
PHYSICAL REVIEW B, VOLUME 64, 054402
Theory of noncollinear magnetism in amorphous transition metals
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The noncollinear magnetism in amorphous transition metals has been investigated by developing the finite-
temperature theory of amorphous-metallic magnetism, which takes into account the transverse spin degrees of
freedom. The theory is based on the functional-integral technique to the degenerate-band Hubbard Hamiltonian
and the distribution function method for local magnetic moments with structural disorder. Numerical results are
presented for the magnetic phase diagram as a function ofd electron numberN and temperatureT, and for the
magnetization vs volume curves ford electron numbers in the vicinity of amorphous Fe. The calculated
magnetic phase diagram on theN-T plane exhibits three ordered phases at low temperatures: the spin glass
~SG! in the regionN<7.38, the noncollinear ferromagnetism~F! in the region 7.38<N<7.43, and the collin-
ear F in the regionN>7.43. The noncollinear SG is expected in the region 6.9,N<7.38, while the SG
transition temperatures for the collinear and the noncollinear SG are almost the same forN&6.9. In the vicinity
of the multicritical point on theN-T plane, the transition from the collinearF to the noncollinearF is shown
to occur with decreasing temperature, due to the freezing of transverse spin components. The result seems to
be consistent with those of the recent Mo¨ssbauer measurements on Fe-rich amorphous transition-metal alloys.
The calculated volume dependence at 35 K shows a clear phase transition from theF to the noncollinear SG
with decreasing volume, and a subsequent transition to the paramagnetism. The type of the transition from the
F to SG is found to depend onN: the first order forN57.0, and the second order forN57.3.

DOI: 10.1103/PhysRevB.64.054402 PACS number~s!: 75.10.Lp, 75.10.Nr, 75.50.Bb, 75.50.Kj
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I. INTRODUCTION

In the last two decades, the magnetism of amorphous t
sition metals and their alloys has been a subject of inten
experimental and theoretical research. Experimental inve
gations on Fe-, Co-, and Ni-rich amorphous transition-me
alloys demonstrated that the magnetic properties of th
amorphous systems are quite different from those of
crystalline counterparts.1–3 In Fe-rich amorphous alloys con
taining early transition metals, it was found that the Cu
temperatures rapidly decrease beyond 85 at.% Fe, and, t
knowledge, a novel phase of spin glass~SG! appears beyond
90 at.% Fe.4–11 Since the SG transition temperatures har
depend on the second elements, it was considered tha
SG is caused by the structural disorder intrinsic in p
amorphous Fe.

Kakehashi developed a finite-temperature theory of am
phous metallic magnetism12–14on the basis of the functional
integral method15–17 and the distribution function method.18

The theory explained the SG of amorphous Fe in terms
competition between the ferro- and the antiferromagnetic
teractions due to the nonlinear magnetic couplings betw
Fe local moments and the local environment effects on
amplitude of the local moments. Subsequently, Yuet al. ex-
tended the theory to the case of amorphous-metallic al
and calculated the magnetic phase diagram of amorph
Fe-Zr alloys as a function of Fe concentration a
temperature.19 The theory successfully explained the o
served transition from the ferromagnetism~F! to the SG with
increasing Fe concentration in Fe-rich amorphous Fe
alloys.
0163-1829/2001/64~5!/054402~16!/$20.00 64 0544
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On the other hand, most of the experimental data of am
phous Fe, other than those of Fe-rich amorphous transit
metal alloys, were reported to show the ferromagnetism.
amorphous Fe in the Y/Fe/Y sandwich film,20 for example,
was reported to show the ferromagnetism with the grou
state magnetization 1.2mB . The amorphous Fe powders co
taining 2 wt. % H, 3 wt. % C, and 1 wt. % O were als
reported to show the ferromagnetism with the magnetiza
1.4mB at the ground state.21 Therefore, it was controversia
whether the pure amorphous Fe shows the SG or the fe
magnetism.

In order to elucidate the origins of the contradictory e
perimental results mentioned above, the volume depende
of the SG state and the influence of the degree of struct
disorder on the magnetic phase diagram were investigate
subsequent papers. In the calculations of the volume de
dence, it was found that the equilibrium volume of amo
phous Fe is expected to be close to the phase boundary
tween the ferromagnetism and the SG.22 It was suggested
that the ferromagnetism in the Y/amorphous Fe/Y film mig
appear due to the volume expansion. To examine the in
ence of the degree of structural disorder, the theory wh
interpolates crystals and amorphous structures was de
oped, and the magnetic phase diagram was calculated
function of the coordination number and the fluctuation
interatomic distance.23,24 The phase diagram explained th
nonunique magnetism observed in Fe-rich amorphous all
the ferromagnetism in the amorphous Fe powder, and
SG in Fe-rich amorphous alloys containing early transit
metals.
©2001 The American Physical Society02-1
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The magnetic properties of amorphous Fe have also b
investigated on the basis of the ground-state theories. At
early stage of investigations, the ground-state calculati
for amorphous Fe reported the ferromagnetism.25–28 Later,
the noncollinear ground-state calculations suggested the
sibility of the SG in amorphous Fe. Kreyet al.29 obtained
two self-consistent solutions with magnetization 1.17mB and
0.2mB , which are almost degenerate in energy, using
tight-binding supercell method with 54 atoms. Lorenzet al.30

performed detailed noncollinear calculations based on
self-consistent linear muffin-tin orbital~LMTO! recursion
method with 1728 atoms in a cluster, and found that
ground-state magnetization decreases up to 0.5mB with the
SG-like random local moment configuration. More rece
noncollinear calculations by Liebset al.31 with use of the
LMTO supercell method with 32 Fe atoms in a unit ce
showed that the SG can become the ground state for a
phous Fe.

In spite of the fact that the theoretical efforts mention
above brought much understanding on the magnetism
amorphous Fe and Fe-rich amorphous alloys, there h
been no theoretical attempts, so far, to investigate the n
collinear magnetism of amorphous metals at finite tempe
tures. Thus, for example, the magnetic phase diagram
amorphous transition metals, including noncollinear mag
tism, has not been clarified yet theoretically. The expe
ments on Fe-rich alloys also show the necessity of the n
collinear finite-temperature theory. The rece
Mössbauer8,32–34 and neutron-diffraction measurements35

have yielded much evidence for noncollinear magnetism
Fe-rich amorphous alloys. In particular, an issue of inter
in Fe-rich amorphous transition-metal alloys has been
experimental observation that the noncollinear state app
at a temperature below the Curie temperatureTC, due to the
spin freezing.5,6,8,32–34,36It was found experimentally that th
obtained magnetic phase diagram4 as a function of the Fe
concentration and temperature is similar to the one obta
in the mean-field theory of the random bond classi
Heisenberg model by Gabay and Toulouse.37 Recently, the
detailed Monte Carlo calculations on the basis of the rand
bond Heisenberg model38 have been performed to expla
the spin freezing phenomenon. The spin freezing in Fe-
amorphous alloys, however, should be explained on the b
of the itinerant model, since the Fe-rich amorphous allo
show the characteristic features of itinerant magnetism, s
as the amplitude fluctuations of local magnetic moments
low temperatures.8

The purpose of the present paper is first to develo
finite-temperature theory of noncollinear magnetism, wh
describes qualitatively or semiquantitatively the magne
properties of amorphous transition metals starting from
itinerant model, and then to investigate the unraveled pr
lems in amorphous transition metals, specifically those
garding amorphous Fe: the spin glass due to the struc
disorder, the transverse spin freezing phenomenon, and
volume dependence of the noncollinear magnetism.

