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High-T. phase diagram based on the S(2) slave-boson approach to thé-J Hamiltonian
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Based on an improved $P) slave-boson approach showing coupling between the charge and spin degrees
of freedom, we derive a phase diagram of higheuprates which displays both the superconducting and
pseudogap phases in the plane of temperature vs hole doping rate. It is shown that phase fluctuations in the
order parameters result in a closer agreement with the observed phase diagram of an arch shape, by manifesting
the presence of an optimal doping rate closer to observation, compared t¢lthsldye-boson theory.
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High-T. superconductivity arises as a consequence opresent study we see a possibility of improvement by a rig-
holeg(or electron doping in the parent cuprate oxides which orous treatment of the Heisenberg interaction term in the
are Mott insulators with antiferromagnetic long-range orderslave-boson representation which reveals the importance of
The observed phase diagrafiin the plane of temperatuf®  boson(holon) contribution.
vs hole doping rateS shows the bose condensatiGuper- We realize from the aforementioned observation of the
conducting temperatuyecurve of an “arch” shape rather universality inT*/T vs &/ 8, for high-T, cuprates that cou-
than the often predicted linear increase, by manifesting theling between the spifspinorn) and charggholon) degrees
presence of the optimal doping rate®# 0.16 to 0.2. On the of freedom is essential for superconductivity. Our theoretical
other hand, the observed pseudogap temperature displagisrivation from a rigorous use of the slave-boson theory for
nearly a linear decrease with. The highT. cuprate of t-J Hamiltonian manifests this feature as is shown in the
Bi,Sr,Ca CyOg. 5 with a higher pseudoga(spin gap tem-  derived effective Hamiltonian E¢4) below. Comparison be-
peratureT* is observed to have a higher superconductingween the 1) and SU2) theories will be made to reveal the
transition temperaturé, than the cuprate of La,Sr,Cu O, importance of the low energy phase fluctuations of the order
with a lower T*2 Further we find from the observed phase parameters. The present work differs from our previo() U
diagram3$ of both cuprates above that the two different high- slave-boson studfof the phase diagram involving the holon-

T. cuprates, La ,Sr,Cu O, and B,Sr,Ca CyOg, 5 display  pair bose condensatiphand other earlier studi&s’ (involv-

an universal behavior 6f*/T as a function of holéposi-  ing the single holon condensatioim that coupling between
tive charge doping 6/ 8, with 8, , the optimal doping rate, as the holon and spinon degrees of freedom in the slave-boson
is shown in Fig. 1. The two observations manifest the presrepresentation of the Heisenberg term of theHamiltonian
ence of a relationship between the spin geglevant to the is no longer neglected. We find from the treatment of the
spin degree of freedonand the superconductivityelated to ~ coupling between the holon and spinon degrees of freedom
the charge degree of freed@riThus, the spinon pairingspin ~ that the predicted phase diagram displays the arch-shaped
singlet pairing for pseudogap phase and the charge pairindpose condensation cur(éemperaturel;) as a function of
(holon pairing for superconductivity are not independent hole doping rate in both the () and SU2) slave-boson
owing to the manifest presence of coupling between the@pproaches.

charge and spin degrees of freedom. We write thet-J Hamiltonian,

Various U1) slave-boson approaches to thd Hamil-
tonian were able to predict such a linear decrease in the T
pseudogap temperature as a functionsof © In our earlier H= _tOEJ') (cigcjg+c.c.)+J<iEj> [S-§— (1/4) nin;].

U(1) slave-boson stud,we presented a phase diagram ' ' (1)
based on the allowance of holon pairing channel, thus show-

ing the feature of the holon-pair bose condensation tempera-

ture rather than the single-holon bose condensation
temperaturé=> On the other hand, all of these theories failed

to predict the experimentally observed bose condensation 2
temperaturel . of the arch shape as a function &f Instead o
a linear increase of, with & was predicted. Further the v
pseudogap phase was shown to disappear when the gauge

fluctuations are introduced into the(1) slave-boson mean 1
field theory® Most recently Wen and Lee proposed an(3U 0.6 0.8 1 12

theory to readily estimate the low energy phase fluctuationof /8,

order parameters and questioned whether there exists a pos-Fig. 1. T*/T, vs &/5, for La,_,SL,CuQ, and
sibility of holon(boson pair condensatioh.In view of the  Bi,S,Ca CyOq. 5. The solid line represents a fitted curve by
failure of earlier theories in the correct prediction of the boseT* /T = (6/5,)3+b with a=—1.86 andb=0.69. Data points are
condensation temperatuie, in the phase diagram, in the taken from the paper of Nakaret al. (Ref. 2.
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Here S is the electron spin operator at sitg S readily understood from tha;n; term alone in the Heisen-

