transitions in the mixture and the
flections of such phase separations in the theory. The t
dimensional mixture differs in a number of significant wa
from its three-dimensional analog.

When studying the stability of the quantum-liquid mix
ture, we have to distinguish betweenglobal and local insta-
bilities. A global instability means that another phase of t
system of a lower energy exists, which the system can re
by a macroscopicperturbation of its configuration. In ou
case, when the chemical potential of a3He atom in the mix-
ture becomes higher than the chemical potential of the a
in bulk 3He, the mixture will phase separate, but it takes
finite external perturbation to initiate the transition. Theore
cally, one can detect such an instability only by compar
the ground-state energies of the two different phases.

A local instability occurs when the system becomes u
stable againstinfinitesimalfluctuations about its equilibrium
configuration. Such an instability is indicated by the softe
ing of a collective excitation and should also be reflected
a divergence of the theory. Experimentally, it is very difficu
to get close to this second type of an instability since
involves generating an oversaturated mixture. Theoretica
this instability is the more interesting one since it provide
consistency test for the theoretical description.

A. Hydrodynamic stability

The mixture is stable againstinfinitesimalchanges of the
density and the concentration, if the second derivative ma
of the energy with respect to the concentration and the p
ticle density is positive definite. We write the total energy
a function of 4He and 3He densities

E5TF1Ec@r3 ,r4#, ~4.1!

whereEc is the correlation energy, andTF the kinetic energy
of the noninteracting fermion component.

We then calculate theincompressibility tensor

S Ararb

V

]2E

]ra]rb
D

ab

5S V̂(33)~01 !1
m3cF

2

2
V̂(34)~01 !

V̂(34)~01 ! V̂(44)~01 !
D ,

~4.2!
4-6
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wherem3cF
2/25\2kF

2/2m3 is the incompressibility of the free
Fermi gas,cF5\kF /m3 its Fermi velocity, and

V̂(ab)~01 ![
Ararb

V

]2Ec

]ra]rb
. ~4.3!

The eigenvalues of the matrix~4.2! can be related to the
ordinary sound velocityc0 and the second sound velocityc2.
The ‘‘large’’ eigenvalue gives the bulk incompressibili
m4c0

2; it is always positive in the density regime where t
liquid is stable against bulk density fluctuations. T
‘‘small’’ eigenvaluem3c2

2 is related to the second sound v
locity that describes concentration fluctuations of the3He
component. We must requirem3c2

2.0 to guarantee the sta
bility of the mixture against phase separation. For the po
tivity of the ‘‘small’’ eigenvalue, it is sufficient that the de
terminant of the matrix~4.2! is positive,

p
\2r3

m3

V̂(44)~01 !

@V̂(34)~01 !#22V̂(33)~01 !V̂(44)~01 !
.1,

~4.4!

where we have used thatkF
252pr3.

B. Microscopic stability

A necessary condition for the existence of solutions of
PPA equation~2.14! is that the 232 matrix

Ṽp-h1
1

2
SF

21H1SF
21 ~4.5!

is positive definite. An instability against density- and co
centration fluctuations will first show at small momenta, w
therefore calculate the zero-momentum limit,

lim
k→01

F Ṽp-h1
1

2
SF

21H1SF
21G

5S Ṽp-h
(33)~01 !1

p2

8

m3cF
2

2
Ṽp-h

(34)~01 !

Ṽp-h
(34)~01 ! Ṽp-h

(44)~01 !
D . ~4.6!

Comparison of Eqs.~4.2! and ~4.6! suggests the identifica
tion Ṽp-h

(ab)(01)5V̂(ab)(01). In fact, theV̂(ab)(01) are the
same as the long-wavelength limits of the particle-hole in
actionsṼp-h

(ab)(01) if the Jastrow-Feenberg wave function
optimized for alln-body correlations, and if all elementar
diagrams are included, in other words in an exact theory
we identify these interaction terms, the matrices~4.2! and
~4.6! differ only in the ~33!-channel. The positivity of the
matrix ~4.2! is clearly the correct stability condition; the dis
crepancy in the~33!-matrix element of the matrices~4.2! and
~4.6! is due to the ‘‘mean-spherical approximation’’ di
cussed above. It is cured by including CBF ring diagrams
all orders in the optimization and requiring that the inve
of the density-density response matrix in Eq.~2.28!

@x0~k,v!#212Ṽp-h~k! ~4.7!
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exists in the long wavelength and zero-frequency lim
when the Lindhard function is used forx0(k,v).

To highlight the difference between the two- and t
three-dimensional system, we assume, for the time be
that a low-concentration mixture exists. We may then furth
assume that the main concentration dependence of the e
tive interactions is due to the density factors occurring in
definitions of theṼp-h

(ab)(q), cf. Eq. ~2.16!, and in the Fermi
velocity cF . We can therefore write

Ṽp-h
(44)~01 !5~12x!V̄(44)~01 !

Ṽp-h
(34)~01 !5Ax~12x!V̄(34)~01 !

Ṽp-h
(33)~01 !5xV̄(33)~01 ! ~4.8!

with V̄(ab)(01)[r*d2rV̄ (ab)(r ) and assume that th
V̄(ab)(01) do not depend significantly on the concentrati
x. We then get from Eq.~4.6! the stability condition

p3

8

\2r

m3

V̄(44)~01 !

@V̄(34)~01 !#22V̄(33)~01 !V̄(44)~01 !
.1.

~4.9!

Unlike the three-dimensional analog, it is seen that this s
bility condition is independentof the concentrationx. Hence,
the stability condition of the mixture is changed from i
zero-concentration limit only by a significant change in t
effectiveinteractions themselves as a function of concen
tion and not just by changing the ratio between the Fe
kinetic energy and potential energy as is the case in th
dimensions.

C. Dimerization

It was pointed out by Bashkin31 that pairs of3He atoms in
a dilute 3He-4He mixture will form weakly bound dimers
when their motion is restricted to quasi-two dimensions.
particular, the dimerization should occur in a low-dens
two-dimensional mixture. The effective3He-3He interaction
is a candidate for producing such bound states, to which
shall refer as ‘‘Bashkin-states.’’ To prove their existence,
must demonstrate that the sum of the bare interaction,
induced interaction, and the correction originating from
ementary diagrams and triplets appearing in Eq.~2.20! is
sufficiently attractive. It is relatively easy to see that the
ementary diagram contribution falls off at least liker 26, as
r→`, in other words like the bare interaction. The sam
proof is also possible, but quite tedious, for the correct
from triplet correlations. To calculate the large-distance
havior of the induced interaction term, we study the lon
wavelength limit. The considerations go as follows:

First, we realize from Eq.~2.17! that the particle–hole
interactionsVp-h

(44)(r ) andVp-h
(34)(r ) are short-ranged function

that fall off at least asr 26 as r→`, hence their Fourier
transforms go as

Ṽ(ab)~k!5aab1babk21O~k4!, ~4.10!
4-7
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where we can identifya445m4c0
2 and a345bm4c0

2, cf. Eq.
~3.12!, wherec0 is the speed of sound. Inserting these e
pansions into Eq.~3.15! yields a smallk expansion

w̃I
(33)~k!52b2m4c0

21const3k22
b2\3m4

4m3
3c0

k31O~k4!,

~4.11!

from which we conclude that

w̃I
(33)~r !;2

9b2\3m4

8prm3
3c0

r 251O~r 26! as r→`, ~4.12!

in other words, thephonon-inducedinteraction dominates
the effective interaction forr→` and is attractive.