In the following section, we formulate the noncolline
theory of amorphous-metallic magnetism on the basis of
functional-integral method and the distribution functio
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method. In order to take into account the transverse s
degrees of freedom at finite temperatures, we derive the
energy that reduces to the generalized Hartree-Fock app
mation at the ground state using the two-field sta
approximation.17

In Sec. III A, we present the numerical results for amo
phous transition metals as a function of thed electron num-
ber N and the temperatureT. The present results yield th
noncollinear SG due to the structural disorder at low te
peratures after disappearance of the ferromagnetism with
creasing thed electron number, supporting the existence
SG in amorphous Fe. This is consistent with the experim
tal observations4 on Fe-rich amorphous transition metal a
loys. Furthermore, we show that the transverse spin free
occurs below the Curie temperature with the decrease
temperature as well as with the decrease of thed electron
number, yielding the magnetic phase diagram consisting
four phases: the collinear ferromagnetism, the noncollin
ferromagnetism, the spin glass, and the paramagnetism.
result explains the recent Mo¨ssbauer experiments8,32–34 on
Fe-rich amorphous transition-metal alloys. The results
preliminary calculations for this part have been published
the proceedings.39–41

In Sec. III B, the numerical results for the volume depe
dence in the vicinity of amorphous Fe are presented. T
previous ground-state calculations for amorphous F30

showed a gradual decrease of magnetization towards the
like state with compression, yielding no signs of a cle
phase transition, in disagreement with the results of
finite-temperature theory for collinear local moments.22 We
found a clear phase transition from the ferromagnetism to
noncollinear SG and a subsequent transition to the param
netism with decreasing volume in agreement with the exp
ments on Fe-rich amorphous transition-metal alloys un
pressure.42 In Sec. IV, we summarize the present results a
discuss the remaining problems.

II. FORMULATION

A. Functional-integral technique

In order to describe the itinerant electron magnetism
the amorphous-metallic system, we start from theD-fold
degenerate-band Hamiltonian with the intra-atomic Coulo
(Ui) and exchange (Ji) interactions:

H5H01H1 , ~1!

H05(
ins

~e i
02his!nins1 (

in j n8s

t i j ains
† aj n8s , ~2!

H15
1

4 (
i

Uini
22(

i
JiSi

2 . ~3!

Heree i
0 and t i j , in the one-electron partH0, are the atomic

level on sitei and the transfer integral between the sitei
and j, respectively.hi is the external magnetic field o
site i. ains

† (ains) is the creation~annihilation! operator for an
electron with spins and orbital n on site i, and nins

5ains
† ains is the number operator for the electrons on siti
2-2



p

-

il-
m
a
t

e

a
n

c

at

e

-

tal

he
ns-

n-
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with orbital n and spins. Furthermore,ni and Si in the
interaction partH1, denote the charge and spin density o
erators on sitei, which are defined byni5(nsnins and Si

5(nss8ains
† (s)ss8ains8/2, s, the Pauli spin matrices, re

spectively.
We apply the functional-integral method to the Ham

tonian ~1!, which transforms the interacting-electron syste
to a one-electron system with the time-dependent charge
exchange fields.43,44 The method, however, gives differen
results, depending on the form of the interaction partH1,
when we adopt the static approximation in which the tim
dependence of the fields is neglected.17 In order to describe
best the noncollinear magnetism within the static approxim
tion, we follow the conventional method leading to the ge
eralized Hartree-Fock approximation at the ground state
the present section.

We first introduce the locally rotated coordinates at ea
site, and rewrite the interacting Hamiltonian~3! in terms of
the operators on the rotated coordinates:

H152(
i

(
nn8

S 2
1

4
n̂inAinn8n̂in81

1

4 (
a

x,y,z

m̂inaBinn8
a m̂in8aD ,

~4!

where

Ainn85
1

2
~Ui13Ji !dnn81Ui~12dnn8!, ~5!

Binn8
a

5Ji~12dnn8! ~a5x,y!, ~6!

Binn8
z

5
1

2
~Ui13Ji !dnn81Ji~12dnn8!. ~7!

Here the hats on the operators indicate that those oper
are defined on the rotated coordinates:n̂in5(sâins

† âins and

m̂ina5(ss8âins
† (sa)ss8âins8 . The creation~annihilation!

operatorsâins
† (âins) for an electron with spins, which is

quantized along thez axis of the rotated coordinates on sitei,
05440
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âins
† 5(

s8
ains8

† Ds8s~Ri !, ~8!

âins5(
s8

ains8Ds8s
* ~Ri !, ~9!

where Dss8(Ri) is a rotation matrix for a spin on sitei
defined by

D~Ri !5S cos
u i

2
e2 i (f i /2) 2sin

u i

2
e2 i (f i /2)

sin
u i

2
ei (f i /2) cos

u i

2
ei (f i /2)

D . ~10!

Hereu i andf i denote the zenith and azimuth angles of thz
axis in the rotated coordinates on sitei.

The partition functionZ leading to the free energy at tem
peratureT is given by

Z5TrFT expS 2E
0

b

H~t!dt D G . ~11!

HereT denotes the time-ordered product, andb denotes the
inverse temperature:b51/kBT. H(t) is the Hamiltonian in
the interaction representation defined by

H~t!5etK0He2tK0, ~12!

K05H02mNe, ~13!

wherem andNe denote the chemical potential and the to
number of electrons, respectively.

We next adopt the functional-integral technique to t
Hamiltonian on the rotated coordinates. The method tra
forms under theT product the interacting Hamiltonian~4!
into the one-electron Hamiltonian with time-dependent ra
dom charge and exchange fields$z in(t),jin(t)% by means of
the Hubbard-Stratonovich transformation:43,44
e2H1(t)Dt5F)
i 51

Ns S ~Dt!D det Ai

~4p!D )
a

x,y,z
~Dt!D det Bi

a

~4p!D D 1/2G E F)
i 51

Ns

)
n51

D

djin~t!dz in~t!G
3expF2

Dt

4 (
inn8

S z in~t!Ainn8z in8~t!1 (
a

x,y,z

j ina~t!Binn8
a j in8a~t!D

1
Dt

2 (
inn8

S i z in~t!Ainn8n̂in8~t!1 (
a

x,y,z

j ina~t!Binn8
a m̂in8a~t!D G . ~14!

HereDt is an infinitesimal time interval.Ns denotes the number of sites,D denotes the orbital degeneracy, and detAi denotes
the determinant of matrixAinn8 for orbital indices.

The partition function~11! is then written as
2-3
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Z5E F)
i 51

Ns

)
n51

D

djin~t!dz in~t!GZ0@j~t!,z~t!#

3expF2
1

4 (
inn8

E
0

b

dtS z in~t!Ainn8z in8~t!1 (
a

x,y,z

j ina~t!Binn8
a j in8a~t!D G , ~15!

where
eld

roxi-
ro-
Z0@j~t!,z~t!#5TrFT expS 2E
0

b

H@t,j~t!,2 i z~t!#dt D G ,
~16!

and

H@t,j~t!,2 i z~t!#5K0~t!2
1

2 (
inn8

S i z in~t!Ainn8n̂in8~t!

1 (
a

x,y,z

j ina~t!Binn8
a m̂in8a~t!D . ~17!

Here the functional integrals are defined as

E )
n51

N8 F S ~Dt!D det Ai

~4p!D D 1/2

)
n51

D

dz in~tn!G
→E F )

n51

D

dz in~t!G , ~18!

E )
n51

N8 F S ~Dt!D det Bi
a

~4p!D D 1/2

)
n51

D

dj ina~tn!G
→E F )

n51

D

dj ina~t!G , ~19!

where the imaginary timet is divided intoN8 points in the
range@0,b#, andtn denotes thenth point.
le

-

05440
It is difficult to perform the integrals in Eq.~15! even for
simple crystalline systems. Thus, we adopt the two-fi
static approximation,17,45 which allows us to derive the free
energy that reduces to the generalized Hartree-Fock app
mation at the ground state. In this approximation, we int
duce the time-averaged variables such as

z i5
1

bE0

b

(
n51

D

z in~t!dt, ~20!

j i5
1

bE0

b

(
n51

D

j inz~t!dt, ~21!

and project the partition function onto the subspace$z i ,j i%
by inserting into Eq.~15! the identities such as

15E dz idS z i2
1

b E
0

b

(
n51

D

z in~t!dt D
5E dz iE dyi expF22p iy iS z i2

1

b E
0

b

(
n51

D

z in~t!dt D G .

