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Theory of thermoelectric power factor in quantum well and quantum wire superlattices
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Calculations are presented for thermoelectric transport in quantum well and quantum wire superlattices,
using (i), the full superlattice electronic band structurd(iin a multisubband inelastic Boltzmann equation for
carrier-phonon scattering. The transport direction is taken to be in the quantum well planes and along quantum
wires. It is demonstrated that these two features are needed to give a quantitative treatment of the power factor
P in superlattice systems. Results are given for PbTe and for GaAs quantum well and quantum wire superlat-
tices, including the dependence Bfon growth direction and on potential offset. For both quantum well and
guantum wire superlattices, the dependencl of potential offseV, is found to be qualitatively weaker than
in previous work based on the constant relaxation time approximation for carrier scattering. These weaker
dependences o¥l, are traced mainly to the enhancement of the electron-phonon scattering rates upon con-
finement. These results give a different picture of the effects of confinemdnsoggesting, for example, that
increased confinement in superlattices does not lead to significantly Hrgireat that free-standing structures,
such as free-standing quantum wires, may be particularly attractive for thermoelectric applications.
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[. INTRODUCTION decreasing well and wire dimension. The model systéms
There has been renewed interest in recent years in under> edin thgse calculat.|ons were taken to havg infinite cpnfm-
ing potentials(no barrier layerg and the carrier scattering

standing the thermoelectric transport properties of low- . . . .
dimensional semiconductor systems such as quantum welyas represented within a constant relaxation time approxi-

and quantum wire superlattices. This has been motivated iation (CRTA). In later work, the effects of barrier layers
part by the interest in finding materials and systems for us&/ith finite potential offsets were included using a Kronig-
in cleaner, more efficient cooling and power generationPe””y description of the electronic band structure but still
applications: The desirability of a material for use in such treating carrier scattering within the CRTA In the result-
systems is characterized by the dimensionless “figure ofng picture,P increased from its bulk value for decreasing
merit” 2 well and wire widths, reaching a maximum and then decreas-
ing due to tunneling through the barriers. In that work, the
maximum value ofP was found to increase substantially
ZT= ;T- D with increasing potential barrier height.
Recent measurements on PbTe multiple quantum well
Here, T is the temperature? = o'S? is the power factor, with  structure®® demonstrated that enhanced power factors could
o the electrical conductivity an& the Seebeck coefficient, be achieved, thus stimulating further experimental and theo-
andx is the thermal conductivity = .+ « , which consists retical research on the thermoelectric properties of quantum
of two components¢, and «x; corresponding to the carrier well and wire systems. These measurements were for indi-
and lattice contributions, respectively. In the past few dewvidual conducting layers, and not for the full three-
cades, little improvement in the figure of merit of bulk ma- dimensional(3D) structure including the barrier layers. In
terials has been realized. Room temperature values of tteubsequent calculations for PbTELL] quantum wells with
dimensionless figure of mer®T for the bulk semiconductor infinite potential offsets® we included the multivalley aniso-
Bi,Te; are the highest known to date, witT~ 1. tropic PbTe band structure and a realistic treatment of carrier
Interest in the potential of quantum well and quantumscattering processes beyond the CRTA. In that work, we
wire superlattices for thermoelectric applications has beefiound thatP decreasedelow the bulk value for narrow
motivated in part by the prospect that these systems mighwells due mainly to the strong lifting of the fourfold valley
have high power factors and figures of merit. The first cal-degeneracy in PbTe wells produced by confinement and also
culations of the power factor and the figure of metitn because of strongly enhanced scattering rates with decreas-
quantum well and quantum wire systetfigocused on the ing well size. Subsequent calculations Bfave been per-
effect on these quantities of the change in the electronic derfermed for single PbTe quantum wéflso address the ex-
sity of states resulting from the reduced dimensionality.perimental results of Refs. 8 and 9. However, the
These calculations attracted considerable attention becauf@mulations in Refs. 10 and 11 cannot describe the power
of the prediction of dramatic enhancement®imndZ with ~ factor for realistic superlattices with finite potential barrier
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heights, which are characterized by anisotropic and nonpardeys. Within the effective-mass approximation, the quantum

bolic band structure along the superlattice directions. well superlattice subband structure deriving from each bulk
In the present paper, we give a quantitative treatment of¥alley can be described by a superlattice dispersion along the

thermoelectric transport in quantum well and quantum wireconfinement direction, taken to be thelirection, and by an

