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Considerations on the quantum double-exchange Hamiltonian
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Schwinger bosons allow for an advantageous representation of quantum double exchange. We review this
subject, comment on previous results, and address the transition to the semiclassical limit. We derive an
effective fermionic Hamiltonian for the spin-dependent hopping of holes interacting with a background of local
spins, which is used in a related publication within a two-phase description of colossal magnetoresistant
manganites.
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I. INTRODUCTION

Introduced by Zener1 in the early 1950s, the notion o
double exchange together with mixed-valency mangan
R12xAxMnO3 ~whereR5La, Pr, Nd andA5Sr, Ca, Ba, Pb!
attracted renewed attention when a colossal magnetoresi
effect was discovered in these compounds some years a2

The magnetic and electronic properties of manganese ox
to some extent, are believed to arise from the large Coulo
and Hund’s rule interaction of the manganesed shell elec-
trons. Due to the almost octahedral coordination within
perovskite structure thed levels split into two subbands la
beled according to their octahedral symmetry,eg andt2g . In
the case of zero doping (x50), there are four electrons pe
Mn site that fill up the threet2g levels and oneeg level, and
by Hund’s rule, form aS52 spin state. Doping will remove
the electron from theeg level, and by hopping via bridging
oxygen sites these holes acquire mobility. However, this h
ping acts in a background of local spinsS53/2 formed by
the t2g electrons and its amplitude depends on the overla
the spin states at neighboring sites~or, in a classical lan-
guage, on their relative angle!; it is largest if the total bond
spin is maximal and vice versa.3

Another ingredient, which is assumed to significantly
fluence the physical properties of manganites, is electr
lattice interaction. Namely, the twoeg orbitals, which are
degenerate in a perfect cubic environment, will couple
lattice vibrations of the same symmetry, giving rise to
Jahn-Teller effect and polaronic behavior in some regions
the phase diagram. It is this close interplay of three differ
subsystems~electrons in degenerate orbitals, background
localized spins, and lattice vibrations! that makes the physic
of manganites both rich and complicated.

In the present work we concentrate on the double
change~DE! part of the interactions and consider differe
possibilities for an approximate treatment of the exact
Hamiltonian on a lattice in terms of effective electronic on
or two-band models. These can be used in a more elabo
modeling of the real materials~see our forthcoming work4!.
It turns out that quantum double exchange on a lattice
most suitably derived and described with the help
Schwinger bosons. We therefore include a detailed and p
gogic derivation of the quantum DE Hamiltonian usin
Schwinger bosons. Although this approach has been u
0163-1829/2001/64~5!/054406~6!/$20.00 64 0544
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before,5 we feel a comprehensive presentation of the sub
is still missing. In two appendixes we reexamine the deri
tion for two sites, and consider the semiclassical lim
(S→`). In addition, by means of numerical experiments, w
illustrate how this limit evolves from the quantum case.

II. SCHWINGER BOSON REPRESENTATION
OF DOUBLE EXCHANGE

To derive the quantum DE Hamiltonian on a lattice, as
starting point we take the Kondo lattice model including o
site Coulomb repulsion,

H52t (
^ i j &s

@cis
† cj s1H.c.#2JH (

iss8
~Sisss8!cis

† cis8

1U(
i

ni↓ni↑ , ~1!

where summation is over nearest-neighbor bonds^ i j & or
sites i, respectively. For clarity and since it can be includ
easily in the final result, here we have neglected the orb
degeneracy of theeg electrons. That is,cis

(†) denote electrons
in a single band, which interact with some localized spinSi
via the Hund’s couplingJH . In the real materials this local
ized spin corresponds to the remainingt2g electrons, which
tend to form a high spin state with an electron in theeg shell.

