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Kinetics of the coherent order-disorder transition in AlzZr
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Within a phase field approach which takes the strain-induced elasticity into account, the kinetics of the
coherent order-disorder transition is investigated for the specific case@f Alloy. It is shown that a
microstructure with cubid 1, precipitates appears as a transient state during the decomposition of a homo-
geneous disordered solid solution into a microstructure with tetragonal p@cipitates embedded into a
disordered matrix. At low enough temperature, favored by a weak internal stresg, onprecipitates grow
in the transient microstructure preceding nucleation of the,Ofecipitates that occurs exclusively at the
interface of the solid solution with thel, precipitates. Analysis of microstructures at nanoscopic scale shows
a characteristic rod shape for the B@recipitates due to the combination of their tetragonal symmetry and
their large internal stress.
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. INTRODUCTION netics generates 1, rather than D@ precipitates. If the
coherent elastic interactions are not included, only,Pie-

Macroscopic properties of materials depend to a large excipitates nucleate.
tend on the microstructures they present at a mesoscopic Our simulations prove that one may obtain metastable
scale. For the case of alloys the most efficient way to control 1, phase in specific conditions that correspond to the ex-
the formation of microstructures is by phase transformationsperimental conditions leading to lal, microstructure. The
Well known prototypes are the-vy’ superalloys, such as lifetime of that microstructure may be infinite compared to
Ni-Al (see Ref. 1 The microstructure of such binary alloys the simulation time, provided the temperature is not too high.
consists of stable ordered domains, dispersed in a disorderéhce thelL1, precipitates have grown at sufficiently low
fcc matrix. The symmetry of the ordered domains is calledtemperature, the system may be brought to a higher tempera-
L1,: the atoms of the minority species are placed at thdure, where nd_1, would nucleate if the system had been
corner of the fcc motif and the atoms of the majority speciegluenched directly to that temperature. If the already devel-
occupies the center of the faces of the same motif. opedL 1, microstructure is aged again at higher temperature,

The macroscopic properties are controlled by the size ofhen the DQ; precipitation starts and DQ precipitates
precipitates, their spatial distribution, and their ability to re-nucleate exclusively along the interfaces betweés inclu-
sist to coarsening. In this context, we present a theoreticalions and the matrix. Once D@precipitates are formed,
study of the dynamics of microstructures in an aluminumtn€y grow and consume thel, domains. The latest trans-
based alloy, namely, Al-Zr. formation cannot be reversgd wlth decreas[ng ftemperature.

In this system, for low enough concentration, the equilib- In Sec. I, the general pr|n0|p_les of the klnet|_c model_ are
rium ordered structure is the tetragonal R@hase. Its motif presented. In Sec. Ill, we outline how the microelasticity

i obtained from theé. 1. structure with antiohase boundarie contribution can be included into the model. The implemen-
! inediro —2 SHUCIUTE Wi 1P u '€S tation of the phase transition kinetics, the results obtained
in (100 directions with the period of 4. In Al-Zr the cubic

_ and their interpretation are given in Sec. IV. Conclusions and
L1, phase is known to be metastable at all temperaiure

2 ¥ ; o ; k perspectives are drawn in Sec. V.
This is confirmed byab initio electronic calculations at
=0 K (Refs. 6,7 which show that the energy difference
between L1, and DQ; is about 0.86%10° J/nt (or
9.1 meV/atom), in favor of D&;. However, the lattice mis-
fit of DO,5 with respect to pure Al is significantly larger than ~ Our mesoscopic method is a time-dependent Ginzburg-
L1,. Hence, the interplay between the chemical energy and,andau kinetics driven by a functional with two parts: first a
for coherent microstructures, the elastic energy may induc&inzburg-Landau functional that includes the chemical inter-
various precipitation processes. actions and second a strain-induced elastic energy.

The aim of the present work is to investigate the decom- The explicit form of the Ginzburg-LandalGL) free en-
position processes and to analyze the resulting microstruergy is imposed by symmetry rules. The first step consists in
tures at mesoscopic scale. We use a phase field approadtientifying the long range orddi.RO) parameters that rep-
where the incoherent chemical energy is represented by r@sent the ordered phases we want to study. In the present
Ginzburg-Landau free energy supplemented by a strainsituation, we should introduce the LRO parameters oL, PO
induced elastic energy, in the form proposed byandL1,. Nevertheless, to simplify the writing of the GL free
Khachaturyarf~* Using numerical simulations, we show that energy, we choose to replace the QRO parameters with
the coherent elastic strain favors thd, phase at low Zr the DO,, ones as these phases are both tetragonal. What
concentration and low temperature and in that range the kidiffers between them is only the periodicity of the antiphase

II. GINZBURG-LANDAU FUNCTIONAL
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boundaries that is 2 for DQinstead of 3 for DG;. As our n o A2 5 Ay,
aim is not to investigate the competition between the latter' - ~#An(Co™C1)"+ 7(02_00)2 7= AN 2
phases, our description only requires to capture the tetrago-
nality of the possible stable ordered phase.

