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Generalization of the Jordan-Wigner transformation in three dimensions and its application
to the Heisenberg bilayer antiferromagnet
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We extend the definition of the Jordan-Wigner transformation to three dimensions using the generalization of
ideas that were introduced in the two-dimensional case by one of the present authors. Under this transforma-
tion, the three-dimensionaY spin Hamiltonian is mapped onto a system of spin-less fermions coupled to a
gauge field with only two nonzero components. This gauge field is calculated explicitly. Then we apply this
transformation to the investigation of the Heisenberg bilayer antiferromagnet. The interesting quantum disor-
dered state realized in this material for strong interlayer couplings is studied in detail. We define the physical
parameter that governs this state, and calculate analytically several quantities, such as the ground-state energy
and the energy gap as a function of the interlayer coupling. Very good agreement with existing results and with
the infinite interlayer coupling limit is recovered.
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. INTRODUCTION JW fermions, the bond-mean-field theory apprddctt is
used in order to decouple the interacting terms. In the past,
Jordan and Wignéintroduced a transformation that maps several bosonic-type approactfes® have been used to

local spin-1/2 operatorsS™ and S, to Fermi operators in study this system. At zero temperature, the Heisenberg bi-
one dimension. For example, this transformation leads to thiayer antiferromagnet presents a disordered gaped state for
mapping of the one-dimensionalY Hamiltonian onto a strong interlayer coupling, known as the disordered quantum
Hamiltonian of noninteracting spin-less fermions. Trying tostate, but an antiferromagnetically ordered state for weak
generalize this result in two dimensions proved to be diffi-coupling. A second order quantum phase transition takes
cult. Several authors have given implicit ways of definingPlace between these two states at a critical value of the in-
such a generalization in two dimensiditsBut, a natural terlayer coupling. The bilayer quantum antiferromagnet may
extension of the Jordan-Wigné&iWw) transformation was in- be of some relevance to some of the high temperature super-
troduced by one of the present autfor® study the conductors in their low-doping normal stafet’ One of our
interchain-coupling effect on the one-dimensional spin-1/22ims here is to provide a full description of the disordered
Heisenberg antiferromagnets. The generalization of the Jyguantum state at zero temperature in terms of one or several
transformation has been attempted even in three dimensiofdlysical parameters. Not only we were able to accomplish
by Huerta and Zanefiiwho introduced an implicit transfor- that, but the mean-field equations of the present approach
mation, by Kochmaski® whose transformation, however, can b_e solved_analytlc_ally in this state.
does not preserve some of the spin-commutation relations, This paper is organized as follows. In Sec. Il, the gener-

and by Shaoferfawho erred in two claims as will be dis- 212€d transformation is introduced. In Sec. lll, the phase
cusse?j/ in Sec Iﬁ change per plaquette is calculated in the context ofxie

Hamiltonian. The application of our findings to the Heisen-

tum field th tatistical hani f ¢ dcl Bérg bilayer antiferromagnet is made in Sec. IV. Summary
um ne eory, statistical mechanics of quantum and Clasg 4" ¢ clusions are drawn in the last section.

sical systems, and in the physics of phase transitions an
critical effects. A pretty application of the one-dimensional
transformation in condensed matter physics is the solution td!- THE THREE-DIMENSIONAL JW TRANSFORMATION

the two-dimensional Ising model by Schultz, Mattis and Generalizing the ideas that led to the introduction of the

Lieb. Th's transformatmn IS very useful_ for s_tudymg quan- 4 yo-dimensional JW transformatidnallowed us to define
tum spin systems. Our aim in this work is to find a generah-the transformation in three dimensions by

zation of the JW transformation in three dimensions where
the phase of the transformation is given explicitly in terms of
fermion number operators, and to shed light on one particu-
lar unclear point of such a generalization, that is the flux-per-
plaquette as one fermion moves around this plaquette. SiZ,j,k:CiT,j,kCi,j,k_ 1/2, 1)
Then we apply the three-dimensional JW transformation

to the Heisenberg bilayer quantum antiferromagnet in order kel o o i—1
to support the validity of our findings. Once the Heisenberg ,  _

Hamiltonian on the bilayer is written in terms of the spin-less Prik Zo a/ZO gzo n“’ﬁ’€+c;o B