Things change, as they should, if Fermi statistics is
cluded. First, the ‘‘Schro¨dinger-equation’’ ~2.20! for the
coordinate-space correlations is no longer rigorously valid
pointed out above. But even if one ignores this, it is
longer possible to prove thatwI

(33)(r ) is attractive and domi-
nates for large distances. Using Eqs.~3.14! and~3.7! instead
of Eqs.~3.15! and~3.9!, one finds that the smallk expansion
of w̃I

(33)(k) has only even powers up tok4. In other words,
the phonon-induced interaction gets effectively screened
Fermi statistics. In practice one has, of course, a smo
transition between the rigorously dilute limit and the case
a weakly interacting Fermi gas, the crossover being at3He
concentrations where the size of the dimer becomes com
rable to the inverse of the Fermi wave vector.

One might therefore expect that dimerization is a rat
exotic effect that happens only at very small concentratio
and in the microkelvin regime. Our stability analysis of t
previous section comes to bear at this juncture: If the3He
component forms a two-body bound state, then it can a
form a many-body bound state that would be detected a
spinodal decomposition of the mixture. Above, we ha
shown that it needs macroscopic changes of the effec
interactions to change the inequality~4.9!. Therefore, while
superficially a subtle effect, we expect a rather robust p
nomenon.

In conclusion of this section, we point out that a ve
similar dimerization effect has been discussed in astroph
cal 4He plasmas, where an instability of the coordinate-sp
Euler equation was interpreted as a phase transition to s
8Be matter.32,33

V. GROUND-STATE RESULTS

A. 4He in two dimensions

To demonstrate the validity of the predictions of the sem
analytic microscopic methods of the kind presented here
can utilize simulation data for the two-dimensional liqui
4He and3He. The best results available today are the dif
sion Monte Carlo~DMC! calculations for4He of Giorgini
et al.34 and some very recent results35 on two-dimensional
3He.

Figure 1 shows the two-dimensional equation of state
culated from the Aziz-II potential of Ref. 9 and compar
with the Monte Carlo evaluation of Giorginiet al.34 The
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agreement is not quite as perfect as the one obtained fo
older Aziz potential,8 but it is still quite satisfactory. The
same holds for the derived quantities, pressure per den
p/r and the chemical potentialm4 which are also shown in
Fig. 1. Note that the HNC-EL results for the pressure and
chemical potential were derived by diagrammatic different
tion of the working formulas of the theory, and not by n
merically differentiating the equation of state.

Similarly good agreement between our HNC-EL resu
and DMC data is obtained for the pair-distribution functio
g(44)(r ) and the static structure functionS(44)(k); Fig. 2
shows, as an example, a comparison ofg(44)(r ) at three dif-
ferent densities. The agreement is quite satisfactory e
cially in the regime up to the nearest-neighbor peak.
larger distances, our results appear to be shifted slightly
wards. Figure 3 shows a comparison of the static struc
functions; consistent with the slight shift of the oscillatio

FIG. 1. The figure shows the HNC-EL results for the energy
particle E/N, ~solid line, left scale!, the pressure per densityp/r
~long-dashed line, right scale! and the chemical potentialm4 ~short-
dashed line, right scale!. Also shown are DMC data from Ref. 3
for the energy~1 symbols!, the pressure per density~crosses! and
the chemical potential~stars!. All energies are given in degree
Kelvin.

FIG. 2. The HNC-EL results for the pair-distribution functio
g(44)(r ) ~solid lines! are compared with DMC data~markers! at
the three densitiesr50.0412 Å22, r50.0490 Å22, and r
50.0643 Å22.
4-8
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of g(44)(r ) we find a slight outward shift of the peak o
S(44)(k) in the HNC-EL calculation.

B. Single-impurity calculation

The calculation of the chemical potential of a single3He
impurity proceeds along the same lines as in the thr
dimensional case.25 Since the physical effects to be describ
here are quite delicate, and since no simulation data
available at this time for a direct comparison, we need to
particularly careful with the verification of our results.

The accuracy of our results can be estimated by using
‘‘average-correlation approximation~ACA!’’ for calculating
a rigorous upper bound for the impurity chemical potential
follows: Let CN11(r0 , . . . ,rN) be the ground-state wav
function of N11 4He atoms, andCN11

I (r0 , . . . ,rN) the
ground state ofN 4He and one3He impurity, approximated
for example, by the variational function~3.1!. Then, the im-
purity chemical potentialm3

I can be estimated as36,37

m3
I [^CN11

I uHN11
I uCN11

I &2^CNuHNuCN&

<^CN11uHN11
I uCN11&2^CNuHNuCN&

5S m4

m3
21D ^T4&1m4[m3

ACA, ~5.1!

where ^T4& is the kinetic energy per particle of the4He
component, andm4 is the 4He chemical potential. Both
quantities can be obtained from simulations34 without re-
course to semianalytic theories, but, of course, also wit
our theoretical framework. That way, we can reassure
accuracy of our calculations in two ways. First, by assert
that our ACA estimate for the3He chemical potential agree
sufficiently well with what one would obtain from Ref. 34
Second, the relevant quantity is only theincreaseof the 3He
binding due to relaxing the ACA, and the energy differenc
gained by relaxing the ACA should be more accurate th
the absolute energies. Since we have already verified ab
that the chemical potential of the4He component agrees we
with those of Ref. 34, we only need to show that the kine

FIG. 3. The HNC-EL results for the static structure functi
S(44)(k) ~solid lines! are compared with DMC data~markers!
at the three densitiesr50.0412 Å22, r50.0490 Å22, and
r50.0643 Å22.
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energies agree equally well. Figure 4 shows the compar
that is evidently accurate for all practical purposes.