superlattices. The transport direction is taken to be in thén-plane parabolic but anisotropic subband dispersion. Thus,

planes of quantum wells and along the quantum wires. Fulfor each valley,

superlattice band structure calculations are given for the elec-

tronic states and incorporated in a solution of the inelastic 22012 K2
3D Boltzmann equation. Detailed results are given for GaAs en(K)=€n(kp) + = | —+ =2, (4)
and PbTe quantum well and wire superlattice systems. These 2\me my

materials are chosen in part to examine the dependenie of . . . .
Here, €,(k,) is the superlattice dispersion for each valley,

on systems with different band structures and different domi hich is optained. al ith th latii loch f
nant carrier scattering mechanisms. Qualitatively differentVNich i obtained, along with the superlattice Bloch func-

features are obtained here which are broadly applicable tHONS ¥nk,(2), by numerical solution of the Schimger
semiconductor superlattice systems. In particular, the powegquation for the Kronig-Penny potential with offSég.
factor for both materials is found to depend only weakly on We calculate the contribution to the thermoelectric trans-
barrier height for quantum well and wire superlattices in con-port coefficients from the occupied subbands deriving from
trast to results obtained in the CRPA’ This work also sug- €ach valley and sum these contributions to obtain the full
gests that free-standing quantum wire structures may beesults. Intervalley scattering is neglected so that each valley
promising candidate systems for thermoelectric applicationds treated independently. For notational simplicity, the valley
In Sec. Il, the theory for calculating the electrical conduc-index is omitted in the expressions presented below. For
tivity and the Seebeck coefficient for in-plane thermoelectriceach valley, we choose theandy directions to be oriented
transport in quantum well superlattices is presented. Sectiodlong the principal axes of the elliptic constant-energy sur-
Il presents the corresponding theory for thermoelectricfaces. We will consider weak electric fiel#sand weak ther-
transport along quantum wire superlattices. The results fofal gradientsV T oriented in the plane of the quantum wells.
the power factor in quantum well and quantum wire super-These fields will not in general lie along the principal axes of

lattices are given in Sec. IV. the assumed elliptic energy surfaces. Thus, the currents will

in general not be along the direction of the applied perturba-

Il. THERMOELECTRIC TRANSPORT IN QUANTUM tions. The transport coefficients are, however, independent of
WELL SUPERLATTICES the magnitudes o and VT for small values of these

. , , quantitiest?> We first evaluate the coefficients for the direc-

We consider thermoelectric transport in a quantum welkjons of the principal axes and then obtain them for arbitrary
superlattice with well widtha, barrier widthb, periodd=a  gjrections by adding the contributions from the components
+b, and potential barrier height,. We take the growth of the field and temperature gradient in these principal axis
axis in thez direction. The state of the electron is specified §jrections.
by subband index and wave vectok=(k,k,), wherek Following Ref. 12, forE and VT along one of the prin-
= (k.ky) is the in-plane component. The Boltzmann equa-cipa| axes, taken to be thedirection, the distribution func-
tion for the superlattice for steady state electron transport igign for the nth superlattice subband can be expressed in
the presence of electric field and temperature gradieMtT  terms of its deviationsf,,, from the equilibrium(Fermj dis-

is'? tribution o, f = fo+ Of e, with
eE V.€n of,  of,
g Vet S VT = @ oo fik, 1dT
c fu=| Zc | | eEmn(K+ 3 o man(K) | (9)
X
fn \Y
il = FE J Ak {Wyrn(K"K) Frr (K[ L= (k) ] In quantum well systems, the scattering functieng k) and
7T r . . -
c n Ton(K) are anisotropic because of the superlattice band struc-
— W (K, K Fa(K)[ L= (KT} (3)  ture ey(k,) along the growth direction, and because of any

. o . ~underlying anisotropy of the bulk band structure. Substitut-

Here, f(k,r) is the distribution function for electrons in ng Eq.(5) into the Boltzmann equation leads to two sets of
superlattice staten(k), Wy (k,k") is the scattering rate coupled equations for the scattering functions:
taking electrons from staten(k) to state (',k’), ande,(k)
is the electron energy. The collision operatd,/dt|. ac- L(rin(K)=1, Lo(ron(K)=€e—pu, (6)
counts for intra-and intersubband inelastic scattering into and
out of the statef,k).