In the manganites the situation is such thatU@JH.t ~cf.
Refs. 3 and 6!. Hence, we first take the limitU→`, resulting
in

H52t (
^ i j &s

@ c̃is
† c̃ j s1H.c.#2JH (

iss8
~Sisss8!c̃is

† c̃is8

~2!

with restricted fermionsc̃is5cis(12ni ,2s). Next, following
Kubo and Ohata,7 the exchange term in Eq.~2! is solved
while the hopping term is considered as a small perturbat
For positiveJH the ground state of the exchange term is
free spinS, if there is no electron at sitei, or a coupled spin
S̄5S11/2 otherwise~note that we useS for the length of the
localized spinSi formed by t2g electrons!. To describe the
effective hopping we therefore need a projection opera
which restores these conditions,
©2001 The American Physical Society06-1
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~Pi
1!ss85

~Sisss8!1~S11!dss8
2S11

. ~3!

Then the DE Hamiltonian@Eq. ~2.3! in Ref. 7# is given in
terms of spin and restricted fermion operators by

Hel
DE52t (

^ i j &ss8
@ c̃is

† ~Pi
1Pj

1!ss8c̃ j s81H.c.#. ~4!

However, this expression turns out to be unwieldy for a
lytic as well as numeric calculations. Although in princip
the electronic spin is absorbed into the total spin at each
the spin indexs is still present in Eq.~4!. Here the advan-
tages of Schwinger bosons come into play, namely, the p
sibility to describe spins of arbitrary amplitude with the sam
set of boson operatorsai andbi ,

Si
15ai

†bi , Si
25bi

†ai , ~5!

Si
z5~ai

†ai2bi
†bi !/2, ~6!

uSi u5~ai
†ai1bi

†bi !/2. ~7!

Using these operators, we can rewrite the projection op
tors Pi

1 ,

~Pi
1!ss85

1

2S11 F ~S11!1Si
z Si

2

Si
1 ~S11!2Si

zG
5

1

2S11 Faiai
† aibi

†

biai
† bibi

†G , ~8!

where we can keepS in the denominator, because it is co
served. The last matrix can be decomposed easily,

~Pi
1!ss85

1

2S11 Fai

bi
G•@ai

† bi
†#, ~9!

which leads to

Hel
DE5

2t

2S11 (̂
i j &

@~Ri
1!†~ai

†aj1bi
†bj !Rj

11H.c.# ~10!

with the projectors

Ri
15

c̃i↑ai
†1 c̃i↓bi

†

A2S11
. ~11!

If we restrict the Hilbert space of the problem by fixing th
spin length at each site to the valueS1ni /2 ~whereni5ñi↑
1ñi↓), we can simply replace the projectorsRi

1 by spinless
fermion operatorsci . This becomes clear by taking a clos
look on the operatorsRi

1 . Let us assume that sitei is occu-
pied by an electron, and therefore the total spin at the sit
S11/2. The corresponding stateune ;S,m& can be written as
05440
-

te,

s-

a-

is

u1;S1 1
2 ,m&5

AS1
1

2
1m

2S11
u↑&uS,m2 1

2 &

1
AS1

1

2
2m

2S11
u↓&uS,m1 1

2 &. ~12!

Using the representation of anSz eigenstate in terms o
Schwinger bosons,

uS,m&5
~a†!S1m~b†!S2m

A~S1m!! ~S2m!!
u0&, ~13!

we find that by applying the operatorR1, the state
u1;S11/2,m& in Eq. ~12! is transformed into the correspond
ing Schwinger boson representation of the coupled spiS
11/2, while the electron is annihilated,

R1u1;S1 1
2 ,m&5u0;S1 1

2 ,m&. ~14!

Backwards, the operator (R1)† creates the decomposition o
the coupled spin into electronic and localized spin, i.e.
produces appropriate Clebsch-Gordan coefficients.

Consequently, if the electronic spin merges into t
Schwinger boson representation via the constraint, we
omit the indexs of the fermions. What remains of the op
eratorsRi

1 are spinless fermions,ci , which automatically
satisfy the restriction on the local electron number. The c
responding Hamiltonian is given by

Hel
DE5

2t

2S11 (̂
i j &

@~ai
†aj1bi

†bj !ci
†cj1H.c.#, ~15!

where, for every sitei, the Hilbert space is constrained to

ai
†ai1bi

†bi52S1ci
†ci . ~16!