In Figure 5 we compare the full calculation of the3He
chemical potential with the ACA result. The gain in ener
due to relaxing the ACA is about 0.2–0.3 K in the who
density range. As expected, Monte Carlo results for the A
are slightly below our approximate result and thus we c
conclude that our full calculation gives a reliable upp
bound form3

I .
After these rigorous estimates of the impurity chemic

potential we are ready to comparem3
I with the chemical po-

tential of the pure3He gas,m3
pure. Recent Monte Carlo simu

lations are available for the energy per particle as a func
of density35 from which we can calculatem3

pure(P). In Fig. 6
we show thedifferencebetween these chemical potentials

Dm~P!5m3
I ~P!2m3

pure~P!, ~5.2!

as a function of pressure for different approximations.
positive Dm indicates phase separation, whereas a nega

FIG. 4. The kinetic energy of two-dimensional4He resulting
from our HNC-EL calculation~solid line! is compared with the
DMC results of Ref. 34~stars!.

FIG. 5. The 3He impurity chemical potentials as a function o
density. The result of the full calculation~solid line! is compared
with the average-correlation approximation~long-dashed line!. The
stars give the average-correlation approximation of the Monte C
simulations Ref. 34. Also plotted in the figure is the pressu
density~short dashed line!.
4-9
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Dm indicates mixing. The ACA using Monte Carlo yields
rigorous upper limit for the impurity chemical potential th
is less than 0.1 K abovem3

pure(P) for pressureP.0.002
dyn/cm. Our result form4 gives a slightly higher upper limi
as also shown in Fig. 6.

The situation changes when the impurity-background c
relations are optimized. As pointed out earlier, the chem
potential is lowered by 0.2–0.3 K by relaxing the ACA. A
zero pressure, the3He impurity chemical potential is stil
positive,m3

I '10.13K, whereas the chemical potential of th
pure 3He gas approaches zero proportional toAP. This
means that no stable mixture can exist at zero pressure.
with increasing pressure, the3He chemical potential in
the pure phase increases faster than that of the impurity,
the mixture becomes stable for pressuresP.0.002 dyn/cm.
The maximum difference in the chemical potentials
'20.25 K at P50.1 dyn/cm; we can therefore conclud
that the mixture is stable at pressuresP.0.002 dyn/cm and
phase separates at very low pressures.

The most realistic estimate is obtained by supplemen
the ACA from Monte Carlo data with our correction of th
chemical potential due to relaxing the ACA, i.e., we defin

Dmopt~MC![DmACA~MC!1@Dmopt~HNC!

2DmACA~HNC!#. ~5.3!

This leads to the dotted line in Fig. 6, which favors mixin
most strongly over a wide regime of pressures.

Differences between the radial distribution functio
g(44)(r ) and g(34)(r ) after the full optimization are quite
visible as shown in Fig. 7. The height of the peak ing(34)(r )
is clearly lower and slightly shifted towards largerr, which
is consistent with the fact that a3He impurity makes a
bigger correlation hole than a4He atom due to the stronge
zero-point motion. The effect is seen more clearly in t
static structure functions of Fig. 8. The valueS(34)(01)
52b gives the volume excess factor for the impurity.

FIG. 6. The differenceDm between the3He impurity chemical
potentials and the pure3He chemical potential is shown as a fun
tion of pressure. The solid line shows the result of the fully op
mized ~F!HNC-EL calculation. The short-dashed line is our AC
estimate~5.1!, the long-dashed line is the ACA estimate~5.1! from
Monte Carlo simulations of pure4He, and the dotted line is the
estimate forDm obtained by supplementing the ACA from Mon
Carlo results by our enhancement of the binding due to relaxing
ACA as defined in Eq.~5.3!.
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these two representative densitiesr50.0412 Å22 and r
50.0643 Å22 we find b51.63 andb51.25, respectively.
The peaks of the3He structure functions are also lower tha
for 4He.

C. Two impurities

We have discussed in Sec.~IV C! the mechanism of the
dimer formation from the point of view of the long-rang
attraction induced by the phonon exchange. The phonon
change is sufficient to bind3He dimers. However, the muc
shorter-ranged contributionDV(33)(r ) causes a quantitatively
significant increase of the dimer binding energy, which
strongly density dependent as shown in Fig. 9. When o
the bare interaction and induced potentialwI

(33)(r ) from
HNC approximation are included, the binding energy
about two orders of magnitude smaller than from the f
calculation. Yet, one should realize that the saturation d
sity in the HNC approximation is at much lower densit
0.032 Å22, and at that density the dimer binding is 232mK.

In the full calculation zero pressure corresponds to
density r50.043 Å22 in agreement with simulations. Th
dimer binding at that density is'26mK. The binding en-

-

e

FIG. 7. The HNC-EL results for the3He impurity pair-
distribution functionsg(34)(r ) ~solid lines! for two densitiesr
50.0412 Å22 andr50.0643 Å22. The higher peak corresponds t
the higher density. For comparison we have plotted also the4He
pair distribution functionsg(44)(r ) at the same densities~dashed
lines!.

FIG. 8. The HNC-EL results for the3He impurity-structure
functions S(34)(k) ~solid lines! for two densitiesr50.0412 Å22

and r50.0643 Å22. The higher peak corresponds to the high
density. For comparison we have plotted alsoS(44)(k)21 at the
same densities~dashed lines!.
4-10
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ergy decreases with increasing density; one reason for th
that the attraction of the asymptotic tail of the phono
induced interaction decreases since the volume-excess f
decreases and the speed of sound increases with incre
density. Near the solidification density oscillations of the
fective interaction build up; they extend further and furth
out into the tail and also reduce the binding. Since the dim
is very weakly bound, its wave function decays very slow
Figure 10 shows the wave function for three different den
ties. They show a maximum at'4 Å that coincides with the
first maximum of the radial distribution function of the pu
4He. From the wave function we can calculate the ro
mean-square~rms! radius of the dimerA^r 2&. The main con-
tribution to the integral comes from the tail of the wa
function f(r );K0(A2m3uEbu/\2r ) and that gives a simple
approximation

A,r 2.'A \2

3m3uEbu
, ~5.4!

which is accurate within 3% for the whole density range. T
value of the rms radius increases from 70 Å at the den
0.035 Å22 to 1000 Å at 0.065 Å22.

FIG. 9. The binding energy of a dimer of3He atoms within
two-dimensional4He in logarithmic scale as a function of densit
The solid line is the result of the full calculation, the dashed l
shows the result from the HNC approximation, omitting the corr
tions DV(33)(r ) from the elementary diagrams and triplet corre
tions.

