
PHYSICAL REVIEW B, VOLUME 64, 052401
Field dependence of the susceptibility maximum temperature in ferromagnets
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Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

~Received 14 March 2001; published 25 June 2001!

It is shown within the mean-field Landau’s theory that if a ferromagnet in the presence of a magnetic field
can be in a phase in which the magnetization is parallel to the field, the susceptibility has a maximum at a point
t5th and under magnetic field~H! this point is shifted according toH2/3. This 2/3 power law is independent of
a spin model. The prediction of Landau’s theory is examined on the one-dimensional quantumS51/2 aniso-
tropic Heisenberg model by using a linear real-space renormalization group. It has been found that for a
longitudinal field only in the isotropic Heisenberg model the shift of the susceptibility maximum can be fitted
satisfactory to a power law with exponent close to 2/3. In other cases the deviation from a single power law
seems to be clear. On the other hand, for the field perpendicular to the easy axis the fit to a power law is
excellent but a value of the exponent depends on the anisotropy constant.
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In a recent paper1 Markovich, Rozenberg, Gorodetsk
Revzin, Pelleg, and Felner have shown experimentally
the electrical resistivityr(T) of La0.91Mn0.95O3 at ambient
pressure and zero magnetic field reaches a maximum aTr
5262 K. Upon increasing field~H! the maximum widens
and shifts towards higher temperature according toH2/3. As-
suming that the maximum ofr(T) coincides with maximum
of magnetic susceptibilityx(T) the authors have attempte
to explain this behavior by using a simple generalization
the Landau’s theory for the anisotropic systems.2,3 Indeed, it
has been shown2 that the susceptibility of a uniaxial ferro
magnet in a transverse field reaches above the critical po
maximum which shifts according toH2/3. However, it seems
that the shift of the maximumx(T) location according to the
2/3 law is more universal and to some extent does not
pend on the symmetry of the system. This can support
Markovich et al.1 idea to apply the relation derived, in fac
for a single crystal for the description of a polycrystallin
ferromagnet.

In the first part of this paper it is shown that within La
dau’s theory the shift ofx(T) maximum under magnetic
field according to the 2/3 law should be observed for
anisotropic ferromagnets which exhibit a phase transition
the paramagnetic phase as well as for isotropic ferromag
in a field. In the second part the temperature dependenc
the susceptibility of one-dimensional ferromagnets in a fin
field will be studied by using real-space renormalizati
group.

Let us start with Landau’s expansion for the reduced f
energy of an anisotropic ferromagnet in a magnetic field

f 5 f o1~ t2t0!m21ka
(1)ma

21bm41ka,b
(2) ma

2mb
22mW hW ,

~1!

wheret andh denote reduced temperature and field, resp
tively, ma magnetization component, andk( i ) anisotropy
constants.

It is obvious that for an arbitrary symmetry of the syste
there are such directions of the magnetic field for which
magnetization is directed along the field at least in so
temperature region. The simplest case is the field direc
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along an easy axis, for example, the Ising model in the l
gitudinal field or the Heisenberg model in any field where t
magnetization is along the field at any temperature. For
anisotropic ferromagnets there are some additional direct
in which directed external magnetic field does not dest
the phase transition from a phase with spontaneous lo
range order to the phase with magnetization along
field4,3,5—the paramagnetic phase.

Landau’s free energy of a ferromagnet with field in t
paramagnetic phase can be written in the form

f 5 f 01~ t2tk!mh
21bmh

42mhh, ~2!

where tk depends on the symmetry of the system andmh
denotes the magnetization component along the field.
necessary condition for the existence of the free energy~2!
minimum is

2mh@~ t2tk!12bmh
2#5h. ~3!

The magnetic susceptibility is given by

x~ t !5
1

2~ t2tk!16bmh
2

, ~4!

and it reaches the maximum at

t5tk16bmh
2 . ~5!

Upon inserting Eq.~5! into Eq. ~3! one obtains for the
magnetization at the temperaturet5th at which the suscep
tibility reaches the maximum

mh5S h

16bD 1/3

, ~6!

and finally

th5A1Bh2/3, ~7!

where

A5tk , B5
3

2 S b

4D 1/3

. ~8!
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In the particular case of the uniaxial ferromagnet in
transverse field1,2 the paramagnetic phase is realized abo
the critical temperaturet.tc(h),

tc~h!5t01k22bS h

2kD 2

, ~9!

and the location of thex(t) maximum is given by the for-
mula ~7! whereA5t0 andB is the same as in Eq.~8!.