= %c?aa-aﬁciﬁ with o4, the Pauli spin matrix element and berg term;n; here represents the electr@r physically the

n;, the electron number operator at sitmi=c;r0cig. We negative chargenumber operator. Further for a rigorous
note from the use ofc;,= figb;r for the local single treatment of the Heisenberg interaction term, fluctuations of
occupancy constraint  that S'Sj_%tninj: —%(ci’fchfl charge density at each site, i.e., the on-site charge fluctua-
—CiTlC-Tz)(CuCiz—Cjzcil) leads to —%bibjbfb?(fﬂfh tions should be allowed. For this reason the holbason

- fiTTf”)(f”fil_ f; fi;) in the U(1) slave boson representa- operator should be kept. In earlier Tstt;dies of the slave-boson
tion, that is, P(S-S—inn;)P=— %bibjbfb?(ffif% ftheory,- |t-|s oftep assumed thbtbj.b.j b/ =1. Strictly spgak-
_f}LifL)(f“fU_f“fTi) where P represents the projection ing, this is precise only at half-fillingor no hole dopiny
operator onto the single occupied or empty site. It is of notel his is because charge fluctuations cannot readily occur ow-
that the spinon operator represents spin with no charge arifig to the prohibition of electron hopping from site to site in
the bosor{or holon operator represents charge with no spin.the t-J Hamiltonian.

We stress that the presence of the bo@wrion) operator in By admitting the coupling between the charge and spin
the Heisenberg term above is not redundant. This is becaustegrees of freedom in the $2) slave-boson representation,

it represents the charge degree of freedom. This can hife t-J Hamiltonian above can be written

|
H=—(t/2) (%a [(fgifuj)(bljbli—bgisz)‘l'(f:rfjfai)(bliblj_szbzi)
+ (o 45— Fuif o) (0] b+ b]ibyy) + (F1,F5 = 3,11 (bliby; +blibyi)]

= (12) 24 (A=h{h) (L= (T = T2 (Fy fa Tofa) o2 (hfhi=9)

—Zi LADLES 4+ bl o) +iINE(f5f 5+ bhby) HINE(FL f— f5 5+ bbby —bliby)]. (2

Heref,; (f!.) is the spinon annihilatioricreation operator anmiz(gg) [hi=(bl. b})], the doublet of holon annihilation

(creation) operators\ (1)'(2)-(3) are the real Lagrangian multipliers to enforce the local single occupancy constraint in (e SU

slave-boson representation.
The Heisenberg interaction terfthe second term in Eq2)] above can be decomposed into terms involving mean fields

and fluctuations, respectively,
= (312) (1=h{h) (X =hlh) (F5 1= F1£3) (Fyfa— 2 f0)

=~ (I12)((1=hlh) (L=h ) (FL L = FL 3 (F1f 2= Fof )
—(I2) (581 — F1E5) (Fyyf— f25f1)) (2 —hlh)(1—=h[h))
+(3/2) (1=hh) (A =hT)) (PR T =T 85 (Fofoi—F5 1)
— (312) ((1=h{h) (L=hlh) = (L= hfh) (L= hT) )5 T =115 (F1y o= 1)

_<(f;if1j_foZj)(fljfzi_fzjfli)>)- 3

By introducing the Hubbard-Stratonovich fieldﬁ,, Xij and4;; in association with the direct, exchange and pairing channels
of the spinon, we obtain the effective Hamiltonian from E2),

