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Generalization of the Jordan-Wigner transformation in three dimensions and its application
to the Heisenberg bilayer antiferromagnet
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We extend the definition of the Jordan-Wigner transformation to three dimensions using the generalization of
ideas that were introduced in the two-dimensional case by one of the present authors. Under this transforma-
tion, the three-dimensionalXY spin Hamiltonian is mapped onto a system of spin-less fermions coupled to a
gauge field with only two nonzero components. This gauge field is calculated explicitly. Then we apply this
transformation to the investigation of the Heisenberg bilayer antiferromagnet. The interesting quantum disor-
dered state realized in this material for strong interlayer couplings is studied in detail. We define the physical
parameter that governs this state, and calculate analytically several quantities, such as the ground-state energy
and the energy gap as a function of the interlayer coupling. Very good agreement with existing results and with
the infinite interlayer coupling limit is recovered.
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I. INTRODUCTION

Jordan and Wigner1 introduced a transformation that map
local spin-1/2 operators,S2 and Sz, to Fermi operators in
one dimension. For example, this transformation leads to
mapping of the one-dimensionalXY Hamiltonian onto a
Hamiltonian of noninteracting spin-less fermions. Trying
generalize this result in two dimensions proved to be di
cult. Several authors have given implicit ways of defini
such a generalization in two dimensions.2,3 But, a natural
extension of the Jordan-Wigner~JW! transformation was in-
troduced by one of the present authors4 to study the
interchain-coupling effect on the one-dimensional spin-
Heisenberg antiferromagnets. The generalization of the
transformation has been attempted even in three dimens
by Huerta and Zanelli5 who introduced an implicit transfor
mation, by Kochman´ski6 whose transformation, howeve
does not preserve some of the spin-commutation relati
and by Shaofeng7 who erred in two claims as will be dis
cussed in Sec. III.

The JW transformations are applied in such areas as q
tum field theory, statistical mechanics of quantum and c
sical systems, and in the physics of phase transitions
critical effects. A pretty application of the one-dimension
transformation in condensed matter physics is the solutio
the two-dimensional Ising model by Schultz, Mattis a
Lieb.8 This transformation is very useful for studying qua
tum spin systems. Our aim in this work is to find a genera
zation of the JW transformation in three dimensions wh
the phase of the transformation is given explicitly in terms
fermion number operators, and to shed light on one part
lar unclear point of such a generalization, that is the flux-p
plaquette as one fermion moves around this plaquette.

Then we apply the three-dimensional JW transformat
to the Heisenberg bilayer quantum antiferromagnet in or
to support the validity of our findings. Once the Heisenb
Hamiltonian on the bilayer is written in terms of the spin-le
0163-1829/2001/64~5!/054410~8!/$20.00 64 0544
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JW fermions, the bond-mean-field theory approach4,9–11 is
used in order to decouple the interacting terms. In the p
several bosonic-type approaches12–16 have been used to
study this system. At zero temperature, the Heisenberg
layer antiferromagnet presents a disordered gaped state
strong interlayer coupling, known as the disordered quan
state, but an antiferromagnetically ordered state for w
coupling. A second order quantum phase transition ta
place between these two states at a critical value of the
terlayer coupling. The bilayer quantum antiferromagnet m
be of some relevance to some of the high temperature su
conductors in their low-doping normal state.12,17 One of our
aims here is to provide a full description of the disorder
quantum state at zero temperature in terms of one or sev
physical parameters. Not only we were able to accomp
that, but the mean-field equations of the present appro
can be solved analytically in this state.

This paper is organized as follows. In Sec. II, the gen
alized transformation is introduced. In Sec. III, the pha
change per plaquette is calculated in the context of theXY
Hamiltonian. The application of our findings to the Heise
berg bilayer antiferromagnet is made in Sec. IV. Summ
and conclusions are drawn in the last section.

II. THE THREE-DIMENSIONAL JW TRANSFORMATION

Generalizing the ideas that led to the introduction of t
two-dimensional JW transformation,4 allowed us to define
the transformation in three dimensions by
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Here, ni , j ,k5ci , j ,k
† ci , j ,k is the number operator of the spin

less fermions;ci , j ,k
† andci , j ,k being the creation and annih

lation operators of a spin-less fermion at site (i , j ,k), respec-
tively. The phase may be written in a simpler form b
borrowing the notations of Shaofeng7 who attempted to gen
eralize the JW transformation in three dimensions, but er
in two points~please see below!:

f~x!5(
z50

`

w~x,z!n~z!, ~2!