1= Cig @ T,

o0 J_l
n + n; .
= a,B,k ﬁzo i,B,k
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Here, ni,j,kch’j’kci,j,k is the number operator of the spin- scribes the motion of spin-less fermions coupled to a gauge
less fermionspf’j’k andc; ; , being the creation and annihi- field. A very important cancellation takes place in the second

lation operators of a spin-less fermion at sitgj k), respec-  term of Eq.(5) Pamely*civﬁlykcﬁj,kel Tm"”k:CiT,J,kCi,Hlyk be-
tively. The phase may be written in a simpler form by causee' ™ikci, =—cj; . For this reason, there is no
borrowing the notations of Shaofehgho attempted to gen- Phase attached to the hopping of a spin-less fermion along
eralize the JW transformation in three dimensions, but erreghey axis. Let the site-dependent gauge field components be
in two points(please see below Ai(i,],k)=0di¢; ; along the x axis, A;(i,],k)=d;¢;
along they axis, andA(i,j,k) =dx¢; j « along thez axis.
This leads to

¢(x>=§o w(x,2)n(2), (2)

) j—l
where A= ﬂzo ”i,ﬁ,k+b§0 (Niv1k=Ni g |s

W(X,2)=0(X3—23)(1— 6

X3,Z3

)+®(X1_Zl)5x3,z3 A =0 (6)

]
X (1_ 5x1,zl) + G)(XZ_ 22) 5x1,215x3 123

i-1 o -1
X (1= 6%, 2,), Q) A=m Zo BZO (na,ﬁ,k+1_na,ﬁ,k)+ﬁzo (Ni,gk+1—Ni gk
a result that is different from the one of Shaoféigwhich o o
the (1— 5X2Y22)-fact0r in the last term is missing. This con- n 2 n }
stitutes the first of the two errors made by Shaofeng. This o Fo P

factor is essential for preserving spin commutation relations. . o , .
The conditione! ™2 = — gl ™(@X) that is necessary to pre- The effective magnetic field is obtained through the discrete

serve nonlocal spin commutation relations is satisfied by EcCUr! Of A, namelyB(i, j,k) =V xA(i, k) [the vectorsA and
(3). We also explicitly checked that all possible combinations® depend on the positiori (,k)]. The site-dependent com-
of spin commutation relations are preserved. To obtain th@0nents of8 are therefore given by

phase(2) we choose a plane going through the site where we

want to define the transformation. Here the plane (0,0,1) is Bi= (N j it 17 Nij

chosen. Then we sum over those sites on this plane as in the

two-dimensional transformatichFinally we sum over all B;=0, @)
sites that are behind this planee=(xq,X5,X3) and z

=(z,,2,,23) stand for sites on a cubic lattice for simplicity. Br=m(N; j k= Nis1k)-

Hence the effective magnetic field to which the spin-less
fermions couple presents two nonzero components only.
Consider theXY model written for a three-dimensional Note that the indices, j, andkin the components oA and
array of coupled layers: B refer to the directions along axes y, andz This mag-
netic field satisfie¥y - B=d;B;+ d;B;+ dxBx=0, a result that
J . J o excludes the existence of monopoles in consistency with
Hxy=3 HZK SiikSkt 3 i,jE,k S xS+ 1k Maxwell equations, and withB=VxA; V-(VxA)=0.
Note that the vector potenti&l and the magnetic fiel® are
J. . operators in the present problem, not simple numbers as in
Tt ijzk SikSijkeat (He), @ the classical electromagnetic theory.

- As for the phase change that occurs when a spin-less fer-
whereJ andJ, are, respectively, the intralayer and interlayer mion completes a motion around a plaquette, we consider the
coupling constants, an@H.c) stands for the Hermitian con- elementary plaquettes in they, xz, andyz planes. Let a
jugate of all terms in Eq(4). Under theJW transformation  spin-less fermion move around a plaquette in the context of
(1), Hamiltonian(4) is mapped onto a Hamiltonian of spin- the XY model: when the fermion moves in tieandz axes,