~22!

The partition function is then given by

Z5E )
i 51

Ns

@dz i dj i #X~j,z!, ~23!
X~j,z!5E F)
i 51

Ns S )
n51

D

djin~t!dz in~t!D dxi dyi GZ0@j~t!,z~t!#

3expF2
1

4 (
inn8

E
0

b

dtz in~t!Ainn8z in8~t!12p i (
in

yib
21E

0

b

dt@z in~t!2z i /D#

2
1

4 (
inn8a

E
0

b

dt j ina~t!Binn8
a j in8a~t!12p i (

in
xib

21E
0

b

dt@j inz~t!2j i /D#G . ~24!
pin
io-

ame
When we approximate the time-dependent field variab
on the rotated coordinates$j inx(t),j iny(t),j inz(t),z in(t)%
with the time-independent variables$0,0,j i /D,z i /D% in the
one-electron Hamiltonian~17!, we can perform the integra
stions inX(j,z). Here we neglected the transverse static s
fluctuations on the rotated coordinates since they would v
late the commutation relations between the spins on the s
site. The partition function is then given by
2-4
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Z~$ei%!5E )
i 51

Ns F S b J̃i

4p
D 1/2

dj i S bŨ i

4p
D 1/2

dz i G
3Tr$exp@2bHst~je,2 i z!#%

3expF2
1

4
b(

i
~Ũ iz i

21 J̃ij i
2!G , ~25!

Hst~je,z!5(
ins

S e i
02m1

1

2
Ũ iz i Dnins

2(
in

S 1

2
J̃ij iei1hi D •mi1 (

in j n8s

t i j sains
† aj n8s .

~26!

Hereei is the unit vector showing the direction of the rotat
z axis on sitei. It should be noted that the partition functio
Z($ei%) does not have the rotational invariance since we
glected the transverse spin fluctuations on the rotated c
dinates. The free energyFst, which has the rotational invari
ance, is obtained by averagingZ($ei%) over all the directions
$ei%:

Fst52b21ln E F)
i

N S b J̃i

4p
D 1/2

dj i dei Ge2bE(j), ~27!

E~j!52b21 ln Tr$exp@2bHst~j,z!#%

2
1

4 (
i

~Ũ iz i
22 J̃ij i

2!. ~28!

Here dei5(4p)21sinui dui dfi and ji5j iei . We adopted
the saddle-point approximation for the charge fields, so
z i(j) is determined from the condition]E/]z i50:

z i~j!5^ni&05
Tr$ni exp@2bHst~j,z!#%

Tr$exp@2bHst~j,z!#%
. ~29!

The local charge and local magnetic moment~LM ! are ob-
tained by taking the derivatives ofFst with respect to the
atomic levele i

0 and the local magnetic fieldhi as follows:

^ni&5^z i~j!&, ~30!

^mi&5K S 11
4

b J̃ij i
2D ji L . ~31!

Here the averagê;& in the right-hand side of the abov
equations is defined by
05440
-
r-

at

^;&5

E F)
j

djjj j
22G~;!e2bE(j)

E F)
j

djjj j
22Ge2bE(j)

. ~32!

Note that we adopted the spherical coordinates in the ab
averagê ;&. The local charge and spin fluctuations are o
tained from the formulaŝni

2&5^ni&14]Fst/]Ui and ^mi
2&

53^ni&24]Fst/]Ji . The results are given by

^ni
2&5^z i&1S 12

1

2D D ^z i
2&2

1

2D S ^j i
2&2

2

b J̃i
D , ~33!

^mi
2&53^z i&2

3

2D
^z i

2&1S 11
1

2D D S ^j i
2&2

2

b J̃i
D .

~34!

In order to simplify the actual calculations, we consid
the limit Ũ i→`, introducing charge potentials$wi(j)%.
These potentials are determined by the charge neutr
conditions.46 Equation~28! is then written as follows:

E~j!5E dv f ~v!
D

p
Im Tr@ ln~L212t !#

1(
i

S 2Niwi~j!1
1

4
J̃ij i

2D . ~35!

Here f (v) is the Fermi distribution function and (t) ins j n8s8
5t i j dnn8dss8 . Ni is the electron number on sitei. The loca-
tor matrix L is defined by

~L21! is j s85@v1 id2e i
01m2wi~j!#d i j dss8

1S 1

2
J̃iji1hi D •~s!ss8d i j . ~36!

Hered in v1 id means an infinitesimal positive number.

B. Local moments in an effective medium

The pair distribution function of amorphous Fe, obtain
from both the computer simulation47 and the experiment,48

shows that there exists a well-defined nearest-neighbor~NN!
shell even in amorphous metals and alloys. We, theref
take into account the local environment effects due to
NN atoms directly, and describe the effect of further dista
atoms introducing two kinds of effective media.

We first introduce an inverse effective locatorL s
21 into

the first term in Eq.~35! to describe the diagonal disorder a
an average medium and expand the deviation fromL s

21 with
respect to the sites. We can then rewrite the energy~35! in
the form

E~j!5E dv f ~v!
D

p
Im Tr ln~L 212t !F

1(
i

Ei~ji !1DE~j!. ~37!
2-5
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Here the coherent Green functionF is defined by

Fis j s85@~L 212t !# is isd i j dss8 . ~38!

The first term in the right-hand-side of Eq.~37! is the zeroth-
order term, which is described by the effective medium on
This term could be dropped from the expression of ener
since it does not play any role in the thermal average. T
second term is the first-order correction consisting of the s
of the single-site energyEi(ji). It is given by

Ei~ji !5E dv f ~v!
D

p
Tr( i ) ln~L212L 211F21!

2Niwi~j!1
1

4
J̃ij i

2 . ~39!

The third term in the right-hand side of Eq.~37! is the
higher-order correction.DE reduces to( ( i , j )F i j (ji ,jj ) in
gy

05440
.
y,
e
m

the pair approximation, where all the higher-order terms
neglected by assuming small deviation from the effect
medium. The pair energy functionalF i j (ji ,jj ) between sites
i and j is given by

F i j ~ji ,jj !5E dv f ~v!
D

p
Im Tr( i j )@ ln~11 t̃ F8!#.

~40!

Here Tr( i j ) denotes the trace over the subspace of sitesi and
j, and the off-diagonal coherent Green function is defined

Fis j s8
8 5@~L 212t !# is j s~12d i j !dss8 , ~41!

and t̃ is the single-sitet matrix defined by

t̃ 5@11~L212L 21!F#21~L212L 21!. ~42!

Making use of Eq.~31!, the thermal average of the centr
local moment is given as
^m0&5

E dj0j0
22S 11

4

b J̃0j0
2D j0e2bE0(j0)Ke2b(

( i , j )
F i j (ji ,jj )L 8

0

E dj0j0
22e2bE0(j0)Ke2b(

( i , j )
F i j (ji ,jj )L 8

0

. ~43!
r-
t:

-site
Here the averagê(;)&08 is defined by

^~;!&085E F )
i 51

Ns21

pi~ji ! dji j i
22G ~;!, ~44!

andpi(ji) is the probability density for the single-site ener
Ei(ji)

pi~ji !5
e2bEi (ji )

E djij i
22e2bEi (ji )

. ~45!

In the next step we treat the thermal average in Eq.~43!.
Since the direct integration of the type~44! is impossible, we
make use of the following decoupling approximation for a
bitrary functionf, which is correct up to the second momen

^ f ~ji !&0[E dji pi~ji ! f ~ji !

5(
si

1

8 S 11
^j iz&0

aiz
sizD f ~$siaaia%!, ~46!

where (si
5(six561(siy561(siz561 and aia5^j ia

2 &0
1/2, ^ &0

denotes the thermal average with respect to the single
energy on sitei. Then we have
^m0&5

E dj0j0
22(

$si %
S 11

4

b J̃0j0
2D j0 exp@2bC~j0 ,$siaaia%!#

E dj0j0
22(

$si %
exp@2bC~j0 ,$siaaia%!#

, ~47!