where

w~x,z!5Q~x32z3!~12dx3 ,z3
!1Q~x12z1!dx3 ,z3

3~12dx1 ,z1
!1Q~x22z2!dx1 ,z1

dx3 ,z3

3~12dx2 ,z2
!, ~3!

a result that is different from the one of Shaofeng7 in which
the (12dx2 ,z2

)-factor in the last term is missing. This con
stitutes the first of the two errors made by Shaofeng. T
factor is essential for preserving spin commutation relatio
The conditioneipw(x,z)52eipw(z,x) that is necessary to pre
serve nonlocal spin commutation relations is satisfied by
~3!. We also explicitly checked that all possible combinatio
of spin commutation relations are preserved. To obtain
phase~2! we choose a plane going through the site where
want to define the transformation. Here the plane (0,0,1
chosen. Then we sum over those sites on this plane as in
two-dimensional transformation.4 Finally we sum over all
sites that are behind this plane.x5(x1 ,x2 ,x3) and z
5(z1 ,z2 ,z3) stand for sites on a cubic lattice for simplicit

III. THE PHASE PER PLAQUETTE

Consider theXY model written for a three-dimensiona
array of coupled layers:

HXY5
J

2 (
i , j ,k

Si , j ,k
2 Si 11,j ,k

1 1
J

2 (
i , j ,k

Si , j ,k
2 Si , j 11,k

1

1
J'

2 (
i , j ,k

Si , j ,k
2 Si , j ,k11

1 1~H.c.!, ~4!

whereJ andJ' are, respectively, the intralayer and interlay
coupling constants, and~H.c! stands for the Hermitian con
jugate of all terms in Eq.~4!. Under theJW transformation
~1!, Hamiltonian~4! is mapped onto a Hamiltonian of spin
less fermions:

HXY5
J

2 (
i , j ,k

ci , j ,k
† ci 11,j ,ke

i ] if i , j ,k1
J

2 (
i , j ,k

ci , j 11,ke
ipni , j ,kci , j ,k

†

1
J'

2 (
i , j ,k

ci , j ,k
† ci , j ,k11ei ]kf i , j ,k1~H.c!. ~5!

Here ] if i , j ,k5f i 11,j ,k2f i , j ,k and ]kf i , j ,k5f i , j ,k112f i , j ,k
designate discrete derivatives along thex andz axes, respec-
tively. According to Fradkin,2 this effective Hamiltonian de-
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scribes the motion of spin-less fermions coupled to a ga
field. A very important cancellation takes place in the seco
term of Eq.~5! namely,ci , j 11,kci , j ,k

† eipni , j ,k5ci , j ,k
† ci , j 11,k be-

causeeipni , j ,kci , j ,k
† [2ci , j ,k

† . For this reason, there is n
phase attached to the hopping of a spin-less fermion al
they axis. Let the site-dependent gauge field components
Ai( i , j ,k)5] if i , j ,k along the x axis, Aj ( i , j ,k)5] jf i , j ,k
along they axis, andAk( i , j ,k)5]kf i , j ,k along thez axis.
This leads to

Ai5pF (
b50

`

ni ,b,k1 (
b50

j 21

~ni 11,b,k2ni ,b,k!G ,

Aj50, ~6!

Ak5pF (
a50

i 21

(
b50

`

~na,b,k112na,b,k!1 (
b50

j 21

~ni ,b,k112ni ,b,k!

1 (
a50

`

(
b50

`

na,b,kG .

The effective magnetic field is obtained through the discr
curl of A, namelyB( i , j ,k)5“3A( i , j ,k) @the vectorsA and
B depend on the position (i , j ,k)#. The site-dependent com
ponents ofB are therefore given by

Bi5p~ni , j ,k112ni , j ,k!,

Bj50, ~7!

Bk5p~ni , j ,k2ni 11,j ,k!.

Hence the effective magnetic field to which the spin-le
fermions couple presents two nonzero components o
Note that the indicesi , j , andk in the components ofA and
B refer to the directions along axesx, y, andz. This mag-
netic field satisfies¹•B5] iBi1] jBj1]kBk50, a result that
excludes the existence of monopoles in consistency w
Maxwell equations, and withB5¹3A; ¹•(¹3A)50.
Note that the vector potentialA and the magnetic fieldB are
operators in the present problem, not simple numbers a
the classical electromagnetic theory.