We focus on thermoelectric transport in the plane of the Lc({Tin(k)}):E f dk'Wnnr(k,k’)(
guantum well layers, which is the direction of interest in n’
most of the experimental and theoretical work to date. Ma-
terials of interest for thermoelectric applications are typically %
characterized by multiple ellipsoidal conduction band val-

1-fon (k")
1= fon(k) )

K
Tin(k)—k—Tin'(k'))- @
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These coupled equations are analogous to those obtained fimtroducing the scattering rates Eq8)—(12) into Egs.(6)

isotropic bulk materiald®® They are extended here to in- and(7) and integrating over the energy conservifidunc-

clude multiple superlattice subbands and anisotropy. tions yields the set of coupled ladder equations #gy(k)
We consider here the scattering of electrongbyacous- andr,,(k) and

tic phonons via the deformation potenti@P) interaction,

and(2) polar optical phononéPOP’s via the Frdilich inter- .

action. These are the dominant scattering mechanisms at §i232(6)7ia(6)—2 Syar(€)Tig(€+hwg)

room temperature. We take the phonons to be unaffected by “

the superlattice structure and the electrons to have modified _

superlattice wave functions. In quantum wells and wires the _2 Sear(€)Tiar (e~ Trwo), (13

scattering rates by optic phonons have been shown to be “

given to a good approximation by bulk plane waves for thewhere «=(n, 8,k,) with 0:tan‘1(ky/kx) andé=1 fori=1

phononst*® and the superlattice periodicity has only small and e— u for i =2. These equations are solved using an ex-

effects on the acoustic phonons. We take the optic phonotension of the Ritz iterative methdd.This method along

branch to be dispersionless and given by its zone centewith the expressions for th8s in Eq.(13) is presented in the

value fiwg, and the acoustic branch is taken to be linearAppendix.

with an averaged isotropic velocity=(3Cq;+2Cy5 For each valley, thex direction is taken along the semi-
+4C,,)/5.X8 The electron-phonon scattering probabilities for major axis of the energy ellipse. The contributions to the
quantum well superlattices are electric and heat currents flowing in the superlattice from

each valley are given by

2
WEno,P(k,k’)=7(N0+%i%)C%OA\/IES,P(k,k’)(S(en,(k’) dk fik,
Jox=—€2 f 73— O, (14)
n 47T mx
—en(K) = hwy), (8)
, dk ik,
|Fnkzn’k£(Km)| JQx:; mwxé\fnk(e—,u) (15

Mo T k) =2 A+ Ay + (Ak, K’
mEX y 2m with 8f,,, given from Eq.(5). These are related to the trans-

t coefficients b
) 2 me? port coefficients by
POP~ oy ¥0- ©) dT
Jex= O'EX—O'Sd—X, (16)

Here, the+ (—) sign is for emission(absorption, Ak;=k/
=k, i=x,y,z, Kn=2mm/d is the reciprocal superlattice
vector, 1k*=1/k.—1lko, Ko(x.) iS the static (high- o= 0STE— Yook, 17
frequency dielectric constant, and\Ny=1/]expfwy/kgT) dXx

—1]. The superlattice overlap factor . -
L P P where o and S are the electrical conductivity and Seebeck

P coefficient andy, is the electrical component of the thermal

Foene (K= f el (ke Kmzgr* (D)W (2)dz conductivity at zero electric field. Itis related to the electrical
oz 0 n'k; component of the thermal conductivity at zero current by
(100 ke=7v,— 0S?T. The contributions from each valley to the

s given in terms of the superlattice Bloch functions transport coefficients for fields along this direction are
7) =e*?u,, (2) with un (z+d)=up (2). These func-
lﬂnkz( ) nkz( ) nkz( ) nkz( ) eszT (mxmy)l/2

tions can be expressed in closed forimyhich allows the o= ———0o > lon(p,T) (18)
overlap factor to be expressed analytically. At room tempera- My ard 4O
ture, the average electron energy is considerably larger than
that of acoustic phonons involved in the deformation poten- —ekéT (m,m,)*?2
tial scattering. Thus the scattering probability for this mecha- oS= Xﬁzyd 2 10(,T), (19
nism is, to good approximation, elastic, and has the form My m n
2T ' ' k312 (mym, )2
Wor (k') = 2= CBM T (K, ki) e (K') = en(K)), Y= %z (T, 20
(1D "
) where
, EiksT
Mr?r'?’(kakz):%: |Fnkzn’k£(Km)|27 CZDP:—ZVpUZI 1 - g ocd . d
0 - I
(12) lOr‘I(IU/vT) 2 f_ﬂ_ ﬂfo g odg[g)(ln(§177)], (21)
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1 ™ ® d S *
oD =5z | dn [ detogtde-timianem) Fuow (0= [ @KET0R (o)W (01