FIG. 10. The square of the3He wave function for three differen
4He densities as marked in the figure.
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An alternative derivation of the effective interaction bas
on Green’s functions led to the energy-dependent interac
of Eq. ~3.16!. Since the dimer binding is a very low energ
phenomenon one is tempted to approximate the binding
ergy in the energy-dependent interaction~3.24! by zero. This
clearly gives an induced potential that is more attractive ik
space. However, this increase in the attraction is, in confi
ration space, hidden behind the strong repulsion of the b
interaction at smallr as shown in Fig. 11. Thus we find n
bound state in that zero-energy limit. Since the variatio
theory produces an upper bound for the binding energy,
conclude that relaxing the approximations implicit to th
theory—specifically the ‘‘localization’’ of effective interac
tions by introducing an average energy—do not necessa
improve the physical description of the system.

Fermi statistics is expected to screen the interaction
tween pairs of impurities at finite concentrations. We c
estimate this effect by using the induced interaction from E
~3.14! together with Eq.~3.7! and get the low-concentratio
dependence of the dimer binding energy. This estimate
valid only up to 2–3 % concentrations, because we h
assumed that the particle-hole interactionsṼp-h

(44)(k) and

Ṽp-h
(34)(k) as well as the higher-order correlation effec

DV(44)(k) and DV(34)(k) remain independent of concentra
tion. The results are shown in Fig. 12. At one percent c
centration the binding energy has dropped roughly to half

-

FIG. 11. Comparison of the energy-dependent induced pote
from Eq. ~3.24! ~short dashed line! with the ~F!HNC result of Eq.
~3.15! ~solid line!. Also shown is the bare two-particle interactio
~dashed line!.

FIG. 12. The concentration dependence of the binding energ
a 3He dimer within two-dimensional4He for three different densi-
ties, 0.045, 0.055, and 0.065 Å22, marked in the figure. These
results were obtained assuming a dilute Fermi gas of3He atoms.
4-11
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the full finite concentration mixture calculation discussed
the next section we find that the homogeneousatomicmix-
ture becomes stable at concentrations above 2–3 % and
dimer binding vanishes.

We have shown that the binding energy of the dimer
pends very strongly on the density and the best possibilit
finding a dimer state is at very low densities and concen
tions. The estimate for the concentration dependence in
low-concentration limit complements the discussion of
next section in the sense that it demonstrates, again, thero-
bustnessof the dimerization effect showing that it does n
disappear at infinitesimal concentrations.

D. Finite-concentration mixtures

The examination of the single- and two-impurity limi
and the comparison of the energetics and effective inte
tions has lead to two conclusions: First, at slightly posit
pressures, the chemical potential of a single3He impurity in
the mixture is less than that in the two-dimensional3He at
the same pressure, which means that the mixture will
phase separate into disjoint regions of4He and3He. Second,
the effective interaction between pairs of3He impurities is
sufficiently attractive such that these impurities form dime
Both of these conclusions were independent of the theo
cal tools and based on either simulation data or rigor
upper bounds. Among others, our analysis demonstrates
anatomic mixtureof 3He and4He is, in two dimensions and
at sufficiently low concentrations, unstable against dimeri
tion, but stable against phase separation.

As the concentration is increased, one expects that
dimers dissolve and an atomic mixture is formed. A f
microscopic theory is required for calculating the propert
of such a mixture. The accuracy of our calculation of t
4He component has been demonstrated above, there is t
fore only need to estimate the concentrations for which
expect that the calculations of the3He component are reli
able. We have used the version of the~F!HNC-EL theory
explained in detail in Ref. 6. The method implies, for t
fermion channels, a simplified version of the FHNC-E
equation that is not sufficiently accurate for a quantitat
description of pure3He in three dimensions. We can ind
rectly assess the expected accuracy of our calculation
follows: In the three-dimensional mixture, we have demo
strated the accuracy of our results for the energy up to 20
pressure, corresponding to a density of approximately 0.
Å 23, and up to 10% concentration. The average dista
between3He atoms is, at this density, about 4.5 Å . This
translates to a3He density of 0.016 Å22 in two dimensions,
which is about 25% of the solidification density of 0.06
Å 22. A conservative estimate would then lead us to exp
that our calculations are similarly accurate as those of Re
up to about 25% concentration.

Results for the equation of stateE(r,x)/N, the chemical
potential of the3He-componentm3(r,x), and the speed o
second soundmc2

2 are shown in Figs. 13, 14, and 15. Th
most interesting result is the concentration dependence o
second sound speed. As pointed out above, it is unavoid
that the system exhibits alocal instability at low concentra-
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tions, coming from above. Figure 15 shows, for three diff
ent densities, the long-wavelength limit ofmc2

2 as a function
of concentration for both the~F!HNC-EL calculation and the
CBF corrected calculations. It is very difficult to get close
the actual phase transition because this instability is dri
by the appearance of the3He-3He dimer. This can be see

FIG. 13. The energy per particle of the two-dimensional mixtu
is shown, for the densitiesr50.045, 0.050, 0.055, and 0.060 Å22,
as a function of concentrationx. The highest line corresponds to th
highest density, the boxes at the left margin are the results for p
two-dimensional 4He. The unstable area between the ze
concentration limit and the estimated spinodal point for phase s
ration is dashed, the estimated spinodal concentrations are indic
by heavy dots, whereas the end point of our numerical calculat
is indicated by an open circle. Also shown are the~F!HNC results
of Ref. 38 for the densitiesr50.045, 0.50, and 0.60 Å22.

FIG. 14. The chemical potential of the3He component of the
two-dimensional mixture is shown, as a function of concentrationx,
for the pressures 0.0, 0.1, 0.3, and 0.5 dyn/cm in~F!HNC-EL cal-
culation and in the CBF-corrected calculation. The results h
been smoothly interpolated through the unstable region to match
x50 value. The interpolated region is drawn as dashed lines
ended by markers. The CBF-corrected chemical potentials
slightly higher. Four dotted horizontal lines show the chemical p
tentials of the pure3He gas at the indicated pressures from Ref.
4-12
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from Eq. ~2.19! as follows: In the small concentration limi
the factorSF

21(k) in Eq. ~2.19! can be ignored, and the equ
tion turns into an ordinary Scho¨dinger equation with an ef
fective potential. The boundary condition in a many-bo
system isA11Gdd(r )→1 asr→`. On the other hand, the
solution of Eq.~2.20! diverges logarithmically unless the in
tegral

E
0

`

dr rVscat~r !A11Gdd~r !, ~5.5!

of the effective interaction is zero. However, the above in
gral cannot be zero because the interaction has demonst
a bound state atx→0. This means that the solutions of th
Euler equations start to build up a much stronger long-ran
behavior than in three dimensions. This is the reason wh
is very difficult to get close to the spinodal density since t
would require huge simulation volumes. To remain practic
we have worked here with a cut-off radius of 100 Å . One
must therefore rely on an extrapolation in order to determ
the critical concentration, which implies some numerical u
certainty.

