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The noncollinear magnetism in amorphous transition metals has been investigated by developing the finite-
temperature theory of amorphous-metallic magnetism, which takes into account the transverse spin degrees of
freedom. The theory is based on the functional-integral technique to the degenerate-band Hubbard Hamiltonian
and the distribution function method for local magnetic moments with structural disorder. Numerical results are
presented for the magnetic phase diagram as a functidrete#fctron numbeN and temperatur@&, and for the
magnetization vs volume curves for electron numbers in the vicinity of amorphous Fe. The calculated
magnetic phase diagram on theT plane exhibits three ordered phases at low temperatures: the spin glass
(SG) in the regionN<7.38, the noncollinear ferromagnetigf) in the region 7.3&N=<7.43, and the collin-
ear F in the regionN=7.43. The noncollinear SG is expected in the region<é\9<7.38, while the SG
transition temperatures for the collinear and the noncollinear SG are almost the safsed@. In the vicinity
of the multicritical point on theN-T plane, the transition from the colline&rto the noncollineaf is shown
to occur with decreasing temperature, due to the freezing of transverse spin components. The result seems to
be consistent with those of the recent $4bauer measurements on Fe-rich amorphous transition-metal alloys.
The calculated volume dependence at 35 K shows a clear phase transition frentottige noncollinear SG
with decreasing volume, and a subsequent transition to the paramagnetism. The type of the transition from the
F to SG is found to depend oX: the first order folN= 7.0, and the second order fbr=7.3.

DOI: 10.1103/PhysRevB.64.054402 PACS nuni®er75.10.Lp, 75.10.Nr, 75.50.Bb, 75.50.K]

[. INTRODUCTION On the other hand, most of the experimental data of amor-
phous Fe, other than those of Fe-rich amorphous transition-
In the last two decades, the magnetism of amorphous trammetal alloys, were reported to show the ferromagnetism. The
sition metals and their alloys has been a subject of intensivamorphous Fe in the Y/Fe/Y sandwich fifthfor example,
experimental and theoretical research. Experimental investiyas reported to show the ferromagnetism with the ground-
gations on Fe-, Co-, and Ni-rich amorphous transition-metal,ie magnetization 4:2. The amorphous Fe powders con-
alloys demonstrated that the magnetic properties of thes&ining 2wt % H. 3wt. % C. and 1 wt. % O were also
amorphous systems a_réa quite different from those of th(?eported to show the ferromagnetism with the magnetization
crystalline counterparts:3 In Fe-rich amorphous alloys con- . .
1.4ug at the ground stat&. Therefore, it was controversial

taining early transition metals, it was found that the Curie
temperatures rapidly decrease beyond 85 at.% Fe, and, to prether the pure amorphous Fe shows the SG or the ferro-

knowledge, a novel phase of spin gldS&) appears beyond Magnetism. . - ,
90 at.% ?:é-ll Sincepthe SG trgns%i?)n tzam%%raturesyhardly In order to elucidate the origins of the contradictory ex-

depend on the second elements, it was considered that tiRerimental results mentioned above, the volume dependence

amorphous Fe. disorder on the magnetic phase diagram were investigated in

Kakehashi developed a finite-temperature theory of amorsubsequent papers. In the calculations of the volume depen-
phous metallic magnetis]r?rrl“on the basis of the functional- dence, it was found that the equilibrium volume of amor-
integral methotP~*" and the distribution function methd.  phous Fe is expected to be close to the phase boundary be-
The theory explained the SG of amorphous Fe in terms of &aveen the ferromagnetism and the $G@t was suggested
competition between the ferro- and the antiferromagnetic inthat the ferromagnetism in the Y/amorphous Fe/Y film might
teractions due to the nonlinear magnetic couplings betweeappear due to the volume expansion. To examine the influ-
Fe local moments and the local environment effects on thence of the degree of structural disorder, the theory which
amplitude of the local moments. Subsequently,efal. ex-  interpolates crystals and amorphous structures was devel-
tended the theory to the case of amorphous-metallic alloysped, and the magnetic phase diagram was calculated as a
and calculated the magnetic phase diagram of amorphodanction of the coordination number and the fluctuation of
Fe-Zr alloys as a function of Fe concentration andinteratomic distanc&®?* The phase diagram explained the
temperaturé® The theory successfully explained the ob- nonunique magnetism observed in Fe-rich amorphous alloys;
served transition from the ferromagneti$éf) to the SG with  the ferromagnetism in the amorphous Fe powder, and the
increasing Fe concentration in Fe-rich amorphous Fe-Z6G in Fe-rich amorphous alloys containing early transition
alloys. metals.
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The magnetic properties of amorphous Fe have also beanethod. In order to take into account the transverse spin
investigated on the basis of the ground-state theories. At théegrees of freedom at finite temperatures, we derive the free
early stage of investigations, the ground-state calculationgnergy that reduces to the generalized Hartree-Fock approxi-
for amorphous Fe reported the ferromagnettSm® Later, ~mation at the ground state using the two-field static
the noncollinear ground-state calculations suggested the pogpproximatiorP
sibility of the SG in amorphous Fe. Krest al® obtained In Sec. A, we present the numerical results for amor-
two self-consistent solutions with magnetization Ju7and phous transition metals as a function of thelectron num-

0.2ug, which are almost degenerate in energy, using th&er N and the temperaturg. The present results yield the
tight-binding supercell method with 54 atoms. Loretzl3®  honcollinear SG due to the structural disorder at low tem-

performed detailed noncollinear calculations based on th€ratures after disappearance of the ferromagnetism with de-
self-consistent linear muffin-tin orbitalLMTO) recursion ~ Ccréasing thel electron number, supporting the existence of

method with 1728 atoms in a cluster, and found that the>G in amorphous Fe. This is consistent with the experimen-
ground-state magnetization decreases up taQith the tal observatiorfson Fe-rich amorphous transition metal al-

SG-like random local moment configuration. More recent/@YS- Furthermore, we show that the transverse spin freezing
noncollinear calculations by Liebst al?! with use of the ~©0CCUrs below the Curie temperature with the decrease of
LMTO supercell method with 32 Fe atoms in a unit cell, temperature as well as with the decrease of dhelectron

showed that the SG can become the ground state for amopmber, yielding the magnetic phase diagram consisting of
phous Fe. four phases: the collinear ferromagnetism, the noncollinear

In spite of the fact that the theoretical efforts mentionedféromagnetism, the spin glass, and the paramagnetism. The
above brought much understanding on the magnetism dfSult explains the recent Msbauer experimerits™** on
amorphous Fe and Fe-rich amorphous alloys, there hav%e'r_'ch amorphous_ tran3|t|or!-metal alloys. The re_sults of
been no theoretical attempts, so far, to investigate the nor"eliminary calculations for this part have been published as
collinear magnetism of amorphous metals at finite temperatne proceedings’

tures. Thus, for example, the magnetic phase diagram of In Sgc. IIIB,.the_numericaI results for the volume depen-
amorphous transition metals, including noncollinear magnedence in the vicinity of amorphous Fe are presented. The

tism, has not been clarified yet theoretically. The experiPrévious ground-state calculations for amorphous™ Fe
ments on Fe-rich alloys also show the necessity of the norghowed a gradual decrease of magnetization towards the SG-
collinear finite-temperature theory. The recent!ike state WI.t|.’] compression, yleldlng_ no signs of a clear
Mossbaudt32-34 and neutron-diffraction measuremetfits Phase transition, in disagreement with the results of the
have yielded much evidence for noncollinear magnetism iffinite-temperature theory for collinear local momeﬁtiv.\le
Fe-rich amorphous alloys. In particular, an issue of interesfound a clear phase transition from the ferromagnetism to the
in Fe-rich amorphous transition-metal alloys has been th&oncollinear SG and a subsequent transition to the paramag-
experimental observation that the noncollinear state appeaf§tism with decreasing volume in agreement with the experi-
at a temperature below the Curie temperaflige due to the ments or; Fe-rich amorphous tra_msmon—metal alloys under
spin freezing®8:32-3434t was found experimentally that the p_ressuré‘. In Sec.' I\_/, we summarize the present results and
obtained magnetic phase diagfaas a function of the Fe discuss the remaining problems.