As for the phase change that occurs when a spin-less
mion completes a motion around a plaquette, we consider
elementary plaquettes in thexy, xz, and yz planes. Let a
spin-less fermion move around a plaquette in the contex
the XY model: when the fermion moves in thex andz axes,
phase differences occur, whereas when it moves along ty
axis the phase difference is zero. The flux per plaquette in
xy plane turns out to be the same as in two dimensions,
is

Fxy5p~ni , j ,k2ni 11,j ,k!. ~8!

For a spin-less fermion starting its motion at s
( i , j ,k), ni , j ,k51. Then for this fermion to go to site (i
11,j ,k), this later site has to be empty due to Pauli exc
sion principle; thusni 11,j ,k50. In this approximation one
0-2
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GENERALIZATION OF THE JORDAN-WIGNER . . . PHYSICAL REVIEW B 64 054410
finds that the phase isp, which is consistent with the mean
field result.3 Finally, for a plaquette in theyz plane the result
is

Fyz5p~ni , j ,k112ni , j ,k!. ~9!

Similarly, the phase per plaquette can be set to be appr
mately p. As for the phase around the plaquette in thexz
plane, it is found to be identically zero:

Fxz50. ~10!

It is worth noting here that the results of the fluxes p
plaquette obtained in Eqs.~8!, ~9!, and ~10!, are consistent
with the expressions of magnetic field components in E
~7! ~the unit area beinga251), namely thatFxy5*B•da
5Bka

25Bk . . . . The results for the above fluxes-pe
plaquette imply that as a spinless fermion moves aroun
given plaquette, it will couple to a gauge field if the plaque
belongs to planexy or yz, but no coupling to a gauge fiel
occurs in the remaining planexz.

Shaofeng7 mistakenly reported that the phase chan
around any elementary plaquette is zero. The reason for
taining this incorrect result is that this author did not ta
into account the fact thatSi , j 11,k

2 Si , j ,k
1 transforms into

ci , j 11,ke
ipni , j ,kci , j ,k

† [ci , j ,k
† ci , j 11,k @which transforms the sec

ond term in Eq.~5! to a free hopping of the spin-less ferm
ons along they axis# becauseeipni , j ,kci , j ,k

† [2ci , j ,k
† . This

constitutes the second error made by Shaofeng in attemp
to generalize the JW transformation.

IV. APPLICATION TO THE HEISENBERG BILAYER
ANTIFERROMAGNET

A. Description of the approach

In the second part of this paper, we apply the above tra
formation to the investigation of the Heisenberg bilayer a
tiferromagnet that has received a lot of attention in the p
few years.12–22 The use of the JW transformation and t
bond-mean-field theory4,9 does not need a constraint on th
occupation number as required in the Schwinger bo
approach,12,18,19 modified spin-wave approaches,15 or the
bond-operator mean-field theory.21,22 However, the presen
fermionic approach suffers from the difficulty related
treating the effect of the phase terms. Here, these are tre
in mean-field theory. We would like to draw the attention
the bond-mean field approach4,9 which has so far given very
satisfactory results in the case of the Heisenberg ladder.10,11

The Heisenberg model on a bilayer reads as follows:

H5HXY1J(
i , j ,k

Si , j ,k
z Si 11,j ,k

z 1J(
i , j ,k

Si , j ,k
z Si , j 11,k

z

1J'(
i , j ,k

Si , j ,k
z Si , j ,k11

z , ~11!

which transforms to
05441
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H5HXY1J(
i , j ,k

S ci , j ,k
† ci , j ,k2

1

2D S ci 11,j ,k
† ci 11,j ,k2

1

2D
1J(

i , j ,k
S ci , j ,k

† ci , j ,k2
1

2D S ci , j 11,k
† ci , j 11,k2

1

2D
1J'(

i , j ,k
S ci , j ,k

† ci , j ,k2
1

2D S ci , j ,k11
† ci , j ,k112

1

2D ~12!

when transformation~1! is used. Hamiltonian~12! is simpli-
fied using the approximation where the average flux per
ementary plaquette isp on the xy and yz planes@as dis-
cussed below Eqs.~8! and~9!#. The flux phase is identically
zero on elementary plaquettes in thexz plane. We stress tha
this approximation is the same as what is obtained in me
field theory calculation.3 We choose the following configu
ration: the phases are alternated . . .p202p20. . . along
the adjacent bonds on they axis, and zero on all bonds on th
remaining axes. Note that the alternated phases could be
rather on thex axis without changing the physical resul
because of gauge invariance. However, in the case of
bilayer system, the alternated phases cannot be put onz
axis because there is only one bond along that axis.