In the case of low doping usually it is more appropria
and natural to consider holes instead of electrons. H
‘‘hole’’ denotes a fermion and a spinSmoving together in a
background of spinsS̄5S11/2. For the transformation o
the electronic Hamiltonian, Eq.~10!, the operatorR1 needs
to be replaced by a suitable counterpart involving restric
hole operatorsh̃is . In analogy to Eqs.~12!–~14!, the state

unh51;S,m&5AS̄2m1
1

2

2S̄11
u↑&uS̄,m2 1

2 &

2AS̄1m1
1

2

2S̄11
u↓&uS̄,m1 1

2 & ~17!

is transformed into its corresponding Schwinger boson r
resentation by the operator

Ri
25

h̃i↑bi2h̃i↓ai

A2S̄11
. ~18!
6-2
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Hence, in hole representation, the DE Hamiltonian reads

Hhole
DE 5

t

2S̄
(̂
i j &

@~Ri
2!†~aiaj

†1bibj
†!Rj

21H.c.#. ~19!

The Hamiltonian for spinless fermions, Eq.~15!, changes
only little, becoming

Hhole
DE 5

t

2S̄
(̂
i j &

@~aiaj
†1bibj

†!hi
†hj1H.c.# ~20!

with the constraint

ai
†ai1bi

†bi52S̄2hi
†hi . ~21!

III. EFFECTIVE TRANSPORT HAMILTONIAN

To obtain an effective Hamiltonian for the spin-depend
hole-hopping, the spin part of the DE interaction is cons
ered within mean-field approximation. However, there
two representations of the DE Hamiltonian to start fro
Eqs.~19! and ~20!. The resulting effective Hamiltonians de
scribe carriers with or without spin, respectively. Given E
~20!, a mean hopping of the spinless carriers,t̃ (b), is obtained
by considering each bond̂i j & separately, and taking the ex
pectation value of the DE term for all values of the to
bond spin ST and ST

z in an effective ordering field
l5bgmBHeff

z . This reproduces the result of Kubo an

Ohata.7 Having spinS̄ at site i and spinS at site j, we may
consider the coupled stateST of maximalST

z , given by

uST ,ST& (S̄S)5C~bi
†aj

†2bj
†ai

†!2S11/22ST~ai
†!ST11/2

3~aj
†!ST21/2u0&, ~22!

with the normalization factor

C5
@~2ST11!! #1/2

S ST1
1

2
D ! S ST2

1

2
D ! S 2S1

1

2
2STD ! S 2S1

3

2
1STD !

.

~23!

Applying the DE expression (aj
†ai1bj

†bi), which commutes
with ST

15ai
†bi1aj

†bj andST
2 , we arrive at

~aj
†ai1bj

†bi !uST ,ST& (S̄S)

5CS ST1
1

2D ~bi
†aj

†2bj
†ai

†!2S11/22ST

3~ai
†!ST21/2~aj

†!ST11/2u0&

5S ST1
1

2D uST ,ST& (SS̄) . ~24!

Hence, we rederived theST
z-independent effective matrix el

ement for a single bond~cf. Appendix A or Ref. 3!,

t ~b!5
ST11/2

2S̄
t, ~25!
05440
t
-
e
:

.

l

which is averaged over all values and directions ofST ,

t̃ ~b!5g S̄@S̄l#t, ~26!

where7

g S̄@S̄l#5

(
ST51/2

2S̄21/2

(
M52ST

ST ST11/2

2S̄
eMl

(
ST51/2

2S̄21/2

(
M52ST

ST

eMl

5
1

2
1

S̄

2S̄11
cothS 2S̄11

2
l D

3Fcoth~S̄l!2
1

2S̄
cothS l

2D G . ~27!

The effective Hamiltonian describing spinless fermion
holes in an averaged background of ordered spins reads

Hhole
eff, I5 t̃ ~b!(̂

i j &
@hi

†hj1H.c.#. ~28!

In Appendix B we compare the classical limit of both th
Hamiltonian and the exact expression. At least the bandw
turns out to be represented very well.

