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Considerations on the quantum double-exchange Hamiltonian
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Schwinger bosons allow for an advantageous representation of quantum double exchange. We review this
subject, comment on previous results, and address the transition to the semiclassical limit. We derive an
effective fermionic Hamiltonian for the spin-dependent hopping of holes interacting with a background of local
spins, which is used in a related publication within a two-phase description of colossal magnetoresistant

manganites.
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[. INTRODUCTION before® we feel a comprehensive presentation of the subject

is still missing. In two appendixes we reexamine the deriva-
Introduced by Zenérin the early 1950s, the notion of tion for two sites, and consider the semiclassical limit
double exchange together with mixed-valency manganiteéS— ). In addition, by means of numerical experiments, we
R;_,AMnO; (WhereR=La, Pr, Nd andA=Sr, Ca, Ba, Pp illustrate how this limit evolves from the quantum case.
attracted renewed attention when a colossal magnetoresistive

effect was discovered in these compounds some year§ ago. Il. SCHWINGER BOSON REPRESENTATION

The magnetic and electronic properties of manganese oxides, OF DOUBLE EXCHANGE

to some extent, are believed to arise from the large Coulomb ) o )

and Hund's rule interaction of the manganesshell elec- To derive the quantum DE Hamiltonian on a lattice, as a

trons. Due to the almost octahedral coordination within theStarting point we take the Kondo lattice model including on-
perovskite structure thd levels split into two subbands la- Site Coulomb repulsion,
beled according to their octahedral symmegyandt,,. In

the case of zero dopingk€0), there are four electrons per H=—t>, [Ci‘r CjptH.C]— Iy > (Sio-aa’)ciT Ciyr

Mn site that fill up the threg,, levels and one level, and (ih)o oo’

by Hund’s rule, form é&5=2 spin state. Doping will remove

the electron from the, level, and by hopping via bridging +UE ni N7, (1)
i

oxygen sites these holes acquire mobility. However, this hop-
ping acts in a background of local spis-3/2 formed by

thet,q electrons and its amplitude depends on the overlap
the spin states at neighboring sités, in a classical lan-

0\f\/here summation is over nearest-neighbor bofid$ or
sitesi, respectively. For clarity and since it can be included

guage, on their relative angleit is largest if the total bond easily in the final result, here we hf'zlveJr neglected the orbital
spin is maximal and vice versa. degeneracy of the, electrons. That is;{!) denote electrons

Another ingredient, which is assumed to significantly in-n & Single ba,md, which interact with some localized sin
fluence the physical properties of manganites, is electronvi@ the Hund's couplingly,. In the real materials this local-
lattice interaction. Namely, the twe, orbitals, which are ized spin corresponds to the remaining electrons, which
degenerate in a perfect cubic environment, will couple tg®nd to form a high spin state with an electron in égeshell.
lattice vibrations of the same symmetry, giving rise to a_ N the manganites the situation is such thiat J,;>t (cf.
Jahn-Teller effect and polaronic behavior in some regions ofRefs. 3 and B Hence, we first take the limi — o, resulting
the phase diagram. It is this close interplay of three different”
subsystemselectrons in degenerate orbitals, background of
localized spins, and Igttice vibratio)r&at makes the physics H=—t 2 [Ei’rUEJ_UJr H.c]—J, 2 (S«rWJELEW
of manganites both rich and complicated. (Do oo’

In the present work we concentrate on the double ex- 2
change(DE) part of the interactions and consider different ) o~ .
possibilities for an approximate treatment of the exact DEWith restricted fermions;,=c;,(1—n; ). Next, following
Hamiltonian on a lattice in terms of effective electronic one-Kubo and Ohatd, the exchange term in Eq2) is solved
or two-band models. These can be used in a more elaboragéhile the hopping term is considered as a small perturbation.
modeling of the real materialsee our forthcoming wof. ~ For positiveJy the ground state of the exchange term is a
It turns out that quantum double exchange on a lattice i§ree spinS if there is no electron at sitie or a coupled spin
most suitably derived and described with the help ofS=S+ 1/2 otherwisegnote that we us&for the length of the
Schwinger bosons. We therefore include a detailed and pedéocalized spinS formed byt,y electrong. To describe the
gogic derivation of the quantum DE Hamiltonian using effective hopping we therefore need a projection operator,
Schwinger bosons. Although this approach has been useshich restores these conditions,

0163-1829/2001/6%)/0544066)/$20.00 64 054406-1 ©2001 The American Physical Society



A. WEIRE, J. LOOS, AND H. FEHSKE PHYSICAL REVIEW B4 054406

(SO45)+(S+1)6,4 1

o

(Pi )0'0"_ 2S+1 : ©) . S+§+m .
[LStzm= N —g 7 1DISm-3)