Further simplification is done using the bipartite charac
due to antiferromagnetic correlations. Two types of fermio
ci , j ,k

A on sublatticeA and ci 8, j 8,k8
B on sublatticeB, where

( i 8, j 8,k8) is one of the adjacent sites of (i , j ,k), are intro-
duced. Then we decouple the interacting quartic terms
introducing the alternated magnetization parametermi , j ,k

52^Si , j ,k
z &52^ci , j ,k

† ci , j ,k&215m(21)i 1 j 1k, and the bond

parametersQ5^ci , j ,kci 11,j ,k
† &5^ci , j ,kci , j 11,k

† & within the lay-

ers andP5^ci , j ,kci , j ,k11
† & perpendicular to the layers. Pa

rametersQ andP are assigned the same phase distribution
above, namely . . .p202p. . . along thex axis and zero on
the rest of the bonds alongy andz axes.Q andP are taken to
be distinct parameters as the coupling constants within
layers and between the layers are different, and becaus
the geometry of the bilayer. BothQ andP represent the sam
physical quantity in two different directions. But,P plays a
far more crucial role thanQ in the occurrence of the quantum
transition, and the stabilization of the disordered quant
state as will be shown later in this paper. We use the follo
ing approximation:

OO8'^O&O81^O8&O2^O&^O8&, ~13!

which neglects fluctuations around the mean-field point^O&
and ^O8& because we assume that (O2^O&)(O82^O8&)
'0, a result that leads to Eq.~13!. O and O8 are any two
operators. Using approximation~13! with O5Si , j ,k and O8
5Si 11,j ,k , Si , j 11,k , or Si , j ,k11 on one hand, andO
5ci , j ,kci 11,j ,k

† , ci , j ,kci , j 11,k
† , or ci , j ,kci , j ,k11

† , and O85O †

on the other hand gives the following approximate fo
for H:
0-3
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H5J(
i , j ,k

m

2
~e2i ,2j ,2k

† e2i ,2j ,2k2 f 2i 11,2j ,2k
† f 2i 11,2j ,2k!1J(

i , j ,k

m

2
~e2i 11,2j 11,2k

† e2i 11,2j 11,2k2 f 2i ,2j 11,2k
† f 2i ,2j 11,2k!

1J(
i , j ,k

m

2
~e2i 11,2j 11,2k

† e2i 11,2j 11,2k2 f 2i 11,2j ,2k
† f 2i 11,2j ,2k!1J(

i , j ,k

m

2
~e2i ,2j ,2k

† e2i ,2j ,2k2 f 2i ,2j 11,2k
† f 2i ,2j 11,2k!

1J'(
i , j ,k

m

2
~e2i ,2j ,2k

† e2i ,2j ,2k2 f 2i ,2j ,2k11
† f 2i ,2j ,2k11!1J'(

i , j ,k

m

2
~e2i 11,2j ,2k11

† e2i 11,2j ,2k112 f 2i 11,2j ,2k
† f 2i 11,2j ,2k!

1
J1

2 (
i , j ,k

~e2i ,2j ,2k
† f 2i 11,2j ,2k2 f 2i 11,2j ,2k

† e2i 12,2j ,2k!1H.c.1
J1

2 (
i , j ,k

~e2i ,2j ,2k
† f 2i ,2j 11,2k1 f 2i ,2j 11,2k

† e2i ,2j 12,2k!1H.c.

1
J'1

2 (
i , j ,k

~e2i ,2j ,2k
† f 2i ,2j ,2k111 f 2i ,2j ,2k11

† e2i ,2j ,2k12!1H.c.1NS 2J1J'

4
m212JQ21J'P2D , ~14!
e

s

bl
il

g
d
JW

ca

on

s-

-

the
-

ven

care
e.
whereJ1 andJ'1 are defined by

J15J~112Q!,

J'15J'~112P!, ~15!

andei , j ,k5ci , j ,k
A ~respectivelyf i , j ,k5ci , j ,k

B ) is the fermion op-
erator on sublatticeA ~respectivelyB). Now, Q andP stand
for their own moduli. Here,N5NxNyNz is the total number
of sites;Nx5Ny being the number of sites along thex andy
axes, andNz the number of sites along thez axis. Hamil-
tonian ~14! is written for a unit cell which is a cube of sid
a51 where sites are labeled by (2i ,2j ,2k), (2i 11,2j ,2k)
along thex axis, (2i ,2j ,2k), (2i ,2j 11,2k) along they axis,
and (2i ,2j ,2k), (2i ,2j ,2k11) along thez axis. In Fourier
space, we defineek and f k as the Fourier transform
of operators cA and cB respectively: ci , j ,k

A

5(k,eke
2 i r i , j ,k

A
•k/AN/2 and ci , j ,k

B 5(k, f ke
2 i r i , j ,k

B
•k/AN/2.