Another possible way to obtain an effective Hamiltoni
is based on the picture of itinerant carriers of spin1

2 moving
in the background of localized spins, the correlations
which change on a large time scale compared with the h
ping frequency. Then an effective hopping Hamiltonian
obtained averagingHhole

DE , Eq. ~19!, over free spinsS̄ in a
homogeneous fieldl. According to Eqs.~5! and~6! and the
fact that^S6&50 and^Sz&5S̄BS̄@S̄l# ~whereBS̄@z# denotes
the Brillouin function!, only two terms contribute. The re
sulting Hamiltonian involves two effective hopping matr
elements, one for each spin channel,

Hhole
eff, II5(̂

i j &
@ t̃ ↑h̃i↑

† h̃ j↑1 t̃ ↓h̃i↓
† h̃ j↓1H.c.# ~29!

with

t̃ ↑5
t

~2S̄!~2S̄11!
$S̄~12BS̄@S̄l#!%2, ~30!

t̃ ↓5
t

~2S̄!~2S̄11!
$S̄~11BS̄@S̄l#!%2. ~31!

In a fully polarized background (l→`) only holes with
anti-parallel spin can hop„ t̃ ↓→@2S̄/(2S̄11)#t…, while holes
with parallel spin are blocked (t̃ ↑→0). In general, the situ-
ation is complicated by the fact that Eq.~29! involves re-
stricted fermion operators~Hubbard operators! preventing an
exact solution of the model. However, to a good approxim
tion, in the polarized phase the spin-up band can be
glected, while the spin-down band is taken into account
ing unrestricted operatorshi↓

(†) . On the other hand, in a
6-3
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A. WEIßE, J. LOOS, AND H. FEHSKE PHYSICAL REVIEW B64 054406
disordered phase (l→0) both bands are equivalent„ t̃ ↑5 t̃ ↓
→@S̄/(4S̄12)#t…, making an approximate treatment less e
dent.

IV. CONCLUSIONS

In the present work we review the subject of double e
change and derive an effective Hamiltonian for the sp
dependent hopping of holes in an averaged backgroun
local spins. This is used in a subsequent publication with
two-phase scenario for the description of colossal mag
toresistant manganites,4 alternatively to the effective Hamil
tonian for spinless carriers derived in Ref. 7. Besides,
illustrate that on the level of quantum spins all features
double exchange—namely, its derivation, limiting cases,
well as approximations—are probably most clearly rep
sented in terms of Schwinger bosons.
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APPENDIX A: REEXAMINATION
OF THE TWO-SITE PROBLEM

As noted above, the DE matrix element, Eq.~25!, was
first derived by Anderson and Hasegawa3 by considering a
system of two spinsS at neighboring sites and a mobi
electron whose spins is coupled to the local spin at the sam
site. Recently the problem was reexamined by Mu¨ller-
Hartmann and Dagotto,8 who found a ‘‘nontrivial’’ phase fac-
tor, which the authors interpreted in terms of a Berry ph
within the limit S→`. We argue that the phase factor of the
quantum DE Hamiltonian merely compensates for the ph
introduced by the permutation of neighboring spin stat
whereas independently the Berry phase evolves in the c
sical (S→`) limit of the correct DE Hamiltonian, Eq.~15!.
Moreover, on a lattice, double exchange cannot be descr
in terms of spin and permutation operators, which do
take into account fermionic commutation relations.

To be specific we briefly summarize the two-site proble
Assuming the electron initially to be at site 1 we start w
coupling the local spinS1 and the electron spins, to give an
on-site spinS̄15S11s. We note that the construction of th
corresponding wave function is not unique, as is known fr
textbooks on spin algebra.9 In more detail,

uS̄1m̄1&~sS1!5 (
mm1

S s S1 S̄1

m m1 m̄1
D usm&uS1m1&, ~A1!

uS̄1m̄1& (S1s)5~21!s1S12S̄1uS̄1m̄1& (sS1) , ~A2!

where we give the order of the constituting spin states a
subscript and denote Clebsch-Gordan coefficients by~••u•!.
Adding this spin to the unchanged core spin at site 2,
arrive at an initial state of total spinST
05440
-

-
-
of
a
e-

e
f
s
-

e-
nt

e

se
s,
s-

ed
t

.

a

e

uw in&5uSTmT& ((sS1)S2) ~A3!

5 (
m̄1m2

S S̄1 S2 ST

m̄1 m2 mT D uS̄1m̄1& (sS1)uS2m2&.