Ill. THE PHASE PER PLAQUETTE

less fermions: phase differences occur, whereas when it moves along the

3 3 axis the phase difference is zero. The flux per plaquette in the

g b P Xy plane turns out to be the same as in two dimensions, that

Hxy=5 2 CljCiv 1) 1Pk > Ci jrap€ ke y yPp

2 I,J,k 2 |,j,k |S

J : = o
+ 7J- E CiTj «Cilj k+1elak¢iv1’k+(H.C). (5) q)xy 71'(nl,J,k nl+1,],k)- €))
kT

For a spin-less fermion starting its motion at site
Here 9, i j «= di+1j k= Pij.x and i j k= Pij k1~ Dijk (i,],k), njjx=1. Then for this fermion to go to sitei (
designate discrete derivatives along ihendz axes, respec- +1,j,k), this later site has to be empty due to Pauli exclu-
tively. According to Fradkirf, this effective Hamiltonian de- sion principle; thusn;,1; x=0. In this approximation one

054410-2



GENERALIZATION OF THE JORDAN-WIGNRR . . . PHYSICAL REVIEW B 64 054410

finds that the phase is, which is consistent with the mean- ; 1 ; 1
field result® Finally, for a plaquette in thgz plane the result H=Hyy+ JHZK CijkCiik™ 5| Cit1jhCit1jk™ 3
is i
1 1
T 3 ot ot
Dy= (N j k17 Nij k) C) +Ji§'k (Ci’j’kci’j'k 2>(Ci'j+l'kc"”1‘k 2)

Similarly, the phase per plaguette can be set to be approxi- 1 1

. +J E C.T. CiiL— — C.T. C: : — = (12)
mately 7r. As for the phase around the plaquette in ke L\ TR T S T Mk 2R k1T
plane, it is found to be identically zero: w

®,,=0. (10) when transformatioil) is used. Hamiltoniari12) is simpli-
fied using the approximation where the average flux per el-

It is worth noting here that the results of the fluxes perementary plaquette is on thexy andyz planes[as dis-
plaguette obtained in Eq$8), (9), and (10), are consistent cussed below Eq¢8) and(9)]. The flux phase is identically
with the expressions of magnetic field components in Eqgszero on elementary plaquettes in tkeplane. We stress that
(7) (the unit area being?=1), namely thatd,,= [B-da  this approximation is the same as what is obtained in mean-
=Bya’=By... . The results for the above fluxes-per- field theory calculatiod.We choose the following configu-
plaquette imply that as a spinless fermion moves around gation: the phases are alternated 7—0—7—0. .. along
given plaquette, it will couple to a gauge field if the plaquettethe adjacent bonds on tlyeaxis, and zero on all bonds on the
belongs to planexy or yz, but no coupling to a gauge field yemaining axes. Note that the alternated phases could be put
occurs in the remaining planez. rather on thex axis without changing the physical results

Shaofeng mistakenly reported that the phase chang€ecause of gauge invariance. However, in the case of the

around any elementary plaquette is zero. The reason for ol e system, the alternated phases cannot be put on the
taining this incorrect result is that this author did not takeaxis because there is only one bond along that axis

Into aCf;gyht Tthe f?Ct thats 1, S/j « transforms into Further simplification is done using the bipartite character
Ci.j+1k€ " IC § 1 =Cij kCi,j+ 1k [Which transforms the sec- e 1 antiferromagnetic correlations. Two types of fermions
ond term in Eq/(5) to a free hopping of the spin-less fermi- A . on sublatticeA and c® .., on sublatticeB, where
ons along they axis| becausee'™ixc/; =—cf; . This 'k ’

fitutes th q de by Shaof i att i i’,j',k") is one of the adjacent sites of,{,k), are intro-
constitutes the second error made by shaoteng in atémpling -4 Then we decouple the interacting quartic terms by
to generalize the JW transformation.

introducing the alternated magnetization parameter
=2(S0=2(cl \Cij—1=m(=1)"1*k and the bond
IV. APPLICATION TO THE HEISENBERG BILAYER parameterQ=(c; ; \l11; ) =(Ci4Cl 1+ 1,0 Within the lay-