concentration and temperature is similar to the one obtained

in the mean-field theory of the random bond classical Il. FORMULATION

Heisenberg model by Gabay and Toulod5&ecently, the
detailed Monte Carlo calculations on the basis of the random ) R o
bond Heisenberg mod&l have been performed to explain N order to descrlb(_a the itinerant electron magnetism in
the spin freezing phenomenon. The spin freezing in Fe-rickhe amorphous-metalh'c system, we start from .théold
amorphous alloys, however, should be explained on the basfegenerate-band Ham!ltonlan .Wlth the intra-atomic Coulomb
of the itinerant model, since the Fe-rich amorphous alloydUi) and exchangeX) interactions:

show the characteristic features of itinerant magnetism, such

A. Functional-integral technique

as the amplitude fluctuations of local magnetic moments at H=Ho+H,, @
low temperature8.

The purpose of the present paper is first to develop a HO:E (ei()_hio')niva+ E tijaiTy(rajv'(rv 2
finite-temperature theory of noncollinear magnetism, which ivo ivjv'o
describes qualitatively or semiquantitatively the magnetic L
properties of amorphous transition metals starting from the _ 2
itinerant model, and then to investigate the unraveled prob- Hl_Z 2. uini _Ei ‘]isz' ©

lems in amorphous transition metals, specifically those re- 0 . .
garding amorphous Fe: the spin glass due to the structur&l€re€; andt;;, in the one-electron paH, are the atomic
disorder, the transverse spin freezing phenomenon, and th@vel on sitei and the transfer integral between the sites
volume dependence of the noncollinear magnetism. and j, respectively.h; is the external magnetic field on
In the following section, we formulate the noncollinear sitei. a/,,(a;,,) is the creatiortannihilation) operator for an
theory of amorphous-metallic magnetism on the basis of thelectron with spino and orbital » on site i, and n;,,
functional-integral method and the distribution function =a/ a;, Is the number operator for the electrons on site

lvo
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with orbital » and spine. Furthermoren; and S in the  are given by
interaction partH,, denote the charge and spin density op-

erators oTn sité, which are defined by1_i=2_w,niw gnds IW E a| oDaro(RY), (8)
=3 oo (0) o @ie 12, o, the Pauli spin matrices, re-
spectively.
We apply the functional-integral method to the Hamil- A _2 "
tonian (1), which transforms the interacting-electron system Qivo= o 8y D 41 (Ri), ©

to a one-electron system with the time-dependent charge and

exchange field&>** The method, however, gives different where D,,.(R;) is a rotation matrix for a spin on site
results, depending on the form of the interaction gagt  defined by

when we adopt the static approximation in which the time

dependence of the fields is neglectédn order to describe O i 0
- - g , - cosse (42 —sin_—e 1(42)
best the noncollinear magnetism within the static approxima- 2 2
tion, we follow the conventional method leading to the gen- D(R)= _ 0, . (10
eralized Hartree-Fock approximation at the ground state in in— el (¢i/2) ! gi(4i/2)
sin> e cos, e

the present section.

We first introduce the locally rotated coordinates at eac
site, and rewrite the interacting Hamiltoni&B) in terms of
the operators on the rotated coordinates:

mere 0, and ¢; denote the zenith and azimuth angles ofzhe
axis in the rotated coordinates on site

The partition functiorZ leading to the free energy at tem-
peratureT is given by

1 17!
_Ei VEV, _ZnivAiVV’niV’+Z g mivaBiaVV’miV’a)! s
(4) Z=Tr| Tex —f H(7n)dr|]|. (11
0
where )
Here 7 denotes the time-ordered product, ghdlenotes the
1 inverse temperaturg3=1/kgT. H(7) is the Hamiltonian in
AiVV'ZE(Ui+3Ji)5w'+Ui(l— 5,,), (5)  the interaction representation defined by
H(7)=e™oHe ™o, (12)
B, =Ji(1-6,,) (a=Xxy), (6)
Ko=Ho— uNe, (13
BZ (U +33)8,, +3(1-45,,) (7)  Wherey andN, denote the chemical potential and the total
|VV 14 N

number of electrons, respectively.

Here the hats on the operators indicate that those operators W& next adopt the functional-integral technique to the
Hamiltonian on the rotated coordinates. The method trans-

are defined on the rotated coordlnaua,s, 2 a a' vo and forms under thel product the interacting Hamiltonia(#)

Mo = EW'al "o(0a)sor@ives - The creation(annihilation  into the one-electron Hamiltonian with time-dependent ran-

operatorsa; . (a;,,) for an electron with spinr, which is  dom charge and exchange fields,(7),&,(7)} by means of

quantized along the axis of the rotated coordinates on site  the Hubbard-Stratonovich transformatibif

lvo

N

—Hqy(n)A7_ |: H

(A7)P detA, 2* (A7)P detBY
(4)° a (4)°

=1

1/2 Ng D
) l”ﬂl 11 d&.(ndei(7)

x,y,z
xexr{——Z (g.v VA G ( >+§ fiVC,(T)Bf“W,fiwa(T))

vy

A A e -
=3 (igiyu)Am,niw(rH > fimme‘W,mW(r)”. (14

vy’

HereA 7 is an infinitesimal time intervaNg denotes the number of sitd3,denotes the orbital degeneracy, and Aetlenotes
the determinant of matri®;,,. for orbital indices.
The partition function(11) is then written as
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=1

1 B e N
xXex _Z _2’ jO dr giV(T)AiVV’giV’(T)_l— ; giva(T)Bi,,VfgiV’a(T) ’ (15)

D
[ 11 o giV(r)agiV(r)}z"[g(r),z(r)]

i

where

It is difficult to perform the integrals in Eq15) even for
simple crystalline systems. Thus, we adopt the two-field
static approximatiod’® which allows us to derive the free

(16) energy that reduces to the generalized Hartree-Fock approxi-
and mation at the ground state. In this approximation, we intro-
duce the time-averaged variables such as

Z[&(7),{()]=Tr

B
Texr{ — Jo H[T,f(r),-i((r)]dT) ,

. 1 . -
H[’T,f(’T),_|§(’T)]:K0(7')_§ 2 (Igiv(T)Aivv’niV’(T)

~ 1k D
- =3 J . 21 i(7)d, (20)
+ 2 giva(T)Biayy/r’hiv’a(T))- (17) D
a 178
=3 > &, (n)dr, (21)
0 v=1