~A4!

Now, if the electron moves to site 2, we can couples andS2

to give S̄2, which together withS1 yields another state o
total spin ST . However, as can be seen above, there
different ways to connect the three spins. One possible fi
state is

uwfi
A&5uSTmT& (S1(sS2)) ~A5!

5 (
m1m̄2

S S1 S̄2 ST

m1 m̄2 mT D uS1m1&uS̄2m̄2& (sS2) .

~A6!

The corresponding effective hopping matrix elementtA
(b) is

proportional to the overlap̂wfi
Auw in&, which can be evaluated

by rewriting the multiple sum over the product of fou
Clebsch-Gordan coefficients with a 6-j symbol,

^wfi
Auw in&5~21!S̄11S21STA~2S̄111!~2S̄211!

3H s S1 S̄1

ST S2 S̄2
J . ~A7!

We obtain the value of the matrix relevant for strong Hun
coupling by settinguS̄i u5S11/2[S̄ and uSi u5S5S̄21/2:

tA
(b)5

ST11/2

2S̄
t, ~A8!

i.e., there is noST-dependent phase factor. However, Mu¨ller-
Hartmann and Dagotto derive an effective double-excha
Hamiltonian, where the hopping is expressed as the
mutation of the spinS̄ ‘‘particle’’ at site 1 and the spin
(S̄21/2) ‘‘hole’’ at site 2. Therefore the final state they hav
to consider for the matrix element is

uwfi
B&5uSTmT& ((sS2)S1) ~A9!

5 (
m̄2m1

S S̄2 S1 ST

m̄2 m1 mT D uS̄2m̄2& (sS2)uS1m1&. ~A10!

Obviously the permutation of the indices in the Clebsc
Gordan coefficients yields a different phase factor in
overlap,

^wfi
Buw in&5~21!S11S21S̄11S̄2A~2S̄111!~2S̄211!

3H s S1 S̄1

ST S2 S̄2
J , ~A11!
6-4
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and consequently the authors obtain aST-dependent phas
factor for tB

(b) ,

tB
(b)5~21!2S̄2ST21/2

ST11/2

2S̄
t. ~A12!

To recover the effective Hamiltonian Eq.~6! of Ref. 8,

Heff52t P12QS̄~y!, ~A13!

we simply have to expressST in tB
(b) with the help of

y5S1•S2 /@S̄(S̄21/2)#. In a direct way we can use interpo
lation polynomials in the form of Lagrange, i.e.,

QS̄~y!5 (
ST51/2

2S̄21/2

tB
(b) )

j 51/2
j ÞST

2S̄21/2
y2yj

yST
2yj

~A14!

yj5
j ~ j 11!2S̄~S̄11!2~S̄21/2!~S̄11/2!

2S̄~S̄21/2!
, ~A15!

or the recursive formula given in Eq.~7! of Ref. 8. Of course,
taking the matrix elementtA

(b) for the construction ofQS̄(y)
is wrong, as this does not account for the phase factor du
the permutationP12. Concerning the limit of classical spins
we can see no connection between the aboveST-dependent
phase factor and the Berry phase.

The peculiarities concerning the phase factor indicate
the above derivation is not suitable for the generalization
lattice. Moreover, the spin-S̄ ‘‘particles’’ still obey fermion
commutation relations, which cannot be expressed by c
ventional permutation or spin operators. That means, the
pression given in Eq.~6! of Ref. 8,

Heff52t(̂
i j &

Pi j QS̄~y!, ~A16!

is not the correct quantum DE Hamiltonian on a lattice.