(22) (29

1 (= oo d The solution of the inelastic multisubband Boltzmann
on(m,T)= 5 f dr;f dé fod—§{§[§— L xan(€,m)}, equation for quantum wire superlattices is cast in the form of
T 0 Eq. (13), with a=(n,k, ,k,). The solution of this equation is

(23 described further in the Appendix.
and The contributions for each valley to the transport coeffi-
cients for fields along th& direction are
1 (2w
Xin(faﬂ):_f d6cos 6 7i(£,7,6) (24) 262 [ 2m.KaT)\ 12
mJo = |2 S (T 29
R——T) 72 ~ on(&,T), (29)
. X
with 7=k, d, &=[e—e€n(k)]B, fo=Fo[£,{n(ky)], and
where £, (k) =[ n—€en(k,) 1B is the scaled chemical poten- T 12
tial. The full transport coefficients are obtained by adding the oS=— 2eks (me BT) 2 RO (30)
contributions for all valleys and averaging over the direc- mm,d h G A
tions of the field and temperature gradient, as is described in
Sec. IV for PbTe systems. From these results the power fac- 2ek§T 2mokaT 12
tor P=0S? is5(6)ptained. Equationd 8)—(20) reduce to those yezw(g—f) > on(,T), (31
in the CRTA>® if we take 7,,= 7 and 7o, = (e— u) 7, Where i n
7is a constant relaxation time. where
Ill. THERMOELECTRIC TRANSPORT IN QUANTUM | 7 1 fw d fﬂ g fwd ¢ d
WIRE SUPERLATTICES on(wT)=5 2] dn) dé | défog,
For quantum wire superlattices, the Boltzmann equation X[EY27, (£.7.8)], 32)

can again be cast in the form of Ed$) and (7). The wire
superlattice dispersion for each valley is

1 ™ ™ o d
5212 l1n(u,T)= (ZT)zf,wd”f,wdd)fo dffod—g

€n(K) = enlky ko) + W (25)
* X{gl/{g_ gn( 771¢)]Tln(§17]=¢)}1 (33)
Here, e,(ky ,k,) is the quantum wire superlattice dispersion,

which is obtained along with the corresponding Bloch func- 1 w T o d

tions through solution of the Schtimger equation for the 2D lon(p,T)= Wj dnJ d¢J dé fod_g
periodic Kronig-Penny potential with offs&t,. The lack of T o 0

separability of the Schobnger equation precludes a closed X{EY £— 20(7, D) 1 Ton(E ) (3D)

form solution. Instead, we expand the wire superlattice

Bloch functions (p)=€": Puy (p) in a basis of prod-  with 7=k, — $=kd, &=[e—en(ky.k)IB,  fo
ucts of quantum well superlattice Bloch states, (p)  — ol&¢n(ky. ko], and where  £n(ky kp) =[u
—Y Coe (ML)« (Y)Ur 4 (2), where u,  ( )Land —€n(ky,k,)]B is the scaled chemical potential. The full
= 2nynynky (N1,12)Un i LY Nk A S ngky 'y _transport coefficients and the power factor for a field are
Un,k,(2) are the Bloch functions for the 1D periodic potential pptained as described at the end of the previous section.
already described in the previous section, and solve the re-

The electron-phonon scattering probabilities for quantum ) )
wire superlattices have a form similar to that for quantum The present approach is generally applicable to all quan-

well superlattices but have a 2D reciprocal lattice: tum well superlattice systems. In the following, we illustrate
the present treatment of the thermoelectric transport princi-
IFok k. (K Ko ) |2 pally with results for PbTe quantum well and quantum wire
MPORk k)= D Pk, My, superlattices, which are of current interest for thermoelectric
(oK)= AKZH (Aky+ K )2+ (AK+ K )2 s i
mymy AR+ (Aky+ Ky )7+ (Akz+Kp) applications. All results here are far=300K. PbTe is a

(26) multivalley system with fourfold degeneracy and with con-
siderable anisotropy in the conduction band in the bulk. The
material parameters for PbTe are taken tontpe= 0.35, m,

DP N 2
Mo (K K]) = m12,m2 Fa, o, (K Km)I® 27 Z0 034, andE,=25meV, hwy=14meV, ro=414, k.,
=33, C,;=1.072x 10’ N/cn?, C,,=7.68x10° N/cn?, and
with the overlap factor Cyq=1.322< 10° N/cn?. 1819
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a5 "TA ' ] tering rates with decreasing widths. For large well widths,
the contributions from many subbands converge, and the
bulk value(thin dashed lingis recovered. The lower mobili-
ties obtained from the inelastic treatment for large well
widths are in agreement with the measured bulk mobilities in
GaAs? and point to the importance of an inelastic treatment
to accurately describe carrier transport in lower-dimensional
systems.