C~j,$siaaia%!5E0~j!2b21(
i

siz tanh21 ^j iz&0

aiz
1DE~j,$siaaia%!, ~48!

where
2-6
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DE~j,$siaaia%!5(
iÞ0

F0i
(a)~j!2(

iÞ0
(
a

x,y,z FF0ia
(e) ~j!1 (

j Þ0,i
Ki j aGsia

1(
iÞ0

( 8
(a,g)

F0ib
(b) ~j!siasig1(

( i , j )

8
1

64
(
mimj

F i j ~$m iaaia%,$m j aaj a%!2 ( 8
( ia, j g)

Ji j bsiasj g

1 (
( ia, j b,kg)

8 @F0i
(c)~j!1F ki

(a,b,g)d i j 1F i j
(b,g,a)d jk1F jk

(g,a,b)dki#siasj bskg . ~49!
ic
-

a-
he

g

in
the
the
In Eq. ~47!, ($si % denotes the sum overs1 , s2 , . . . .
( (a,g)8 in Eq. ~49! means a summation over all the cycl
pairs ofx, y, andz. ( ( ia, j g)8 (( ( ia, j b,kg)8 ) denotes a summa
tion with respect to all the pairs~triplets! of sites and com-
ponents withiÞ j andaÞg ( iÞ j Þk andaÞbÞg), which
are not related to site 0. The pair interactionsF0 j

(a)(j),
F0 j a

(e) (j), F0 j b
(b) (j), F0 j

(c)(j), Ki j a , Ji j b , and F ki
(a,b,g) are

defined, respectively, as follows:

F0 j
(a)~j!5

1

8 (
mj

F0 j~j,$m j aaj a%!, ~50!

F0 j a
(e) ~j!52

1

8 (
mj

m j aF0 j~j,$m j gaj g%!, ~51!

F0 j b
(b) ~j!5

1

8 (
mj

m j am j gF0 j~j,$m j daj d%!, ~52!

F0 j
(c)~j!5

1

8 (
mj

m j xm j ym j zF0 j~j,$m j aaj a%!, ~53!

Ki j a5
1

64 (
mi

(
mj

m iaF i j ~$m ibaib%$m j gaj g%!, ~54!

Ji j b5
1

64 (
mi

(
mj

m iam j gF i j ~$m ilail%$m j daj d%!, ~55!

F ki
(a,b,g)5

1

64 (
mi

(
mk

m iam ibmkgF ik~$m idaid%$mknakn%!.

~56!

In the following, we make a molecular-field approxim
tion for the thermal averages of LM’s on the NN shell. T
variablessia , siasj g , andsixsj yskz in Eq. ~49! are replaced
by their thermal averages:

^sia&5
^mia&

ãia

, ~57!

^siasj g&5
^mia&^mj g&

ãiaã j g

, ~58!
05440
^sixsj yskz&5
^mix&^mj y&^mkz&

ãixã j yãkz

, ~59!

where

ã j a5S 11
4

b J̃ j^j j
2&0

D ^j j a
2 &0

1/2. ~60!

In Eqs. ~58! and ~59!, we made use of the decouplin
approximation ^siasj g&'^sia&^sj g& and ^sixsj yskz&
'^six&^sj y&^skz&. Equations~47! and ~48! reduce to

^m0&5

E dj j22S 11
4

b J̃j2D je2bC(j)

E dj j22e2bC(j)

, ~61!

C~j!5E0~j!1(
j 51

z FF0 j
(a)~j!2(

a
F0 j a

(e) ~j!
^mj a&

ã j a

1 (
(a,g)

F0 j d
(b) ~j!

^mj a&^mj g&

ã j aã j g

1F0 j
(c)~j!

^mj x&^mj y&^mj z&

ã j xã j yã j z
G . ~62!

Here z is the number of atoms in the NN shell.(a(( (ag))
denotes the sum over thex, y, andz components@~yz!, ~zx!,
and~xy! pairs#. We took into account the pair interactions
the NN shell and neglected the direct interactions with
atoms outside the shell because of the damping effect in
disordered systems.

The final expression of the single-site energyE0(j) in Eq.
~62! is given by

E0~j!5E dv f ~v!
D

p
Im lnF ~dL0↑

211F00↑
21 !~dL0↓

211F00↓
21 !

2
1

4
J̃0

2j'
2 G2N0w0~j!1

1

4
J̃0j2, ~63!

where

dL j s
215~L21! j s j s2L s

21 , ~64!

F j j s[F j s j s5@~L 212t !21# j s j s , ~65!

and

j'
2 5jx

21jy
2 . ~66!
2-7
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The pair energiesF0 j
(a)(j), F0 j a

(e) (j), F0 j d
(b) (j) , and

F0 j
(c)(j) are calculated via Eqs.~50!–~53! from F0 j (j,jj ),

which is given by

F0 j~j,jj !

5E dv f ~v!
D

p
Im lnF12(

s
~ t̃ 0!ssF0 j sF j 0s~ t̃ j !ss

2F0 j↑F j 0↓
J̃0J̃ j

2R̃02R̃j

~j1j j 21j2j j 1!1~F0 j↑F j 0↓!2

3H ~ t̃ 0!↑↑~ t̃ 0!↓↓2
J̃0

2j'
2

4R̃0
2 J H ~ t̃ j !↑↑~ t̃ j !↓↓2

J̃ j
2j j'

2

4R̃j
2 J G .

~67!

Here we omitted the primes inF0 j s85F j 0s8 for brevity.
j j 65j j x6 i j j y , ( t̃ j )ss8 is the single-sitet matrix whose di-
agonal component is given by

~ t̃ j !ss5

dL j s
211S dL j↑

21dL j↓
212

1

4
J̃ j

2j j'
2 DF j j s

R̃j

, ~68!

R̃j5~11dL j↑
21F j j ↑!~11dL j↓

21F j j ↓!2
1

4
J̃ j

2j j'
2 F j j ↑F j j ↓ .

~69!

The effective mediumL s
21 is determined so that the av

eraged single-sitet matrix vanishes:

@^~ t̃ 0!ss~j!&#s50. ~70!

Here^•••& means the thermal average with respect toC(j).
@ #s denotes the structural average. Equation~70! is called the
coherent potential approximation~CPA! equation.49

The central LM~61! depends on the structural disord
outside the NN shell via the coherent Green functionsF00s ,
F0 j s(5F j 0s), andF j j s in Eq. ~62!. These Green function
are treated by the Bethe approximation.50 Making use of the
locator expansion, we have the relations

F005L1L(
j Þ0

t0 jF j 0 , ~71!

F j 05Lt j 0F001LSjF j 01L (
iÞ j ,0

Tj i Fi0 . ~72!

Here we have omitted the spin suffixs for brevity and ne-
glected the transfer integrals between the central atoms
the atoms outside the NN shell. The self-energySj (Tj i ) con-
sists of the sum of all the paths that start from sitej and end
at site j ( i ) without returning to the cluster on the way. No
that all the information outside the cluster is contained inSj
andTj i .
05440
nd

When we take the structural average outside the clus
we neglect the last term on the right-hand side of Eq.~72!,
and replaceSj with S, an effective medium for the structura
disorder. We then obtain

F00s5S L s
211(

j 51

z t j 0
2

L s
212Ss

D 21

, ~73!

F j 0s5
t j 0

L s
212Ss

F00s . ~74!

The diagonal Green functionsF j j s in the NN shell, on the
other hand, are approximated by the averaged one

Fs5@F j j s#s5E @r~e!#sde

L s
212e

. ~75!

Here r(e) denotes the noninteracting density-of-sta
~DOS! for the amorphous system. The effective mediumSs

is determined from the condition that the structural avera
of the central Green functionF00s , should be identical with
the neighboring one

@F00s#s5E @r~e!#s de

L s
212e

. ~76!