ANTIFERROMAGNET .
ers andP=<ci,j,kciT’j’k+1) perpendicular to the layers. Pa-

A. Description of the approach rameterd) andP are assigned the same phase distribution as

In the second part of this paper, we apply the above tran2P0Ve, namely . .m—0—. .. along thex axis and zero on
b pap PP the rest of the bonds alongandz axes.Q andP are taken to

formation to the investigation of the Heisenberg bilayer an- -~ : L
tiferromagnet that has received a lot of attention in the pa e distinct parameters as the coupllpg constants within the
few years>-22 The use of the JW transformation and the layers and between the layers are different, and because of
bond-mean-field theofy does not need a constraint on the tN€ geometry of the bilayer. Bot@ andP represent the same
physical quantity in two different directions. BUR, plays a

occupation number as required in the Schwinger bosof ial Tole that in th fth
approach2181® modified spin-wave approach¥sor the [ar more crucia role tha@ in the occurrence of the quantum
¢ transition, and the stabilization of the disordered quantum

bond-operator mean-field thed{?> However, the presen , ton
fermionic approach suffers from the difficulty related to state as will be shown later in this paper. We use the follow-

treating the effect of the phase terms. Here, these are treaté}f} @Pproximation:

in mean-field theory. We would like to draw the attention to

the bond-mean field approdtchwhich has so far given very , , , ,

satisfactory results in the case of the Heisenberg lafdér. 00" =(0)0"+(0")0—(ON0"), 13

The Heisenberg model on a bilayer reads as follows:

which neglects fluctuations around the mean-field poix
and (O') because we assume thaD{(0))(O'—{0"))
~0, a result that leads to E¢l3). © and O’ are any two
operators. Using approximatiad3) with O=§ ; , and O’
z @z =Si1jkr Sij+1ks OF Sjk+1 on one hand, andO
+JLi’iE’k T - ICi,j,k(J:iTH,j,ka] Ci,j,kCiT,jJrl,k :] or Ci,j,kCiT,j,k+lv and0'=0"
on the other hand gives the following approximate form
which transforms to for H:

H= Hxv+Jile Slz,j,kSiZ+1,j,k+JijEk S xS+ 1k
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m m
H= Jijzk > (e}; 27,221 2j, 2k — f3 192k 20+ 1,272 Jilzk > (el 12+ 1,482+ 1,2+ 1,4 f5 21l 2i2+1,2)

+3Y M el — ] i +32, M el — ] i
4 E(ezi+l,2j+1,2ke2i+1,2j+1,2k 2i+1.2,28 21 +1,2,2) ~ E(ezi,zj,ZkeZi,Zj,Zk 2i 2+ 1,2 20 2+ 1,%)

+3,> Tel —f] f +3,> el —f] f
N ki(ezi,zj,ZkeZi,Zjﬂ( 2i 2,2+ 121 2, 2%+ 1) L kE(ezi+l,2j,2k+1eZi+l,2j,2k+l 2i+1,2),2% 2i+1,2,2)

i e

1 T T J1 T t
Tt ..Ek (€i 2 akf2i+ 1.9, F2i 41,2 €20+ 2,9, 2) TH.C.H > ,,Ek (€2i 2 akF2i 2+ 1,2+ F2i 2+ 1,821 25+ 2,20 TH.C.
i i

Ji1 23+,
+t ijzk (€5 2,221 2 2k 17 3 2 2k 1821 2,2+ 2) FH.CAN 2 m*+2JQ*+J, P?|, (14)
|
whereJ; andJ, ; are defined by ...m—0—7—0....This term is obtained by Fourier trans-
forming the first term inJ; of Eq. (14). Along the two re-
J1=J(1+2Q), maining axes, the hopping is of tight-binding type with am-
plitude y(ky ,k,).
J,1=J,(1+2P), (15) e
andei,j,k=CiA,j,k (respectivelyfi,j,k=cﬁj’k) is the fermion op- B. Mean-field equations and the energy spectrum
erator on sublatticé (respectivelyB). Now, Q andP stand Hamiltonian(16) is transformed into the diagonal form

for their own moduli. HereN=N,NyN, is the total number

of sites;N,=N, being the number of sites along tkandy B N T

axes, andN, the number of sites along theaxis. Hamil- H_Z‘ E(K)[ayax— BBkl 17
tonian (14) is written for a unit cell which is a cube of side

a=1 where sites are labeled byi(2j,2k), (2i+1,2},2k) after defining the quasiparticle operaterg and B, by
along thex axis, (4,2j,2k), (2i,2j+1,2) along they axis,