For the purpose of this extrapolation, we have fitted
mc2

2 in the regime where the calculations could be done w
a reasonable effort to a polynomial of the order

mc2
2~x!5a~x2x0!1b~x2x0!2. ~5.6!

Our estimates for the critical concentration, as a function
density, are shown in Fig. 16. With all the caution th
should be exercised when relying on extrapolations, we
sert that the FHNC-EL approximation predicts a critical co
centration of 1–2 %, below which the atomic mixture is u
stable. A better CBF calculation predicts a somewhat stee
functional form ofmc2

2(x) and, hence, a higher critical con
centration. Because of this steeper behavior, it is numeric
even harder to get close to the spinodal point. The C
results have been derived from an extrapolation that rea

FIG. 15. The speed of second sound of the two-dimensio
mixture is shown, for the densitiesr50.045, 0.055, and 0.065 Å22,
as a function of concentrationx for both the~F!HNC-EL calculation
~1 symbols! and the CBF-corrected calculation~crosses!. Also
shown are the fits to these data that determine the estimates fo
lowest concentration that is stable against concentration fluctua
~dashed and solid lines, respectively!.
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much farther and has, hence, larger uncertainties. This is
clearly seen from Fig. 16 from the larger scatter of the
sults.

The horizontal lines in Fig. 14 show the chemical pote
tial of pure 3He gas at the indicated pressures. At finite pr
sures and low concentrations the mixture isglobally stable
against phase separation. When the concentration incre
the 3He chemical potential in the mixture exceeds the one
the pure3He gas. These critical concentrations vary betwe
zero and 2.5% depending on the pressure. Figure 16 sho
more complete set of results that determine the upper bo
for the globally stable mixture at zero temperature.

Compared with the stability of the mixture, its energeti
is of lesser interest because, in reality, the energetics o
atomic monolayer is dominated by its external holding p
tential. Figure 13 shows the energy per particle as a func
of density and concentration. We only show the variatio
results; the CBF corrections are, on the scale of the fig
too small to be distinguishable. This is not unexpected
cause the approximations underlying the Jastrow-Feen
wave function~specifically, the ‘‘mean-spherical’’ or ‘‘col-
lective’’ approximation discussed in Sec. II B! are particu-
larly good when it comes to calculating integrated quantit
like the energy, whereas they are particularly poor when
comes to calculating effects for which the existence o
Fermi surface is important.

Figure 13 also shows the energetics of the tw
dimensional4He liquid to demonstrate that both calculatio
are consistent; the unstable regime between the estim
spinodal concentration and the zero-concentration limit
been bridged by a smoothly interpolating dashed line.
also show the results of a recent similar calculation by U
et al.38 This calculation uses parametrized pair and trip
correlation functions that are the same for all combinatio
of 3He and4He atoms ‘‘ACA,’’ and a ‘‘scaling’’ procedure
for the elementary diagrams similar to that introduced in R
6 to reproduce the equation of state of two-dimensional4He.

al

the
ns

FIG. 16. The figure shows the extrapolated critical concentra
where the atomic mixture becomes unstable against infinites
concentration fluctuations. The squares and circles show the a
ally extrapolated values from the CBF and FHNC-EL calculatio
respectively; the long dashed and the solid line give a smooth
terpolation of these results. The short-dashed line marked with fi
dots gives the upper bound of the concentration below which
mixture is globally stable.
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It is not the purpose of this work to discuss theprosandcons
of various approximation schemes, but it seems to us tha
ACA is the main reason that the equation of state comes
stiffer in that work. Recall also that we needed to aband
the ACA in order to demonstrate that the3He impurity in
4He has, at finite pressure, a lower chemical potential tha
pure 3He. The much richer physics coming out of the op
mized~F!HNC-EL gives striking testimony for the power o
the method, considering, in particular, that the technical
fort going into the calculation is comparable.

VI. DYNAMICS OF SINGLE IMPURITIES
AND THE MIXTURE

A part of the theoretical description of the mixture is t
calculation of dynamic features; and we include a discuss
of these features for completeness. We note, however,
the discussion that follows applies toisolatedatoms andho-
mogeneousatomic mixtures; an experimental verification
these features depends therefore on whether one succee
dissolving the3He dimers or by stabilizing the metastab
finite-concentration regime. Scenarios for how such a s
tems could be formed will be discussed at the end of
paper.

A. Dynamic structure functions

It is seen from Eq.~2.28! that the calculation of an RPA
for the dynamic structure functionS(k,v) is an integral part
of the theory. The RPA is, of course, a fairly simple appro
mation and reproduces the dynamics of the mixture o
qualitatively, typically within a factor of 2 in the energ
scale. For a description that is both qualitatively more ac
rate and physically more complete, it is necessary to al
for time-dependentpair correlations39 du(ab)(r i ,r j ;t).

The dynamic structure functionS(k,v) defined in Eq.
~2.30! is calculated along with the calculation of the CB
corrections to the energy. Figures 17, 18 and 19 show th
dimensional plots of the componentsS(ab)(k,v), the results
are qualitatively similar to those obtained in three dime

FIG. 17. The dynamic structure functionS(44)(k,v) is shown
for a density of 0.050 Å22 and 10% concentration of3He atoms.
Note that theS(44)(k,v) axis points downward, the units in tha
direction are arbitrary.
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sions. The sound mode is discrete; to show its strength in
three channels, we have artificially broadened thed function
describing the dispersion relation by a Gaussian of 2 K width
and the strength of thed function.

In particular, we see in the~44! channel that the contribu
tion of the particle-hole continuum is significant. We belie
that the relative strength between the discrete sound m
and the particle-hole continuum is reasonably well rep
sented by the RPA, but a definite resolution of the probl
can, of course, be obtained by extending the CBF theory
collective excitations40 to the case of fermions and mixture

B. Hydrodynamic effective mass

Time-dependent pair correlations are also necessary to
scribe the motion of impurities in the liquid. The theory h
been worked out for this simple system in much more de
than for the dynamic structure functionS(k,v) of the finite-
concentration boson-fermion mixture since thedominant
physical effect is the hydrodynamic backflow. Fermi-liqu
effects are less important and can, hence, be dealt with
simpler approximation.

A natural generalization of the wave function~3.1! for a
moving impurity atom is to allow fortime-dependentcorre-
lations. Thekinematic and dynamic correlations are sepa
rated by writing the wave function in the form

FIG. 18. Same as Fig. 17 forS(34)(k,v).