PbTe is a good room temperature thermoelectric material
in bulk with a ZT~0.4. Its thermoelectric properties have
also been studied in PbTe/PbEuTe quantum well sysféms,
and enhanced power factors were observed in them. Bulk
PbTe has four highly anisotropic ellipsoidal valleys along the

Mobility (10* cm?/V-s)

0-5¢ [111] crystallographic directions. Here, we consider PbTe
guantum well superlattices with growth axes al¢bgl| and
- . 1 [10Q] directions. For thd111] direction, the confinement
0 lifts the fourfold valley degeneracy resolving one set of mini-
0 100 200 300 400 500

. bands from the longitudinal valley lying below another
Well Thickness (A ) threefold degenerate set of subbands from the oblique val-
leys. In the[001] orientation, the masses for all four valleys
along the confinement direction are the same. Superlattices
in this orientation retain the fourfold valley degeneracy of
the bulk.

For the[111] orientation, the in-plane subband structure
for the longitudinal valley is isotropic and the contribution to

In order to elucidate the underlying physics it will be transport from this valley is obtained by setting in the above
helpful to compare these results for PbTe with those from @quationsm,=m,=m;=0.034, m,=m;=0.35. For each of
system with a simpler band structure, GaAs. GaAs has &e three oblique valleys, the contribution to the conductivity
single isotropic conduction band valley, and the material pahas the form; (o, + ay), whereo, is given by Eq(18) with
rameters used for it in the calculations amg=my=m, m,=0.034, m=0.172, m,=0.038, while o, is obtained
=0.0665, E;=7meV, fhwo=36meV, xk=12.9, k..  with my=0.172,m,=0.034,m,=0.038* For the[001] ori-
=10.92, andov =875 meV/ A, entation, the confinement massiig=0.049 for all four val-

In GaAs POP scattering dominates carrier scattering deys, and the contribution to the conductivity for each valley
room temperature. This is to be contrasted with PbTe irs againj (o + ay) with m,=0.085 andm,=0.034 for oy
which POP scattering and DP scattering give comparabland m,=0.034 andm,=0.085 for o, . Analogous evalua-
contributions to the room temperature carrier scattering. Tdions are made fosS and vy, from Eqgs.(19) and(20). From
see the physics, it will also be helpful to consider the limit ofthese results the total transport coefficients and the power
infinite potential barriersy,=o¢. In this limit, the superlat- factor P=o'S? are obtained by summing over all valleys.
tice subbands become dispersionless, and the scattering P is always a function of carrier density, and in all of the
probabilities for wells and wires can be reduced to simpleifollowing we evaluateP at the densities for whicl® is a
forms 2921 maximum. In Fig. 2,P is shown for[100] PbTe quantum

Figure 1 illustrates the importance of including a full in- well superlattices with/y=c andb=0 using several treat-
elastic treatment of the carrier scattering in the Boltzmanments of the carrier scattering.is scaled to the bulk value
equation. It gives calculations of the room temperature POPfor the same treatment of carrier scattering. Previous calcu-
limited carrier mobility in GaAs single quantum wells with lations within the CRTA for similar systems with strong
Vo= as a function of well thickness. The carrier density confinement* have suggested th& should increase mono-
has been taken to be @m 3. The dashed line is from a tonically with decreasing well and wire widths, attaining val-
relaxation time approximation in whidhw, in the scattering ues well above the bulk value. This behavior is given by the
functions from Eq(13) is neglected? The solid line is from  dash-dotted line in Fig. 2. The dotted line giieswith car-
the solution of the full inelastic Boltzmann equation. It is rier scattering by only optic phonons. The dashed curve
evident from the figure that the relaxation time approxima-showsP with only scattering of carriers by acoustic phonons,
tion gives a significantly higher mobility than that obtained which is independent of well width. To see wifyis inde-
from the inelastic calculation for wells witha  pendent ofa in this case, we note that in the high-
~100-200A. This relaxation time approximation neglectstemperature approximation to DP scattertgyhich is valid
the intra- and intersubband inelastic scattering, which reductor PbTe at room temperature, the carrier relaxation time for
the mobility. This in turn will give lower thermoelectric this fully confined casey, is inversely proportional to the
power factors. density of electronic states per unit voluni&, which itself

The decrease in mobility in both curves in Fig. 1 for de-varies as H. Sincesc~D 7, it becomes independent affor
creasinga below 150A arises from the increase in the scat-acoustic phonon scattering, and tHiss independent oé.