Hex=[J(1—8)%2] <2,> 230 (p)?=pj(fla' )+ [I(1—8)%/4] <EJ> [ xij| 2= 5if i+ [26/3(1— 8)%] (b];by; — bl ba)}xi;
—c.cl+ [I(1-6)%2] <E,> [AG12—{(F5f - TLf5) —[t/3(1— )] (b] by +bliby) A —c.c]
- (J12) <.En A2 aEB blibibgibai—(hhj+hlh—28) - 6
+[t?13(1-6)%] (% [(b]ib1j—b3;b2) (0] ;b1 —blibyy) + (1/2) (b]jby +bibs) (blby;+bby)]

+[I(1=6)212] 2 (FLf,0)—mo (hhi—8)— X [INH(FL i +bliby) +iN2(f5fy+bhibyy)

+HIN(F] =TT+ b]by—bhby)], (4)
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whered; = ((f1if5 = f2f1) = [/3(1= 8)](blibyj+bj;b1)) = Al —[t/3(1= 8) ]x7},1,, With xﬁ;12=<b£ib1j+b;b1i> and s,
hole doping rate. In Eq(4) above we introduced (3], —f1f3)(f1;f2—ff1))~((FL 11— FLEI)0((Fafai—Fo5f1))
=[Af|> and((1—h'h;)(1—h/h)))~((1—hTh))((1—h'h;))=(1-5) and neglected the last term in E@) above.

The four boson term in the fourth term of Eg) allows holon pairing and a scalar boson fiedde,;aﬁ is introduced for the
holon pairing between the nearest neighbgrandb, single bosons with the boson index,3=1 or 2! Using the saddle
point approximation, we obtain from E¢4) the mean field Hamiltonian,

HMF=[J(1- 6)2/2] <2,> [IALI2+ (1/2) |xij 2+ (114)]+ (3/2) <EJ> |A{,-|2[EB |AD ol 2+ &2

- 8)%12] 2, [AF (Fyfa=faifu) +c.ol=[A1-9F4] 2 Doy(ff o) +o.c]
—(t/2) (% [Xij(bliblj_b;jbzi)_Aifj(bIiji+bLb2j)]_C-c-_<i J; 5 (312) | Al LAY p(baibg)) +c.C]
_Zi [ (= &) +IN (] ET +bTo) +iN(Fof 4+ Tiby) +iNP(F]f4i— 5]+ b] by —bliby)]

— (t/2) (E” (Al = (Fjf 2= T f )Xo c.ot [1223(1- 6)2] <2.> | X512~ (bhby;+blby)|?

+[t213(1-6)%] (E” (blibyj— b bai) (bl by —blby)), (5)

where xi;=(f1,f,i+[2t/3(1-8)?(b],byi—bliby)), Al  HereE; andE are the quasiparticle energies of spinon and
=(fyifa—fofu),  AD..s=(bibg) and  wi=wo holon, respectivelye (el and BBl are the annihila-
—(J/2)Ej:ii;(,ii9|Aifj|2. The Hubbard Stratonovich field tion (creatior) operators of the spinon quasiparticles and the
pk=123= (L1 5kt,) for direct channel is taken to be?@nd ~ Nolon quasiparticles, respectively.

k=0_1 Owing to the energy cost the exchange interaction From the diagonalized Hamiltonian E(g), we readily

Pi i
terms[the last two positive energy terms in E&)] is usu- obtain the total free energy

ally ignored®~’
We now introduce the uniform hopping order parameter, F=NJ(1— 6)2[%+Af2+ 4]
Xij=x, the d-wave spinon pairing order parameteﬁ,ifj
=+ A witp tpe sign+(—) for the nearest neighbor link —2kg T, In[cosh BEL/2)]+ NJIAZ(2A2+ &7)
parallel tox (y) and thes-wave holon pairing order param- K
eter, A, ,=A>; with the boson indicesr and 8. For the

b
case oA} ,=0, \(¥=0 andA "<, theb; bosons are popu- + kBTkz In[1— e~ #Fs] + kE [(Epst m)/2] + uNs.
lated at and nede=(0,0) in the momentum space and the S a
bosons, at and ne&r= (7, 7)’. Pairing of two different @)