and (4,2],2k), (2i,2j,2k+1) along thez axis. In Fourier a=ugetufy,

space, we defineg, and f, as the Fourier transforms

of operators c¢c* and c® respectively: ciA'j,k Bi=vie— Uy fy, (18

A . B
=Syexe K YN2 and cfj =Sy e MR N2 are u,=e "2 cosg, and v, =€ "?sing,, with cosf
The summationz,_ runs over half the original Brillouin —{[M+E(K)]/2E(k)}¥2  and tanyy = J; sink,/y(k, k).
zone because the direct space unit cell volume has doublqg(k) andT' (k) are given by
due to antiferromagnetic sublattices. Accordingly, the Hamil-

tonian takes the simpler form: E(k)=[M2+|T(k)|2]¥2,
H=2> M(ele—flfi)+ > [iJ1sink,+y(ky ky)lel fi I'(k) = y(ky,k,) +iJ1 sink,. (19
k< k<

The ground state corresponds to the situation where the

23+, ) ) lower band described bg is full and the upper band de-
FHCAN 5 M +2JQ7HJ, P, (16) scribed by« is empty. The chemical potential for the JW
fermions is zero. Therefore the ground-state energy is given
where by
’y(ky,kz):JJ_COSky‘FJLlCOSkZ, (2J+Jl)m2 1 E(k)
Egs=————— +2JQ?+J, P?2— — > ——,
M=(2J+J,)m. 4 N% 2

20
The first two terms in Eq(16) are results of the decoupling . .( ).
procedure using the local parameter whereas the second Where k=2 kK, NOW holds on the original Brillouin
term and its Hermitian conjugate describe the hopping of JWone because the factor 1/2 in the summation term takes care
fermions between adjacent sites due to ¥ term of Eq.  of the fact that we had to sum over half the Brillouin zone.
(12 and to the decoupling procedure using the nonlocaBecause we use periodic boundary conditidgs; n;27/N;
bond parameter§ and P. Along the x axis, the hopping with i=x,y,z andn;=0,1,... N;—1. For the bilayer N,
amplitude is —i sink, because of the phase configuration =2) periodic boundary conditions coudt twice. Thus, we
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FIG. 1. The parameters, Q andP are plotted as a function of ~ FIG. 2. The magnetizatiom/2 is displayed as a function df
J, . Full lines are obtained by allowing to be nonzero, whereas in the case where the bond parame®rs0 andP=0 (full line),
dashed lines are for the solution=0. Magnetization vanishes at P=0 andQ+0 (dashed ling andQ=0 andP+0 (dashed-dotted
J, .=4.2]. line).

have to multiply by 2 the value of, in all final results or ~ Fig. 2) does not vanish. This implies that the quantum tran-
divide J, by 2 in all our equations. sition does not take place. When decoupling is done using
The parametersm, Q, and P are calculated self- PparametersnandQ only, m does not vanish eithedashed

consistently through the equations line in Fig. 2. Finally, when decoupling is performed using
parametersn and P only, magnetization vanishes signaling

1 the occurrence of the quantum transitialashed-dotted line
m=g ; m(2J+J,)/E(K), in Fig. 2. Thus, this transition is switched on by the bond
parametelP. Paramete@ plays a(minor) role in the reduc-
1 tion of magnetizationm/2 for values ofJ, <J .
Q=g ; {31 sinf ky+ y(ky ,k,)cosk }AE(K), (21)

D. Analytical solution of the mean-field equations
in the strong limit, J, /3, .>1

1
P=N ; ¥(ky ,kz)cosk,/2E(k), We define the strong coupling regime By/J, .>1. The

mean-field equation®1) can be solved approximately in the
obtained by minimizing the ground-state energy with respecglisordered state. In the particular case of the ligit/J
tom, Q andP: JE/dQ=9E/IP=JE/dm=0. Next we ana- ~, Which is realized by setting=0, an exact solution is
lyze these equations. possible:

|cosk,| 1

C. Physical parametersP, Q, and m m=0, Q=0, p:% 2 > > (22)
k,=0,7

The set of self-consistent equatio(&l) consist of inte-
gral equations that cannot be solved analytically in generabecause E(k)=J, ;|cosk,]=J,;; k,=0, 7. The result P
It is only in the strong coupling regime that we are able to=1/2 for J=0 is consistent with the numerical result re-
solve them analytically as we do in the next subsection. Foported in Fig. 1, namely that whed, /J—o, P—1/2.
now, we seek a solution numerically using a numerical iteraNext, in the limitJ, >J, ., the energy spectrum can be ex-
tive method. The results of such a calculation are depicted ipanded as follows:
Fig. 1 for Q, P, andm as functions of the interlayer cou-
pling J, . WhenJ, increasespP increases and approaches
0.5, wherea%) decreases to 0. The magnetizatio/?2 van-
ishes at], =J, .=4.2], thus marking the onset of a second Ji
order transition from the antiferromagnetic state for ~Jpa| 1+ E
<J, . to the quantum disordered state fbr>J, .. In the
antiferromagnetic state, the values assume®@mBndP are  and approximating the integrals in E@1) by their values
different from those that would be assumed if the state wer@ear band minima leads to
not ordered. Interestingly, the presence@fnd P reduces
the value ofm for if these bond parameters were not consid- 1 J1
ered, the magnetization would be greater than what it is now. 2’ Q~ 83,
To understand this point and the effects inducing the quan-
tum transition, we study the following situations where only which gives
some of the mean-field parameters are considered at once.

When we decouple the interaction terms of Hamiltonian p }
(12) using parametem alone, the magnetizatiofull line in

E(K)=[JF sir? ke+ y2(ky k,) ]2

2

137 .
cosk, cosk,+ 5 JTsm2 kel (23
11

m=0, (24)

m=0 (J,>J), (25
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7 ‘ ‘ ‘ result that indicates that the spin singlets are very robust
because they are able to keep their stren@tk 1/2) for all
6 o couplings betweed, /J=4.2 up to infinity.
25 2. Ground state and ground-state energy
=3 kx=0'ky=7t/2 . .. . o . . . .
= The infiniteJ, limit is worth considering here in order to
ol understand the quantum disorder state. In this casev
k=0, k=n =1/\/2, and the quasiparticle operators reduce to
o -2 0 2 4 1
k, ay=—=(C1+Cy),
V2
FIG. 3. The energy spectrub(k) is displayed along thg axis
for some values ok, and fork,=0, . The interlayer coupling is 1
J, =5J. The energy gap is realized dt,(k, ,k,)=(ko,7,0) in the B=-—=(c1—Cy), (27
bottom band K,=0, 7); Es~4J consistently with Eq(30): Eg4 \/E
~5J-J=4J. wherec, andc, are JW annihilation operators on respec-

tively adjacent sites where each one belongs to one layer.

once Eq.(15) is used. Equatioi23) indicates that for large The ground state consists of creating a quasi-parficle

J, 13, E(k) shows little dispersion along theaxis as the

coefficient of the leading term that dependsigris at most 1 1

(3/3,)2. In Fig. 3,E(k) is displayed using Eq19) along the Bi0,0=—=(cl-c})|0,0=—=(]1,0-10,2))
x axis for several values &, andk,. Note the little disper- V2 V2

sion ink,. The set of solution$25), which agree very well
with the numerical results reported in Fig. 1, will be used in
the discussion of the disordered quantum state in the next
section.

1
IE(lT,U—H,T)), (28)

as occupation by a spinless fermion means the presence of

spin up, and its absence means the presence of spin down, or

vice versa. Clearly, this is the spin singlet that constitutes the
The second order transition takes place due to the fact th@round state of a pair of spins interacting antiferromagneti-

the symmetries of the ground states for weak and strongally.

coupling regimes are different. On one hand, for infinite in-  As for the ground-state energy, one finds

terlayer couplingd, /J~o, the system consists ®/2 de-

coupled singlets where rotation invariance is preserved. On Ees=J.(S,1'S,j2

the other hand, fod, =0, both layers of spins are ordered

E. The disordered quantum state;m=0

. : : NN . 1 _ _
antiferromagnetically a_m':O, and rotathnal invariance is =J, (Sf’jylsifjly+§((afj’1$’j’2)+<S|’j’1$+'j12>)
broken. Therefore a$, increases, a transition from the mag-
netically ordered state to the disordered state occurs, Fig. 1. ~—3J,/4,