The L1, phase is simple: it consists in three independent
parametersy,, 7,, 13 Which correspond to the amplitudes )
of the three waves that contribute ltd ,. The waves corre- +& S 22 %7-6 2.3
spond to the three vectors of the reciprocal sp#ce 2 e '
=(100), K,=(010), K;=(001), respectively. If the micro-
structure consists only ib1, domains embedded into a dis- here order parameters indices are written modulo 3. The

ordered fcc matrix, the local concentratie(R) would be ¢ symnol points out the adimensional quantities: figris
given by an adimensional free energy density. The sets of coefficients
1A}, {Bj}, {K;}, and{cy,c,} should vary with the tempera-
ture but are chosen as constant parameters for simplicity. The
c(R)=co(R)+ > 7(Rexpi2aKR), (2.1) first term in the right hand side of E@2.3) is the disorder
j=1123 contribution as it does not depend on the order parameters.
The powern of that term may have two valugs=n_ =2
» ) and n=n_=8 whetherc,>c; or not. We introduce that
where the quantitieso(R) and 7;(R) vary slowly in space. yroperty to adjust the topology of the Landau functional with
For a DQy, structure, the probabilitg(R) to find a atom Zr - poth experimental andb initio measurements as described
at positionR can be written as follows: below. The continuity of the first and second derivatives of
the Landau functional are preserved which is sufficient for
the present case.
_ . ; A The next three terms with,,A;,A, amplitudes are the
c(R) CO(R)+1={§2,3} m(R)exp(i2mk;R) contribution of the star (1 0 0). The four last terms associ-
_ ; _ * . _ ated withB,,B,4,B,,Bg are the contribution of the concen-
Ty(RISHIZmQR) + ¥ (RIexp —i2mQ;R), tration waves{Q;};. The expansion to the sixth order is re-
(2.2 quired to obtain the linear stability of both D9and L1,
phases for the same range of concentration. {lkg and
{B,} coefficients couple concentration waves with different
orientations. They control the amplitude of the potential bar-
_ : . . : . __rier between the minima that correspond to ordered phases.
=(1 0 1/2) blong to the reciprocal cubic lattice. This ch0|ce.|_he K term is the amplitude of the coupling between the

is not unique but is sufficient. For example, (1/2 0 1) can b%vaves that belong to the same orientational p@ariant
replaced by (1/2 1 0); each indgxorresponds to a possible (K.,Q;) and equivalents '
1 I .

orientation of the tetragonal transformation yielding 20 In fact, the precise form of the Landau functional term by
For each of the three orientational variants there are foufgrm has not a direct influence on the mesoscopic microstruc-
translational variants. For example, for a perfect;pghase  tyre providing that the functional is globally invariant with
with the orientationj =1, one has four translational variants respect to the space group of the fcc lattice. The important
defined, respectively, byi = 7., yi=—171, vi=—in, ingredients are the excess free-energy associated with inter-
¥y =in.. For simplicity we drop the complex variants. It faces and long-range elastic interactions between domains.
does not affect the description as there are still two translaTherefore, we keep the lowest order coupling term between

K, B, B,
+Kayimt+ =i2+1 N+ 5 (=) vi—

Whereyj* is the complex conjugate of the amplitude param
eter y; and Q;=(1/210), Q,=(01/21), and Qs

tion variants for each orientation of the D{phase. the LRO pzarameters associated with (Q;) , i. e., terms of
We note that the statg;=0 and»;+#0 for j=1,2,3 leads the form y{'#; . o o
to a densityc(R) that describes &1, phase. A perfect 1, The energy scale is fixed by ti&, coefficient. The pa-

implies that the thre¢100-type waves have the same am- rameters of the adimensional free-energy derfsitgo, 7,7)
plitude. AsL1, preserves the cubic symmetry there is noare adjusted to fit the required qualitative thermodynamical
orientational variant but only four translational variants. ~ properties. In Fig. 1 is plotted versus concentratinthe