# ) bosons(holong gives rise to the nonzero center of _ o _

mass momentum. On the other hand, the center of mass méhe chemical potential is determined from the number con-
mentum is zero only for pairing between identical<g)  straint of doped holes,

bosons. Thus WritingAE’[B:Ab(éa,léﬁyl— Oa2052) (Ref. 1)

for pairing between the identical holons and allowing the JF 1 —eE—,u 1 —eE—,u
uniform chemical potent.ialyi=,u, the mean field Hamil- _@: = eﬁEEl—l EEl +§ Etk>1 -
tonian from Eq.(5) is derived to be
HMF=NJ(1- )2 3x*+ A%+ & 2202+ &2 P S N e
5X f+ 7]+ NJIAF(2A5+ 69) eBEEZ—]_ Eb, 2| ED, )
+2k: Ex(afyaiq— aoayy) ®

and the Lagrangian multipliers are determined by the follow-

+k3212 [EESBESBKS—i_ %(EESJF W]+ NS, (6) ![rr:gotrgree constraints imposed by the @V slave-boson
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oF BEL JE[ efFkst1  IED, S0 ]
PG Ek tanh—-= -y + & 2P 1) @0, é 0.04 J=02t - 200 g
= L [5)
k=1,2,3. @ 3 "°r 1 =
g 0.02 1100 g
Eoonl//\ 1 B
It can be readily proven from Eq9) above thatn(W=0 g 001 Tsoe &
satisfies the three constraints above. By | ! ! I ! ! I
By minimizing the free energy, the order parametgrs 0 005 01 015 02 025 03 035 04
A¢ andA, are numerically determined as a function of tem- Doping rate, &

perature and doping rate. In Fig. 2 the mean field results of ) ] ]

the U1) (dotted line and SU2) (solid line) slave-boson FIG. 2. Computed phase diagrams witk 0.2. Tsy(z(Ty()

theories are displayed far=0.2t. The predicted pseudogap de_notes the pseudqgap temperature 559(2)””“))’ the hok_)n

. f . . . pair bose condensation temperature predicted from tH@)3kblid

(sfpln gap temperaturet,]TSU(z) IS c_onS|sten.tIy hlgher .than lines) and[U(1)] (dotted line$ slave-boson theories, respectively.

Tuq)» the U1) value. Tgy,, at optimal doping is predicted The scale of temperature is basedten0.44 eV (Ref. 9.

to be lower than the value oTB(l) predicted by the (1)

theory. The predicted optimal doping rate is shifted to ation of hole doping rates/ 8, for different highT, cuprates,

larger value, showing closer agreement with observafion as is shown in Fig. 1. Although not shown, the higher dhe

than the W1) mean field treatment. Such discrepancies aresalue, the predicted,’s are consistently higher than the case

attributed to the phase fluctuations of order parametergf J=0.2.

which were not treated in the () mean field theory. In summary, based on the &) slave-boson symmetry

We note from the four boson  operator conservingt-J Hamiltonian which shows coupling between

_(3/2)|Aifj|2bzib;j bg;b,i in the fourth term of Eq(4) that the charge and spin degrees of freedom, we derived a phase

the strength of holon pairing depends on the spinon pairingliagram of hight cuprates which displays the bose conden-

amplitude (order parametgrA, . Accordingly the predicted sation temperature of an arch shape as a function of hole

holon pair condensation temperatyseiperconducting tran- QOplng rate. Unllke other previous studies Wh'Ch pred'|cted a

sition  temperature TEU(Z) depends on the spin gap I|_near increase with the hole doping rate, this result is con-
— ; . sistent with observation. We showed that the low energy

(pseudogaptemperatureT™; Tg,) decreases witl™ in

] U(: : fluctuations cause a shift of the optimal doping rate to a
the overdoped region. Indeed it is shown in &2). that the  |arger value and a suppression of the holon pair bose con-

predicted holon pair bose condensationTat=T,) iS  densation temperature, thus allowing a closer agreement with
not independent of the spin gdpseudogapformation at  observation compared to the(1) case.

T*, by exhibiting the diminishing trend of superconducting  One of us(S.H.S.S). acknowledges the generous support
temperaturel . as the spin gap temperatufé decreases in  of POSRIP(1UD0001102 and 1UD00002p4nd of the Ko-
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