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High-Tc phase diagram based on the SU„2… slave-boson approach to thet-J Hamiltonian
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Based on an improved SU~2! slave-boson approach showing coupling between the charge and spin degrees
of freedom, we derive a phase diagram of high-Tc cuprates which displays both the superconducting and
pseudogap phases in the plane of temperature vs hole doping rate. It is shown that phase fluctuations in the
order parameters result in a closer agreement with the observed phase diagram of an arch shape, by manifesting
the presence of an optimal doping rate closer to observation, compared to the U~1! slave-boson theory.
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High-Tc superconductivity arises as a consequence
hole~or electron! doping in the parent cuprate oxides whic
are Mott insulators with antiferromagnetic long-range ord
The observed phase diagram1,2 in the plane of temperatureT
vs hole doping rated shows the bose condensation~super-
conducting temperature! curve of an ‘‘arch’’ shape rathe
than the often predicted linear increase, by manifesting
presence of the optimal doping rate ofd50.16 to 0.2. On the
other hand, the observed pseudogap temperature disp
nearly a linear decrease withd. The high-Tc cuprate of
Bi2Sr2Ca Cu2O81d with a higher pseudogap~spin gap! tem-
peratureT* is observed to have a higher superconduct
transition temperatureTc than the cuprate of La22xSrxCu O4
with a lowerT* 2. Further we find from the observed pha
diagrams2 of both cuprates above that the two different hig
Tc cuprates, La22xSrxCu O4 and Bi2Sr2Ca Cu2O81d display
an universal behavior ofT* /Tc as a function of hole~posi-
tive charge! dopingd/do with do , the optimal doping rate, a
is shown in Fig. 1. The two observations manifest the pr
ence of a relationship between the spin gap~relevant to the
spin degree of freedom! and the superconductivity~related to
the charge degree of freedom!. Thus, the spinon pairing~spin
singlet pairing! for pseudogap phase and the charge pair
~holon pairing! for superconductivity are not independe
owing to the manifest presence of coupling between
charge and spin degrees of freedom.

Various U~1! slave-boson approaches to thet-J Hamil-
tonian were able to predict such a linear decrease in
pseudogap temperature as a function ofd.3–6 In our earlier
U~1! slave-boson study,6 we presented a phase diagra
based on the allowance of holon pairing channel, thus sh
ing the feature of the holon-pair bose condensation temp
ture rather than the single-holon bose condensa
temperature.3–5 On the other hand, all of these theories fail
to predict the experimentally observed bose condensa
temperatureTc of the arch shape as a function ofd. Instead
a linear increase ofTc with d was predicted. Further th
pseudogap phase was shown to disappear when the g
fluctuations are introduced into the U~1! slave-boson mean
field theory.5 Most recently Wen and Lee proposed an SU~2!
theory to readily estimate the low energy phase fluctuatio
order parameters and questioned whether there exists a
sibility of holon~boson! pair condensation.7 In view of the
failure of earlier theories in the correct prediction of the bo
condensation temperatureTc in the phase diagram, in th
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present study we see a possibility of improvement by a
orous treatment of the Heisenberg interaction term in
slave-boson representation which reveals the importanc
boson~holon! contribution.

We realize from the aforementioned observation of
universality inT* /Tc vs d/do for high-Tc cuprates that cou-
pling between the spin~spinon! and charge~holon! degrees
of freedom is essential for superconductivity. Our theoreti
derivation from a rigorous use of the slave-boson theory
t-J Hamiltonian manifests this feature as is shown in t
derived effective Hamiltonian Eq.~4! below. Comparison be-
tween the U~1! and SU~2! theories will be made to reveal th
importance of the low energy phase fluctuations of the or
parameters. The present work differs from our previous U~1!
slave-boson study~of the phase diagram involving the holon
pair bose condensation!,6 and other earlier studies3–5 ~involv-
ing the single holon condensation! in that coupling between
the holon and spinon degrees of freedom in the slave-bo
representation of the Heisenberg term of thet-J Hamiltonian
is no longer neglected. We find from the treatment of t
coupling between the holon and spinon degrees of freed
that the predicted phase diagram displays the arch-sha
bose condensation curve~temperatureTc) as a function of
hole doping rate in both the U~1! and SU~2! slave-boson
approaches.8

We write thet-J Hamiltonian,

H52t(
^ i , j &

~cis
† cj s1c.c.!1J(

^ i , j &
@Si•Sj2 ~1/4! ninj #.

