PHYSICAL REVIEW B, VOLUME 64, 052508

Dynamics and transformations of the Josephson vortex lattice in layered superconductors
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We consider the dynamics of a Josephson vortex lattice in layered superconductors with magnetic, charge
(electrostatif, and charge-imbalandguasiparticlg interactions between interlayer Josephson junctions taken
into account. The macroscopic dynamical equations for the interlayer Josephson phase differences, intralayer
charge, and electron-hole imbalance are obtained and used for numerical simulations. Different transformations
of the vortex lattice structure are observed. It is shown that additional dissipation due to charge-imbalance
relaxation leads to stability of the triangular lattice.
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The investigation of the resistive state of layered high-  gitudinal in-layer electric fieldEl and normal currenfwith

superconductoreHTSC'’s) in an external magnetic field par- an accuracy of ¢.,/0.)y <1, wherey=\./\,p, is the

allel to the layers is the important task of modern experimentnisotropy parametgr

and theory. Thec-axis resistivity in this case is determined

by Josephson flux flow. Thus, the nonstationary properties of |

HTSC's can be investigated in wide parameter range of tem- jn(r)=-

peratures, fields, and currents. In recent experimiehthix

flow states in low magnetic fields are observed and in Refs. $ogether with the equatioB=rotA and the definition of the

and 6 in high fields up to 3.5 T. A number of peculiarities areinvariant Josephson phase ¢nn+1=0h+1— 6y

discovered. In particular, in Refs. 2 and 4 multiple flux flow —(277/<I)0)f§{21+1)dAZdz. IntegratingA over a closed contour

branches, associated with different vortex modes, are olsne obtains

served. In Refs. 3 and 4 it is shown that two universal flux

flow regimes with differen¥//H take place at different mag-

netic fields and a transformation from the first state to the

second is possible with a current rise at intermediate fieldshere B is the averaged interl fic f is th

Finally, in Ref. 6 broadband microwave emission is mea- ..~ \ged interlayer magnetic |e_ka, 's the
) . unit vector perpendicular to the layer, adds the interlayer

sured with frequencies much less than the Josephson fr?ﬂstance, layers assumed to be thifv(), ).

quency w;=2eVIN%. All these phenomena are related to Then, using the Maxwell equation

the dynamical transformations of the Josephson vortex lattice

(JVL) and vortex interaction with linear plasma modese € 0E A4

also Refs. 7-1%7 rotB=—— +Tj’

On the other hand, there is the long-standing problem to

obtain the coherent electromagnetic emission from a stacke@rojected onto the axes, we obtain

Josephson junction. The most simple way to do this is to

achieve an “in-phaselsquare¢ arrangement of vortices. Al-

cdg,
8m2\?

2m
Vifn(r)+ oA, )

2
BX :&V _ 4mh G, =jby: )
74 2d [Pn,n+1 cd Jn+17In)s

€ 0Epns1 4T,

though at zero external current the triangular JVL is favor- c ot ¢ Jnnet
able, it was shown for a two-junction stack theoretically and )
experimentally*'* and for a multijunction stack _ %o, AmNTC
- 10,13,15,16 , =5—=Vie - Vi(ins1—] (©)
theoretically'***315%6 that a moving square JVL can be 2ad ¥l g VIMne 0

stable. However, no indications of this in-phase regime were o _
found in experiments with HTSC’s. The reason for this dis-Making use of the continuity equation
crepancy may be that only the magnetic coupling between J . .
layers has been taken into account in calculations. ﬁ+V”j I+ M:o
In Refs. 18—23 it was also suggested that in the case of ot A do
thin superf[:or;du::t:(ng !a%/ers somte none?uilillorilim rlner(]:haand the Maxwell equatioredivE=4p in integral form,
nisms are to be taken into account, namely, electrical charg- _ _ ; :
ing of layers(charge effegtand nonequilibr%/um quasiparti- bn=(el4mdo)(Enns1~En-10), ONE obtains finally the