FIG. 1. Carrier mobility due to polar optical phonon scattering
for GaAs quantum wells witVy=« as a function of well width in
a relaxation time approximatididashed linpand from the inelastic
solution of the Boltzmann equatiofsolid line). The thin dashed
line gives the bulk value. The carrier density is&@m 3.
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3_-"1_'-\'|f-'|"'|"' 14— L L B

V,;=1000meV

2.5 :—POP only*, \ _

P/PBqu

: 0.4-...1..| 1 |...
ob v 0 20 40 60 80 100

0 20 40 60 80 100
well thickness (A)

Well Thickness (A )

FIG. 4. Power factor for PbTELOO] quantum well superlattices
FIG. 2. Power factoP for PbTe[100] quantum well superlat- with b=a as a function of well thickness for several values/gf
tices withVy=0o and the barrier width=0 scaled to correspond-
ing bulk value. Different treatments of the carrier scattering arevalue. To obtain this limit correctly, many 2D subbands had
used, as described in text. to be included, and the convergence of our results for quan-
tum wells asa— o to the bulk result demonstrates the accu-
The solid line in Fig. 2 show® including both POP and racy of the numerical treatment used here. For narrow wells,
DP scattering. The relatively weak increasePofwvith de- P for each material approaches a constant value, reflecting
creasing well thickness reflects the fact that DP scatteringhe dominance of the DP scatteringas:0 for infinite po-
increases with decreasing well thickness and becomes dontentials, as discussed above. The weak DP scattering in GaAs
nant in PbTe in strongly confined well geometriesaas0,  causes this limiting value oP to be much larger than for
as noted above. These results from the present inelastic tre@pTe.
ment are also dramatically different from those in the CRTA  We now consider superlattices with finite potential barri-
and will be seen to have implications for PbTe superlatticegrs. Figure 4 gives the results fdr00] PbTe quantum wells
with finite Vg, particularly for the dependence &fy. with b=a and increasing/,. The dependence cahere is
Figure 3 shows these same results Pomcluding both  similar to that already found in calculations using the
POP and DP scattering for PbT200] quantum wells with  CRTA.>® For wide wellsP lies below the bulk value. This
Vo=, and corresponding results for GaAs. Here, the semiarises because the charge carriers are constrained to flow
logarithmic plot extends over a wider range of well widths. preferentially through the quantum wells, resulting in a de-
For both cases, at large well width,approaches the bulk creased current per total unit area as compared to bulk and in
a decrease®. For decreasing,P increases, reaches a maxi-

10 ~ ‘ - . mum, and then decreases again due to tunneling. This behav-
——“\\ ] ior is a consequence of the increased effects of carrier tun-
: \ neling through barriers a&— 0. The enhancement &f over
8 \\ GaAs 1 the bulk value arises from the changes in the carrier density
I \ j of states upon electron confinement in relatively narrow
» \ wells.
E 61 ‘\ 1 An important difference between the present results and
% » \ the earlier results from the CRTA is that here the maximum
al ‘\ ] P as a function ofa is not much affected by/,. This point
\ is shown in Fig. 5, where the maxima in the curve$ofs a
\ are given as functions &fy. In the CRTA, these maxima of
5 PbTe [100] N ] P increase withV,, whereas in the full calculations they are
\ nearly independent of/,. Physically we find that for in-
T Buk T T T T T N7 creasingV, the increased scattering rates due to stronger
0 ! i ‘ ‘ J carrier confinement offset the density of states enhancement,
0.01 0.1 1 10 100 1000 resulting in a weak dependence Bfon V,. To see this
Well Thickness ( A ) increased scattering in more detail, Fig. 6 gives the calcu-

lated in-plane mobility as a function of well thickness for a
FIG. 3. Power factor® for PbTe[100] and GaAs quantum well  carrier density of 1cm 3. For V=200 meV, the effects
superlattices withVy=% andb=0 scaled to corresponding bulk of confinement are small, and the mobility remains near the
P's as a function of well width. bulk value. With increasiny the mobility decreases due to
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2 [ T 'V
CRTA,”
_ 15[ ]
3 - e <
& [ &
a [ Il o
[ e ] T
1[ ]
0.5 L : . — i
0.5 :
100 1000 100 1000
V0 (meV) Vo (meV)

