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Field dependence of the susceptibility maximum temperature in ferromagnets
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It is shown within the mean-field Landau’s theory that if a ferromagnet in the presence of a magnetic field
can be in a phase in which the magnetization is parallel to the field, the susceptibility has a maximum at a point
t=t, and under magnetic fielgH) this point is shifted according td%. This 2/3 power law is independent of
a spin model. The prediction of Landau’s theory is examined on the one-dimensional qu&atlid aniso-
tropic Heisenberg model by using a linear real-space renormalization group. It has been found that for a
longitudinal field only in the isotropic Heisenberg model the shift of the susceptibility maximum can be fitted
satisfactory to a power law with exponent close to 2/3. In other cases the deviation from a single power law
seems to be clear. On the other hand, for the field perpendicular to the easy axis the fit to a power law is
excellent but a value of the exponent depends on the anisotropy constant.
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In a recent papérMarkovich, Rozenberg, Gorodetsky, along an easy axis, for example, the Ising model in the lon-
Revzin, Pelleg, and Felner have shown experimentally thagitudinal field or the Heisenberg model in any field where the
the electrical resistivityp(T) of Layg;Mng 05 at ambient magnetization is along the field at any temperature. For the
pressure and zero magnetic field reaches a maximum at anisotropic ferromagnets there are some additional directions
=262 K. Upon increasing fieldH) the maximum widens in which directed external magnetic field does not destroy
and shifts towards higher temperature accordingl16. As-  the phase transition from a phase with spontaneous long-
suming that the maximum qf(T) coincides with maximum range order to the phase with magnetization along the
of magnetic susceptibility(T) the authors have attempted field**>—the paramagnetic phase
to explain this behavior by using a simple generalization of Landau’s free energy of a ferromagnet with field in the
the Landau’s theory for the anisotropic systeimisndeed, it ~ paramagnetic phase can be written in the form
has been showirthat the susceptibility of a uniaxial ferro- 5 4
magnet in a transverse field reaches above the critical point a f=fo+(t—t)mpy+bmy—myh, @

that the shift of the maximung(T) location according to the  genotes the magnetization component along the field. The

pend on the symmetry of the system. This can support théinimum is

Markovich et al! idea to apply the relation derived, in fact,
for a single crystal for the description of a polycrystalline th[(t—tk)+2bmﬁ]=h. 3)
ferromagnet.

In the first part of this paper it is shown that within Lan-
dau’s theory the shift ofy(T) maximum under magnetic

The magnetic susceptibility is given by

field according to the 2/3 law should be observed for all X(t):;, (%)
anisotropic ferromagnets which exhibit a phase transition to 2(t—tk)+6bmﬁ

the paramagnetic phase as well as for isotropic ferromagnets d it reaches the maximum at

in a field. In the second part the temperature dependence 8

the susceptibility of one-dimensional ferromagnets in a finite t=t,+6bm2 5

. ) . ) A k m . )
field will be studied by using real-space renormalization

group. Upon inserting Eq(5) into Eqg. (3) one obtains for the

Let us start with Landau’s expansion for the reduced fregnagnetization at the temperaturet,, at which the suscep-
energy of an anisotropic ferromagnet in a magnetic field, tibility reaches the maximum

N 1/3
f="fot (t—to)m>+kPm%+ bm?+kZjmims —mh, my= h , ®)
(1) 16b
wheret andh denote reduced temperature and field, respecdd finally
. . . l) .
g\c/)ﬁlsy{arr]r;g magnetization component, arkd anisotropy ty=A+Bh?S @)

It is obvious that for an arbitrary symmetry of the systemwhere
there are such directions of the magnetic field for which the
magnetization is directed along the field at least in some
temperature region. The simplest case is the field directed

3/b 1/3
) : 8
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In the particular case of the uniaxial ferromagnet in azation is directed along the field for arbitrary small field
transverse fieft? the paramagnetic phase is realized abovestrength. Thus fof>0 a spin chain with arbitrary anisot-
the critical temperature>t.(h), ropy is in the paramagnetic state. As mentioned above,
within the Landau’s theory the susceptibility of such a sys-
tem should have a maximum which shifts according16.