~1!

FIG. 1. T* /Tc vs d/do for La22xSrxCu O4 and
Bi2Sr2Ca Cu2O81d . The solid line represents a fitted curve b
T* /Tc5(d/do)a1b with a521.86 andb50.69. Data points are
taken from the paper of Nakanoet al. ~Ref. 2!.
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Here Si is the electron spin operator at sitei, Si

5 1
2 cia

† sabcib with sab , the Pauli spin matrix element an
ni , the electron number operator at sitei, ni5cis

† cis . We
note from the use ofcis5 f isbi

† for the local single
occupancy constraint that Si•Sj2

1
4 ninj52 1

2 (ci2
† cj 1

†

2ci1
† cj 2

† )(cj 1ci22cj 2ci1) leads to 2 1
2 bibjbj

†bi
†( f i↓

† f j↑
†

2 f i↑
† f j↓

† )( f j↑ f i↓2 f j↓ f i↑) in the U~1! slave boson representa
tion, that is, P(Si•Sj2

1
4 ninj )P52 1

2 bibjbj
†bi

†( f ↓ i
† f ↑ j

†

2 f ↑ i
† f ↓ j

† )( f ↑ j f ↓ i2 f ↓ j f ↑ i) where P represents the projectio
operator onto the single occupied or empty site. It is of n
that the spinon operator represents spin with no charge
the boson~or holon! operator represents charge with no sp
We stress that the presence of the boson~holon! operator in
the Heisenberg term above is not redundant. This is bec
it represents the charge degree of freedom. This can
05250
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readily understood from theninj term alone in the Heisen
berg term;ni here represents the electron~or physically the
negative charge! number operator. Further for a rigorou
treatment of the Heisenberg interaction term, fluctuations
charge density at each site, i.e., the on-site charge fluc
tions should be allowed. For this reason the holon~boson!
operator should be kept. In earlier studies of the slave-bo
theory, it is often assumed thatbibjbj

†bi
†51. Strictly speak-

ing, this is precise only at half-filling~or no hole doping!.
This is because charge fluctuations cannot readily occur
ing to the prohibition of electron hopping from site to site
the t-J Hamiltonian.

By admitting the coupling between the charge and s
degrees of freedom in the SU~2! slave-boson representation7

the t-J Hamiltonian above can be written
SU

lds

els
H52 ~ t/2! (
^ i , j &s

@~ f s i
† f s j !~b1 j

† b1i2b2i
† b2 j !1~ f s j

† f s i !~b1i
† b1 j2b2 j

† b2i !

1~ f 2i f 1 j2 f 1i f 2 j !~b1 j
† b2i1b1i

† b2 j !1~ f 1 j
† f 2i

† 2 f 2 j
† f 1i

† !~b2i
† b1 j1b2 j

† b1i !#

2 ~J/2! (
^ i , j &

~12hi
†hi !~12hj

†hj !~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !~ f 1 j f 2i2 f 2 j f 1i !2m0(
i

~hi
†hi2d!

2(
i

@ il i
(1)~ f 1i

† f 2i
† 1b1i

† b2i !1 il i
(2)~ f 2i f 1i1b2i

† b1i !1 il i
(3)~ f 1i

† f 1i2 f 2i f 2i
† 1b1i

† b1i2b2i
† b2i !#. ~2!