The summation(k, runs over half the original Brillouin
zone because the direct space unit cell volume has dou
due to antiferromagnetic sublattices. Accordingly, the Ham
tonian takes the simpler form:

H5(
k,

M ~ek
†ek2 f k

† f k!1(
k,

@ iJ1 sinkx1g~ky ,kz!#ek
† f k

1H.c.1NS 2J1J'

4
m212JQ21J'P2D , ~16!

where

g~ky ,kz!5J1 cosky1J'1 coskz ,

M5~2J1J'!m.

The first two terms in Eq.~16! are results of the decouplin
procedure using the local parameterm, whereas the secon
term and its Hermitian conjugate describe the hopping of
fermions between adjacent sites due to theXY term of Eq.
~12! and to the decoupling procedure using the nonlo
bond parametersQ and P. Along the x axis, the hopping
amplitude is2 i sinkx because of the phase configurati
05441
ed
-

l

. . .p202p20. . . . This term is obtained by Fourier tran
forming the first term inJ1 of Eq. ~14!. Along the two re-
maining axes, the hopping is of tight-binding type with am
plitude g(ky ,kz).

B. Mean-field equations and the energy spectrum

Hamiltonian~16! is transformed into the diagonal form

H5(
k,

E~k!@ak
†ak2bk

†bk# ~17!

after defining the quasiparticle operatorsak andbk by

ak5uk* ek1vk f k ,

bk5vk* ek2uk f k , ~18!

where uk5eihk/2 cosuk and vk5eihk/2 sinuk , with cosuk
5$@M1E(k)#/2E(k)%1/2 and tanhk5J1 sinkx /g(ky ,kz).
E(k) andG(k) are given by

E~k!5@M21uG~k!u2#1/2,

G~k!5g~ky ,kz!1 iJ1 sinkx . ~19!

The ground state corresponds to the situation where
lower band described byb is full and the upper band de
scribed bya is empty. The chemical potential for the JW
fermions is zero. Therefore the ground-state energy is gi
by

EGS5
~2J1J'!m2

4
12JQ21J'P22

1

N (
k

E~k!

2
,

~20!

where (k[(kx ,ky ,kz
now holds on the original Brillouin

zone because the factor 1/2 in the summation term takes
of the fact that we had to sum over half the Brillouin zon
Because we use periodic boundary conditions,ki5ni2p/Ni
with i 5x,y,z and ni50,1, . . . ,Ni21. For the bilayer (Nz
52) periodic boundary conditions countJ' twice. Thus, we
0-4
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GENERALIZATION OF THE JORDAN-WIGNER . . . PHYSICAL REVIEW B 64 054410
have to multiply by 2 the value ofJ' in all final results or
divide J' by 2 in all our equations.

The parametersm, Q, and P are calculated self-
consistently through the equations

m5
1

N (
k

m~2J1J'!/E~k!,

Q5
1

N (
k

$J1 sin2 kx1g~ky ,kz!cosky%/4E~k!, ~21!

P5
1

N (
k

g~ky ,kz!coskz/2E~k!,

obtained by minimizing the ground-state energy with resp
to m, Q andP: ]E/]Q5]E/]P5]E/]m50. Next we ana-
lyze these equations.

C. Physical parametersP, Q, and m

The set of self-consistent equations~21! consist of inte-
gral equations that cannot be solved analytically in gene
It is only in the strong coupling regime that we are able
solve them analytically as we do in the next subsection.
now, we seek a solution numerically using a numerical ite
tive method. The results of such a calculation are depicte
Fig. 1 for Q, P, andm as functions of the interlayer cou
pling J' . When J' increases,P increases and approach
0.5, whereasQ decreases to 0. The magnetizationm/2 van-
ishes atJ'[J'c54.2J, thus marking the onset of a secon
order transition from the antiferromagnetic state forJ'

,J'c to the quantum disordered state forJ'.J'c . In the
antiferromagnetic state, the values assumed byQ andP are
different from those that would be assumed if the state w
not ordered. Interestingly, the presence ofQ and P reduces
the value ofm for if these bond parameters were not cons
ered, the magnetization would be greater than what it is n
To understand this point and the effects inducing the qu
tum transition, we study the following situations where on
some of the mean-field parameters are considered at on