Then the DE HamiltoniafEqg. (2.3) in Ref. 7] is given in

terms of spin and restricted fermion operators by 1
S+ E_ m
= 1
HOE=—t 3 [E (PP )y G +HCl. (4 * 25r1 (WISmTz). (12

el —

oo Using the representation of a® eigenstate in terms of
However, this expression turns out to be unwieldy for ana-Schwinger bosons,
lytic as well as numeric calculations. Although in principle e mer trSem
the electronic spin is absorbed into the total spin at each site, |S,m)= (@)~ "(b") 10) (13)
the spin indexo is still present in Eq(4). Here the advan- ' (S+m)l(S—m)r "
tages of Schwinger bosons come into play, namely, the pos- _ N
sibility to describe spins of arbitrary amplitude with the sameWe find that by applying the operatoR", the state

set of boson operatows andb; , |1;S+1/2my) in Eq. (12) is transformed into the correspond-
ing Schwinger boson representation of the coupled &pin
s'=a'b,, S =bla;, (5) +1/2, while the electron is annihilated,
RY[1;S+3,m)=[0;S+3.m). (14)
S'=(alai—bjb))/2, (6)

Backwards, the operatoR(")" creates the decomposition of
the coupled spin into electronic and localized spin, i.e., it
|Si|=(ala;+b{b)/2. () produces appropriate Clebsch-Gordan coefficients.

i ) o Consequently, if the electronic spin merges into the
Using these operators, we can rewrite the projection operaschyinger boson representation via the constraint, we can
tors Py, omit the indexo of the fermions. What remains of the op-
eratorsR;" are spinless fermions;;, which automatically

. 1 [(S+D+S S satisfy the restriction on the local electron number. The cor-
(Pi)eor =557 st (S+1)-& responding Hamiltonian is given by
1 [aal ab/ HOE= ! > [(alaj+bfb)clci+H.c], (15
R e = 1) X)) el
25+1|bal bb'| ) 2S+1 £7

) ) o where, for every sité, the Hilbert space is constrained to
where we can keef in the denominator, because it is con-

served. The last matrix can be decomposed easily, ai’rai+bi’rbi=28+ ciTci . (16)
a In the case of low doping usually it is more appropriate
(Pf)(r,r/Zm bl ~[afr biT], (9 and natural to consider holes instead of electrons. Here
i

“hole” denotes a fermion and a spfmoving together in a
background of spin§S=S+1/2. For the transformation of
the electronic Hamiltonian, Eq10), the operatoR* needs

to be replaced by a suitable counterpart involving restricted

_t ~
] > [(RM)T(alaj+blb))R{ +H.c] (10)  hole operatordy, . In analogy to Eqs(12—(14), the state
(iJ)

which leads to

DE__
el —

— 1
S—m+ 3

%) Sm-1
=1 DISm-1)

with the projectors
[np=1;S,m)=
R ciTaiT+cub;r

! J25+1

If we restrict the Hilbert space of the problem by fixing the -
spin length at each site to the val8e-n;/2 (Wherenizﬁ”

+n;|), we can simply replace the projectd®é by spinless is transformed into its corresponding Schwinger boson rep-
fermion operators; . This becomes clear by taking a closer résentation by the operator

look on the operatorR;” . Let us assume that sités occu-

(11)

— 1
S+m+5

KHHSJ‘HE) 17

pied by an electron, and therefore the total spin at the site is R-‘=M. (18
S+1/2. The corresponding stafe.;S,m) can be written as ' V2S+1
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Hence, in hole representation, the DE Hamiltonian reads which is averaged over all values and directionsSef

DE _
hole™

2%% [(RD)"(aa]+bb))R +H.c]. (19

The Hamiltonian for spinless fermions, E(L5), changes
only little, becoming

t
Hise=—= > [(aa+bb))h'h;+H.c] (20)
2S
with the constraint
a'a;+b'b,=2S—h'h; . (22)

Ill. EFFECTIVE TRANSPORT HAMILTONIAN

To obtain an effective Hamiltonian for the spin-dependent
hole-hopping, the spin part of the DE interaction is consid-1

ered within mean-field approximation. However, there ar
two representations of the DE Hamiltonian to start from:
Egs.(19) and(20). The resulting effective Hamiltonians de-
scribe carriers with or without spin, respectively. Given Eq.
(20), a mean hopping of the spinless carriéf®), is obtained
by considering each bon(dj) separately, and taking the ex-
pectation value of the DE term for all values of the total
bond spin S; and St in an effective ordering field
N=pBgugH%s. This reproduces the result of Kubo and
Ohata’ Having spin$S at sitei and spinS at sitej, we may
consider the coupled stag of maximal S, given by

|ST !ST>(§S): C(bIT JT_ b}'aiT)ZS+1/2—ST(aiT)ST+ 1/2

X (a])5T~¥30), (22)
with the normalization factor
[(2Sr+1)!]"2
c= 1 1 1 3
S5 )! ST_E)! 2s+5—sT)! 28+ S+ !
(23)