Here f a i ( f a i
† ) is the spinon annihilation~creation! operator andhi[(b2i

b1i) @hi
†5(b1i

† ,b2i
† )#, the doublet of holon annihilation

~creation! operators.l i
(1),(2),(3) are the real Lagrangian multipliers to enforce the local single occupancy constraint in the~2!

slave-boson representation.7

The Heisenberg interaction term@the second term in Eq.~2!# above can be decomposed into terms involving mean fie
and fluctuations, respectively,

2 ~J/2! ~12hi
†hi !~12hj

†hj !~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !~ f 1 j f 2i2 f 2 j f 1i !

52 ~J/2! ^~12hi
†hi !~12hj

†hj !&~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !~ f 1 j f 2i2 f 2 j f 1i !

2~J/2! ^~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !~ f 1 j f 2i2 f 2 j f 1i !&~12hi
†hi !~12hj

†hj !

1 ~J/2! ^~12hi
†hi !~12hj

†hj !&^~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !~ f 1 j f 2i2 f 2 j f 1i !&

2 ~J/2! „~12hi
†hi !~12hj

†hj !2^~12hi
†hi !~12hj

†hj !&…„~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !~ f 1 j f 2i2 f 2 j f 1i !

2^~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !~ f 1 j f 2i2 f 2 j f 1i !&…. ~3!

By introducing the Hubbard-Stratonovich fields,r i
k , x i j andD i j in association with the direct, exchange and pairing chann

of the spinon, we obtain the effective Hamiltonian from Eq.~2!,

Heff5@J~12d!2/2# (
^ i , j &

(
l 50

3

„~r j
l !22r j

l ~ f i
†s l f i !…1 @J~12d!2/4# (

^ i , j &
†ux i j u22$ f s i

† f s j1 @2t/J~12d!2# ~b1i
† b1 j2b2 j

† b2i !%x i j

2c.c.‡1 @J~12d!2/2# (
^ i , j &

†uD i j u22$~ f 2i
† f 1 j

† 2 f 1i
† f 2 j

† !2@ t/J~12d!2# ~b1 j
† b2i1b1i

† b2 j !%D i j 2c.c.‡

2 ~J/2! (
^ i , j &

uD i j
f u2F(

a,b
ba i

† bb j
† bb jba i2~hj

†hj1hi
†hi22d!2d2G

1 @ t2/J~12d!2# (
^ i , j &

@~b1i
† b1 j2b2 j

† b2i !~b1 j
† b1i2b2i

† b2 j !1 ~1/2! ~b1 j
† b2i1b1i

† b2 j !~b2i
† b1 j1b2 j

† b1i !#

1 @J~12d!2/2# (
i ,s

~ f s i
† f s i !2m0(

i
~hi

†hi2d!2(
i

@ il i
1~ f 1i

† f 2i
† 1b1i

† b2i !1 il i
2~ f 2i f 1i1b2i

† b1i !

1 il i
3~ f 1i

† f 1i2 f 2i f 2i
† 1b1i

† b1i2b2i
† b2i !#, ~4!
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whereD i j 5^( f 1i f 2 j2 f 2i f 1 j )2@ t/J(12d)2#(b2i
† b1 j1b2 j

† b1i)&5D i j
f 2@ t/J(12d)#x i j ;12

b , with x i j ;12
b 5^b2i

† b1 j1b2 j
† b1i& andd,

hole doping rate. In Eq.~4! above we introduced̂( f 2i
† f 1 j

† 2 f 1i
† f 2 j

† )( f 1 j f 2i2 f 2 j f 1i)&'^( f 2i
† f 1 j

† 2 f 1i
† f 2 j

† )&^( f 1 j f 2i2 f 2 j f 1i)&
5uD i j

f u2 and ^(12hi
†hi)(12hj

†hj )&'^(12hi
†hi)&^(12hj

†hj )&5(12d)2 and neglected the last term in Eq.~3! above.
The four boson term in the fourth term of Eq.~4! allows holon pairing and a scalar boson field,D i j ;ab

b is introduced for the
holon pairing between the nearest neighborba andbb single bosons with the boson index,a,b51 or 2.7 Using the saddle
point approximation, we obtain from Eq.~4! the mean field Hamiltonian,