Here the functional integrals are defined as

N’ (AP detA, 12 D and project the partition function onto the subspé&eé;}
j H (4—)0 Hl dgi () by inserting into Eq(15) the identities such as
= T v
D 1 (82
—>f Hl 6Li(7) |, (18 1:J d{ié( gi_EJo 1}21 giV(T)dT)
f N ((AT)D detBia) 1/2191 dé | )‘| f d§|j dy; ex;{ 27le|(§| Z gi(m)d )
- iva Tn
n=1 (4)P V=1 22
D
_ The partition function is then given by
- f {Hl 6§.m<r>} (19
NS
where the imaginary time is divided intoN’ points in the — qe
range[ 0,8], and 7,, denotes thath point. z |H A& d&IX(&.0), @3
Ng / D
x<f,§>=f 11 ( I 5§iv<f>5ziy<f>)dxidyi Zo[&(1).{(7)]
Xexr{__E J d7di (1A §|V(T)+27T|z YiB~ j d7{ (1) —¢i/D]
-2 3 [far 8l bnrom S gt [ Card i -a /o)) @24

When we approximate the time-dependent field variablesions in X(¢,). Here we neglected the transverse static spin
on the rotated coordinatels; «(7),&i,y(7),&,A7). i, (1)} fluctuations on the rotated coordinates since they would vio-
with the time-independent variabl¢8,0¢;/D,{;/D} in the late the commutation relations between the spins on the same
one-electron Hamiltoniafl7), we can perform the integra- site. The partition function is then given by
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Ng ji 112 Di 1/2 ) )
Z({e})= H % dfi(i— dfi} J[H d§;é; 2}(”)9 AE(Q)
- ~)= . (32)
XTr{exd — BHs(ée, —i)]} f[]:[ d§j§j_2 e PE®

~ 2= 2 Note that we adopted the spherical coordinates in the above
xex;{ B Zﬁzi (Uigit+Jigi )} (25) average(~). The I?ocal charge and spin fluctuations are ob-
tained from the formulagn?)=(n;)+49F 4/dU; and (m?)
=3(n;)—49F4/3J; . The results are given by
1.
Hst(fe-g):% (f?—M+EUi§i)niya

(n?)=(Li)+ <§?>—B%>, (33)

NEVPE

1.
(E‘]i‘fiq—i_hi -m;+ E tij(raiTwrajv'a" 3
ivjv'o 2 2
(M) =3(&)— 5= (¢H +

iv

1+—

_ i)
(&) 5
(34

In order to simplify the actual calculations, we consider
the limit U,—, introducing charge potential$w;(&)}.
These potentlals are determined by the charge neutrality
® Equation(28) is then written as follows:

Hereg is the unit vector showing the direction of the rotated
z axis on sitd. It should be noted that the partition function

Z({e}) does not have the rotational invariance since we ne-
glected the transverse spin fluctuations on the rotated coofonditions?
dinates. The free enerdyy, which has the rotational invari-

D
ance, is obtained by averagi#g{e}) over all the directions E(g):J’ do f(w)—ImTrIn(L™1=1)]
{e}: i
N g5\ +2 —N;w; (&) + ng (35
Fo=— 41N f {H (4—) d de e PO, (27)
: m Here f(w) is the Fermi distribution function and)(,yj,’
=1jj0,,/ 054 . Nj is the electron number on siteThe loca-
E(&=—BtIinTr{exd — BH( &)1} tor matrix L is defined by
1 ~ ~ 1. r= + - 0+ — W; i ’
_ZE (U|§|2_J|§|2) (28) (L )Ioja' [w o € TH Wl(g)]gljgao
I

1
+ _Ji§i+hi) '(U)aa"ﬁij . (36)

Here de=(4m) 'sing dg d¢ and £=¢6. We adopted Here 5 in w+i6 means an infinitesimal positive number.
the saddle-point approximation for the charge flelds so that

¢i(£) is determined from the conditiofE/d¢; = B. Local moments in an effective medium

_ The pair distribution function of amorphous Fe, obtained
Trim e ’BHS‘(g’g)]}. (290  from both the computer simulatibhand the experimerff,
Tr{exd — BH«(&0) 1} shows that there exists a well-defined nearest-neigti
shell even in amorphous metals and alloys. We, therefore,
. take into account the local environment effects due to the
The local charge and local magnetic momérivl) are ob- NN atoms directly, and describe the effect of further distant
tained by taking the derivatives d¢fy with respect to the  atoms introducing two kinds of effective media.

{i(§=(ni)o=

atomic levele and the local magnetic fiel; as follows: We first introduce an inverse effective locator, * into
the first term in Eq(35) to describe the diagonal disorder as
(ni)=(&i(9), (300  an average medium and expand the deviation ftopt with
respect to the sites. We can then rewrite the enéay in
4 the form
m;)= 1+—=— & ). 31
m) <( ﬂJi§i2>§l> ey

D
E(§)=f dw f(w); ImTrin(£ 1—t)F

Here the averagé~) in the right-hand side of the above +2 E(&)+AE(8). (37)
equations is defined by T
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Here the coherent Green functiénis defined by

I(J']()' [(57 t)]io’iu'(sijé(ro” ' (38)
The first term in the right-hand-side of E@7) is the zeroth-

order term, which is described by the effective medium only.
This term could be dropped from the expression of energy,
since it does not play any role in the thermal average. The

PHYSICAL REVIEW B 64 054402

the pair approximation, where all the higher-order terms are
neglected by assuming small deviation from the effective
medium. The pair energy functiond;; (& ,§;) between sites

i andj is given by

D . ~
(& ,gj)=f do f(w)—Im Tr[In(1+TF")].
(40)

second term is the first-order correction consisting of the suniere Tf1) denotes the trace over the subspace of sitesd

of the single-site energl;(&). It is given by

Ei(gi)=f dw f(w)%Tr(i) In(L~*=£ '+F 1

L
—Niw;(§)+ ZJifi . (39

The third term in the right-hand side of E7) is the
higher-order correctionAE reduces toX; ;)®;;(§ ,§) in

| ac;?

2) goe_BEo(éo)<e—B(iEj) (4 v§j)>

00

i, and the off-diagonal coherent Green function is defined by

Fila'jcr':[(‘c7l_t)]i(rj¢r(1_5ij)5(r(r’: (41)
andt is the single-site matrix defined by
T=[1+(L =2 HF] YL -7 Y. (42

Making use of Eq{(31), the thermal average of the central
local moment is given as

!

0

(mg) =

Here the averagg(~)) is defined by

(= |

Ng—1

i1]1 pi(&) d& & 2|(~), (44)

andp;(§) is the probability density for the single-site energy

Ei(£)
e BEi(&)

f dé gi—Ze—BEi(éi) .