FIG. 19. Same as Fig. 17 forS(33)(k,v).
4-14
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F~ t !5exp$2 iEN11
I t/\%CN11

I ~r0 ,r1 , . . . rN ;t !/

A^CN11
I ~ t !uCN11

I ~ t !&, ~6.1!

where CN11
I (r0 ,r1 , . . . rN ;t) contains the time-dependen

correlations,

CN11
I ~r0 ,r1 , . . . rN ;t !

5exp
1

2Fdu(3)~r0 ;t !1(
i 51

N

du(34)~r0 ,r i ;t !G
3CN11

I ~r0 ,r1 , . . . ,rN!. ~6.2!

The time-dependent components of the wave function
determined by an action principle, searching for a station
value of the action integral

L5E dt^F~ t !uHN11
I 1Uext~r0 ;t !2 i\

]

]t
uF~ t !&.

~6.3!

The details of the theory as well as the relationship of
resulting equations to Green’s functions theories have b
worked out in Ref. 41. The dispersion relation of the parti
is determined by the implicit equation

\v~k!5
\2k2

2m3
1S (3)

„k,v~k!… ~6.4!

with the self-energy

S (3)~k,v!5
\2

2m3
E d2p

~2p!2r4

k•pS(34)~p!bk,v
(34)~p!

@\v2t3~k1p!2e4~p!#
.

~6.5!

The functionbk,v
(34)(p) defined in Ref. 41 is related to th

ratio of the Fourier transform of the fluctuating two-partic
correlation function and the single-particle densi
dr3(k,v)

bk,v
(34)~p!dr3~k,v!

\v2t3~k1p!2e4~p!

5r3r4E d2r 0d2r 1dt exp@2 i ~k•r01p•~r02r1!2vt !#

3du(34)~r0 ,r1 ;t !. ~6.6!

In the limit k→0, it can be calculated from the integral equ
tion

bk,v0

(34) ~p!5\v0

k•p

k2

S(34)~p!

S(44)~p!

2E d2q

~2p!2r4

p•q

p2

bk,v0

(34) ~q!K~p,q!

t3~q!1e4~q!
~6.7!

with the kernel
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K~p,q!5t3~p!S(44)~q!$@S(34)~ up2qu!11#ũ(344)

3~p2q,2p,q!1S(34)~ up2qu!%

1e4~p!S(34)~ up2qu!. ~6.8!

The low-momentum limit of the dispersion relation defin
the hydrodynamiceffective mass

\v~k→0![\v05
\2k2

2mH*
, ~6.9!

which can be calculated from the self-energy,

m3

mH*
511 lim

k→01

2m3

\2k2 S (3)~k,v0!. ~6.10!

A particularly simple approximate form for the self-energy
the so-called ‘‘uniform-limit approximation’’10 where
bk,v0

(34) (p) has the form25

bk,v0

(34) ~p!5
\2

2m3
k•p

S(34)~p!

S(44)~p!
. ~6.11!

In this approximation, one obtains via equations~6.5! and
~6.10! the ‘‘unrenormalized effective mass’’ derived b
Owen.42

mH*

m3
D

un

5
1

12I
~6.12!

with

I 5
1

2E d2p

~2p!2r4

@S(34)~p!#2

S(44)~p!

t3~p!

t3~p!1e~p!
. ~6.13!

This simple form of the effective mass also results from
Green’s function theory as will be discussed below.

In a slightly different approximation25 one ignores the in-
tegral term in Eq.~6.7! and uses the effective mass appro
mation of Eq.~6.9!. That leads to the ‘‘renormalized effec
tive mass’’

mH*

m3
D

re

511I . ~6.14!

Results for the ‘‘unrenormalized’’ and ‘‘renormalized
effective masses together with the full solution of the integ
equation~6.7! are shown in Table I. From the structure
Eq. ~6.12! it is clear that one has a divergence when t
correlations described by the self-energy correction~6.13!
become too large. This divergence is removed in the ‘‘ren
malized’’ version and also in the full calculation which
always between the ‘‘unrenormalized’’ and the ‘‘renorma
ized’’ result.

C. Fermi liquid effective mass

The hydrodynamic effective mass is a consequence of
interaction of a single3He atom with the host liquid at low
energies. Further interesting effects arise from the interac
4-15
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between pairs of3He atoms and the specific dynamics im
posed on the3He component by the Pauli principle. Th
most obvious manifestations of interactions between the3He
atoms are magnetic properties43 and corrections to the hydro
dynamic mass. The appropriate framework to discuss th
effects is Landau’s quasiparticle theory.44

The quasiparticle interaction normally contains a sp
independent and a spin-dependent part,

f ks,k8s8
var

5 f k,k8
s

1 f k,k8
a s•s8, ~6.15!

where thes’s are Pauli spin matrices. Since both wave ve
tors k and k8 are on the Fermi surface, the quasipartic
interaction depends only on the angle betweenk andk8. In
two dimensions,f k,k8

s (a) is expanded in a Fourier series45

f k,k8
s (a)

5(
m

f m
s(a) cos~mf!, cosf5 k̂• k̂8. ~6.16!

The strength of the interaction relative to the kinetic ene
is measured by the dimensionless quantities

Fm
s (a)5N~0! f m

s (a)5
Vm*

p\2 f m
s (a), ~6.17!

whereN(0) is the density of states at the Fermi surface, a
m* is the effective mass. In first approximation, the qua
particle interaction can be identified with the matrix eleme
of the energy-dependent effective interaction

Ṽeff\~q,v!5Ṽp-h
(33)~q!1(

ab
Ṽp-h

(3a)~q!x (ab)~q,v!Ṽp-h
(3b)~q!

~6.18!

taken at zero energy,

f k,s,k8,s5^ks,k8s8uṼeff~v50!uks,k8s82k8s8,ks&.
~6.19!

Quantities of primary interest are the effective mass and
magnetic response of the system.

An alternative way to calculate the effective mass, wh
will momentarily be seen to be more easily implemented
the present framework, is to calculate the single-part
spectrum\v(k) and to obtain the effective mass from

TABLE I. The effective mass of the3He impurity in the low–
concentration limit. The second column shows the ‘‘unrenorm
ized’’ effective mass~6.12!, which is also obtained in theG0W-
approximation. The third column shows the ‘‘renormalized’’ effe
tive mass~6.14! and the last column the result with the full solutio
of the integral equation~6.7!.

r @Å 22# Unren. Ren. Full

0.040 1.756 1.430 1.683
0.045 1.910 1.476 1.754
0.050 2.123 1.529 1.831
0.055 2.424 1.588 1.910
0.060 2.883 1.653 1.994
0.065 3.694 1.729 2.086
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\2kF

m*
[

d

dk
\v~k!U

k5kF

. ~6.20!