When we decouple the interaction terms of Hamilton
~12! using parameterm alone, the magnetization~full line in

FIG. 1. The parametersm, Q andP are plotted as a function o
J' . Full lines are obtained by allowingm to be nonzero, wherea
dashed lines are for the solutionm50. Magnetization vanishes a
J'c54.2J.
05441
ct
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Fig. 2! does not vanish. This implies that the quantum tra
sition does not take place. When decoupling is done us
parametersm andQ only, m does not vanish either~dashed
line in Fig. 2!. Finally, when decoupling is performed usin
parametersm and P only, magnetization vanishes signalin
the occurrence of the quantum transition~dashed-dotted line
in Fig. 2!. Thus, this transition is switched on by the bon
parameterP. ParameterQ plays a~minor! role in the reduc-
tion of magnetizationm/2 for values ofJ'<J'c.

D. Analytical solution of the mean-field equations
in the strong limit, J� ÕJ�cÌ1

We define the strong coupling regime byJ' /J'c.1. The
mean-field equations~21! can be solved approximately in th
disordered state. In the particular case of the limitJ' /J
;`, which is realized by settingJ50, an exact solution is
possible:

m50, Q50, P5
1

2 (
kz50,p

ucoskzu
2

5
1

2
~22!

becauseE(k)5J'1ucoskzu5J'1; kz50, p. The result P
51/2 for J50 is consistent with the numerical result r
ported in Fig. 1, namely that whenJ' /J→`, P→1/2.
Next, in the limit J'.J'c , the energy spectrum can be e
panded as follows:

E~k!5@J1
2 sin2 kx1g2~ky ,kz!#

1/2

'J'1F11
J1

J'1
cosky coskz1

1

2

J1
2

J'1
2

sin2 kxG ~23!

and approximating the integrals in Eq.~21! by their values
near band minima leads to

P'
1

2
, Q'

J1

8J'1
, m50, ~24!

which gives

P'
1

2
, Q'

J

8J'22J
, m50 ~J'@J!, ~25!

FIG. 2. The magnetizationm/2 is displayed as a function ofJ'

in the case where the bond parametersQ50 andP50 ~full line!,
P50 andQÞ0 ~dashed line!, andQ50 andPÞ0 ~dashed-dotted
line!.
0-5
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once Eq.~15! is used. Equation~23! indicates that for large
J' /J, E(k) shows little dispersion along thex axis as the
coefficient of the leading term that depends onkx is at most
(J/J')2. In Fig. 3,E(k) is displayed using Eq.~19! along the
x axis for several values ofky andkz . Note the little disper-
sion in kx . The set of solutions~25!, which agree very well
with the numerical results reported in Fig. 1, will be used
the discussion of the disordered quantum state in the
section.

E. The disordered quantum state;mÄ0

The second order transition takes place due to the fact
the symmetries of the ground states for weak and str
coupling regimes are different. On one hand, for infinite
terlayer couplingJ' /J;`, the system consists ofN/2 de-
coupled singlets where rotation invariance is preserved.
the other hand, forJ'50, both layers of spins are ordere
antiferromagnetically atT50, and rotational invariance i
broken. Therefore asJ' increases, a transition from the ma
netically ordered state to the disordered state occurs, Fig
The disordered state is a gaped state in which the en
spectrum is given by Eq.~23!, anduk5vk5eihk/A2 because
M5(2J1J')m50. The energy gap atk5(k0 ,p,0) or
(k0,0,p), k0 being50 or p, is given by

Eg5uJ'12J1u5uJ'~112P!2J~112Q!u, ~26!

if J'1.J1. The later condition is deduced by settin
g(ky ,kz)50 which is essential for a vanishing gap. Nume
cally we find that the value above which an energy gap op
is J'5230.78J51.56J, see Sec. IV E 3 below. Howeve
this does not mean that this is the critical value for the ord
disorder second-order quantum transition.

1. Physical parameter P

The mean-field parameter that suitably governs this s
is ^Si , j ,1

2 Si , j ,2
1 &'2^ci , j ,1ci , j ,2

† &52P which describes how a
pair of spins on adjacent sites belonging to different lay
are locked into a spin singlet. The ground state consist
the formation of suchN/2 spin singlets. As Figs. 1 and
show, P is, for all practical purposes, 1/2 forJ'.J'c , a

FIG. 3. The energy spectrumE(k) is displayed along thex axis
for some values ofky and forkz50, p. The interlayer coupling is
J'55J. The energy gap is realized at (kx ,ky ,kz)5(k0 ,p,0) in the
bottom band (k050, p); Eg'4J consistently with Eq.~30!: Eg

'5J2J54J.
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result that indicates that the spin singlets are very rob
because they are able to keep their strength (P'1/2) for all
couplings betweenJ' /J54.2 up to infinity.