In the next step we treat the thermal average in (Bg).
Since the direct integration of the typ#4) is impossible, we

pi(&i)= (45)

K>
{si}

J dgogaze_ﬁE0(§O)<e_ﬁ(i2’j) (DIJ(§I ,§])>

(43

0

make use of the following decoupling approximation for ar-
bitrary functionf, which is correct up to the second moment:

<f(§i)>05f d& pi(&)f(&)
:2% 1+<§iz>osiz)f({siaaia})i (46)
S iz
whereZ =2 _+1Esy_+123 _.q anda;,=(2)e2, ()

denotes the thermal average with respect to the single-site
energy on sité. Then we have

4
+ ~—2> g() exn:_ﬁlp(§O!{siaaia})]
Joéo

<m0>: ' (47)
[ d6ots”3, exit— gV (gonds.ab)
Wy -1 1<§|z>0
(£{siadia}) =Eo(§ = 572 siztani +AE(E{si.a.}), (48)

where
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X,Y,Z

(EfSiain)) =2 OP(&

PHYSICAL REVIEW B64 054402

)= 2 [ PO+ D Kiju|Sia

i#0 i#0 « j#0ij
+E 2 |ﬁ(§)siasly+z 2 qblj({lu’laala} {Mjaa]a} 2, \ZjBSiaSjy
i#0 ( (i,]) 64 Hi M @,]y)
+ 2[R+ FGE 5+ FP 1D 8+ FRP 5118108 55k - (49
(ia,jB.ky)
|
In Eq. (47), 25, denotes the sum oves;, s, ... (M) (M) (Miez)
E(a 5 In Eg. (49 means a summation over all the cycllc (SixSjySiz) = T (59
pairs ofx, y, andz. (i, i,y (Z(i.isky) denotes a summa- xiyThe
tion with respect to all the pairriplets of sites and com- Where
ponents withi #j anda# vy (i#j#k anda# 8+ v), which 2=l 1+ 12 60
a]a <§Ja> . ( )
are not related to site 0. The pair mteracnodp% (9, B <§])0

D (H, PELH, PE(D, Kiju, Fip. and F(57) are
defined, respectively, as follows:

O (&)= E Doj(&{1jadja}), (50
1
PRUO=—5 2 muPo(Elupanh 6D
]
1
‘I’E)tj’)ﬁ(g): 3 g Mot Poi (€158 5}), (52
]
1
PO=5 2 wiiyisPoEdmiadiah). (69
]
1
Kija=% > > Hia®ij({1igdi gl 1iya),}), (59
64°% n
j]ﬁ 642 E lulalu‘]y(blj({lu‘l)\al)\}{ﬂjﬁajﬁ}) (59

M M

1
f(k(iy'ﬁ’wZQE > Mia i gy @ik ({ i 634 sH i @ir}) -
Mo
(56)

In the following, we make a molecular-field approxima-
tion for the thermal averages of LM’s on the NN shell. The

variabless;,, s;,Sj,, ands;,s;,sy, in Eq. (49) are replaced
by their thermal averages:

(8= e (57)
(SiaSjy) = M, (58)
Aia8jy

In Egs. (58 and (59), we made use of the decoupling
approximation  (sj,Sj,)~(Si.)(Sj,) and  (SiSjySkz)
~(Six){Sjy){Skz)- Equat|ons(47) and (48) reduce to

fdgg 1+ 2)§eﬁ‘1’<8
(mo)= Gl e
fdg £2%e PV
‘P(f):Eo(g)"'jZl O (H -2 CDE)?L@)@"—”)
= . N
LS oy (mjo)(m;,)
(a,7) alaaj,/
g MMM | (62
Ajxajya;z

Herez is the number of atoms in the NN shel. (2 (,,))
denotes the sum over they, andz component$(yz) (zx),
and(xy) pairg. We took into account the pair interactions in
the NN shell and neglected the direct interactions with the
atoms outside the shell because of the damping effect in the
disordered systems.

The final expression of the single-site enekpf £) in Eq.
(62) is given by

D -1 -1 -1 -1
= | do f(0) —Imin| (5L +Foq)(8Lo !+ Fog)

1~2 2 1 2
_ZJOQ _N0W0(§)+ZJO§ , (63
where
oL =L Y= L50 (64)
Fijo=Fjoio=[(L =) j0i0. (65)
and
g=g+¢. (66)
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The pair energiesd{(8), ®§) (8, P&, and
() are calculated via Eqg50)—(53) from ®g;(£,4),
which is given by

Do;(£.4))

D ~ ~
- [ do o) 21min 1= (o)oForoFian(E)os

g b e g+ (FoyFio)?
2§02~Rj R Y R 0j17jol

U 78 DI 5
X[(to)m(to)u_%}[(tj)n(tj)u_;T;_ziH-

0 i
(67)

Here we omitted the primes iR, =Fjq,  for brevity.
§j==&xTigy, (TJ-)W, is the single-siteé matrix whose di-
agonal component is given by

~FojiFjo

1
-1 -1 -1 22
(tj)a'o'z ~ )

R

(68)

R=(1+6L'Fj;)(1+ 6L 'F Lo b p
j= (4 6L5 Ry ) (I 0L 7Ry ) = 2 JPEL R R -
(69)

The effective mediunt ,* is determined so that the av-
eraged single-site matrix vanishes:

Here(- - -) means the thermal average with respecV{d).
[ ]s denotes the structural average. Equatit) is called the
coherent potential approximatid@PA) equatior*®

PHYSICAL REVIEW B 64 054402

When we take the structural average outside the cluster,
we neglect the last term on the right-hand side of &@),
and replaces; with S, an effective medium for the structural
disorder. We then obtain

z t-2 -1
Fooo=| £ 1+ 0 , 73
000 o 121,6;1_80. ( )
'[1-0
0= F (74)
io L i-s, 000

The diagonal Green functiorf§;;, in the NN shell, on the
other hand, are approximated by the averaged one

[p(e)]de

e (75)

Fo':[Fjja]S:
Here p(e) denotes the noninteracting density-of-states
(DOSY) for the amorphous system. The effective mediSmn
is determined from the condition that the structural average
of the central Green functioRyg,, should be identical with
the neighboring one

[p(e)]s de

_1_
(o8

[Foorls= (76)

€

C. Distribution function method

The central LM in Eq.(61) is now determined by the
coordination numberz on the NN shell, the neighboring
LM’s {{(mj)}, the square of transfer integra{lyj=tj20}, the
effective mediumZ ! due to the spin fluctuations, and the
effective mediumS,, due to the structural disorder outside
the NN shell:

(moy=(mo)(z.{L(m)} Ay H S AL . (77)

The structural disorder causes the distributigm;)) of the
LM at the neighboring sitg, the distributionpg(y;) for the

The central LM(61) depends on the structural disorder square of the transfer integral, and the distribution of the

outside the NN shell via the coherent Green functibgg, ,
Fojo(=Fjos), andFj;, in Eq. (62). These Green functions
are treated by the Bethe approximatiSriMaking use of the
locator expansion, we have the relations

F00:L+ £2 toijo, (71)
J#0
FJOZEt]OFOO+£S]FJO+£|;0 /]IIFIO (72)

Here we have omitted the spin suffix for brevity and ne-

glected the transfer integrals between the central atoms and

the atoms outside the NN shell. The self-enefy/7;;) con-
sists of the sum of all the paths that start from sitéand end

at sitej (i) without returning to the cluster on the way. Note

that all the information outside the cluster is contained;in
and7j; .

coordination numbep(z). Since the distribution for the cen-
tral LM should be identical with those for the surrounding
LM’s, we obtain the following integral equation for the LM
distribution:

oM)-3 p(z)f S(M—(mg))