C. Distribution function method

The central LM in Eq.~61! is now determined by the
coordination numberz on the NN shell, the neighboring
LM’s $^mj&%, the square of transfer integrals$yj5t j 0

2 %, the
effective mediumL s

21 due to the spin fluctuations, and th
effective mediumSs due to the structural disorder outsid
the NN shell:

^m0&5^m0&~z,$^mj&%,$yj%,$Ss%,$L s
21%!. ~77!

The structural disorder causes the distributiong(^mj&) of the
LM at the neighboring sitej, the distributionps(yj ) for the
square of the transfer integral, and the distribution of
coordination numberp(z). Since the distribution for the cen
tral LM should be identical with those for the surroundin
LM’s, we obtain the following integral equation for the LM
distribution:

g~M!5(
z

p~z!E d~M2^m0&!

3)
j 51

z

@ps~yj ! dyj g~mj ! dmj #. ~78!

The effective mediaL s
21 andSs are self-consistently deter

mined from Eqs.~70! and ~76!:

E ^~ t̃ 0!ss&)
j 51

z

@ps~yj ! dyj g~mj ! dmj #50, ~79!

E F00s)
j 51

z

@ps~yj !dyj #5E @r~e!#sde

L s
212e

. ~80!
2-8
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The LM distributiong(M) and the effective mediaL s
21

andSs , are determined by solving Eqs.~78!, ~79!, and~80!.
The average magnetization@^mz&#s, and the SG order pa
rameters for each direction@^ma&2#s

1/2 (a5x,y,z), are ob-
tained from the distributiong(M) as follows:

@^mz&#s5E M zg~M! dM, ~81!

@^ma&2#s
1/25E Ma

2g~M! dM. ~82!

Since Eqs.~78!, ~79!, and~80! include 4z-fold integrals, it
is difficult to solve the equations without making further a
proximations. We adopt the following decoupling appro
mation in Eqs.~78!–~82!, which is correct up to the secon
moment

E f ~m!g~m!dm

'(
n

1

8 S 11nz

@^mz&#s

@^mz&
2#s

1/2D
3 f ~nx@^mx&

2#s
1/2,ny @^my&

2#s
1/2,nz @^mz&

2#s
1/2!, ~83!
05440
E ~y2@y#s!
2n1kps~y! dy'@~dy!2#s

n0k. ~84!

Here we assumed that the spontaneous magnetization
pears along thez axis and the distributiong(m) shows an
uniaxial symmetry around the z axis. (n

5(nx561(ny561(nz561 and k50 or 1. @y#s is a mean

square of a transfer integral, and@(dy)2#s is the fluctuation
around@y#s, which is calculated from the fluctuations of th
interatomic distanceR as follows:

@~dy!2#s
1/2

@y#s
52k

@~dR!2#s
1/2

@R#s
. ~85!

Here we adopted Heine’s lawt(R)[t j 0}R2k (k53.8).51,52

@R#s and @(dR)2#s
1/2 denote the average interatomic distan

and its fluctuation.
Substituting Eq.~78! after the decoupling approximatio

into Eqs.~81! and ~82!, we obtain the self-consistent equ
tions for @^ma&n#s as follows:
@^ma&n#s5E Ma
ng~M! dM

5(
z

p~z!(
i 50

z

GS i ,z,
1

2D(
kz

i

(
l z

z2 i

G~kz ,i ,qz!G~ l z ,z2 i ,qz! (
$kx ,ky%

GS kx ,kz ,
1

2DGS ky ,kx ,
1

2DGS ky8 ,kz2kx ,
1

2D
3GS kx8 ,i 2kz ,

1

2DGS ky9 ,kx8 ,
1

2DGS ky- ,i 2kz2kx8 ,
1

2D (
$ l x ,l y%

GS l x ,l z ,
1

2DGS l y ,l x ,
1

2DGS l y8 ,l z2 l x ,
1

2D
3GS l x8 ,z2 i 2 l z ,

1

2DGS l y9 ,l x8 ,
1

2DGS l y- ,z2 i 2 l z2 l x8 ,
1

2D ^ma&~z,i ,$k%,$ l %!n, ~86!

^ma&~z,i ,$k%,$ l %!5

E dj j22S 11
4

b J̃j2D j exp@2bC~j,z,i ,$k%,$ l %!#

E dj j22 exp@2bC~j,z,i ,$k%,$ l %!#

, ~87!

C~j,z,i ,$k%,$ l %!5E0~j,z,i !1 iF1
(a)~j,z,i !1~z2 i !F2

(a)~j,z,i !2@~2kz2 i !Fz1
(e)~j,z,i !1~2l z2z1 i !Fz2

(e)~j,z,i !#vz

2@$2~kx1kx8!2 i %Fx1
(e)~j,z,i !1$2~ l x1 l x8!2z1 i %Fx2

(e)~j,z,i !#vx2@$2~ky1ky81ky91ky-!2 i %Fy1
(e)~j,z,i !

1$2~ l y1 l y81 l y91 l y-!2z1 i %Fy2
(e)~j,z,i !#vy1@$2~kx2kz2kx8!1 i %Fy1

(b)~j,z,i !

1$2~ l x2 l z2 l x8!1z2 i %Fy2
(b)~j,z,i !#vzvx1@$2~ky2kx2ky81ky92kx82ky-!1 i %Fz1

(b)~j,z,i !

1$2~ l y2 l x2 l y81 l y92 l x82 l y-!1z2 i %Fz2
(b)~j,z,i !#vxvy1@$2~ky1ky82kz2ky92ky-!1 i %Fx1

(b)~j,z,i !

1$2~ l y1 l y82 l z2 l y92 l y-!1z2 i %Fx2
(b)~j,z,i !#vyvz1@$2~ky2kx2ky81kz2ky91kx81ky-!2 i %F1

(c)~j,z,i !

1$2~ l y2 l x2 l y81 l z2 l y91 l x81 l y-!2z1 i %F2
(c)~j,z,i !#vxvyvz , ~88!

qz5
1

2 S 11
@^mz&#s

@^mz&
2#s

1/2D , ~89!
2-9
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va5
@^ma&2#s

1/2

ãa

. ~90!

Here we adopted the distributionp(z)5(@z* #11
2z* )dz,[z* ]1(z* 2@z* #)dz,[z* ] 11 in the actual calculations
z* denotes the average coordination number, and@ # denotes
Gauss’s notation.G( i ,z,p), in Eq. ~86!, is the binomial dis-
tribution function defined by@z!/ i !(z2 i )! #pi(12p)z2 i .
($kx ,ky%

and($ l x ,l y%
are defined as follows:

(
$kx ,ky%

5 (
kx50

kz

(
ky50

kx

(
ky850

kz2kx

(
kx850

i 2kz

(
ky950

kx8

(
ky-50

i 2kz2kx8

, ~91!

(
$ l x ,l y%

5 (
l x50

l z

(
l y50

l x

(
l y850

l z2 l x

(
l x850

z2 i 2 l z

(
l y950

l x8

(
l y-50

z2 i 2 l z2 l x8

. ~92!

In the present approximation, the local environments
side the NN shell are described via the NN transfer integ
by the contraction (2@(dR)2#s

1/2) of the NN interatomic dis-
tance R from the average value@R#s and the stretch
(@(dR)2#s

1/2) of the distanceR. Thus, the local structure i
specified by means of the number of contracted pairs~i! be-
tween the central atom and the atoms on the NN shell. S
the local structure is realized with the probabilityG( i ,z,1/2),
the LM’s are averaged with respect to the binomial distrib
tion in Eq. ~86!. The single-site energy and pair energies
then characterized byi, so that the notationsE0(j,z,i ),
F6

(a)(j,z,i ), Fa6
(e) (j,z,i ), Fa6

(b) (j,z,i ), and F6
(c)(j,z,i ) are

used in Eq.~88!. Here the subscript1(2) denotes the con
tracted~stretched! pair.