We now develop a uniform Landau functional as a func-free energy densityoﬂ_ minimized with respect to the LRO
tion of {cq,7;,v;}. The terms of this analytical function parameters. The three types of minima correspond to the

f_(co,m,7)=F,.f, are selected to fit with the symmetry of disordered phase, the RO(or DO,,) and L1, structures.
the fcc lattice, that is each term must be invariant under any N common tangent constructions determine the regions
operation of the fcc symmetry group. Formally there is nowhere ordered .phases may coexist with the .soll|d solution.
other rule to realize a polynomial expansion but the simplesf he concentrationspo,, 2 andcpo,, » are the limit of the
form is probably the best. In practice, other conditigese  region where coexist both disordered solid solution with the
below) must be satisfied. We propose the following adimen-DO,; phase. Similar quantities can be determine for the co-
tional functional: existence of solid solution with.1, phase: CL1,.a and
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must be large enough to justify our continuous approach and
define the scale of one pixel in our simulations. The total free
energy can be expressed as a discrete Bgn=d®3 fg,
whereL represents the set of the sublattice nodes.

We now describe the physical requirement we use to ad-
just the Ginzburg-Landau functional. Firx;t_,l261 and Cpo,za

(see Fig. 1 are the solubility limit of both_1, and DQy if
each phase is supposed to coexist alone with solid solution.
The Cpo,,a is given by the uncoherent phase diagram and

CL1.2 has been estimated by the measure of the lattice pa-
2

rameter of the solid solution by x ray using Vegard's faw.
For Zr at temperatureT=425°C, Cpo,,a= 0.0308 and

CL1,a=0.0426 at. %.

0.0 0.2 04 0.6 0.8 1.0 Second, to analyze the competition between the meta-
Congentration stableL1, and stable D@; structures during the precipita-
tion and aging processes, the free energy difference between
both phases is an important quantity. In order to estimate this
difference we refer to the theoretical studies of the formation
energies obtained byab initio electronic structure
method<~° In Ref. 6, it is found that ground-state of /&r
is indeed D@3, and its structure is stabilized by the relax-
ation of the atomic positions inside the elementary cell. The
difference of energy betwednl, and DQg is found to be
511,=0.863<10° J/n7. In term of a phase field approach,
this corresponds to an uncoherent energy at zero tempera-
ture. We assume that for low enough temperature, the free
energy dif'ferenceS,_12 do not vary strongly. Therefore, the

Free Energy Density (100 MJ/m3)

-0.1

-0.6 -

Free Energy Density (100 MJ/m3)

Coo. ab initio quantitycSLl2 is used to fix the scalg of the free

23’ ) “
16— T 50 ?nergy[Eq. (2.4)] through the relatiofo= 6, 1,/ 6,1, where
Concentration L1, is the energy difference between the correspondibg

FIG. 1. Uniform free energy density versus concentration, withand DG;3 minima of the adimentional free enerdy which
minima corresponding to the phases R@ndL1, and the solid has been minimized taking into account the conservation of
solution. On the right, magnification of the common tangent con-the ¢, concentration parameter that yields the common tan-
structions(pointed by arrows gent constructiorisee Fig. 1

Finally, another very important feature of the GL func-
Cli,b- The concentrationle,a anchowa are the solubil- tional is the excess of energy of the interface between solid
solution and precipitates, noteld, with o={L1,,DO,3}.
These quantities play a role in nucleation and growth pro-
and the local concentratiom, are spatially dependant. cess. The interface energy of ord_ered precipitates in the solid
I%s_olutlon can be measured experimentally at very low super-

Within a phase-field approach, these parameters vary co : e )
tinuously thought the system. The energy excess due to i saturation. The Lifshitz-Slyozov-Wagner thethgives the

terfaces is expressed as a continuous Hamiltonian of the pg]terface energy as a function of the diffusion coefficient

rameter fields and their first derivatives. To the lowest orderWhICh is physically measured. Unfortunately the few we

this leads to the following Ginzburg-Land4@L) free en- found in literature(see Rgf. B about such a measurement is
ergy density: not satisfactory as the interface energy measuredLfor

precipitates| L1, is hundred times larger than the usual val-

ity limit of the L1, and DGQ3 phases, respectively.
In a nonuniform system, the order parametersand v,