<11 Tedyp) dy, o(mydm. (79

The effective mediaC;1 andS,, are self-consistently deter-
mined from Eqs(70) and (76):

f <(To)uo>j1:[1 [ps(yj) dyjg(m;) dm;]=0, (79

[p(€)]sde

. 80
Ll1—¢ ®0)

f Fooolljl [py)dy;]=

054402-8



THEORY OF NONCOLLINEAR MAGNETISM IN . .. PHYSICAL REVIEW B64 054402

The LM distributiong(M) and the effective mediai;l
andsS,, are determined by solving Eqg.8), (79), and(80). j (y=[y192" kpyy) dy~[(8y)2]"0. (84)
The average magnetizatidgm,)]s, and the SG order pa- y=Ild Pely) dy=L{o%)"J;

rameters for each directioim,)?]¥? (a=x,y,z), are ob-

tained from the distributiog(M) as follows: Here we assumed that the spontaneous magnetization ap-
pears along the axis and the distributiog(m) shows an
[(mz>]s:f M.g(M) dM, (8)  uniaxial symmetry around the z axis. I,
=ny=ilzyy=ilEvz=il and k=0 or 1.[y]s is a mean
[<ma>2]§/2:f Mig(M) dM. (82) square of a transfgr integral, ah@y)?], is the quptuation
around[y]s, which is calculated from the fluctuations of the

Since Eqs(78), (79), and(80) include 4-fold integrals, it ~ Intératomic distanc® as follows:
is difficult to solve the equations without making further ap-
proximations. We adopt the following decoupling approxi-

271/2 211/2
mation in Eqs(78)—(82), which is correct up to the second L(oy)"]s =2k L(OR)"]s _ (85)
moment [Yls [Rls
f f(m)g(m)dm Here we adopted Heine’s lat{R) =t;oxR™* (x=3.8) >

[R]s and[ (6R)?]%? denote the average interatomic distance
~E 1 m)ls and its fluctuation.
T &g [< >2]1/2 Substituting Eq{(78) after the decoupling approximation
into Egs.(81) and (82), we obtain the self-consistent equa-
X F (i (M)?1%, vy [(M)21F2, v, [(M)?1FD, (83 tions for[(m,)"] as follows:

[(m)"le [ Migiw) am

_2 p(z)E F(l z, )EKI: E L'(Kz,1,0) (15,21 qZ) 2 ( %)r(ky,kx,%)F(k{,,kz—kxé)

z

o 1 n ! 1 /. ’ l l 1 ’ 1
R e L A S [ R s {Igy}r Lole 3 Tl b5 Ty o5

F(I;,z—i—lz,;) (I”,I;,%)F(Ig’,z—i l,— X,2)<ma)(z,|,{k}{I})“ (86)

4
fdffz jgz)§eXF[—ﬁ‘P(§,Zyi,{k},{|})]

(mgy)(z,i {k}{1}) = , (87)

| age2exi-prgzi. o)
W(£2,1,{k} {1 =Eo(£2,1) DD (£2,1) + (=) PD(£2,1) —[(2k,~ ) DP(£,2,) + (21~ 2+ 1) P (£,2,1) v,
—[{2(ke k) = IFR(£,2,1) {21+ 1) =2+ DD (£,2,1) Jo,— [{2(ky + Ky + k) +K)) =i} DI (£,2,i)
+{2(1, +I’+I”+I’”)—z+i}<b(e_)(§z D) Joy+[{2(ke—k,— k) +i}@P(£2,0)
+H{2(1=1,= 1) + 2=} PP (£,2,1) v v+ [{2(ky— k= K| + kI =k —K]) +i D8 (£,2,i)
+{2(1,~1 x—|y+|g—|;—|;')+z—|}<I>§2>(§,z,|)]uxuy+[{2(ky+k;—kz—kg—k;’)ﬂ}cb(b)(gz i)
{201y + 1= 1,= 1) = 1)) + 2= i} (£,2,1) oy, + [{2(ky— Ke— K +k,— K| + k) + k) =i} (£,2,i)

+H{2(ly= =1+ L=+ L+ 1) = 2409 (£ i) ooy, (88)
1 [(m2)]s
qZ_E( a [<mz>2]§’2) | 9
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m 211/2
- Kma)?ls” (©0)
aa

Here we adopted the distributionp(z)=([z*]+1
—Z*) 8, (#1+ (2" —[Z"]) 8, (+1+1 In the actual calculations.
Z* denotes the average coordination number,[ahdenotes
Gauss’s notationl’(i,z,p), in Eq. (86), is the binomial dis-
tribution function defined by[z!/i!(z—i)!]p'(1—p)*".
E{kxyky} and 2{|X,|y} are defined as follows:

K, —ky i—ky kp o i—k—kg
> = E 2 PR YD VRN I
fockyh =0 Ky =01/ —0 K/ =0 K/=0 K/'=0
o el z—iml, g z=isloly
= > 2 (92)
thalyh - h=0,=0—0 /=0 170 1]'=0

PHYSICAL REVIEW B 64 054402

HereX, s \ denotes the summation with respect to the in-
teger variabledk,} (v=1~16) which run over the range
{0=<k,=<Z} under the constraint=>1° k,. The probabili-
ties {qg,}(v=1~16) are given by the formulasqg,
=(3)%q(r=1~8) and q,=(3)*(1—q,)(r=9~16), re-
spectively.

By making use of the same decoupling approximations
used as the above, we obtain a simplified CPA equation from
Eq. (79):

5 ;(H [(£)]s

[( 2>]1/2) aa([<§2>]s-v[<§§>]l/2

(94)
where

(G)pol[{ D5, V(€212

In the present approximation, the local environments in-

side the NN shell are described via the NN transfer integrals

by the contraction(—[(éR)z]élz) of the NN interatomic dis-
tance R from the average valug R]; and the stretch
([(8R)?1¥? of the distanceR. Thus, the local structure is
specified by means of the number of contracted p@irbe-

1+ 6L~ L)1 v(E)1YAF -
=F, . (95
Ro([(£%)]s,v[(£2)]1¥D 99

In the same way, Eq80) for the self-energy reduces to the
following equation:

tween the central atom and the atoms on the NN shell. Since

the local structure is realized with the probabilityi,z,1/2),

the LM’s are averaged with respect to the binomial distribu- <~

6)2]2
[6]s

1+ 1/[(

s 3

-1
L =101 )(z:ol—sarl]

tion in Eq.(86). The single-site energy and pair energies are

then characterized by, so that the notation&q(é£,z,i),
P (£20), P (£2,0), P(&20), and @ (£2,i) are
used in Eq(88). Here the subscript (—) denotes the con-
tracted(stretched pair.

The parameteq,, defined by Eq(89), is interpreted as
the probability that thez component of the fictitious spin

[(m,)?1%2 points up on a site of the NN shell. The probabil-

ity of finding k, up spins among contracted atoms on the
NN shell is then given by'(k,,i,q,) and the probability of

finding |, up spins among—i stretched atoms is given by W
ra,,z
binomial distributions in Eq(86). In the similar manner, the

=F,. (96)

Here 6 and 66 are defined byg=3; t jo=2jyjand 5 6=10
—[6]s, respectively. The expressuon f{)(é «9)2]§’2/[¢57]S is
given by

[(62)%]s

Z*Z

[(86)%]s  [(8y)%]s
2 x 2 +
[6]s Z*[yls
, and [(éy)z]sl[y]i is obtained from

(97)

where 6z=z—7*

1/2 :
—i,0,). Therefore, the LM’s are averaged over thesel (9R)?1s/[R]; via Eq. (85).