The parameterqz , defined by Eq.~89!, is interpreted as
the probability that thez component of the fictitious spin
@^mz&

2#s
1/2 points up on a site of the NN shell. The probab

ity of finding kz up spins amongi contracted atoms on th
NN shell is then given byG(kz ,i ,qz) and the probability of
finding l z up spins amongz2 i stretched atoms is given b
G( l z ,z2 i ,qz). Therefore, the LM’s are averaged over the
binomial distributions in Eq.~86!. In the similar manner, the
probabilities of finding positive transverse spin compone
are given by the other binomial distributions in Eq.~86!.

The average central local moment@^mz&#s is obtained by
averaging^mz&(z,i ,$k%,$ l %) over the 107 configurations of
the local atomic and spin degrees of freedom on the
shell. We, therefore, make use of Monte Carlo sampling
the polynomial distribution in Eq.~86! in the numerical cal-
culations of the central LM. Note that the central LM
written by the polynomial distribution as follows:

@^ma&n#s5E Ma
ng~M! dM

5(
z

p~z! (
z5Snkn

z!

F )
n51

16

kn! G
3F )

n51

16

qn
knG ^ma&~z,$kn%!n. ~93!
05440
-
ls

ce

-
e

s

N
r

Here(z5Snkn
denotes the summation with respect to the

teger variables$kn% (n51;16) which run over the range
$0<kn<z% under the constraintz5(n51

16 kn . The probabili-
ties $qn%(n51;16) are given by the formulasqn

5( 1
2 )3qz(n51;8) and qn5( 1

2 )3(12qz)(n59;16), re-
spectively.

By making use of the same decoupling approximatio
used as the above, we obtain a simplified CPA equation fr
Eq. ~79!:

(
n561

1

2 S 11n
@^jz&#s

@^jz
2&#s

1/2D ~G!ss~@^j2&#s,n@^jz
2&#s

1/2!5Fs ,

~94!

where

~G!ss~@^j2&#s,n@^jz
2&#s

1/2!

5Fs

11dL2s
21~@^j2&#s,n@^jz

2&#s
1/2!F2s

R̃0~@^j2&#s,n@^jz
2&#s

1/2!
. ~95!

In the same way, Eq.~80! for the self-energy reduces to th
following equation:

(
n561

1

2 HL s
212@u#sS 11n

@~du!2#s
1/2

@u#s
D ~L s

212Ss!21J 21

5Fs . ~96!

Here u and du are defined byu5( j t j 0
2 5( j y j and d u5u

2@u#s, respectively. The expression for@(d u)2#s
1/2/@u#s is

given by

@~d u!2#s

@u#s
2

5
@~dy!2#s

z* @y#s
2

1
@~dz!2#s

z* 2
, ~97!

where dz5z2z* , and @(dy)2#s/@y#s
2 is obtained from

@(dR)2#s
1/2/@R#s via Eq. ~85!.

The magnetization@^mz&#s, the SG order parameter
@^mz&

2#s
1/2 and @^mx&

2#s
1/2 (5@^my&

2#s
1/2), and the effective

media L s
21 and Ss are determined by solving Eqs.~93!,

~94!, and~96! self-consistently. The self-consistent equatio
take into account the fluctuations of local moments due
the structural disorder and thus can describe the itine
electron SG in amorphous transition metals. Since the tra
verse components of local moments are taken into accou
the present theory, the self-consistent equations have s
tions; the noncollinear SG$@^mz&#s50, @^ma&2#s

1/2Þ0(a
5x,y,z)%, the noncollinear ferromagnetism$@^mz&#s

Þ0, @^ma&2#s
1/2Þ0(a5x,y,z)%, in addition to the collinear

SG ˆ@^mz&#s50, @^mz&
2#s

1/2Þ0, @^ma&2#s
1/250(a5x,y)‰,

the collinear ferromagnetism $@^mz&#sÞ0, @^mz&
2#s

1/2

Þ0, @^ma&2#s
1/250(a5x,y)%, and the paramagnetism

$@^mz&#s50, @^ma&2#s
1/250(a5x,y,z)%.

In the actual calculations of the self-consistent equatio
the input parameters describing the amorphous structure
the electronic states are necessary. The former includes
average coordination numberz* and the fluctuation of the
2-10
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THEORY OF NONCOLLINEAR MAGNETISM IN . . . PHYSICAL REVIEW B64 054402
interatomic distance@(dR)2#s
1/2/@R#s; the latter includes the

d electron numberN, the effective exchange energy param
eter J̃, and the noninteracting DOS@r(e)#s.

III. NUMERICAL RESULTS

We have performed the numerical calculations vary
thed electron number, temperature, and volume in the vic
ity of the d electron number of pure amorphous Fe. W
adopted the DOS for amorphous Fe, which was calculate
Fujiwara53 with the use of the relaxed dense random pack
of hard spheres~DRPHS! model, consisting of 1500 atom
and the tight-binding LMTO recursion method for electron
structure calculations. The structural averages over 107 local
atomic and spin configurations in Eq.~93! were calculated
by means of a 32 000 Monte Carlo sampling. The calcu
tions with the use of a 480 000 Monte Carlo sampling w
also performed at some representative points to test the
merical accuracy. We have confirmed that the absolute e
of the former is less than 0.01mB when compared to the
latter.

A. d electron number and temperature dependencies

We examined the magnetic properties of amorphous t
sition metals as a function of thed electron numberN and
temperatureT. In the calculations, we adopted the avera
coordination numberz* 511.5, estimated from the viewpoin
of the DRPHS model.19 The effective exchange energy p
rameterJ̃50.059 Ry was chosen so as to reproduce the
served ground-state magnetization 2.216mB for the bcc Fe,13

and the fluctuation of interatomic distances@(dR)2#s
1/2/@R#s

50.067 was estimated from the first peak in the theoretic47

and experimental48 pair distribution functions, all of which
were used in our previous calculations.23

Figure 1 shows the calculated magnetization@^mz&#s, the
spin-glass~SG! order parameter@^m&2#s

1/2, and its transverse
component@^mx&

2#s
1/2 (5@^my&

2#s
1/2) as functions ofd elec-

tron numberN at 30 K.
The calculated magnetization@^mz&#s shows a maximum

at ad electron number aroundN57.6 and rapidly decrease
with decreasing thed electron number towards amorpho
Fe (N;7.0). The magnetization curve is qualitatively th

FIG. 1. Total spin-glass order parameter@^m&2#s
1/2, the trans-

verse spin-glass order parameter@^mx&
2#s

1/2, and the magnetization
@^mz&#s as functions ofd electron numberN at 30 K.
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same as that obtained by the collinear calculations an
well understood by the main peak position of the nonint
acting DOS for amorphous transition metals.14

In the regionN>7.43, the collinear ferromagnetism
realized, as indicated by the zero value of the transverse
order parameter@^mx&

2#s
1/2 (5@^my&

2#s
1/2). The ferromag-

netism becomes noncollinear in the region 7.38<N<7.43,
where the transverse SG order parameter@^mx&

2#s
1/2 becomes

finite in the presence of the magnetization@^mz&#s. At N
57.38, the magnetization disappears while both the total
transverse SG order parameters (@^m&2#s

1/2 and @^mx&
2#s

1/2)
remain finite, showing the second-order transition from
noncollinear ferromagnetism~F! to the noncollinear SG.

The analyses of the single-site energyE0(j,z,i ) and the
pair energiesFa6

(e) (j,z,i ) (a5x,y,z) in Eq. ~88!, show that
the SG region is further divided into two regimes accordi
to the difference in the SG formation mechanism.

In the region 7.2&N<7.38, the nearest-neighbor~NN!
couplings are ferromagnetic and thus the local mome
~LM’s ! form ferromagnetic clusters. However, there exist t
long-range antiferromagnetic couplings which suppress
development of ferromagnetic long-range order, thus for
ing the SG accompanied by ferromagnetic clusters.