HMF5@J~12d!2/2# (
^ i , j &

@ uD i j
f u21 ~1/2! ux i j u21 ~1/4!#1 ~J/2! (

^ i , j &
uD i j

f u2F(
a,b

uD i j ;ab
b u21d2G

2 @J~12d!2/2# (
^ i , j &

@D i j
f* ~ f 1 j f 2i2 f 2 j f 1i !1c.c.#2 @J~12d!2/4# (

^ i , j &
@x i j ~ f s i

† f s j !1c.c.#

2 ~ t/2! (
^ i , j &

@x i j ~b1i
† b1 j2b2 j

† b2i !2D i j
f ~b1 j

† b2i1b1i
† b2 j !#2c.c.2 (

^ i , j &,a,b
~J/2! uD i j

f u2@D i j ;ab
b* ~ba ibb j !1c.c.#

2(
i

@m i~hi
†hi2d!1 il i

1~ f 1i
† f 2i

† 1b1i
† b2i !1 il i

2~ f 2i f 1i1b2i
† b1i !1 il i

3~ f 1i
† f 1i2 f 2i f 2i

† 1b1i
† b1i2b2i

† b2i !#

2 ~ t/2! (
^ i , j &

„D i j
f 2~ f 1 j f 2i2 f 2 j f 1i !…x i j ;12

b* 2c.c.1 @ t2/2J~12d!2# (
^ i , j &

ux i j ;12
b 2~b2i

† b1 j1b2 j
† b1i !u2

1 @ t2/J~12d!2# (
^ i , j &

~b1i
† b1 j2b2 j

† b2i !~b1 j
† b1i2b2i

† b2 j !, ~5!
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where x i j 5^ f s j
† f s i1@2t/J(12d)2#(b1 j

† b1i2b2i
† b2 j )&, D i j

f

5^ f 1 j f 2i2 f 2 j f 1i&, D i j ;ab
b 5^biabb j& and m i5m0

2(J/2)( j 5 i 6 x̂,i 6 ŷuD i j
f u2. The Hubbard Stratonovich field

r i
k51,2,35^ 1

2 f i
†skf i& for direct channel is taken to be 05 and

r i
k505 1

2 . Owing to the energy cost the exchange interact
terms@the last two positive energy terms in Eq.~5!# is usu-
ally ignored.5–7

We now introduce the uniform hopping order parame
x i j 5x, the d-wave spinon pairing order parameter,D i j

f

56D f with the sign1(2) for the nearest neighbor link
parallel tox̂ ( ŷ) and thes-wave holon pairing order param
eter,D i j ;ab

b 5Dab
b with the boson indicesa and b. For the

case ofDab
b 50, l (k)50 andD f<x, theb1 bosons are popu

lated at and neark5(0,0) in the momentum space and theb2
bosons, at and neark5(p,p)7. Pairing of two different (a
Þb) bosons~holons! gives rise to the nonzero center
mass momentum. On the other hand, the center of mass
mentum is zero only for pairing between identical (a5b)
bosons. Thus writingDab

b 5Db(da,1db,12da,2db,2)~Ref. 7!
for pairing between the identical holons and allowing t
uniform chemical potential,m i5m, the mean field Hamil-
tonian from Eq.~5! is derived to be

HMF5NJ~12d!2@ 1
2 x21D f

21 1
4 #1NJD f

2~2Db
21d2!

1(
k

Ek
f ~ak1

† ak12ak2ak2
† !

1 (
k,s51,2

@Eks
b bks

† bks1
1
2 ~Eks

b 1m!#1mNd. ~6!
05250
n
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HereEk
f andEks

b are the quasiparticle energies of spinon a
holon, respectively.aks(aks

† ) andbks(bks
† ) are the annihila-

tion ~creation! operators of the spinon quasiparticles and
holon quasiparticles, respectively.