Applying the DE expressiona('a; +b/b;), which commutes
with ST =a'b;+afb; andSy , we arrive at

(afa;+b/b))[Sr,Sr)(sy

=C

1
ST+ E (blTair_ b]TaiT)ZS+l/27ST

X (a])*1"¥%af)*r* ¥ 0)

1
Srts (29)

|ST vsT>(S§ .

Hence, we rederived th-independent effective matrix el-
ement for a single bon¢tf. Appendix A or Ref. 3,

S +1/2

2S

t(0 =

t, (25

0=y S\, (26)
wherd
25-12 S
sTJr_l/zem
— S;=12M==s; 2S
Y[ SN ]= 2S-12  S¢
eM)\
Sr=12 M=—=S;
1, S tr(2§+1)\
=—+——CO0
2 25+1 2
X | coth(S\) ! n{x) (27)
CcO — —=Ccotn =/ |.
2S 2

he effective Hamiltonian describing spinless fermionic

holes in an averaged background of ordered spins reads

Hefl | =FO [hi’fhj+H.c.].

hole ™ )

In Appendix B we compare the classical limit of both this
Hamiltonian and the exact expression. At least the bandwidth
turns out to be represented very well.

Another possible way to obtain an effective Hamiltonian
is based on the picture of itinerant carriers of spimoving
in the background of localized spins, the correlations of
which change on a large time scale compared with the hop-
ping frequency. Then an effective hopping Hamiltonian is
obtained averagingipy., Eq. (19), over free spinsS in a
homogeneous fieldl. According to Eqs(5) and(6) and the
fact that(S™)=0 and(S?) =SB4 S\ ] (whereBg z] denotes
the Brillouin function, only two terms contribute. The re-
sulting Hamiltonian involves two effective hopping matrix
elements, one for each spin channel,

(28)

Hioie' =2 [Tihihy +TRIR, +He) (29
1]
with
- -t e Pt 2
i (28)(28+1){S(1 B SADI, 30
~_ vt = = 112
EEFSIEETRS >

In a fully polarized backgroung)\(—;oo) only holes with
anti-parallel spin can hoﬁi—>[28/(28+ 1)]t), while holes

with parallel spin are blockedt“(HO). In general, the situ-
ation is complicated by the fact that E9) involves re-
stricted fermion operatordiubbard operatojpreventing an
exact solution of the model. However, to a good approxima-
tion, in the polarized phase the spin-up band can be ne-
glected, while the spin-down band is taken into account us-
ing unrestricted operator{]). On the other hand, in a
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disordered phase\(~0) both bands are equivaleft; =1, | @in) =StM1) ((5))s)) (A3)
—>[§/(4§+ 2)]t), making an approximate treatment less evi- —
dent. S % | Sr —

= my M, |my 1S1M1) (05| S2M2).

IV. CONCLUSIONS mym,
(A4)

In the present work we review the subject of double X Now. if the electron moves to site 2. we can couplends,
change and derive an effective Hamiltonian for the spin- """ " =~ ) ) .
dependent hopping of holes in an averaged background ¢f give S, which together withS, yields another state of
local spins. This is used in a subsequent publication within d0tal spin S;. However, as can be seen above, there are
two-phase scenario for the description of colossal magnedifferent ways to connect the three spins. One possible final

toresistant manganitésalternatively to the effective Hamil- State is

tonian for spinless carriers derived in Ref. 7. Besides, we | A)=|STm ) (A5)
illustrate that on the level of quantum spins all features of ' f T/ (S1(0))
double exchange—namely, its derivation, limiting cases, as —

S ) S's, | S
well as approximations—are probably most clearly repre N
sented in terms of Schwinger bosons. =2 mem, |mr |S1m1)[S2M2) (o5, -

mim;
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APPENDIX A: REEXAMINATION
OF THE TWO-SITE PROBLEM