APPENDIX B: CLASSICAL LIMIT OF THE DE MODEL

The limit S→` of Hel
DE , Eq. ~15!, is easily derived by

taking its expectation value with spin coherent states,10

uV~S,u,f!&5
~ua†1vb†!2S

A~2S!!
u0&, ~B1!

where u5cos(u/2)eif/2 and v5sin(u/2)e2 if/2. Using the
properties of coherent states,

auV~S,u,f!&5A2SuuV~S2 1
2 ,u,f!&, ~B2!

buV~S,u,f!&5A2SvuV~S2 1
2 ,u,f!&, ~B3!

for a given spin configuration$uk ,fk% and two electronic
statesuc1& and uc2&,

uc j&5)
k

unj ,k&UVS S1
nj ,k

2
,uk ,fkD L ~B4!
05440
to

at
a

n-
x-

@whereunj ,k&5(ck
†)nj ,ku0& with numbersnj ,kP$0,1%#, we find

the average

^c1uHel
DEuc2&5)

k
^n1,kuS 2(̂

i j &
@ t i j ci

†cj1H.c.# D)
k

un2,k&

~B5!

with the matrix element

t i j 5tFcosS u i

2 D cosS u j

2 De2 i (f i2f j )/2

1sinS u i

2 D sinS u j

2 Dei (f i2f j )/2G . ~B6!

Hence, the classical Hamiltonian should read

Hclass
DE 52(̂

i j &
@ t i j ci

†cj1H.c.#, ~B7!

which is equivalent to the results obtained in Refs. 11 and
In our case, however, the classical limit followed from t
quantum Hamiltonian, Eq.~15!, in an obvious and more
straightforward way. Note also, that averaging the opera
(Ri

1)† andRi
1 over coherent states yields the unitary tran

formation onto rotated electronsdj
(†) ~compare Refs. 11 and

8!,

dj5cosS u j

2 De2 if j /2c̃ j↑1sinS u j

2 Deif j /2c̃ j↓ , ~B8!

i.e., naturally Eq.~10! has the same classical limit.
To check whether the description of double-exchange

terms of classical spins is appropriate, we compared the~ca-
nonical! density of states~DOS! for a fixed number of carri-
ers on a small cluster, which interact with quantum@Eq.
~15!# or classical @Eq. ~B7!# spins, respectively. Using
Chebyshev expansion and maximum entropy methods,12 for

FIG. 1. Density of nonzero eigenvalues~dashed line! and run-
ning average~bold dot-dashed line!, calculated for two electrons on
four sites withS55 ~inset! and S510, compared to the classica
resultS→` ~bold solid line!.
6-5
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the quantum case the spectra can be obtained numericall
rather largeS. The classical DOS is found by averaging t
eigenvalues ofHclass

DE , Eq. ~B7!, over a large number of spin
configurations.

In Fig. 1 we consider two electrons on a ring of four site
Comparing the running average~bold dot-dashed line! over
the discrete spectrum~thin dashed line! and the classica
limit ~bold solid line!, we find good convergence alread
for a moderate spin lengthS510. But even for the case
S53/2, which is realized in the manganites, the class
description appears to be acceptable. If we consider
electrons on a ring of eight sites, the spectrum is much m
dense, allowing similarities to be recognized easily, see
2. Of course, from the density of states we can learn noth
about correlations or other more involved features. Note
in both figures we subtracted the peak atE50 consuming a
large fraction of spectral weight.

Another interesting check concerns the effective hopp
matrix elementt̃ (b), Eq. ~26!. With classical spins and th

FIG. 2. Density of nonzero eigenvalues for four electrons
eight sites withS53/2; same notations as in Fig. 1.
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Chebyshev expansion methods mentioned above, one
calculate the grand-canonical DOS of the tight-bindi
model, Eq.~B7!, for rather large clusters~here 643 sites on a
simple cubic lattice! without much effort. By considering a
thermalized ensemble of classical spins in a homogene
field we compare the resulting bandwidth with the lim
S→` of t̃ (b), where the limit ofg S̄@S̄l# is obtained omitting
S̄ in the argument and settingS̄→` in the index,

g S̄→`@l#5
1

2 S 11coth~l!Fcoth~l!2
1

lG D . ~B9!

The agreement is rather satisfactory, as can be seen in F
Naturally, the precise shape of the DOS~see inset! will not
be reproduced by the effective electronic model; it rema
simple cubic tight-binding for all fields and temperatures.

n FIG. 3. Bandwidth of tight-binding electrons on a simple cub
lattice of size 643, interacting with thermalized classical spins in
homogeneous fieldl, compared to the limitS→` of the Kubo-
Ohata formula. Inset: Narrowing of the corresponding density
states with decreasingl.
m
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