The disordered state is a gaped state in which the energy . e
spectrum is given by Eq23), andu,=v,=e /2 because Pecause (S{;;S';)=(S ;1S )=(S;:Sj» due to
M=(2J+J,)m=0. The energy gap ak=(ky,7,0) or rotational invariance, anc(Sfjvlsl"jlz):—llz. Note that
0,0,m), Kq being=0 or , is given by —3J, /4 is the energy of the spin-singlet st . The fact
(ko,0,m), ko b 0 b 3J,/4is th f th I a’s). The f
that the limitJ, /J~< is well described by the present ap-
Eq=1J.1—32[=[3.(1+2P)~J(1+2Q)|, (26) proach is very promising. It seems to indicate that coupled
if J,,>J,. The later condition is deduced by setting singlets ( finite) will be described at least as well because
¥(k, k) =0 which is essential for a vanishing gap. Numeri- mean-field theory is supposed to work better for a large num-
cally we find that the value above which an energy gap openB€r Of degrees of freedom. o _
is J, =2x0.78)=1.56, see Sec. IVE3 below. However, In the strong limit, we use the same approximation as in

this does not mean that this is the critical value for the orderS€C- IV D. The ground-state ener@ys is found to be

disorder second-order quantum transition. 2

J1
1. Physical parameter P Jfl

The mean-field parameter that suitably governs this stat@hereQ andP are given by Eq(24). Equation(29) yields
is <S|7,j,lsl+,j,2>% —(ci,jllcfr,jlz): — P which describes how a corrections to the singlet ground-state energy to all orders in
pair of spins on adjacent sites belonging to different layers)/J, . It is found that Eq.(29) compares well with the nu-
are locked into a spin singlet. The ground state consists aherical results as shown in Fig. 4. The later not only displays
the formation of suchN/2 spin singlets. As Figs. 1 and 2 the results of our calculation fdEgg obtained numerically
show, P is, for all practical purposes, 1/2 fal, >J,., a using Eq.(20), as a function ofJ, , but also the results

1

Ecs~2JQ%+J, P?— 5du 1+

: (29
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FIG. 4. The ground-state energy as definedvlig plotted as a FIG. 5. The result of the energy g&j obtained numerically is
function of the reduced interlayer coupling as definedspyThe  drawn as a function of, (full line). Comparison is made to the
dashed line is from Ref. 20. The dashed-dotted liplotted for  result of expression(30), which is obtained in the strong limit
J,>J,¢) is the result of Eq(30). (dashed ling Notice that the agreement is very good in the disor-

dered quantum state for which >4.2] as shown by v. Interest-
reported by Weihorfd obtained using Ising expansion and ingly, the gap is nonzero in the antiferromagnetic state for 1.56
dimer expansion. The quantity=Egs/(4J+J,) is drawn  <J, <4.2], a fact that indicates that the singlet retains some kind
as a function ofp=J, /(J+J,). The maximum ofv at »  of existence even when it is not the predominant factor in determin-
=0.5 coincides with that reported by Weihong, and in gen-ng the symmetry of the ground state.
eral both results agree very well.

=2k<(alak+,8l/3k) commutes with Hamiltoniar§17): in

3. Energy gap terms of spin variables this translatesd8;,,/dt=0, which

Breaking a spin singlet requires an enefyas given by implies the conservation of the touatompon_ent of the spin.
Eq. (26). Deep in the disordered quantum state, i.e., forAS @ consequence, there appears a selection rule on the sec-
3,13, >1, Eg=J,(1+2P)~2J, which gives Eg=J, tors of the totalz component of the spin that can be con-
once double counting of, due to the periodic boundary nected by elementary excitations: onlyGSSt,=0)
conditions is discarded. In this limit, the gap is consistent—|ES,S;,=0) excitations are possible because the ground
with the energy separation between the lower and highestate is a singlet. GS and ES designate the ground state and
levels of the single J=0) spin pair, that isJ, /4— an excited state respectively. In the lindit /J~x, the ex-
(—3J3,/4)=J, . Near the critical poinf, ., Using Eq.(26),  cited state is
the correction to the gap due to intralayer couplingads as

1 1
32 Bl Bl0.0] = —=(ci+ch[0.0=—=(I1.1)+[1.1))
Eg~d —Jd— o (3,3J) (30) V2 V2
43, - (32)
because® andQ are given by Eq(25). Equation(30) gives  which is one of the triplet states witBro,=1 andS%,,=0.
the_correctlon to the energy gap to _aII ordersllld_l . Figure In the strong coupling limitJ, >J, u,=1/2+0(J/J,).
5 dlsplqys the .results of the numerical calculations and the"i’herefore, up to a correction of ord@t], elementary exci-
comparison with Eq(30). It turns out that the agreement (a1ions will continue to consist of singlet-triplet excitations
between them is very satisfactory, to say the least. as in the infinite limitJ, /J~c. Overall, the quantum disor-

dered state is very well described by the bond-mean-field
F. Elementary excitations in the disordered state theory.