2. Ground state and ground-state energy

The infiniteJ' limit is worth considering here in order to
understand the quantum disorder state. In this caseuk5vk

51/A2, and the quasiparticle operators reduce to

ak[
1

A2
~c11c2!,

bk[
1

A2
~c12c2!, ~27!

where c1 and c2 are JW annihilation operators on respe
tively adjacent sites where each one belongs to one la
The ground state consists of creating a quasi-particleb:

bk
†u0,0&5

1

A2
~c1

†2c2
†!u0,0&5

1

A2
~ u1,0&2u0,1&)

5
1

A2
~ u↑,↓&2u↓,↑&), ~28!

as occupation by a spinless fermion means the presenc
spin up, and its absence means the presence of spin dow
vice versa. Clearly, this is the spin singlet that constitutes
ground state of a pair of spins interacting antiferromagn
cally.

As for the ground-state energy, one finds

EGS5J'^Si , j ,1•Si , j ,2&

5J'F ^Si , j ,1
z Si , j ,2

z &1
1

2
~^Si , j ,1

1 Si , j ,2
2 &1^Si , j ,1

2 Si , j ,2
1 &!G

'23J'/4,

because ^Si , j ,1
z Si , j ,2

z &5^Si , j ,1
y Si , j ,2

y &5^Si , j ,1
x Si , j ,2

x & due to

rotational invariance, and̂ Si , j ,1
1 Si , j ,2

2 &.21/2. Note that
23J'/4 is the energy of the spin-singlet state~28!. The fact
that the limit J' /J;` is well described by the present ap
proach is very promising. It seems to indicate that coup
singlets (J finite! will be described at least as well becau
mean-field theory is supposed to work better for a large nu
ber of degrees of freedom.

In the strong limit, we use the same approximation as
Sec. IV D. The ground-state energyEGS is found to be

EGS'2JQ21J'P22
1

2
J'1S 11

J1
2

J'1
2 D , ~29!

whereQ andP are given by Eq.~24!. Equation~29! yields
corrections to the singlet ground-state energy to all order
J/J' . It is found that Eq.~29! compares well with the nu-
merical results as shown in Fig. 4. The later not only displa
the results of our calculation forEGS obtained numerically
using Eq. ~20!, as a function ofJ' , but also the results
0-6
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reported by Weihong20 obtained using Ising expansion an
dimer expansion. The quantityn5EGS/(4J1J') is drawn
as a function ofh5J' /(J1J'). The maximum ofn at h
50.5 coincides with that reported by Weihong, and in ge
eral both results agree very well.

3. Energy gap

Breaking a spin singlet requires an energyEg as given by
Eq. ~26!. Deep in the disordered quantum state, i.e.,
J' /J'c@1, Eg.J'(112P)'2J' which gives Eg.J'

once double counting ofJ' due to the periodic boundar
conditions is discarded. In this limit, the gap is consist
with the energy separation between the lower and hig
levels of the single (J50) spin pair, that is J'/42
(23J'/4)5J' . Near the critical pointJ'c , Using Eq.~26!,
the correction to the gap due to intralayer couplingJ reads as

Eg'J'2J2
J2

4J'2J
~J'@J! ~30!

becauseP andQ are given by Eq.~25!. Equation~30! gives
the correction to the energy gap to all orders inJ/J' . Figure
5 displays the results of the numerical calculations and t
comparison with Eq.~30!. It turns out that the agreemen
between them is very satisfactory, to say the least.

F. Elementary excitations in the disordered state

Using Eq.~18!, sublattice operatorsek and f k can be writ-
ten in terms of quasi-particle operators,ak andbk , as

ek5uk~ak1bk!,

f k5uk* ~ak2bk!. ~31!