The magnetization(m,)]s, the SG order parameters

probabilities of finding positive transverse spin componenti(mz> 2157 and [(m)?13% (=[(my)?]5?), and the effective

are given by the other binomial distributions in E§6).
The average central local momédrm,)]s is obtained by
averaging(m,)(z,i,{k},{1}) over the 16 configurations of

media L 1 and S, are determined by solving Eq$93),
(94, and(96) self-consistently. The self-consistent equations
take into account the fluctuations of local moments due to

the local atomic and spin degrees of freedom on the NNhe structural disorder and thus can describe the itinerant
shell. We, therefore, make use of Monte Carlo sampling fo€lectron SG in amorphous transition metals. Since the trans-
the polynomial distribution in Eq(86) in the numerical cal- verse components of local moments are taken into account in
culations of the central LM. Note that the central LM is the present theory, the self-consistent equations have solu-
written by the polynomial distribution as follows: tions; the noncollinear SG[(m,)]s=0, [(m,)2]¥?#0(a
=x,¥,2)}, the noncollinear ferromagnetism{[{m,)]s

#0, [(m,)?]1¥2#£0(a=x,y,2)}, in addition to the collinear
SG  {[(m)1=0, [(M)?]s%#0, [(M,)*]*=0(a=xy)},

the collinear ferromagnetism {[(m,)]s#0, [(m,)?]¥?

#0, [(m)?]¥?=0(a=x,y)}, and the paramagnetism
{[{m)]s=0, [(M,)?]*=0(a=xy,2)}.

In the actual calculations of the self-consistent equations,
the input parameters describing the amorphous structure and
the electronic states are necessary. The former includes the
average coordination numbet and the fluctuation of the

[(m)"e= | MIg(M) aw

—E P(2) E

i

(93

16
x| T1 qiv}<ma><z,{ky}>n.
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E’? 2r T=30K -—- [(m),"? ]
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. i He) (n, ()
FIG. 1. Total spin-glass order paramef¢m)?]2?, the trans- @ N0

verse spin-glass order parame[telmx)z]é’z, and the magnetization

[{m,)]s as functions ofd electron numbeN at 30 K.

interatomic distancg(SR)?]Y%[R]s; the latter includes the
d electron numbeN, the effective exchange energy param-

eterJ, and the noninteracting DO (€)]s-
IIl. NUMERICAL RESULTS

We have performed the numerical calculations varying
thed electron number, temperature, and volume in the vicin-

ity of the d electron number of pure amorphous Fe. We 2 0
adopted the DOS for amorphous Fe, which was calculated by (o pie) iy Cte)
Fujiwara® with the use of the relaxed dense random packing (b) N=6.9

of hard spheresDRPHS model, consisting of 1500 atoms
and the tight-binding LMTO recursion method for electronic g1 5 pistribution of local moments at 30 K fat electron
structure calculations. The structural averages ovérddal numbers(a N=7.0 and(b) N=6.9. Here 4000 data points among
atomic and spin configurations in E(R3) were calculated 32 000 Monte Carlo samplings are shown.

by means of a 32000 Monte Carlo sampling. The calcula- . _ . .
tions with the use of a 480000 Monte Carlo sampling weres@me as that obtained by the collinear calculations and is
also performed at some representative points to test the nyell understood by the main peak position of the noninter-
merical accuracy. We have confirmed that the absolute errgicting DOS for amorphous transition metéls.

of the former is less than 0.@% when compared to the In the regionN=7.43, the collinear ferromagnetism is
latter. realized, as indicated by the zero value of the transverse SG

order parametef(m,)?13? (=[(m,)?]¥%. The ferromag-
netism becomes noncollinear in the region &38<7.43,

A. d electron number and temperature dependencies 11/
where the transverse SG order parampter, )]s’ becomes

We examined the magnetic properties of amorphous trang ite i ot
. : inite in the presence of the magnetizatipfm,)]s. At N
sition metals as a function of tha& electron numbeN and P 9 21s

temperatureT. In the calculations, we adopted the average:7'38’ the magnetization disappears while both the total and
: ' 2712 271
coordination numbez* =11.5, estimated from the viewpoint transverse SG order parametefgn)“];" and [(my)?]5")

of the DRPHS model® The effective exchange energy pa- remaln.flmte, showing thg second-order transition from the
noncollinear ferromagnetisifiF) to the noncollinear SG.

rameterJ=0.059 Ry was chosen so as to reproduce th3e 0b- The analyses of the single-site enefBy(£,z,i) and the
served ground-state magnetization 2 236or the bﬁg Fé pair energiesb(® (£2,i) (a=x,y,2) in Eq. (88), show that
and the fluctuation of interatomic d|stanc[e§§R)2]s /[R]s  the SG region is further divided into two regimes according
=0.067 was estimated from the first peak in the theoréfical 15 the difference in the SG formation mechanism.
and experimentdi pair distribution functions, all of which | the region 7.2N<7.38, the nearest-neighb¢kIN)
were used in our previous calculatiofs. . couplings are ferromagnetic and thus the local moments
Figure 1 shows the calculated n;alglgznenzaﬁ(]nnz)]s, the  (LM’s) form ferromagnetic clusters. However, there exist the
spin-glasgSG) order parametgm)]5’“, and its transverse |ong-range antiferromagnetic couplings which suppress the

componenf(m,)?]¥2 (=[(m,)?]%% as functions ofd elec-  development of ferromagnetic long-range order, thus form-
tron numbem at 30 K. ing the SG accompanied by ferromagnetic clusters.
The calculated magnetizatiggm,)]s shows a maximum In the region 6.%&N=<7.2, the amorphous metals show

at ad electron number around=7.6 and rapidly decreases anomalous magnetic couplings; the LM’s with large ampli-
with decreasing thel electron number towards amorphous tude ferromagnetically couple with the neighboring LM's,
Fe (N~7.0). The magnetization curve is qualitatively the while the LM’s with small amplitude antiferromagnetically
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(n,[(Hg)
200
2
é coll. F 0 ﬁ
100 1
202 0 20 2 0
i (i O(ug) oy () (i O(ug) (o, (k)
o b— . s . .
6.8 7.0 7.2 7.4 7.6 () T=110K (c) T=80K
N
. . . ;) 0
FIG. 3. Magnetic phase diagram as a function of temperature ° )
andd electron numbeN, showing the paramagnetic, the collinear 2 2 il .
ferromagnetic(collinear F), the noncollinear ferromagneticon- s
collinearF), and the spin glas€SG) states. 0 0 : —
couple with the neighboring ones. Since the amplitude of the 2 2 z
LM depends strongly on the surrounding environment in this 2 0 -2 2 03 2
region, the sign of magnetic couplings changes with the local ~ T%(ke) [y Hkte) [, (p) [y tp)
environment, thus leading to form the SG. It should be noted (b) T=100 K (d) T=50 K
that the SG in amorphous FeN{-7.0) is caused by this
mechanism. FIG. 5. The temperature dependence of the local moment distri-