A ues. Thus we choose to estimatg. to a value of 10 mJ/f
foL=Fo| fL(Co,7,¥) +{ Nc|VCo|?+ 2, N\, V2 o NI :
ot =Fol fu(Co, 77+ Aol VG Z Y which is the order of magnitude of interface energies mea-
sured in aluminum compounds. As we did not find measure-
V2 24 ment in literature concerning interface energy of DQre-
vV Yi( | ( . ) . .
cipitateslpo, , we choose fotDo23 a similar value to that of

where the\ coefficients are the weight of the gradient terms.! L1, because there is no physical reason these two quantities
Total energy is given byfg = ffgdV. For the numerical 0 diff_er by an order of magnitude. We adjust the interface
implementation, we introduce a discrete space which is &nergies of the ordered phases of the adimensional GL
cubic sublattice with unit cell of linear sizé. This length  functional |, such asFydl,=1,. It implies |D023/|L12
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=ID023/IL12. With some difficulties, we managed to adjust nal coefficients. For the general expression of the local

the GL functional such that bothyo,, and i ;, have the strain, we propose the following forfsee Ref. %

same order of magnitude. Thwe being fixed by the second . 0 3 0
criteriion stated previously, it imposes=1,/1,3.1,/8.1, SO €x(R) = € (0) ho(R) + p§=:l (P Pp(R), (3.3
we can define the scale of our simulation. In order to inves-

tigate the nanometer scale we chodsel nm, then thef ~ Where lﬁp(R?f[Yp(g)]z, and ¢o(R)=[co(R)—c]. The
tensor coefficientse,;(p) are chosen in a such way that

functional must verifyi,/5 ;. ~0.26. The only way we

. . S ; € (R)zele if a relaxedL1, inclusion is at the positiofR
found to satisfy the previous criteria is to introduce the non-"kl 0, bo p) - 20 T
symmetric powen.. for the term €—c;)"= in the GL func-  and e (R)=¢,,"#>" if a DOy inclusion is in the same po-

tional. Finally we obtaincpg, ,=0.0308%, C\1,,=0.5%, sitiop with the orientational vari?rpi The Eq.(3.3) is rewrit-
andFodl ;. =8 md/nf, Fodipo. =9 mJinf. The pixel of €N IN &compact forme(R) =X 5_oe™(p) #p(R) where the

. 2 22 ) p indice varies now from 0 to 3. The strain-induced elastic
our simulation represents a cube of stze 0.5 nm. energy can be computed following the model presented in
Ref. 11 which gives
I1l. MICROELASTICITY CONTRIBUTION TO FREE

1 -~
ENERGY Eer=5 2 f [Bpal ¥ adK?, (34

As described in Ref. 4, the elastic eneigy is calculated P
assuming that the local strair,{) induces a relaxation that where?bp is the Fourier transform of the functio,. There
is calculated by setting a small volurd&/ of the bulk to the
mechanical equilibrium. It is supposed that the time needed Bp.q(K)=Nijurexi(p) (@) — bpq(K)
to reach the mechanical equilibrium is negligible compared :
to the typical diffusive time?)f the ordering gp])rgcess. Thg keyand bpq(K)= Uﬁ?(pgo Ki Gik K(',o 0ii(q) where 'S the
point of the phase field theory for alloys is that the stress fre&aStiC tensor andj(p) = Ajjx €,4(p). The tensoGy is the
strain tensor can be expressed as a function of the local LR&/astic Green function. The tensar;, is assumed to be
parameters and local concentratioy(R). hom(_)geneoys_ in space anq the simulations are realized with

The geometrical operation to transform a cubic unit cell€lastic coefficients of aluminurt.

of the solid solution with lattice parametarinto the cubic
unit cell of theL 1, phase with lattice parametey ;  is given
by the tensor The total energy is given by the suR=Fg, +E [EQs.
(2.4 and (3.4)]. At mesoscopic scale, the kinetics of the
(3.1) phase transition is well described by a phase field method
(see Ref. 12 In the context of a phase field approach, the

heresu is th ity t The latii h local compositioncy is a conservative order parameter and
where dy Is the unity tensor. The lattice parametgfy, has s its time evolution is driven by the Cahn-Hilliard equa-

been measured for a perfdct, phase i.e., with stoichiom-  gn

etry 0.25 at. Y%amZr anda is extrapolated from the lattice
parametem, of pure aluminum Al, using Vegard's law. dco(R,t)