In the region 6.9&N&7.2, the amorphous metals sho
anomalous magnetic couplings; the LM’s with large amp
tude ferromagnetically couple with the neighboring LM’
while the LM’s with small amplitude antiferromagneticall

(a) N=7.0

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

(b) N=6.9

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

FIG. 2. Distribution of local moments at 30 K ford electron
numbers~a! N57.0 and~b! N56.9. Here 4000 data points amon
32 000 Monte Carlo samplings are shown.
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couple with the neighboring ones. Since the amplitude of
LM depends strongly on the surrounding environment in t
region, the sign of magnetic couplings changes with the lo
environment, thus leading to form the SG. It should be no
that the SG in amorphous Fe (N;7.0) is caused by this
mechanism.

The mechanisms shown here are essentially the sam
those found for the SG in the collinear calculations.14 Since
the transverse spin degrees of freedom are taken into acc
in the present theory, the noncollinear SG is obtained in
present case. Figure 2~a! shows a LM distribution for the SG
expected in amorphous Fe, where 4000 data points sam
from the 32 000 Monte Carlo data forN57.0 and 30 K, are
presented. It is seen that the LM distribution is nearly sph
cal. It should be noted that the distribution of LM’s deviat
from the spherical one in the vicinity ofN56.9, where the
SG order parameter shows a minimum. In this region,
LM’s show nearly two-dimensional disk shaped distributi
@see Fig. 2~b!#.

We have calculated the Curie temperature, the spin-g
transition temperature, and the transverse spin freezing
perature as functions of thed electron number. The obtaine
magnetic phase diagram is presented in Fig. 3. The ph
diagram below 25 K was not calculated because of the
merical difficulty in calculations. The Curie temperatureTC
rapidly decreases when thed electron number decreases a
reaches the multicritical point atN57.38 andT5104 K. The

FIG. 3. Magnetic phase diagram as a function of temperatuT
andd electron numberN, showing the paramagnetic, the colline
ferromagnetic~collinear F), the noncollinear ferromagnetic~non-
collinearF), and the spin glass~SG! states.

FIG. 4. Total spin-glass order parameter@^m&2#s
1/2, the magne-

tization @^mz&#s, and the transverse spin-glass order param
@^mx&

2#s
1/2 as functions of temperatureT for N57.42.
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SG transition temperatureTg shows a minimum as a functio
of N aroundN56.9, where the average NN magnetic inte
actions change the sign. We have also calculatedTg for the
collinear SG and have found that theTg of the noncollinear
SG is 1;3 K higher than that of the collinear SG in th
region 6.9,N,7.38, while they are nearly the same in th
region N&6.9. This means that the noncollinear SG is e
pected in the region 6.9&N<7.38, while the collinear and
the noncollinear SG are almost degenerate forN&6.9.

The transverse spin freezing temperatureTf is identified
as a point where the transverse SG order param
@^mx&

2#s
1/2 appears. The curves ofTC andTf in the vicinity of

the multicritical point display two distinct transitions wit
decreasing temperature: the first to a collinear ferromagn
state atTC and the second to a noncollinear ferromagne
state atTf below TC.

In order to see the details of the transverse spin freez
phenomenon, we show in Fig. 4 the curves of the magn
zation @^mz&#s, the total SG order parameter@^m&2#s

1/2, and
their transverse component@^mx&

2#s
1/2 (5@^my&

2#s
1/2) as

functions of temperature forN57.42. The magnetization
curve shows that the spontaneous magnetization appea
112 K. The transverse SG order parameters remain z
down to 90 K, showing the development of the colline
ferromagnetic order in the temperature range 90–112 K.
low 90 K, the transverse SG order parameter appears in
presence of finite magnetization. This result shows the
pearance of the noncollinearF due to the freezing of trans
verse spin components. It is also seen that the transvers
order parameter is reduced below 40 K. The extrapolation
the result to lower temperatures leads to the slight shrink
r

(a) T=110 K

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

(b) T=100 K

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

(c) T=80 K

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

(d) T=50 K

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

FIG. 5. The temperature dependence of the local moment di
butions forN57.42. Here 4000 data points among 32 000 Mon
Carlo samplings are shown at temperatures~a! T5110 K, ~b! T
5100 K, ~c! T580 K, and~d! T550 K. The magnetic polarization
is assumed to be in thez direction.
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THEORY OF NONCOLLINEAR MAGNETISM IN . . . PHYSICAL REVIEW B64 054402
the noncollinear ferromagnetic phase below 40 K, as see
the magnetic phase diagram in Fig. 3.

Figure 5 shows the LM distribution corresponding to F
4. The development of the collinear ferromagnetic order
low TC @Figs. 5~a! and 5~b!# and the subsequent developme
of the noncollinear ferromagnetic order below the transve
spin freezing temperature@Fig. 5~c! and 5~d!# are clearly
seen. It should be noted that the LM’s in Fig. 5 show a bro
amplitude distribution even at 50 K. The feature is char
teristic to the itinerant magnetism and is consistent with
recent Mössbauer measurements8 in Fe-rich amorphous
Fe-Zr alloys, which show broad internal field distributions
low temperatures.

In the experimental investigations on Fe-rich amorpho
transition-metal alloys, the bulk magnetization5

Mössbauer,8,32–34 and ac susceptibility6 data, indicate two
transitions for the alloys with less than 90 at. % Fe; the fi
to a collinearF state atTC, and the second to a noncolline
state at a temperature belowTC due to the spin freezing. Th
proposed microscopic interpretations for the noncollin
phase, however, are not unique and are controversial e
for the same alloy system.

Amorphous Fe-La alloys with more than 10 at. % La we
reported to show a re-entrantF-SG transition belowTC, due
to the freezing of transverse components of spins.32 In the
case of the amorphous Fe-Zr system, various microsc
models are proposed to describe the noncollinear phase
low the spin freezing temperature. These include the freez
of frustrated antiferromagnetic clusters distributed in a fer
magnetic matrix~mictomagnetism!,6 the SG due to the freez
ing of ferromagnetic clusters with random orientations in
ferromagnetic matrix,36 and the noncollinear ferromagnetis
due to the homogeneous transverse spin freez
~asperomagnetism!.34 It was also reported that the nonco
linear magnetic states in all the Fe1002xZrx (7<x<12), al-
loys become collinear under the external field of less tha
T.33 It has not been clarified, however, whether the obser
noncollinear state is due to the atomic level of local cant
for spins or it is due to the possible reorientations of lar
collinear spins or domain structures.

FIG. 6. Total spin-glass order parameter@^m&2#s
1/2 and the mag-

netization@^mz&#s as functions of volume forN57.0 and 7.3 at 35
K. Calculated magnetization for amorphous Fe at the ground s
by Lorenz and Hafner~Ref. 30! and that by Liebset al. ~Ref. 31!
are presented by open and full circles, respectively.
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The common feature among these results is that in
vicinity of the multicritical point (;90 at. % Fe!, some kind
of noncollinear state appears at a temperature belowTC due
to the spin freezing, which seems to correspond to
present results shown in Figs. 4 and 5. It should be no
however, that the experimental investigations mention
above were performed at finite concentrations of the sec
elements, while the present calculations have been
formed for amorphous pure transition metals by varying
d electron number. In general, the changing of the sec
element concentration is not the same as the changing o
d electron number, because the former brings about the
ditional effects of the alloying such as the random magne
interactions and the atomic size effect due to the sec
element.54 Therefore, the effects of the second element m
be taken into account in the theory to clarify the observ
spin freezing in Fe-rich amorphous alloys, which is left f
future work.