The energyE(k) represents the spectrum of elementary
citations in the system. At zero temperature, the lower b
is fully occupied whereas the upper band is empty. In
language of JW spin-less fermions, elementary excitati
consist of creating particle-hole pairs only. This is realiz
by annihilating a JW fermion in the lower band and creat
a fermion in the upper one. Creating a particle alone, o
hole alone, violates the conservation of JW fermions, si
the number of particle operatorN5(k,(ek

†ek1 f k
† f k)

FIG. 4. The ground-state energy as defined byn is plotted as a
function of the reduced interlayer coupling as defined byh. The
dashed line is from Ref. 20. The dashed-dotted line~plotted for
J'.J'c) is the result of Eq.~30!.
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5(k,(ak
†ak1bk

†bk) commutes with Hamiltonian~17!: in
terms of spin variables this translates todSTot

z /dt50, which
implies the conservation of the totalz component of the spin
As a consequence, there appears a selection rule on the
tors of the totalz component of the spin that can be co
nected by elementary excitations: onlyuGS,STot

z 50&
→uES,STot

z 50& excitations are possible because the grou
state is a singlet. GS and ES designate the ground state
an excited state respectively. In the limitJ' /J;`, the ex-
cited state is

ak
†bk@bk

†u0,0&] 5
1

A2
~c1

†1c2
†!u0,0&5

1

A2
~ u↑,↓&1u↓,↑&)

~32!

which is one of the triplet states withSTot51 andSTot
z 50.

In the strong coupling limit,J'@J, uk51/A21O(J/J').
Therefore, up to a correction of orderJ/J' elementary exci-
tations will continue to consist of singlet-triplet excitation
as in the infinite limitJ' /J;`. Overall, the quantum disor
dered state is very well described by the bond-mean-fi
theory.

G. Antiferromagnetic state; mÅ0

The zero magnetization solution is stable only forJ'

.J'c as Fig. 1 shows. The phase is ordered antiferrom
netically for J',J'c . The valueJ'c54.2J compares well
to the result (4.48J) of the Schwinger boson approach12,18,19

and that of the spin-wave theory.15 But it disagrees with the
Monte Carlo simulations14 result (2.5J) or the series
expansion17 calculation (2.56J). Chubokov and Morr15 re-
ported that while transverse spin-wave excitations are g
less ~Goldstone modes! longitudinal spin-wave excitations
are gapped forJ'c.J'.0. Our result seems to indicate th
a finite value of the interlayer coupling (J'51.56J) would
be needed for the longitudinal fluctuations to become
evant. Note however that we have to consider Gaussian fl

FIG. 5. The result of the energy gapEg obtained numerically is
drawn as a function ofJ' ~full line!. Comparison is made to the
result of expression~30!, which is obtained in the strong limi
~dashed line!. Notice that the agreement is very good in the dis
dered quantum state for whichJ'.4.2J as shown by v. Interest-
ingly, the gap is nonzero in the antiferromagnetic state for 1.5J
,J',4.2J, a fact that indicates that the singlet retains some k
of existence even when it is not the predominant factor in determ
ing the symmetry of the ground state.
0-7
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tuations about our mean-field point to account for spin-wa
excitations in the ordered phase. This would possibly lead
a better estimate of the critical pointJ'c . Figure 1 shows
that the magnetization increases withJ' , passes through a
maximum, then decreases in agreement with previ
results.15

V. CONCLUSION

In summary, this work dealt with extending the definitio
of the JW transformation in three dimensions and its ap
cation to the Heisenberg bilayer antiferromagnet. Under
transformation, the three-dimensional Heisenberg mo
transforms into a system of interacting spinless fermions
are coupled to a gauge field for which the magnetic field i
two-component vector operator~one of the three componen
being zero!. The magnetic field satisfies Maxwell equatio
ruling out the possibility of the existence of monopoles
three-dimensional Heisenberg systems. The flux
plaquette is nonzero for two of the three elementary perp
dicular plaquettes, but is zero for the third one. These fi
ings are applied to the study of the Heisenberg bilayer a
ferromagnet in the framework of the bond-mean fie
approach. We recalculated the order-disorder critical c
pling, the ground-state energy, and the energy gap.
ry

v

05441
o

s

-
s
l
t

r
-
-
i-

-

Furthermore, the disordered state is investigated in det
The nature of the ground state is reported to be consisting
coupled singlets formed by spins on adjacent sites belong
to different layers. The dominant parameter that governs t
state is found to be simply given byP'u^Si , j ,1

2 Si , j ,2
1 &u. P is

shown to be responsible for the onset of the quantum dis
dered state. Good agreement with limiting cases (J'→0 and
J'→`), and with results from previous studies is obtaine
The present fermionic approach is consistent with t
bosonic-type approaches, namely the spin-wave theory
the Schwinger boson method. Not only the generalization
the Jordan-Wigner transformation, introduced in this pap
is rigorous from the mathematical point of view, but it als
leads to very satisfactory results for the Heisenberg bila
antiferromagnet. A fact that indicates that it is physical
sound as well.
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