¢ FIG."5. Maxl"?t? taken fr(:mP \{.saa;rvets f(i.r[ToﬂvaTe quanl- FIG. 7. Maxima taken fronP vs a curves for GaAs quantum
um well superiatlices as a function ol potential oftsgtior equa well superlattices as a function of potential offsgtfor equal well

)[Ne"t andt baréle(rj \,:\t”ddthﬁ hi:_a)-f SO“?h curve tls Iron: mt:_lastlg and barrier widthsl§{=a). Solid curve is from inelastic treatment
reaiment and dotted line IS from the constant relaxation UMe&, 4 yotted line is from the constant relaxation time approximation.
approximation.

the POP interaction leads to an increas® ifor V,—« and

_ _ ) a—0 as seen in Fig. 3, this does not occur in the more
the increased scattering rates produced by confinemenfggjistic region of parameter space considered in Fig. 7. Thus
Thus, forV,=1000meV, the mobility is closer to that for for PbTe and GaAs quantum well superlattices we conclude
V== for large well widths, but it approaches the bulk value that the dependence & on V, is relatively weak. We sug-
for narrow wells where carrier tunneling becomes importantgest that this behavior will be found to be typical of semi-

GaAs provides an example of a bulk material in which theconductor superlattices.

room temperature scattering rates from POP’s are larger PbTe[111] quantum well superlattices provide an ex-
compared to those of DP scattering by acoustic phononsimple of systems in which the degeneracy of the conduction
Figure 7 shows the maxima in the curvesPofis a function bands is lifted with increasing potential offset, leading to
of a plotted vsV, for GaAs quantum well superlattices. The interesting changes in the power factor. Figure 8 shBvas
solid line gives the results from the full calculation, and thea function ofa for [111] PbTe quantum well superlattices
dashed line gives the results for the CRTA. As was true fowith b=a and with three different barrier heights. For
PbTe(see Fig. 5, hereP is quite insensitive t&/,. Although ~ Weaker confinemeny/, =200 meV, the valley degeneracy is
not much lifted, causind® to lie closer to the bulk value.
With increasingV, the conduction band valley degeneracy is

1.2 . . T
Vo=200meV 1.2 ;
b=a
T -2 N~ 7 V,=200meV
\ 7 T AN o]
\ PR
08l \ V0=1000meV’ Pt ]
£ \ b=a .= . 0.8
=5 \ -7 :
3 o6/ -7 1 z ]
1 V0=oo @ 06 V0=1000meV e
i b=a < a b= -
04| 1 =7
. ’
0.4 M 7 e 3
~ / "
L - el NN / .
0.2 oal TR e SVpmes
B e T b=a B
O | I FEN |
0 20 40 60 80 100 0 | \ o |
Well Thickness (A ) 20 40 60 80 100

FIG. 6. Carrier mobility for PbT¢100] quantum wells scaled

to the bulk value as a function of well thickness for several

values ofVg.

well thickness ( A )

FIG. 8. P as a function ofa for [111] PbTe quantum well su-

perlattices withb=a and three different barrier heights.
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" v=500meV el

il Bulk
P/PBuik

0 20 40 60 80 100 0.5 L R
100 1000

wire thickness (A ) V_(meV)
0

FIG. 9. Power factor® vs wire widtha for [100] quantum wire

superlattices described in text with potential offsets and barrier FIG. 10. Maxima fromP vs a curves for[001] PbTe quantum
widths indicated. wire superlattices as functions of potential offsgtfor equal well

and barrier widths l§=a). Solid curve is from the inelastic

) ) ] ] ) ~ treatment and dashed line is from the constant relaxation time
increasingly lifted. This results in fewer valleys contributing approximation.

to conduction and in a corresponding reductiorPof

We now turn to quantum wire superlattices and ConSideE)ffsets. For modest potential offséty= 200 meVP remains

PbTe wire systems with two orientations. We find that quaN<|ose to the bulk value because of strong barrier penetration

tum wire superlattices have qualitatively different behaviors f the carrier wave function. With increasing confinement

. ) 0
in some respects than do guantum well superlattices. For tr‘lﬁiecreases due to the lifting of the valley degeneracy, as in the
case of PbTeg111] quantum well superlattices discussed