. : . ) equation
cles(charge-imbalance efféctTo investigate this effects we g
obtain macroscopic dynamical equations for interlayer Jo-
. . L Cq)odo ddo .
sephson phase differences with magnetic, charge, and - y? =|1+—1]j* ..—05
. ; X . 5 2 V| Pnn+1 > nn+1
charge-imbalance interactions taken into account. 167\ 2\
Following Refs. 7 and 8 we use the London expression . .
for the longitudinal in-layer supercurrent, neglecting the lon- X(Ja-1ntineine2)s 4
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e JE 25 . .
e nntl . : P Piiv1 IPiiv1 | .
Jon+1=Inn+1t 4 ot Jext Ji*,i+1::8 972 + o7 TSN i1t i~ i
€ MNont1 J
i 4+ Z7nntl Mi IMit1|
Inne 1™ 20d T at Jexts © (F_T)_ exts (12)

where joy; is the external current in overlapping geometry

(for details of introducing the external current in different a,ﬁ'/’i

+ i+ 92— 1= i)

geometries see Ref).7 ar

To find the interlayer Josephson curr¢pt,.; we use the
theory of nonequilibrium Josephson effect developed re- =7 Ifi-1i _ 9Pii+1 +a’(1—1‘)% (13)
cently (Refs. 18—23 and references thejeitWe take into aT aT ar’

account that in the nonequilibrium state there is nonzero in-

variant potential IPi-1i  IPii+1

Mi+§(2Mi_Mi—1—Mi+1):lﬁi+§<

ar ar |’
DO, (t) =+ (128)(90,,1t), (6) (14)
where g, is the electrostatic potential aritj is the phase of where u(t)=®(t)/V,, ¥(t)=P(t)/V,, V.=hol2e, o
the superconducting condensatt=0 in the equilibrium =10, ﬁ:(ﬁewgs)/(gﬂ-edjc), )\gz(ﬁCZdo)/
state. [16mej.(\2+ddo)], ¢=(er3)/(dgd), w.=2eRj/h, 7

An ordinary Josephson relatiord$/dt)=(2e/#)V be-
tween the Josephson phase differergg,; and voltage
Vinn+1=Enns1d is violated. Instead, we hay&om Eq.(6)]

=wt, X=x/\3, ands=0.5[1+ (ddy)/(2\?)].

This system of equations is a generalization of a well-
known magnetic coupling model of layered super-
don iy 26 26 conductors’® Ne_glecting electron—hole_ imbalan_ce;y{z_o,
T:7V“'”+1+ K(Qnﬂ—@n). 7y v¥,=0), we den.ve a system of equations obtained in Ref.

15, and neglecting the charge effe@t<0, ¥,=®d,) we
derive a system of equations similar to that of Refs. 18, 19,
and 24.
pn=—2€2Ny(P,—V,), (8) Before further study, Eqg11)—(14) must be added with

. . _ boundary conditions, which we write as
where the first term is the charge of superconducting elec-

The charge density inside a superconducting layer is

trons determined by the shift of the condensate chemical po- . IPii+1

tential Sp.= —ed and the second term is the quasiparticle 1~ 10=INN+1=0 — —lo =B,  $o=yn=0,
charge, described by the potentit|, (details can be found

in Ref. 23. Finally, the equation for the charge imbalance AP i1

can be written in the form corresponding to the generalized a—'x|o,L:0, to= un=0. (15

nonstationary Ginzburg-Landau thedpy,
For numerical solution of Eqg11)—(14) with boundary

ﬁ_q,‘:(l_p)QJrzvtE(M_ (79’"”1) conditions(15) we introduce the new functions, v, andz,
ot ot 2e\ at at defined by the relations
+2vt(wifl+xpi+l_2\yi)_Talq,i’ © @i(X,)= @i i+ 1(X,1) = BX,

wheren= 2,7, is the parameter of disequilibrium, is the ~
well-known  charge-imbalance relaxation time,», ¢ dpi(x,t)

= (4e®NyRSd) "t is the “tunnel frequency,R is the nor- viX ) =———— (X )~ diaa(Xb),
mal resistivity of the tunnel junctiory=Sd, is the volume
of the superconducting layed,=mpe/27242 is the density doi(x,)
of stateqor, insteadN;=Nyd, can be considered as a two- Z(x,t)=¢ g +a'[ i (X,0) = b L 1(X,1) ],
dimensional(2D) density of statels andI"<1 is the param-
eter dependent on the _deta_ils of micro_scopic theory. _ i=0,...N—1, e=a’(1-T). (16)
In the same approximation we derive an expression for
the nonequilibrium interlayer curreft: Let us denote now by a column vector function of the kind
. - fi d¢iiv1 Vi—Wig ¢
Jii+1= e SIN@i i1t 520 ;.,tl +— R —=. (10
u=|"v], 17
Finally, in dimensionless form we obtain z
Vienic=ifiva—sUigitifisise), (1) py A an operator matrix of the kind
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[here Ay is the difference Laplacian, Af);=f;_,— 2f;
+f;, 4], and byF a column vector of kind