From the diagonalized Hamiltonian Eq.~6!, we readily
obtain the total free energy

F5NJ~12d!2@ 1
4 1D f

21 1
2 x2#

22kBT(
k

ln@cosh~bEk
f /2!#1NJD f

2~2Db
21d2!

1kBT(
k,s

ln@12e2bEks
b

#1(
k,s

@~Eks
b 1m!/2# 1mNd.

~7!

The chemical potential is determined from the number c
straint of doped holes,

2
]F

]m
5(

k
F 1

ebEk1
b

21

2ek
b2m

Ek1
b 1

1

2 S 2ek
b2m

Ek1
b 21D

1
1

ebEk2
b

21

ek
b2m

Ek2
b 1

1

2 S ek
b2m

Ek2
b 21D G2Nd50,

~8!

and the Lagrangian multipliers are determined by the follo
ing three constraints imposed by the SU~2! slave-boson
theory,
1-3
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]F

]l (k) 52(
k

tanh
bEk

f

2

]Ek
f

]l (k) 1(
k,s

ebEks
b

11

2~ebEks
b

21!

]Eks
b

]l (k) 50,

k51,2,3. ~9!

It can be readily proven from Eq.~9! above thatl (k)50
satisfies the three constraints above.

By minimizing the free energy, the order parametersx,
D f andDb are numerically determined as a function of te
perature and doping rate. In Fig. 2 the mean field result
the U~1! ~dotted line! and SU~2! ~solid line! slave-boson
theories are displayed forJ50.2t. The predicted pseudoga
~spin gap! temperature,TSU(2)

f is consistently higher than
TU(1)

f , the U~1! value.TSU(2)
b at optimal doping is predicted

to be lower than the value ofTU(1)
b predicted by the U~1!

theory. The predicted optimal doping rate is shifted to
larger value, showing closer agreement with observatio1,2

than the U~1! mean field treatment. Such discrepancies
attributed to the phase fluctuations of order paramet
which were not treated in the U~1! mean field theory.
We note from the four boson operato
2(J/2)uD i j

f u2ba i
† bb j

† bb jba i in the fourth term of Eq.~4! that
the strength of holon pairing depends on the spinon pai
amplitude~order parameter! D i j

f . Accordingly the predicted
holon pair condensation temperature~superconducting tran
sition temperature! TSU(2)

b depends on the spin ga
~pseudogap! temperatureT* ; TSU(2)

b decreases withT* in
the overdoped region. Indeed it is shown in Eq.~2! that the
predicted holon pair bose condensation atTc(5TSU(2)

b ) is
not independent of the spin gap~pseudogap! formation at
T* , by exhibiting the diminishing trend of superconductin
temperatureTc as the spin gap temperatureT* decreases in
the overdoped region. This is consistent with an experim
tal observation of the universal behavior ofT* /Tc as a func-
05250
-
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e
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g

n-

tion of hole doping rated/do for different high-Tc cuprates,
as is shown in Fig. 1. Although not shown, the higher theJ
value, the predictedTc’s are consistently higher than the ca
of J50.2t.

In summary, based on the SU~2! slave-boson symmetry
conservingt-J Hamiltonian which shows coupling betwee
the charge and spin degrees of freedom, we derived a p
diagram of high-Tc cuprates which displays the bose conde
sation temperature of an arch shape as a function of h
doping rate. Unlike other previous studies which predicte
linear increase with the hole doping rate, this result is c
sistent with observation. We showed that the low ene
fluctuations cause a shift of the optimal doping rate to
larger value and a suppression of the holon pair bose c
densation temperature, thus allowing a closer agreement
observation compared to the U~1! case.
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FIG. 2. Computed phase diagrams withJ50.2t. TSU(2)
f (TU(1)

f )
denotes the pseudogap temperature andTSU(2)

b (TU(1)
b ), the holon

pair bose condensation temperature predicted from the SU~2! ~solid
lines! and @U~1!# ~dotted lines! slave-boson theories, respectivel
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