The mechanisms shown here are essentially the same Bbstions forN=7.42. Here 4000 data points among 32 000 Monte
those found for the SG in the collinear calculatidhSince  Carlo samplings are shown at temperatuf@sT=110 K, (b) T
the transverse spin degrees of freedom are taken into accountl00 K, (c) T=80 K, and(d) T=50 K. The magnetic polarization
in the present theory, the noncollinear SG is obtained in thés assumed to be in tredirection.
present case. Figurd&® shows a LM distribution for the SG
expected In amorphous Fe, where 4000 data points sampl% transition temperatufg, shows a minimum as a function
from the 32 000 Monte Carlo data fét=7.0 and 30 K, are ¢ aroundN=6.9, where the average NN magnetic inter-

presented. It is seen that the LM distribution is nearly Sphe”éctions chan ;

S : . ge the sign. We have also calculatgtbr the
cal. It should b? noted that the Fj'fs’t.”bu“on of LM's dev'atescollinear SG and have found that tfig of the noncollinear
from the spherical one in the vicinity d1=6.9, where the

- . . SG is 1~3 K higher than that of the collinear SG in the
SG order parameter shows a minimum. In this region, th(?egion 6.9<N<7.38, while they are nearly the same in the

I[‘S'\ges sihov&);l]early two-dimensional disk shaped distribution region N=<6.9. This means that the noncollinear SG is ex-
We r?éve c.alculated the Curie temperature. the spin-ala ected in the region 6:9N=<7.38, while the collinear and
P ' PIN-9'8%% e noncollinear SG are almost degenerateNer6.9.

transition temperature, and the transverse spin freezing tem- The transverse spin freezing temperatiives identified
perature as functions of thteeelectron number. The obtained . P 9 P f
as a point where the transverse SG order parameter

ic ph i i in Fig. 3. The ph ) St
Ciagrem below 25 K wag ot caloulated because of the nu-(™e)%J2” appears. The curves Bt andT; nthe viiny of
merical difficulty in calculations. The Curie temperatife the multicritical point display two distinct transitions with

rapidly decreases when tikelectron number decreases and decreasing temperature: the first to a collinear ferromagnetic
reaches the multicritical point At=7.38 andT =104 K. The state atT and the second to a noncollinear ferromagnetic
' ' state afT; below T¢.

In order to see the details of the transverse spin freezing

Lo B =742 s R ] phenomenon, we show in Fig. 4 the curves of the magneti-
B IR — o, zation[(m,)]s, the total SG order parametgfm)?]%?, and
— their transverse componer{m,)2]¥? (=[(m,)?]{?%) as

functions of temperature foN=7.42. The magnetization
curve shows that the spontaneous magnetization appears at
112 K. The transverse SG order parameters remain zero
down to 90 K, showing the development of the collinear
ferromagnetic order in the temperature range 90-112 K. Be-
low 90 K, the transverse SG order parameter appears in the
presence of finite magnetization. This result shows the ap-
pearance of the noncolline&rdue to the freezing of trans-
FIG. 4. Total spin-glass order paramefém)?]¥2, the magne- Verse spin components. It is also seen that the transverse SG
tization [(m,)]s, and the transverse spin-glass order parameteprder parameter is reduced below 40 K. The extrapolation of
[(m,)?]¥? as functions of temperatufefor N=7.42. the result to lower temperatures leads to the slight shrink of

S

Magnetic moments (H1g)

T (K)
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T=35K

f Sl (Cu R
Z:, 21— [l 1
=) o Lorenz et al.
(E) ® Liebsetal 2 0
2 | i Y
:ﬁl 1 ”///’ 2 0 2 -2 ° 2 -
i e ’,/° e (is) By (tg) (B (g) [y ig)
o 7 Q ¢ 4 L L L
’ 9 10 11 12 13 14 (a) V=11.50 (A%) (©) v=1138 (A)
V(A%
. [, L(ptg) [, ()
FIG. 6. Total spin-glass order parameftém)?]¥? and the mag-
netization[({m,)]s as functions of volume foN=7.0 and 7.3 at 35 2 2
K. Calculated magnetization for amorphous Fe at the ground state
by Lorenz and Hafne(Ref. 30 and that by Liebst al. (Ref. 31 Y 0
are presented by open and full circles, respectively. I’ ’ 5 »
2 2
, - . 2 2 ° 2 20
the noncolh_near ferromagneng phgse below 40 K, as seen in ) 2 (3, D) O(itg) 2 (o, (1)
the magnetic phase diagram in Fig. 3.
Figure 5 shows the LM distribution corresponding to Fig. (b) V=11.40 (A% (d) v=11.30 (A%

4. The development of the collinear ferromagnetic order be- o
low T [Figs. 5a) and §b)] and the subsequent development _ FIG. 7. The volume dependence of the local moment distribu-

: : ions at 35 K. Here 4000 data points among 32 000 Monte Carlo
of the noncollinear ferromagnetic order below the transvers%amp”ngs are shown for the volumés) V—11.50 &%, (b) V/