SF
— - C
We noteapo,, and bpo,, the lattice parameters of the at L 6co(R,1) +U(RY “.D

tetragonal D@; phase at stoichiometry 0.25 at.% Zr. The 54 for the nonconservative LRO parameters the kinetic is
geometrical operation to transform a cubic unit cell of thegiven by

solid solution into the tetragonal elementary cell of the,pO

IV. KINETICS OF THE PHASE TRANSFORMATION

L1 N~
€l 2= 5k|(aL12_ a)la,

phase is given by the tensef,oZ?’(p) if the orientational an; oF ”

variant corresponds to the association of tg (Q,) waves i L ,,5—7]] +v7i(R,1), (4.2
with p=1,20r 3: the cell is dilatated in either (100), (010),

or (001) direction. Here we choose as an example the orien- Y ,

tational variant associated t&(,Q,) and the cubic unit cell ot 75_,},j+ vI(RY), 4.3

is dilated in the direction (100) so &g, >§>aDo . i )
23 23 wherev's are stochastic terms. To simulate thermal fluctua-

tions, it is useful to introduce the Langevin noise which con-
sists in assuming a white space-time noise for the stochastic
(3.2  terms and no cross-correlation between each other. Numeri-
cally, the random functionsa’s are implemented with a
gaussian probability density.
B — — DOy, The set of Egs.(4.1)—(4.3 is the so-called time-
where t=(apo,,~a)/(bpo,,~@). Tensors €,,(2) and  gependant Ginzburg-Landau equafi@nd they can be de-

63023(3) derive fromeElOZ3(1) by permutation of the diago- rived from the microscopic @sager equation with respect to

100
bD023_a
ePO3(1)=—=—|0 t O

a 0 0 t
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f “E
- t=.3.

t=24. t=26.
FIG. 2. (Color Simulation of aging for=2 at. % Zr,T=425 K (first row). At time t=20, T is increased al =848 K (second row
and atT=1100 K(third and fourth rows Note that the D@, (red and blugprecipitates grow at the interface lol, precipitategpale with

the solid solution with rod shape. White lines at top left corner of the pictures represent 15 nm and indi¢até thelirection.

FIG. 4. (Colon Isothermally aging aT=1100 K,c=3 at. % Zr.
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the occupation probability of the solute atofisumerically,  the solid solution becomes poor in solute and therefore the
for simplicity, we choosel ,=L,=L.=1. So in order to nucleation of DQ; precipitates is no longer possible in the
deduce the approximative time unit of our simulations, ourdisoredered matrix. In fact, if temperature is lower tian,,

numerical time must be divided by the numerical value ofthe | 1, microstructure may survive for a time much longer
the diffusion coefficient. The Langevin noise provides a verythan the computation time. Nevertheless, a gradual increase
primitive description of the thermal fluctuations. All though of the temperature reveals the process of nucleation of the
it is the simplest and the less controversal way to implemen[)023 precipitates(see Fig. 2 A remarkable result is that
the temperature in the simulation. nucleation of the stable phase occurs at the interface of the
Equations(4.1)—(4.3) are integrated on a system that is L1, precipitates with the solid solution where the local con-
invariant along thez axis to save computation time. The centrationc, is high enough. One note that the preferential
initial state of the system is a uniform solid solution at con-growth of DOy; precipitates occurs at temperature higher
centrationcL12Ya<co=E< 0.25 and all the set of LRO pa- thanT,,, that demonstrates the robusness of the metastable

rameters are set to zero value, which represents an unstaté2 microstructure with respect to thermal fluctuations.
disordered phase. The initial time of our simulation can be Similar simulations at larger saturatianshow that both
considered as an instantaneous quenching of the material.the DOy3 and L1, precipitates nucleate and may coexist in

To represent the microstructures we choose to color théhe microstructurésee Fig. 4 In that range ot, the DOy
DO,; precipitates with either blue or red depending on theirinclusions can nucleate at places different frbdy, precipi-
translational variant. The four translational variantsLdf,  tates because the solute atoms have not been consumed by
are allocated to four other paler colors. The disordered phaste growth ofL1, inclusions. Once saturation of the solid
is colored with black. The gray scale is sufficient to distin-solution is locally dried up, the DQ precipitates grow to the
guish the different types of precipitates if the translationalexpense of thd.1, grains via the solute diffusion throught
variants are forgotten. In Figs. 2—4, we present the dynamicghe matrix. Then the persistebil, precipitates are localized
of the phase transition from disordered solid solution to aelatively far from the DG; grain. For a given temperature,
microstructure with ordered precipitates embedded into & the average concentratianis increased again, the grains
disordered matrix. The different sequences are realizeg;i, gifferent phases nucleate in neighboring regions of the
for different average compositionsc and different  supersaturated solid solution and the Q@nclusions ab-
temperatured . sorbe theZr matter ofL 1, inclusions.