The fermion generalization of the ‘‘uniform-limi
approximation’’ ~6.10! and ~6.11! for the self-energy
S (3)(k,v) is theG0W-approximation,46,47

S~k,v!5 i E d2qd~\v8!

~2p!3r3

G(0)~ uk2qu,v2v8!Ṽeff\~q,v8!,

~6.21!

whereṼeff\(q,v) has been defined in Eq.~6.18!, and

G(0)~k,v!5
12nk,s

\v2t3~k!1 ih
1

nk,s

\v2t3~k!2 ih
~6.22!

is the free single-particle Green’s function of the3He impu-
rity. Taking the single-impurity limitnk,s50 recovers the
‘‘unrenormalized’’ effective mass mentioned above.25

The single-particle spectrum\v(k) is changed, from its
single-impurity approximation~6.4! and ~6.11!, by two ef-
fects: One is the Fermi statistics, manifested by the occu
tion numbersnk,s in the single-particle Green’s function an
in the ~33! component of the density-density response fu
tion. The second effect is due to the presence of
concentration-fluctuation mode. This mode becomes,
shown above, soft as the spinodal concentration is
proached from above. Such a mode softening is accompa
by a singularity of the effective interaction, leading to a s
gular effective mass. Because of this, the two-dimensio
mixture is expected to display quite different effects than
three-dimensional analog: in three dimensions, the effec
mass is always dominated by the hydrodynamic backflow
other words by the coupling of the impurity motion to th
density fluctuations.In two dimensions, this coupling can b
overshadowed by the coupling toconcentration fluctuations
We can still define a ‘‘hydrodynamic mass’’ at finite conce
trations, which is obtained by keeping only the~44! compo-
nent of the density-density response function in Eq.~6.18!.
This hydrodynamic mass should provide a smooth ba
ground, whereas the coupling to concentration fluctuati
dominates as the concentration is lowered. However, in
mixture, the purely hydrodynamic effects caused
coupling-to-density fluctuations, and enhancement cause
the coupling-to-concentration fluctuations are hard to dis
tangle.

Equation~6.4! should be solved self-consistently; the e
fective mass at the Fermi momentumkF can then be calcu-
lated from Eq.~6.20!. We have simplified the numerical tas
by using an effective mass approximationt3* (k)[\2k2/
2m3* in the single-particle Green’s function~6.22!. This is
appropriate when the spectrum is real and reasonably s
tureless. Since significant quasiparticle damping sets in o
when the energy of the quasiparticle approaches that of
roton41 we consider this approximation sufficient for our pu
poses.

The results shown in Fig. 20 are consistent with the ab
discussion: When only density fluctuations are retained,

l-
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effective mass is moderate and extrapolates with reason
accuracy to the ‘‘unrenormalized’’ approximation in th
zero-concentration limit that was obtained in a complet
independent calculation. The concentration dependenc
visible, but moderate. However, the corrections due to
cluding concentration-fluctuations are, contrary to the thr
dimensional case,not small; they display the expected dive
gence as the system approaches the instability point.

In order to compare with the experiments of Ref. 48,
must take into account that these were carried out on fi
with finite thickness adsorbed to a substrate. Only exp
ments on very thin films are suitable for comparison with o
results: As the4He coverage is increased, the3He impurity
atoms will start populating Andree´v states in the surface, an
the assumption of a two-dimensional mixture becomes
valid. This behavior can be seen experimentally in the f
that the effective mass first increases, and then decre
with increasing coverage. The transition from a tw
dimensional mixture to a system where the3He atoms popu-
late Andree´v states in the4He surface occurs49 at an areal
density of about 0.055 Å22, this density is quite resilien
under changes of the substrate as long as its attaction is
sonably strong. Hence only data below that liquid covera
are suitable for comparison.

The experiments of Ref. 48 have been done at a cons
3He areal densityr350.019 Å22, and were given in terms
of the thicknessD(r)5r/ r̄exp of the 4He film. (r̄exp
50.021 85 Å23 is the experimental equilibrium density o
4He.! The concentration is obtained from this by

x5
r3

r
5

r3

r31r4
. ~6.23!

FIG. 20. The figure shows the effective mass ratio of the3He
atom, for the three densities 0.045 Å22 ~1 symbols!, 0.050 Å22

~crosses!, and 0.055 Å22 ~circles!, as a function of concentrationx.
The dashed lines are results obtained by keeping the~44!–channel
of the response function only, whereas the solid lines display
results of the calculation keeping both density- and concentra
fluctuations. The square boxes at the left margin show the z
concentration limit, Column 2. of Table I. The crosses with er
bars are results extracted from the experimental data of Ref. 4
described in the text.
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The resulting concentrations and total densities ar
considering the fact that the two-dimensional model becom
physically questionable abover50.055 Å22—beyond the
density where we have confidence in the two-dimensio
model; hence much caution is needed for their interpretat

The results of our calculations and a comparison w
some of the data from Ref. 48 are shown in Fig. 20.
indicated above, the total densities for the experimental d
range between 0.1 Å22 ~the lowest concentration of 16.2%!
and 0.07 Å22 ~the highest concentration of 27.8%. On
could shift the total densities somewhat by allowing for
inert solid layer, but that would increase the3He concentra-
tion to values of 50% and more.

D. Magnetic response

The magnetic response is determined by the change o
quasiparticle energy when an external magnetic fieldH is
applied. The spin susceptibilityxs is related to the Landau
parameterF0

a by

xs,0

xs
5

m

m* S 11
m*

p\2 V f 0
aD5

m

m* ~11F0
a!. ~6.24!

Since the effective interaction is provided by the groun
state calculation, we can directly calculate the Land
parameter from Eq.~6.18!

V f 0
a52

1

2r3
E du

2p
Ṽeff~ ukF2k8Fu,0!. ~6.25!

As seen from Eq.~6.17!, two effects contribute to the sus
ceptibility. One is the density of states of the interacti
Fermi gas at the Fermi surface, manifested in the effec
massm* discussed in the previous section. The second is
quasiparticle interaction in the spin channel. To disentan
these two effects, we define an additional set of Landau
rameters by replacing the effective mass by the bare mas
Eq. ~6.17!, i.e., F̄m

s(a)5(m/m* )Fm
s(a) , where theF̄0

(a) mea-
sures the strength of the spin-channel interaction~6.25!
alone. The result is shown, as a function of concentration
Fig. 21. At the spinodal point, theF̄m

s(a) diverges just as the
effective mass ratio; however, as the concentration is lo
ered, the rapid increase of the effective massm* is the domi-
nant effect.