B. Volume dependence

We have calculated the volume dependence of the m
netization and the SG order parameters ford electron num-
bers around amorphous Fe. We adopted the same inpu
rameters as those used in the previous calculations.22 The
input DOS was scaled by the bandwidthW}r 2k

(k53.8)51,52 when the volume is changed. Herer denotes
the Wigner-Seitz radius. The average coordination numbz
was chosen to be 12. The volume dependence of the e
tive exchange energy parameterJ̃, was taken from the cal-
culation by Andersenet al.55 as follows:

te

(a) V=11.50 (Å
3
)

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

(b) V=11.40 (Å
3
)

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

(c) V=11.38 (Å
3
)

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

(d) V=11.30 (Å
3
)

-2 0 2
〈mx〉 (µB)

-2
0

2

〈my〉 (µB)

-2

0

2

〈mz〉 (µB)

FIG. 7. The volume dependence of the local moment distri
tions at 35 K. Here 4000 data points among 32 000 Monte Ca
samplings are shown for the volumes~a! V511.50 Å3, ~b! V
511.40 Å3, ~c! V511.38 Å3, and ~d! V511.30 Å3. The magnetic
polarization is assumed to be in thez direction.
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J̃5 J̃0S 20.2
r

r 0
11.2D , ~98!

whereJ̃050.068 Ry,56 and r 052.697 a.u.53 The fluctuation
of interatomic distance is taken to be@(dR)2#s

1/2/@R#s50.06.
Figure 6 shows the volume dependence of the calcula

magnetization@^mz&#s ~solid curves!, and the SG order pa
rameter@^m&2#s

1/2 ~dotted curves! for d electron numbersN
57.0 and 7.3 at 35 K. In the case ofN57.0 ~corresponding
to pure amorphous Fe!, with decreasing volume, the magn
tization suddenly drops at the critical volume 12.67 Å3,
where the first-order transition from the collinearF to the
noncollinear SG takes place. Below 12.67 Å3, the SG order
parameter gradually decreases until the volume 10.70 Å3, be-
low which the paramagnetic state appears. The result ag
with that of the collinear calculations based on the fini
temperature theory of amorphous metallic magnetism22

where the first-orderF-SG transition is shown to occur at th
critical volume 12.55 Å3 for N57.0 at 75 K. Note that the
noncollinear SG is obtained below the critical volume in t
present theory with the transverse spin degrees of freed

It should also be noted that the obtained critical volu
12.67 Å3 is close to the equilibrium volume 12.38 Å3 @cor-
responding roughly to that of sputter-deposited amorph
Fe ~Ref. 27!# of amorphous Fe. As discussed in Ref. 22, t
ferromagnetism of amorphous Fe in the Y/Fe/Y layer
structure20 can be explained, provided that the volume of t
amorphous Fe is expanded due to the presence of Y lay

In the case ofN57.3, the magnetization continuously d
creases with decreasing volume and disappears at the cr
volume 11.3 Å3, where the second-order transition to t
noncollinear SG takes place. The noncollinear SG contin
to exist until the volume 9.35 Å3, below which a paramag
netic state appears. In theF-SG transition, the noncollinearF
appears in a very narrow range of volume 11.30 Å3<V
<11.40 Å3, as illustrated in the LM distributions in Fig. 7. I
is seen that LM’s antiparallel to the magnetization, app
first @Figs. 7~a! and~b!# and then the transverse compone
develop@Fig. 7~c!# with decreasing volume from 11.50 Å3.
Finally, a noncollinear SG with a nearly isotropic LM distr
bution is realized@Fig. 7~d!#. With regard to the noncollinea
SG in the present paper, we remark that the distribution
LM’s deviates from the spherical one in the vicinity of th
boundary where the LM’s disappear~e.g., V;9.4 Å3,N
57.3 in Fig. 6!. In this region, the LM’s show a nearl
two-dimensional disk shaped distribution as found in F
2~b!.

The volume dependence of the magnetism in amorph
Fe was also investigated on the basis of the ground-s
theory. Lorenz and Hafner30 performed detailed noncollinea
calculations based on the self-consistent LMTO recurs
method with 1728 atoms in a cluster. As shown in Fig.
their result shows a gradual decrease of magnetization d
to 9.1 Å3 with decreasing volume. It does not reveal a cle
phase transition, although a SG-like state with noncollin
LM’s is obtained below the volume 10.4 Å3. It should be
noted that there is no reason for the existence of the un
solution in the competing system such as amorphous Fe
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fact, Liebset al.31 performed noncollinear calculations wit
the use of the LMTO supercell method with 32 Fe atoms
a unit cell, and showed that the isotropic SG can become
ground state forV511.74 Å3 ~see Fig. 6!. The F-SG phase
transition is observed to occur in amorphous Fe87.5La12.5 al-
loys with increasing pressure.42 The transition was found to
be of second order. The nature of the volume-inducedF-SG
transition for pure amorphous Fe, however, has not b
clarified experimentally.

IV. SUMMARY

We have developed the noncollinear theory of amorph
metallic magnetism on the basis of the functional-integ
method and the distribution function method. The theo
takes into account the transverse spin degrees of freedo
finite temperatures and reduces to the generalized Har
Fock approximation at the ground state. On the basis of
noncollinear theory, we have revealed the magnetic ph
diagram of amorphous transition metals as a function od
electron numberN and temperatureT.

The obtained magnetic phase diagram on theN-T plane
displays the spin-glass~SG! (N<7.38), the noncollinear fer-
romagnetism ~F! (7.38<N<7.43), and the collinearF
(7.43<N) at low temperatures. The noncollinear SG wi
nearly isotropic LM distribution is expected to be realized
the region 6.9,N<7.38. The Curie temperatureTC mono-
tonically decreases with the decreasingd electron numberN,
and reaches the multicritical point atN57.38. The spin-glass
transition temperatureTg shows a minimum aroundN56.9,
where the average interactions change the sign. Thed elec-
tron number dependence ofTC andTg seems to be consisten
with the recent experimental data on Y20(Mn12xFex)80 qua-
sibinary amorphous alloys,57 in which the Curie temperature
rapidly decreases until the SG state appears with the dec
ing Fe concentration, and the SG transition temperat
shows a minimum atx50.5.

In the vicinity of the multicritical point on theN-T plane,
the transition from the collinearF to the noncollinearF is
shown to occur with decreasing temperature, due to
freezing of the transverse spin components. The result se
to be consistent with those of the recent Mo¨ssbauer
measurements8,32–34 on Fe-rich amorphous alloys. The LM
distributions for the collinearF were found to remain broad
due to the local environment effects even at low tempe
tures. This is characteristic of the itinerant electron syst
and agrees with the Mo¨ssbauer measurements on Fe-ri
amorphous alloys, showing the broad internal field distrib
tions at low temperatures.

We have also investigated the volume dependence
magnetism in amorphous transition metals forN57.0 and
7.3 at 35 K. In both cases, the calculated magnetization
sus volume curves show a phase transition from theF to the
noncollinear SG and a subsequent transition to the param
netism with decreasing volume. The transition from theF to
SG is shown to be of the first order forN57.0, and to be of
the second-order forN57.3. The critical volume of the
F-SG transition forN57.0 is found to be close to the equ
librium volume of amorphous Fe, in agreement with the
2-14
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sult of the collinear calculations.22 The result can explain the
observed ferromagnetism of amorphous Fe in a Y/Fe/Y l
ered structure, provided that the volume of the amorphou
is expanded due to the presence of Y layers.

Finally, we remark on the remaining problems in the th
oretical treatments. First, in the present theory, the magn
interactions between nearest-neighbor~NN! LM’s are treated
directly and the interactions with more distant LM’s a
taken into account as the effective media; the effects of
next NN interactions, for example, are not taken into acco
explicitly in the present treatment. The direct inclusion of t
distant interactions may yield more delicate and detailed
ance between the ferro- and the antiferromagnetic coupli
The effects may extend the region of the noncollinear fer
magnetism in theN-T phase diagram shown in Fig. 3, an
may also change the nature of the transition from theF to SG
with decreasing volume.

Second, the application of the present theory is limited
the magnetism of amorphous pure transition metals, while
the experimental data were obtained from the amorph
transition-metal alloys since it is not possible to realize
-

in
the
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O.

gn

d
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amorphous pure metals. Thus, in order to clarify the valid
of the theory, it is necessary to extend the present theor
the case of amorphous alloys, taking into account the effe
of the alloying such as the random magnetic interactions
the atomic size effects.54 Such a theory would also explai
the details of the experimental magnetic phase diagram
Fe-rich amorphous alloys.
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