F= (1- gAd)[j* +Jext—SIN(@) ]
S[j* +Jext—SIN(@) ]

Then we can rewrite the above system of equations in th

“operator” form
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a'—e] «a — a'—¢

some high valu€a)—(f) and then decrease it up to zero again

(g)—(I). The square lattice is clear seen in Fig&d)1 1(e),

1(i), and %j). Low current regimes, Figs.(d and 1), as

well as high current ones, Figs(flLand Xg), are triangular

(19 (gr close to ij. The regime_s_ in Figs.(b), 1(c),_ and Ik).are
“inhomogeneous,”—velocities of vortex chains are different

in different layers. These regimes are also “breathing” due to

strongly excited nonlinear plasma waves. We find that such

Breathing modes can be triangular or square on average. Note

that different regimes exist at the same current that can lead

0

U . to hysteresis on VCC.
ﬂE:AUH:, (ii) If we take charge coupling into accouffig. 2, ¢
=1, »=0), the picture of JVL transformations is qualita-
(SAg+2s—1)j* = —V”Z{o, (200 fively the same but the regimes with a square lattice are

shifted to higher currents.

with appropriate homogeneous boundary conditions. For nu- jij) For charge-imbalanceuasiparticle coupling the re-

merical solution of Eq(20) we use, after sampling in the

sult is qualitatively different. We have found that if the time

direction, a semi-implicit scheme of the form

7

)

U(t+At —Z(E—£A>1(U t +EF t ) ’
( )= 28 (t) 3 (t)

j=0.2

At
—U(t) - —F(), (21)

B

AV4

in which all needed inverse operators can be easily evaluate

j=0.4

by the standard sweep method. The transformation from vec-

tor U to initial variables is evident.

iV

The developed program gives us the possibility to observe

the state of system during the calculation process in a con-

venient graphical form. We can therefore find many different

j=0.6

variants of the system dynamics and vortex lattice structures.

The largest part of the simulations has been carried out for

the case of high magnetic field$>H* =d,/yt2, where

®y=mhcle is the flux quantum,y=A./\,;, is the anisot-

j=0.8

ropy parameter, ant=d+d, is the period of the structure.

At this field a triangular vortex lattice is formed in the static

case. e)

The results of numerical simulations can be shortly de-

scribed in the following way. At small currents the vortex

j=1

lattice remains triangular. At high currents the situation de-

pends on dissipation. If the interlayer dissipation is strong,

enough 3<1), then the triangular lattice is stable at all

7
7

currents. Otherwise, we observed various transformations of

AV

j=1.2

the lattice structuréfurther =100 ands=0.48 are consid-

ered.

(i) At pure magnetic coupling=0, »=0) we obtain the

FIG. 1. The structure of the Josephson vortex lattice ¢giare shown

typical picture of JVL transformations. An example is shownwith g=100, s=0.48, =0, (=0, andj=0.2,0.4,0.6,0.8,1,1.2. The cur-
in Fig. 1. We consecutively change the current from zero taent is increaseda)—(f) and then decreasdd)—(1).
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FIG. 2. The structure of the Josephson vortex lattice vwith 100,
s=0.48, =0, and{=1.
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FIG. 3. The structure of the Josephson vortex lattice with 100,
s=0.48, »=0.1, {=0.1, o' =100, andl'=0.01.

and nonequilibrium quasiparticle interactions taken into ac-

of charge-imbalance relaxation is large enou@lpproxi-  count. Many dynamical regimes are observed, in particular
mately o’ = 7,w.>1), then the triangular lattice becomes triangular, square, inhomogeneous, and breathing modes. We
stable even if the parameter of disequilibriyris small. An  established that additional dissipation due to the charge-
example is shown in Fig. 3(&0.1, »=0.1, «’=100). imbalance relaxation can prevent JVL transformations and
There are no JVL transformations at these parameters amake the triangular lattice stable at all currents.
though both charge and charge-imbalance couplings are This work was supported by the Russian Foundation for
weak. The origin of this effect is the additional dissipation Basic Research, Grant Nos. 00-02-16528, 99-02-16188, and
due to charge-imbalance relaxation. The detailed theory wilD0-15-96734(“Leading Scientific Schools). The authors
be considered in another publication. thank Professor A. Andronov, Professor J. Keller, Professor
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equations for layered superconductors with magnetic, chargéor valuable discussions.
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