Finally, we show in Fig. 22 the total magnetic suscep
bility of the two-dimensional mixture, as well as the susce
tibility coming from the density of states alone, as a functi
of density and concentration. Clearly, the corrections fr
the Fermi liquid interaction are strong, and in fact change
qualitative behavior of the magnetic susceptibility as a fu
tion of concentration. The same comments apply that w
made concerning the effective mass above. Some cau
should be applied when comparing these results w
experiments50 since the two-dimensional model does not
low for a ~partial! geometric separation between3He and
4He through the population of Andree´v states. To verify our
results experimentally would take a different environment
possibility for this will be discussed momentarily.
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VII. SUMMARY

We have, in this paper, examined the structure
3He-4He mixtures in two dimensions. This field has been
very active one over the past two decades, mostly in conn
tion with quantum-liquid mixture films.

The assumption of a purely two-dimensional geome
made in this paper is certainly an idealization. This appro
mation may be justifiable in strongly bound mixture film
for example on the first4He liquid layer on graphite51 or on
the hydrogen plated graphite.52 In such systems, and assum
ing that the two-dimensional approximation is valid, a clo
analysis of the basic physics and model-independent sim

FIG. 21. The figure shows the Landau parameterF0
a as a func-

tion of concentration at three different areal densities~crosses, and

lines as marked in the figure!. Also shown are the quantitiesF̄0
a

obtained by setting the effective mass equal to the bare mass.

FIG. 22. The figure shows the magnetic susceptibility of
3He component for the three densities 0.045 Å22, 0.050 Å22, and
0.055 Å22 as a function of concentrationx ~solid lines!. Also
shown are the susceptibilities obtained from the density of st
alone, ignoring the spin-channel interaction altogether~dashed
lines!.
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tion data hints towards the existence of a very interest
phase diagram: At low3He concentrations, typically below
2%, we have shown that~a! a mixture is energetically pref
erable over a phase-separated system, and~b! the mixture
does not exist in an atomic form, but rather in the form
3He dimers within in the 4He background~‘‘Bashkin
states.’’! The existence of these states is caused by the lo
wavelength properties of the phonon-mediated interaction
for example, discussed by Bardeenet al.24 It relies, in par-
ticular, on the specific many-body technique applied only
the sense that the technique is consistent enough to re
the statements of Bardeenet al. Also, the energetic advan
tage of the mixture over the phase-separated system is b
on the analysis of simulation data for3He and 4He in two
dimensions as well as a very conservative estimate on
inaccuracies introduced by the ‘‘average-correlation appro
mation.’’

We have verified that our approximate~F!HNC-EL calcu-
lations are internally consistent and agree with simulat
data whenever such comparisons were possible. Base
these calculations, we have shown that an atomic mixt
may be stable against infinitesimal concentration fluctuati
above a concentration of 2–3 %. This concentration
proaches, however, the value where global energy comp
sons would predict that the mixture phase separates.
whole rich scenario discussed here comes out as a co
quence of the structure of our theory, in particular the op
mization of the correlations that prevent the theory from p
dicting physically unstable situations. From the point
theory, this is yet another strong argument for optimizat
as compared with the use of parametrized correlation fu
tions. None of the above physics was predicted in the w
by Um et al. who have pursued, along with some technic
simplifications, this path.

As noted above, the assumption of a rigorously tw
dimensional geometry is an idealization, and it is time
discuss the most likely consequences of this in respec
both the4He background and the3He component. We have
studied in Ref. 53 among others atomic4He monolayers on
substrate potentials of varying strength, allowing for a f
symmetry breaking in the direction perpendicular to the s
strate. Expectedly, we found that the energy of the system
lowered when the particles have more freedom to move
the direction perpendicular to the surface. Such an ene
lowering has been found even in the first liquid layer abo
the two solid layers on a rather strongly attractive graph
substrate where one should expect that the two-dimensi
approximation is quite valid.

In an independent study of the binding of isolated pairs
helium atoms54 we have, among others, clarified the reas
for this. A pair of helium atoms is, independent of the sp
cies, most strongly bound if the width of the holding pote
tial is comparable to the width of the pair potential. Th
increase in binding energy can be quite dramatic, rang
from a factor of 2 for 4He dimers to over two orders o
magnitude for3He dimers. Thus, we expect that the dime
ization will be enhanced in a more realistic situation. On t
other hand, we have shown above that rigorously tw
dimensional mixtures are, at the high concentrations stud

es
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in Ref. 48, unstable against phase separation. It is an o
and quite interesting problem, to see if and how the fin
width of the film geometry, and the presence of an attrac
substrate, can stabilize the atomic mixture.

A second difference between atomic monolayers and
two-dimensional approximation is the existence of surfa
excitations. In our studies of excitations of adsorbed films
found that, for low-coverage films with a surface coverage
less than 0.055 Å22, the lowest excitation is basically a two
dimensional sound wave with a speed that is comparabl
the one of a two-dimensional liquid. However, as the cov
age increases, beyond 0.055 Å22, the speed of this excitation
drops rapidly, and the nature of the excitation turns from
two-dimensional phonon into a ripplon. This cross-over co
erage of 0.055 Å22 is quite resilient to the nature of th
substrate potential. Since this excitation is much softer t
the phonon, and since the main correction to the bare in
action between3He impurities is mediated by the excitation
of the background, we should expect a further enhancem
of the attraction between the3He impurities.55,56 Note, in
this connection, that the speed of sound appears in the
nominator of the longest–ranged part of the induced inte
tion ~4.12!.

In conclusion, we have highlighted here a scenario of
structure of quantum-liquid mixture films that appears mu
richer than anticipated. We believe that a very careful ana
ev

T.

.
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sis of both theoretical predictions and experimental data
called for to possibly detect the existence of3He dimers, to
see, in the more realistic situation of atomic monolayers
consequences of ripplon coupling, and finally to study
nature of phase-separated mixture films where the3He atoms
reside not within, but on top, of a helium film. In conclusio
we also mention a possibility to generate quasi-tw
dimensional 3He-4He mixtures that have no free surfac
Hectorite is a silicate that consists of regular quasi-tw
dimensional layers of about 9.6-Å thickness and an op
spacing of 17–20 Å in between. These gaps can be fi
with liquid 4He; the first experiments on this confined qua
tum liquid were carried out by Wada and co-workers.57,58

Preliminary calculations59 indicate that3He impurities, when
brought into a hectorite gap filled with4He, are quite well
localized in the middle of a gap and form indeed a practica
two-dimensional Fermi liquid with no coupling to surfac
states.
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