Using Eq.(18), sublattice operators, andf, can be writ-
ten in terms of quasi-particle operatotg, and 8y, as G. Antiferromagnetic state; m#0

ex= Uk(ay+ B, The zero magnetization solution is stable only fr
>J, . as Fig. 1 shows. The phase is ordered antiferromag-
ko netically forJ, <J,.. The valueJ, .=4.2] compares well
fe= i (@B BD o the result (4.48) of the Schwinger boson approd@f®°
The energyE (k) represents the spectrum of elementary ex-and that of the spin-wave theolyBut it disagrees with the
citations in the system. At zero temperature, the lower bandilonte Carlo simulationd result (2.9) or the series
is fully occupied whereas the upper band is empty. In theexpansiof’ calculation (2.58). Chubokov and Mor? re-
language of JW spin-less fermions, elementary excitationported that while transverse spin-wave excitations are gap-
consist of creating particle-hole pairs only. This is realizedless (Goldstone modeéslongitudinal spin-wave excitations
by annihilating a JW fermion in the lower band and creatingare gapped fod, .>J, >0. Our result seems to indicate that
a fermion in the upper one. Creating a particle alone, or a finite value of the interlayer couplingl (=1.56]) would
hole alone, violates the conservation of JW fermions, sincée needed for the longitudinal fluctuations to become rel-
the number of particle 0peratoN=2k<(elek+fl i) evant. Note however that we have to consider Gaussian fluc-
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tuations about our mean-field point to account for spin-wave Furthermore, the disordered state is investigated in detail.
excitations in the ordered phase. This would possibly lead tdhe nature of the ground state is reported to be consisting of
a better estimate of the critical poidt .. Figure 1 shows coupled singlets formed by spins on adjacent sites belonging
that the magnetization increases with, passes through a to different layers. The dominant parameter that governs this
maximum, then decreases in agreement with previoustate is found to be simply given ®%|<Si_,j,1s|+,—j,2>|' Pis
results!® shown to be responsible for the onset of the quantum disor-
dered state. Good agreement with limiting casks+¢0 and
V. CONCLUSION J, — ), and with results from previous studies is obtained.
) , ) ... The present fermionic approach is consistent with the
In summary, this W(_)rk Qealt with _exten(jlng the d_eflnltlon_ bosonic-type approaches, namely the spin-wave theory and
of the JW transformation in three dimensions and its appliyhe Schwinger boson method. Not only the generalization of
cation to the Heisenberg bilayer antiferromagnet. Under thighe jordan-Wigner transformation, introduced in this paper,
transformation, the three-dimensional Heisenberg modek rigorous from the mathematical point of view, but it also
transforms into a system of interacting spinless fermions that,o4s to very satisfactory results for the Heisenberg bilayer

are coupled to a gauge field for which the magnetic field iS &yiferromagnet. A fact that indicates that it is physically
two-component vector operatene of the three component ¢ 14 as well.

being zerg. The magnetic field satisfies Maxwell equations
ruling out the possibility of the existence of monopoles in
three-dimensional Heisenberg systems. The flux per
plaquette is nonzero for two of the three elementary perpen-
dicular plaquettes, but is zero for the third one. These find- M.A. is grateful to Dr. M. R. A. Shegelski and Dr. A.
ings are applied to the study of the Heisenberg bilayer antiHussein for their valuable support. He thanks Dr. Thalmeier
ferromagnet in the framework of the bond-mean fieldand Dr. Yuan for helpful discussions during his stay at the
approach. We recalculated the order-disorder critical couMax-Planck Institute in Dresden. He is also grateful for the
pling, the ground-state energy, and the energy gap. financial support from this Institute.
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