As noted above, the DE matrix element, Eg85), was x[ o S 51}

(@h] @iy =(—1)S1+%2+51\/(25, +1)(2S,+1)

first derived by Anderson and Hasegdws considering a SSS S, (A7)

system of two spinsS at neighboring sites and a mobile
electron whose spinr is coupled to the local spin at the same We obtain the value of the matrix relevant for strong Hund’s
site. Recently the problem was reexamined byllblu  coupling by settindS|= S+ 1/2=S and|S|=S=S—1/2:
Hartmann and Dagottbwho found a “nontrivial” phase fac-
tor, which the authors interpreted in terms of a Berry phase ) Si+1/2
within the limit S—oo. We argue that the phase factor of their = 5 t, (A8)
guantum DE Hamiltonian merely compensates for the phase
introduced by the permutation of neighboring spin statesi.e., there is n&;-dependent phase factor. However, M+
whereas independently the Berry phase evolves in the clagtartmann and Dagotto derive an effective double-exchange
sical (S—) limit of the correct DE Hamiltonian, Eq15). Hamiltonian, where the hopping is expressed as the per-
Moreover, on a lattice, double exchange cannot be describedytation of the spinS “particle” at site 1 and the spin
lcr;alkteerirrzlz g::csopljgtaflg:jm?oer:incqlfggmu?aptiegr?tg;ti\g:?h do nOt(S— 1/2) “hole” at site 2. Therefore _the final state they have
o . ) L to consider for the matrix element is
To be specific we briefly summarize the two-site problem.
?sjur_nlng the electrpn initially to be at S|te_ 1 we $tart with |§DE>:|STmT>((aSZ)Sl) (A9)
pling the local spirs; and the electron spiar, to give an

on-site spinS; =S, + o. We note that the construction of the

corresponding wave function is not unique, as is known from B 32 St Sty
textbooks on spin algebraln more detail, _%}1 m,Mm; |my |Szm2>(l,sz)|81m1). (A10)
211
(o Sl §1

|31m1>(asl):2m wmy | m, lou)|Simy), (A1) Opviously the permutation of the indices in the Clebsch-
K Gordan coefficients yields a different phase factor in the

_ - overlap,
|Slm1>(810') =(—1)7"5 3 S1M1)(os)) » (A2)

Bl \—(_1\S1+$+5+S . [ioa. =
1)1 1 25,+1)(25,+1
where we give the order of the constituting spin states as a (erlem=(=1) V@S 128+ )

subscript and denote Clebsch-Gordan coefficients-bly). o S §l
Adding this spin to the unchanged core spin at site 2, we X _ 1,
arrive at an initial state of total spig; St & S

(A11)
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and consequently the authors obtairSgdependent phase
factor fort{,

t®=(— 1)2§—sT—1/2ST+_1/2t_

= (A12)

To recover the effective Hamiltonian E¢(p) of Ref. 8,

tP1Qs(y),

we simply have to expresS; in t(Bb) with the help of

y=S,-S,/[S(S—1/2)]. In a direct way we can use interpo-
lation polynomials in the form of Lagrange, i.e.,

Hef= — (A13)

25-12  25-172 Y-y,
Qsly)= > @ J[ —L (A14)
Si=1/2 =12 Ys; 7Y
i#St
i(j+1)—S(S+1)—(S—1/2)(S+1/2
R O e Cat CICLE I

j 25(S-1/2)
or the recursive formula given in E(7) of Ref. 8. Of course,
taking the matrix elemertf® for the construction of)5(y)
is wrong, as this does not account for the phase factor due
the permutatiorP,,. Concerning the limit of classical spins,

we can see no connection between the ab®veependent
phase factor and the Berry phase.

The peculiarities concerning the phase factor indicate that

the above derivation is not suitable for the generalization to
lattice. Moreover, the spi&-“particles” still obey fermion

PHYSICAL REVIEW B 64 054406

[where|n; ,) = (c})"¥|0) with numbers; , € {0,1}], we find
the average

<¢1|HE|E|¢2>:1;[ <”1,k|(_<i2j> [tijC?Cj*”H-C-])l_k[ N2k

(B5)
with the matrix element
0 GJ- o
tj=t cos(g)co%i)e (= ¢y)/2
O 0
! L ai(ei—¢))/2
+sm( 2)sm( 5 e IS (B6)
Hence, the classical Hamiltonian should read
Homee — > [tijclcj+H.cl, (B7)

(i)
which is equivalent to the results obtained in Refs. 11 and 8.
In our case, however, the classical limit followed from the
guantum Hamiltonian, Eq(15), in an obvious and more
straightforward way. Note also, that averaging the operators
(R")T andR;" over coherent states yields the unitary trans-
% rmation onto rotated electroni™ (compare Refs. 11 and

8)1
0;
dj=co >

a

i.e., naturally Eq(10) has the same classical limit.

e %%, +sin --|e'%%;, (B8

commutation relations, which cannot be expressed by con- To check whether the description of double-exchange in
ventional permutation or spin operators. That means, the exerms of classical spins is appropriate, we compareddhe

pression given in Eq.6) of Ref. 8,

Hefl= —t<i2j> Pi;Qs(y), (A16)

is not the correct quantum DE Hamiltonian on a lattice.