Dividing the Hamiltonian(13) into four-spin clusters and
considering only one cluster we can find the renormalized

and the location of thg(t) maximum is given by the for- jnteraction by using the following linear RSRG transforma-
mula (7) whereA=t, andB is the same as in E@8). tion (decimation:®”

For the cubic ferromagnets in the external field along
{100 direction, described by the free energy

h 2
tc(h)=t0+k—2b(ﬁ) : 9

e (1.2 = %Tr§(1+ 18D (1+a,5,)e . (14
f="fo+am?+bm*+k,(mi+mj+m;)—msh, (10
The renormalized Hamiltoniati’ has the same form as
original HamiltonianH for new spin operator§ with new
h \23 parameter«’ andh’:
(4k ) : (1)

the critical temperature is given by the relation

te(h)=tq 1
and the shift of the location of the susceptibility maximum K=z (MathaAam M),
under magnetic field has again the fof® with

1[ 1 ]
3 3b+ky Ky=z M Aot —(fy =)A=\ |,
A=tg, =5 %= (12 - .
2 (5b+2k,)2R (15)
Though the shift of the critical temperature depends on K’=E _ _E £t _ _
the symmetry; uniaxial or cubic, and it is defined by the z 4_)\l A2 r( y~ T (A3 )‘4)_'

exponents 2 or 2/3, respectively, the shift of the location of
the y(t) maximum is in some sense universal3 law for
both cases

In summary of this partvithin the mean-field Landau’s
theoryif a ferromagnet in the presence of the external maghere
netic field can be in the paramagnetic phase, then the suscep-
tibility has a maximum at the point=t,, and under magnetic
field (h) this point is shifted according 0?3, This 2/3 power
law is universal with respect to a modds$ing, XY, Heisen-
berg, cubi¢ and, of course, with respect to the lattice dimen-and
sionality.

In the remainder of this paper the Landau’s theory predic-
tion will be analyzed by using the real-space renormalization
group(RSRG. The RSRG is, first of all, a powerful tool to
study universal properties near a critical point, however, it 1 X Ho(d) 5 5
can be also used to calculate thermodynamic quantities such fh:ZTrésle o, r=N(fy—f) +4h% (17)
as specific heat or susceptibility over the entire temperature
range. The linear RSRG methods have been applied to studys usual, in each step of the transformation a constant term
a temperature dependence of the free energy and specifitdependent otr* appears,
heat of one- and two-dimensional quantum spin systems at
zero magngtic field in Refs. 6 a}nd 7.- Below we consider G(K;,h)= E()\ Aot AgtAa), (18)
one-dimensionalS=1/2 anisotropic Heisenberg model de-
fined by the Hamiltonian

, 1
h'= th(7\3_7\4),

)\1’2:|n(a0_ fxifyi fz),

N3s=In(ap+fyxr), (16)

1 » 1 -
ag= ZTrgeH o, f = ZTrgSfo{eHo(S) ,

and the free energy per site can be calculated by using the
formuld®

H= X 02 s's; +1+h2 s, (13)
a=X,Y,z

* G(K(n) h(n))
whereS* denotesath spin operator component iah site of Z‘ (19
a chain, and the factor 1/kgT has already been absorbed in
the Hamiltonian. Hereafter the reduced temperature is de- For the Ising spin chain in a longitudinal field, i.e., for
fined byt=kgT/Kmnay, WhereK, . is the largest interaction K,=0 andK,=0 the decimation proceduf@4) can be car-
K,. Of course for the one-dimensional system there is naied out exactly and, consequently, the transformafis)—
long-range order for any finite temperature and the magnetic17) leads to the exact result for the free energy. For a quan-
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FIG. 1. The susceptibility of the Isinghin line), Heisenberg ) o
(solid line), and XY (dashed ling models in the presence of the FIG. 3. Log-log plot of the field dependence of the susceptibility
magnetic fielcth=0.5. maximum location for: Isingdotted ling, XY (dashed ling and

Heisenbergsolid line) models.

tum system, because of the noncumutativity of several terms . . .
of the Hamiltonian(13) the decimation cannot be, of course, longitudinal external field for IsingXY, and Heisenberg
carried out exactly and the transformatiti§)—(17) is only ~ Models is presented in log-log plot of Fig. 3. From Fig. 3, we
an approximation. However, the result of this approximationS€€ that only in the case of the isotropic Heisenberg model
leads to reasonable values of the free energy of the ondbe results can be fitted satisfactory to a power tawh”
dimensional quantum anisotropic Heisenberg model in th&vith v~0.696 for 0..kh<<5. In the other cases, Ising and
free-field case, especially in the high-temperature re§fon. XY models, the deviation from the single power law is rather
Using the formulag15)—(18) one can easily find numeri- clear. The same behavior is observed for the uniaxial ferro-

cally the free energy and other thermodynamic quantities ofagnet with the field along the easy aksee Fig. 6.