First, one notes the specific rod shape of the,pare- One remark on Figs. 2—4 that the orientational variant of
cipitates. The tetragonal symmetry combined with a largeDO,;which is combination of wavesK(s,Qs) is inhibited. It
misfit (bDozs_ a)/a which involves a large intrinsic stress is iS because the precipitates with such variant cannot relax
well known to induce such a pattefrOn the very last pic- their elastic energy becausezrx:ﬁvarianqe. Qqalitatively itis
ture of Fig. 2 the facets of the D@inclusions correspond to N0t @ problem as there are still two orientational variants for
the habit planes with orientation of around 20° with respecth® D phase.
to the(1 0 0) directions. For any couple of external variables,

namely the temperatur& and the compositior?the late
stage of the kinetics is a microstructure which contains ex-

clusively the DQs precipitates embedded in a disordered  The present paper treats of the specific case of the inter-
maFrix. Neverthelest 12 structu'res may appear in the early play between thé 1, metastable phase and the R@rdered
regime of the dynamicgsee Fig. 3 As the L1, ordered  ground-state during the order-disorder transition igZAlal-
precipitates involve a weak misfig(;,—a)/a compared to loy. It is proved that for a sufficiently low temperature and
(bpo _g)/g, their shape is spherical. These spherical inclu-Weak solute saturati_on the metastable phase 'nucleates before
sionszsnucleate only at low temperatdrend lowZr concen- the s’_[a_\ble pha_se. Itis th_e resuilt of the dynar_nlcs of the- phase
Tz “7_  transition that is deeply influenced by the microelasticity in-
tration c. At low enough values off and for saturatiort  gyced by the strain of precipitates. The metastable ordered
close enough from the solubility limit, the microstructure phase with a weak internal stress may be favored with re-
ContainS eXCIUSiVely thelz precipitates inside the Solid SO- Spect to the Ordered ground state Wh|Ch induces a much
lution. Since thel 1, phase is metastable, any grain of this |arger strain. The strain-induced elasticity may play a role at
phase should not resist to thermal fluctuations and thus nghe early regime of the dynamics of the phase transition.
L1, precipitates should grow in the microstructure. It is ac-Furthermore, depending on external variables, temperature
tually what is observed if the elastic enery, is neglected  and composition, we found different kinetics for the vanish-
in our simulations. However, in the limit of low Zr satura- |ng of thele precipitates_ At low temperature and low satu-
tion, the kinetics of the transition drives the system to Aration of So|ute, the D% precipitates grow preferentia”y at
transientL 1, microstructure which is favored by its intrinsic the interfaces of 1, inclusions with solid solution. At higher
stress which is weaker than that of ROIf the temperature  temperature or equivalently higher Zr saturation, the,pO
Tis not too high, i.e.T<T ; ~500 K(see Fig. 2, theL1,  precipitates nucleate into the solid solution. Once,P@e-
precipitates can even grow by consuming the very few soluteipitates have nucleated, they grow at expense oflLthe
atoms contained in the disordered matrix. This implies thastructure that disappears. Actually, such phenomena have not

V. CONCLUSION AND PERSPECTIVE
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yet been observed experimentally. With this respect, thetanding of precipitates formation and to improve the control
phase field method can be considered as a predictive methoaf, the alloys synthesis. To that purpose, the phase field
though experimental confirmation is now required. On thatmethod we use, can be extended for other alloys with similar
trail, microscope analysis are programmed in the Laboratoirehase transition as JAl or Pd;V.
d’Etude des Microstructur6®©NERA). Finally our calculations are only valid for coherent sample
It is well known experimentally that thel, microstruc- at the nanometer scale. It is possible to investigate non-
ture has better mechanical properties than,p@s theL1,  coherent effect introducing dislocations in the phase-field
is metastable, the degradation of the mechanical propertigsethod as it is discribed in both Refs. 14 and 15. It is of
with increasing temperature cannot be avoid. Neverthelesgreat interest to perform such simulation in the case gZAl
our results allow to hope that it is possible to increase thavhere discontinuous precipitations and dislocations modify
robusness of the 1, microstructure playing with elastic in- strongly the precipitation proceé€s’ and play an important
teraction. We expect our study will contribute to the under-role in macroscopic properties of materials.
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