APPENDIX B: CLASSICAL LIMIT OF THE DE MODEL
The limit S— of HOF, Eq. (15), is easily derived by
taking its expectation value with spin coherent stafes,

0(S.6,9) _ (ua'+wvb")?®
( ) -¢ >_ \/(2?

where u=cos@?2)e'?? and v=sin(l2)e '??. Using the
properties of coherent states,

0), (B1)

alQ(S,6,¢))=2S4Q(S-3,6,9)), (B2)
blQ(S,0,4))=2S0|Q(S~35.0,4)),  (BI

for a given spin configuratioké,,¢,} and two electronic

states ;) and|#,),
1O ¢k) >

Nj k

5 (B4)

|¢j>:1_k[ Inj 10 Q(S"'

nonica) density of state$DOS) for a fixed number of carri-
ers on a small cluster, which interact with quant(iEq.
(15)] or classical [Eg. (B7)] spins, respectively. Using
Chebyshev expansion and maximum entropy methbéks,

0.8 r 0B - r T T T T
06 | s=10
73]
06 - 8 04 E |
l \
) \
i i
(2] I i
8 04 ! | ‘ |
b o o i il A 3
LN e A
| TN f'M“ ALY, ety
el el
l Hll;‘lhl ' |"m”:::::‘,:"\“”'/”|” i |
02| | i b
i v ;
i !
i )
0 "I L L y L L I 1‘
25 -2 -15 -1 -05 0 05 1 15 2 25
E

FIG. 1. Density of nonzero eigenvaluétashed lingand run-
ning averagégbold dot-dashed line calculated for two electrons on
four sites withS=5 (inse) and S=10, compared to the classical
resultS—« (bold solid ling.
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0-3 T T 6 T T T T
+—— numerical
—-— Kubo/Ohata (S —> )
55
-6 4 -2 0 2 4 6
02 , I 5 0.25 ——————————— |
' 0<A<10
pX Q 02 | 1]
8 = 4.5
0.15 E
8
0.1 4 4 Q i
0.1 ]
u 351 0.05 | 17
0 ) . 3 , .0 , .
-6 0 2 4 [ 0 2 4 6 8 10
E A

FIG. 2. Density of nonzero eigenvalues for four electrons on FIG. 3. Bandwidth of tight-binding electrons on a simple cubic
eight sites withS=3/2; same notations as in Fig. 1. lattice of size 63, interacting with thermalized classical spins in a
homogeneous field, compared to the limiS—« of the Kubo-

. . Ohata formula. Inset: Narrowing of the corresponding density of
the quantum case the spectra can be obtained numerically fQf a5 with decreasing.

rather largeS. The classical DOS is found by averaging the
eigenvalues oHDE  Eq. (B7), over a large number of spin
configurations.

In Fig. 1 we consider two electrons on a ring of four sites.

Chebyshev expansion methods mentioned above, one can
calculate the grand-canonical DOS of the tight-binding

. . . model, Eq.(B7), for rather large clusterghere 64 sites on a
Comparing the running averagbold dot-dashed lineover g6 cubic lattick without much effort. By considering a

the discrete spectrurtthin dashed line and the classical ,6rmajized ensemble of classical spins in a homogeneous
limit (bold solid ling, we find good convergence already fig|y \ye compare the resulting bandwidth with the limit

for a moderate spin lengt®=10. But even for the case ~ . — . o
S=23/2, which is Fealizec? in the manganites, the classical "~ of t*), where the limit ofys S\] is obtained omitting

description appears to be acceptable. If we consider foup in the argument and settir§— oo in the index,

electrons on a ring of eight sites, the spectrum is much more

dense, allowing similarities to be recognized easily, see Fig.

2. Of course, from the density of states we can learn nothing Vsl N]= 2

about correlations or other more involved features. Note that

in both figures we subtracted the peakgat 0 consuming a The agreement is rather satisfactory, as can be seen in Fig. 3.

large fraction of spectral weight. Naturally, the precise shape of the D@&e insetwill not
Another interesting check concerns the effective hoppinge reproduced by the effective electronic model; it remains

matrix elementt®, Eq. (26). With classical spins and the simple cubic tight-binding for all fields and temperatures.

1+coth(\) ) (B9)

1
cotr()\)—x
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