For the cubic ferromagnets in the external field alo
$100% direction, described by the free energy

f 5 f o1am21bm41k4~mx
41my

41mz
4!2mxh, ~10!

the critical temperature is given by the relation3

tc~h!5t022bS h

4k4
D 2/3

, ~11!

and the shift of the location of the susceptibility maximu
under magnetic field has again the form~7! with

A5t0 , B5
3

2

3b1k4

~5b12k4!2/3
. ~12!

Though the shift of the critical temperature depends
the symmetry; uniaxial or cubic, and it is defined by t
exponents 2 or 2/3, respectively, the shift of the location
the x(t) maximum is in some sense universal~2/3 law for
both cases!.

In summary of this partwithin the mean-field Landau’s
theory if a ferromagnet in the presence of the external m
netic field can be in the paramagnetic phase, then the sus
tibility has a maximum at the pointt5th and under magnetic
field ~h! this point is shifted according toh2/3. This 2/3 power
law is universal with respect to a model~Ising, XY, Heisen-
berg, cubic! and, of course, with respect to the lattice dime
sionality.

In the remainder of this paper the Landau’s theory pred
tion will be analyzed by using the real-space renormalizat
group ~RSRG!. The RSRG is, first of all, a powerful tool to
study universal properties near a critical point, however
can be also used to calculate thermodynamic quantities
as specific heat or susceptibility over the entire tempera
range. The linear RSRG methods have been applied to s
a temperature dependence of the free energy and spe
heat of one- and two-dimensional quantum spin system
zero magnetic field in Refs. 6 and 7. Below we consid
one-dimensionalS51/2 anisotropic Heisenberg model d
fined by the Hamiltonian

H5 (
a5x,y,z

Ka(
i

Si
aSi 11

a 1h(
i

Si
x , ~13!

whereSi
a denotesath spin operator component ati th site of

a chain, and the factor21/kBT has already been absorbed
the Hamiltonian. Hereafter the reduced temperature is
fined byt5kBT/Kmax, whereKmax is the largest interaction
Ka . Of course for the one-dimensional system there is
long-range order for any finite temperature and the magn
05240
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zation is directed along the field for arbitrary small fie
strength. Thus forT.0 a spin chain with arbitrary anisot
ropy is in the paramagnetic state. As mentioned abo
within the Landau’s theory the susceptibility of such a sy
tem should have a maximum which shifts according toh2/3.

Dividing the Hamiltonian~13! into four-spin clusters and
considering only one cluster we can find the renormaliz
interaction by using the following linear RSRG transform
tion ~decimation!:6,7

eH8(sW 1 ,sW 2)5
1

4
TrSW~11sW 1SW 1!~11sW 2SW 4!eH0(SW ). ~14!

The renormalized HamiltonianH8 has the same form a
original HamiltonianH for new spin operatorssW with new
parametersKa8 andh8:

Kx85
1

4
~l41l32l22l1!,

Ky85
1

4 Fl12l21
1

r
~ f y2 f z!~l32l4!G ,

~15!

Kz85
1

4 Fl12l22
1

r
~ f y2 f z!~l32l4!G ,

h85
1

r
f h~l32l4!,

where

l1,25 ln~a02 f x6 f y6 f z!,

l3,45 ln~a01 f x6r !, ~16!

and

a05
1

4
TrSWe

H0(SW ), f a5
1

4
TrSWS1

aS4
aeH0(SW ),

f h5
1

4
TrSWS1

xeH0(SW ), r 5A~ f y2 f z!
214h2. ~17!

As usual, in each step of the transformation a constant t
independent ofsa appears,

G~Ki ,h!5
1

4
~l11l21l31l4!, ~18!

and the free energy per site can be calculated by using
formula8

f 5 (
n51

` G~Ki
(n) ,h(n)!

3n
. ~19!

For the Ising spin chain in a longitudinal field, i.e., fo
Ky50 andKz50 the decimation procedure~14! can be car-
ried out exactly and, consequently, the transformation~15!–
~17! leads to the exact result for the free energy. For a qu
1-2
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tum system, because of the noncumutativity of several te
of the Hamiltonian~13! the decimation cannot be, of cours
carried out exactly and the transformation~15!–~17! is only
an approximation. However, the result of this approximat
leads to reasonable values of the free energy of the o
dimensional quantum anisotropic Heisenberg model in
free-field case, especially in the high-temperature region6,7

Using the formulas~15!–~18! one can easily find numeri
cally the free energy and other thermodynamic quantities
the models described by the Hamiltonian~13!. We will cal-
culate the magnetic susceptibilityx5d2f /dh2 for special
cases of~i! Kx5Ky5Kz isotropic Heisenberg model;~ii !
Kx5Ky , Kz50 XY model with field in the plane;~iii ! Kx
.Ky5Kz uniaxial ferromagnet with field parallel to the ea
axis; ~iv! Kx5Ky,Kz uniaxial ferromagnet with field per
pendicular to the easy axis. In Fig. 1 the susceptibility of
Heisenberg~i! andXY ~ii ! quantum models in the presenc
of the external magnetic field is presented and compa
with the known exact result for the Ising model in the lo
gitudinal field.