spin freezing temperaturgFig. 5(c) and 5d)] are clearly  _ 49 458 () v=11.38 &, and(d) V=11.30 &. The magnetic
seen. It should be noted that the LM’s in Fig. 5 show a broaq)marization is assumed to be in thalirection.
amplitude distribution even at 50 K. The feature is charac-
teristic to"the itinerant magnetism .and is gonsistent with the 114 common feature among these results is that in the
recent Masbauer measuremehtin Fe-rich amorphous icinit of the multicritical point (~90 at. % Fé, some kind
Fe-Zr alloys, which show broad internal field distributions at ¢ honcollinear state appears at a temperature bdlgwlue
low temperatures. _ o _ to the spin freezing, which seems to correspond to the
In the experimental investigations on Fe-rich amorphougyresent results shown in Figs. 4 and 5. It should be noted,
transition-metal  alloys, the bulk magnetizatfon, however, that the experimental investigations mentioned
Mossbauef;**~** and ac susceptibilify data, indicate two ahove were performed at finite concentrations of the second
transitions for the alloys with less than 90 at. % Fe; the firstelements, while the present calculations have been per-
to a collinearF state afl, and the second to a noncollinear formed for amorphous pure transition metals by varying the
state at a temperature beldw due to the spin freezing. The d electron number. In general, the changing of the second
proposed microscopic interpretations for the noncollineaelement concentration is not the same as the changing of the
phase, however, are not unique and are controversial evehelectron number, because the former brings about the ad-
for the same alloy system. ditional effects of the alloying such as the random magnetic
Amorphous Fe-La alloys with more than 10 at. % La wereinteractions and the atomic size effect due to the second
reported to show a re-entraRtSG transition belowl, due  element” Therefore, the effects of the second element must
to the freezing of transverse components of spfns the  be taken into account in the theory to clarify the observed
case of the amorphous Fe-Zr system, various microscopigpin freezing in Fe-rich amorphous alloys, which is left for
models are proposed to describe the noncollinear phase biture work.
low the spin freezing temperature. These include the freezing
of frustr_ated antife_rromagnetip clgsters distributed in a ferro- B. Volume dependence
magnetic matriXmictomagnetisr)° the SG due to the freez-
ing of ferromagnetic clusters with random orientations in a We have calculated the volume dependence of the mag-
ferromagnetic matrix® and the noncollinear ferromagnetism netization and the SG order parametersdalectron num-
due to the homogeneous transverse spin freezin§ers around amorphous Fe. We adopted the same input pa-
(asperomagnetismi* It was also reported that the noncol- fameters as those used in the previous calculaffofihie
linear magnetic states in all the fgg_,Zr, (7<x<12), al- input DOS was scaled by the bandwidthVor™*
loys become collinear under the external field of less than %x=3.8)>"°* when the volume is changed. Heredenotes
T.23 1t has not been clarified, however, whether the observethe Wigner-Seitz radius. The average coordination number
noncollinear state is due to the atomic level of local cantinghas chosen to be 12. The volume dependence of the effec-
for spins or it is due to the possible reorientations of largettive exchange energy parametkrwas taken from the cal-
collinear spins or domain structures. culation by Andersert al>® as follows:
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o r fact, Liebset al3! performed noncollinear calculations with
JZJo( —0.2—+ 1.2), (98)  the use of the LMTO supercell method with 32 Fe atoms in
0 a unit cell, and showed that the isotropic SG can become the
_ ground state foV=11.74 A (see Fig. 6. The F-SG phase
whereJ,=0.068 Ry>® andr,=2.697 a.i’’ The fluctuation transition is observed to occur in amorphousfea,, s al-
of interatomic distance is taken to D@R)Z]é’Z/[R]Sz 0.06. loys with increasing pressuf@.The transition was found to
Figure 6 shows the volume dependence of the calculatede of second order. The nature of the volume-indueesiG
magnetizatior[ (m,)]s (solid curve$, and the SG order pa- transition for pure amorphous Fe, however, has not been
rameter[(m}z]i’2 (dotted curvesfor d electron number$ clarified experimentally.
=7.0 and 7.3 at 35 K. In the case Wf=7.0 (corresponding
to pure amorphous Fewith decreasing volume, the magne-
tization suddenly drops at the critical volume 12.67 A
where the first-order transition from the collinefarto the We have developed the noncollinear theory of amorphous
noncollinear SG takes place. Below 12.6%,Ahe SG order metallic magnetism on the basis of the functional-integral
parameter gradually decreases until the volume 10%®&- method and the distribution function method. The theory
low which the paramagnetic state appears. The result agreéakes into account the transverse spin degrees of freedom at
with that of the collinear calculations based on the finite-finite temperatures and reduces to the generalized Hartree-
temperature theory of amorphous metallic magnefism, Fock approximation at the ground state. On the basis of the
where the first-ordefF-SG transition is shown to occur at the noncollinear theory, we have revealed the magnetic phase
critical volume 12.55 & for N=7.0 at 75 K. Note that the diagram of amorphous transition metals as a functiom of
noncollinear SG is obtained below the critical volume in theelectron numbeN and temperaturg.
present theory with the transverse spin degrees of freedom. The obtained magnetic phase diagram on k& plane
It should also be noted that the obtained critical volumedisplays the spin-glag$G (N<7.38), the noncollinear fer-
12.67 A% is close to the equilibrium volume 12.38Acor-  romagnetism (F) (7.38<N<7.43), and the collinearlr
responding roughly to that of sputter-deposited amorphoué7.43<N) at low temperatures. The noncollinear SG with
Fe (Ref. 27] of amorphous Fe. As discussed in Ref. 22, thenearly isotropic LM distribution is expected to be realized in
ferromagnetism of amorphous Fe in the Y/Fe/Y layeredthe region 6.9<N=<7.38. The Curie temperaturg: mono-
structuré® can be explained, provided that the volume of thetonically decreases with the decreasthglectron numbeN,
amorphous Fe is expanded due to the presence of Y layerand reaches the multicritical pointldt=7.38. The spin-glass
In the case oN=7.3, the magnetization continuously de- transition temperatur€&, shows a minimum around=6.9,
creases with decreasing volume and disappears at the criticahere the average interactions change the sign.drakec-
volume 11.3 &, where the second-order transition to the tron number dependence B andTy seems to be consistent
noncollinear SG takes place. The noncollinear SG continuewith the recent experimental data ongfMn; _,Fe) g, qua-
to exist until the volume 9.35A below which a paramag- sibinary amorphous alloy¥,in which the Curie temperature
netic state appears. In tfeSG transition, the noncolline&  rapidly decreases until the SG state appears with the decreas-
appears in a very narrow range of volume 11.385/ ing Fe concentration, and the SG transition temperature
=<11.40 A3, as illustrated in the LM distributions in Fig. 7. It shows a minimum ax=0.5.
is seen that LM's antiparallel to the magnetization, appear In the vicinity of the multicritical point on thé-T plane,
first [Figs. 7a) and(b)] and then the transverse componentsthe transition from the collineaf to the noncollineaf is
develop[Fig. 7(c)] with decreasing volume from 11.5CFA  shown to occur with decreasing temperature, due to the
Finally, a noncollinear SG with a nearly isotropic LM distri- freezing of the transverse spin components. The result seems
bution is realizedFig. 7(d)]. With regard to the noncollinear to be consistent with those of the recent ddbauer
SG in the present paper, we remark that the distribution omeasurements?=34on Fe-rich amorphous alloys. The LM
LM’s deviates from the spherical one in the vicinity of the distributions for the collineaF were found to remain broad
boundary where the LM's disappede.g., V~9.4 A3 N due to the local environment effects even at low tempera-
=7.3 in Fig. 6. In this region, the LM’s show a nearly tures. This is characteristic of the itinerant electron system
two-dimensional disk shaped distribution as found in Fig.and agrees with the Msbauer measurements on Fe-rich
2(b). amorphous alloys, showing the broad internal field distribu-
The volume dependence of the magnetism in amorphousons at low temperatures.
Fe was also investigated on the basis of the ground-state We have also investigated the volume dependence of
theory. Lorenz and Hafn& performed detailed noncollinear magnetism in amorphous transition metals fb=7.0 and
calculations based on the self-consistent LMTO recursior?.3 at 35 K. In both cases, the calculated magnetization ver-
method with 1728 atoms in a cluster. As shown in Fig. 6,sus volume curves show a phase transition fromRhe the
their result shows a gradual decrease of magnetization dowmoncollinear SG and a subsequent transition to the paramag-
to 9.1 A3 with decreasing volume. It does not reveal a cleametism with decreasing volume. The transition from Ento
phase transition, although a SG-like state with noncollineaSG is shown to be of the first order fobk= 7.0, and to be of
LM’s is obtained below the volume 10.4°A 1t should be the second-order foN=7.3. The critical volume of the
noted that there is no reason for the existence of the unique-SG transition folN=7.0 is found to be close to the equi-
solution in the competing system such as amorphous Fe. liibrium volume of amorphous Fe, in agreement with the re-

IV. SUMMARY
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sult of the collinear calculatiorté. The result can explain the amorphous pure metals. Thus, in order to clarify the validity

observed ferromagnetism of amorphous Fe in a Y/Fel/Y layof the theory, it is necessary to extend the present theory to

ered structure, provided that the volume of the amorphous Fihe case of amorphous alloys, taking into account the effects

is expanded due to the presence of Y layers. of the alloying such as the random magnetic interactions and
Finally, we remark on the remaining problems in the the-the atomic size effect¥. Such a theory would also explain

oretical treatments. First, in the present theory, the magnetigye details of the experimental magnetic phase diagram in

interactions between nearest-neighdN) LM’s are treated  EFe-rich amorphous alloys.

directly and the interactions with more distant LM’s are

taken into account as the effective media; the effects of the
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