the models described by the Hamiltoniék8). We will cal- In case(iv), perpendicular susceptibility of the uniaxial
culate the magnetic susceptibility=5f/sh? for special ~ferromagnet in zero field, starts from finite valyg=(1
cases of(i) K,=K,=K, isotropic Heisenberg modelji) ~ —4) ~ (in the limiting case 0fA—0, the Ising modelx,

Ky=K,, K,=0 XY model with field in the planegiii) K, ~ tends to ) and has a maximum at (see Fig. 4 For the
>K, =K, uniaxial ferromagnet with field parallel to the easy finite field this maximum |n|t|z_illy increases and sh_lfts_to
axis; (iv) K,=K,<K, uniaxial ferromagnet with field per- lower temperatures but then, similarly as for the longitudinal
pendicular to the easy axis. In Fig. 1 the susceptibility of theSusceptibility, decreases, widens, and shifts to higher tem-
Heisenbergi) and XY (ii) quantum models in the presence Peratures W|th_|r_1c_:reasm_g fieléFig. 5)_. The field depen_de_nce
of the external magnetic field is presented and compare@f the susceptibility maximum locatia —t, of the uniaxial
with the known exact result for the Ising model in the lon- ferromagnet with longitudinal and transverse fields is pre-
gitudinal field. sented in the log-log plot of Fig. 6. For the longitudinal
Figure 2 shows the susceptibility of ttf&=1/2 Heisen- Susceptibility, the location of the maximgr_n. in zero field
berg model for several values of the magnetic field. Accord-=0 whereas for the transverse susceptibitifydepends on
ing to the exact resuftfor h=0 the susceptibility starts from the anisotropy constau and, for example, foA=0.95 and
infinity and decreases monotonically as the temperature ifd-9,t,=0.13 and 0.217, respectively. It is clear from Fig. 6
creases. Foh+0 the susceptibility starts from zero and hasthat, contrary to the longitudinal susceptibility, the shift of
a maximum which decreases, widens, and shifts to highdhe transverse susceptibility maximum can be described by
temperatures with increasing field. This is a characteristi¢he power lawt,—tych®. However, the exponentdepends
behavior of the susceptibility of ferromagnets in the fieldon 4, and forA=0.95 and 0.9p=0.776 and 0.834, respec-
parallel to the easy axidongitudinal susceptibility The de-  tively.
pendence of the susceptibility maximum locatignon the

15
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0.2 0.4 0.6 0.8 1 1.2
1 2 3 4 g = FIG. 4. The temperature dependence of the zero-field perpen-

dicular susceptibility of the one-dimensional uniaxial ferromagnet.
FIG. 2. The susceptibility of the Heisenberg model. The curvesThe curves from bottom to the top are far=K,/K,=0.8, 0.85,
from bottom to the top are fdn=1, 0.5, 0.2, and 0, respectively. and 0.9, respectively.
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FIG. 5. The temperature dependence of the susceptibility of the ] o
one-dimensional uniaxial ferromagnet £ 0.9) with perpendicular FIG. 6. Log-log plot of the field dependence of the susceptibility
field. The curves from bottom to the top are for=0.8, 0.5, and Maximum location for: uniaxial Heisenberg with longitudinal field:
0.3, respectively. Ky=K,=0.K, (dashed ling K,=K,=0.7K, (dotted ling;

uniaxial Heisenberg with transverse field,=K,=0.9%, (solid

) ) o . line); K,=K,=0.%K, (dashed-dotted ling and isotropic Heisen-
In conclusion, the existence of the susceptibility maxi-perg thin line) models.

mum in the paramagnetic phase of ferromagnets in the field

is not, of course, connected with the critical fluctuations, so This paper has been motivated by the paper of Markovich
one should not expect a universal behavior—interactionet al! who have shown experimentally that the shift pf
independence of the exponemtFrom the same reason the maximum in Lg ¢;Mng O3 at applied field follows the 2/3
influence of the lattice dimensionality should not be so crupower law in accordance with Landau’s theory. However, the
cial as in the case of the critical behavior. Thus we can conauthors have pointed out that the anisotropy in manganites is
clude that the shift of the transverse susceptibility of therather small and magnetic fields used in the experiment were
uniaxial ferromagnet under magnetic field follows the powerrelatively high, and under these circumstances the results of
law with the exponent close to 2/3 forA—O0, andvslowly  the RSRG for one-dimensional system are consistent with
increases with increasing anisotropy. the Landau’s theory predictions.
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