Figure 2 shows the susceptibility of theS51/2 Heisen-
berg model for several values of the magnetic field. Acco
ing to the exact result,9 for h50 the susceptibility starts from
infinity and decreases monotonically as the temperature
creases. ForhÞ0 the susceptibility starts from zero and h
a maximum which decreases, widens, and shifts to hig
temperatures with increasing field. This is a characteri
behavior of the susceptibility of ferromagnets in the fie
parallel to the easy axis~longitudinal susceptibility!. The de-
pendence of the susceptibility maximum locationth on the

FIG. 1. The susceptibility of the Ising~thin line!, Heisenberg
~solid line!, and XY ~dashed line! models in the presence of th
magnetic fieldh50.5.

FIG. 2. The susceptibility of the Heisenberg model. The cur
from bottom to the top are forh51, 0.5, 0.2, and 0, respectively
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longitudinal external field for Ising,XY, and Heisenberg
models is presented in log-log plot of Fig. 3. From Fig. 3, w
see that only in the case of the isotropic Heisenberg mo
the results can be fitted satisfactory to a power lawth}hy

with y'0.696 for 0.1,h,5. In the other cases, Ising an
XY models, the deviation from the single power law is rath
clear. The same behavior is observed for the uniaxial fe
magnet with the field along the easy axis~see Fig. 6!.

In case~iv!, perpendicular susceptibility of the uniaxia
ferromagnet in zero field, starts from finite valuexo5(1
2D)21 ~in the limiting case ofD→0, the Ising model,xo
tends to 19! and has a maximum atto ~see Fig. 4!. For the
finite field this maximum initially increases and shifts
lower temperatures but then, similarly as for the longitudin
susceptibility, decreases, widens, and shifts to higher t
peratures with increasing field~Fig. 5!. The field dependence
of the susceptibility maximum locationth2to of the uniaxial
ferromagnet with longitudinal and transverse fields is p
sented in the log-log plot of Fig. 6. For the longitudin
susceptibility, the location of the maximum in zero fieldto
50 whereas for the transverse susceptibilityto depends on
the anisotropy constantD and, for example, forD50.95 and
0.9, to50.13 and 0.217, respectively. It is clear from Fig.
that, contrary to the longitudinal susceptibility, the shift
the transverse susceptibility maximum can be described
the power lawth2to}hy. However, the exponenty depends
on D, and forD50.95 and 0.9,y50.776 and 0.834, respec
tively.

s

FIG. 3. Log-log plot of the field dependence of the susceptibi
maximum location for: Ising~dotted line!, XY ~dashed line!, and
Heisenberg~solid line! models.

FIG. 4. The temperature dependence of the zero-field perp
dicular susceptibility of the one-dimensional uniaxial ferromagn
The curves from bottom to the top are forD5Kx /Kz50.8, 0.85,
and 0.9, respectively.
1-3
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In conclusion, the existence of the susceptibility ma
mum in the paramagnetic phase of ferromagnets in the fi
is not, of course, connected with the critical fluctuations,
one should not expect a universal behavior—interacti
independence of the exponenty. From the same reason th
influence of the lattice dimensionality should not be so c
cial as in the case of the critical behavior. Thus we can c
clude that the shift of the transverse susceptibility of
uniaxial ferromagnet under magnetic field follows the pow
law with the exponenty close to 2/3 forD→0, andy slowly
increases with increasing anisotropy.

FIG. 5. The temperature dependence of the susceptibility of
one-dimensional uniaxial ferromagnet (D50.9) with perpendicular
field. The curves from bottom to the top are forh50.8, 0.5, and
0.3, respectively.
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This paper has been motivated by the paper of Markov
et al.1 who have shown experimentally that the shift ofx
maximum in La0.91Mn0.95O3 at applied field follows the 2/3
power law in accordance with Landau’s theory. However,
authors have pointed out that the anisotropy in manganite
rather small and magnetic fields used in the experiment w
relatively high, and under these circumstances the result
the RSRG for one-dimensional system are consistent w
the Landau’s theory predictions.

e
FIG. 6. Log-log plot of the field dependence of the susceptibi

maximum location for: uniaxial Heisenberg with longitudinal fiel
Ky5Kz50.9Kx ~dashed line!; Ky5Kz50.7Kx ~dotted line!;
uniaxial Heisenberg with transverse field;Kx5Ky50.95Kz ~solid
line!; Kx5Ky50.9Kz ~dashed-dotted line!; and isotropic Heisen-
berg ~thin line! models.
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