“[200]" quantum wire superlattices, the confinement direc-
tions are taken to bg001] and[010), and the transport di- above. However, this decrease is not as rapid with increasing
barrier height as it is in quantum well superlatti¢€sy. 8

rection is taken alon§100]. For “[111]” quantum wire su-

perlattices, the confinement directions ftd1] and[112],  for two reasons. First, the strong asymmetry in the bulk band
and the transport direction [410]. The valley degeneracy structure combined with the two confinement directions for
is lifted by confinement in th¢111] superlattices, and it is wires causes the lifting of the valley degeneracy with in-
not lifted in the[100] superlattices. The quantum wires are creasing confinement to be weaker than it is for wells. Sec-
taken to have square cross section and are arranged on a
square lattice. 2.
Figure 9 givesP for PbTe[100] quantum wire superlat- '
tices. The dependence &f on a is qualitatively similar to ]
that found for this system in the CRTA, as was the case .
above for the corresponding quantum well superlattices.
Once again, for finit&/y, P is smaller than the bulk value for
large wire widths, it reaches a maximum for decreasang
and then it decreases due to carrier tunneling. The depen-
dence oV, of the maxima inP as a function of for PbTe
guantum wire superlattices is shown in Fig. 10. In contrast to
the quantum well case shown in Fig. 5, thédeexhibit a
noticeable maximum aV,=500meV that lies above the
CRTA value for the corresponding, and is about 50% over
the bulk value. This difference is traced to the form of the

inelastic scattering in the one-dimensional geometry. For 0.5: o
large values oW, the increased scattering rates caBs®e 100 1000
drop. Figure 11 gives the corresponding results for GaAs v, (mev)

guantum wire superlattices. For this case, a weaker depen-

dence ofP onV, is observed as compared to the correspond-  FiG. 11. Maxima taken fronP vs a curves for GaAs quantum

ing case of PbTe because of the relatively stronger POP scakire superlattices as functions of potential offsgtfor equal well

tering. and barrier widths l§=a). Solid curve is from the inelastic
Figure 12 shows the power factor fdr11] quantum wire treatment and dashed line is from the constant relaxation time

superlattices as a function of wire size for different potentialapproximation.
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1.5 ——— ———— a multisubband inelastic Boltzmann equation for carrier
i transport. We have shown that these two features are needed
V =e for a quantitative treatment of thermoelectric transport in su-
V =200meV =0 perlattice systems. We find that a strong dependen&eanf
0 . .
] b=a orientation occurs for both PbTe quantum well _and quantum
; ~ ] wire superlattice systems. It results from the anisotropic mul-
N T =T = tivalley bulk band structure, which causes the effective
A e masses for each valley to depend on the choice of confine-
- e ment direction and lifts the valley degeneracy along all but
V,=1000meV 1 special directions. For PbTe quantum well superlattices, we
b=a find that the increased carrier scattering rates that occur with
V =co increasing confinement cause the power factor to remain near
b=a the bulk value for all barrier heights, a result that contrasts
] strongly with the large enhancements npredicted from
0 20 20 60 80 100 calculations employing the constant relaxation time approxi-
mation. For both PbTe and GaAs quantum wire superlattices,
wire thickness (A ) only modest increases iR are seen for a wide range of
realistic potential offsets. These results lead us to suggest
fhat the features presented here are to be expected for all
semiconductor superlattice systems. We suggest here that
significant enhancements ihcan be achieved only by elimi-
ondly, for a given barrier height the wire wave function Nating the parasitic effect of heat transport through the bar-
spreads more into the barrier region than is true for wells séier material, which might be achieved, for example, in free-
the approach to the limiting case 8§=, b=a is a weaker ~Standing wire systems.
function of V.

For quantum wire superlattices wiWy=x, b=a,P re- ACKNOWLEDGMENT
m_ains below the bulk\{alue for adl for the case of PbT&see This work was supported in part by the U.S. Office of
Fig. 9. For GaAs,P increases modestly and approaqhesNava| Research.

P/Ppu—~2 for a—0. We note that for the quantum wire

superlattices considered here the wire region is .dr[bethe APPENDIX

full volume of the system, and fo¥y=o° this barrier mate-

rial strongly reduce®. For corresponding well superlattices ~ Here we first outline the Ritz procedure for systems with
the well region ist of the system volume. Thus, the barrier isotropic band structure and a single subb&nd.In this
material has a more profound effect on thermoelectric transcase, the Boltzmann equation can be reduced to a simpler
port in wires than in wells. form than Eq.(13):

For quantum wire superlattices Wik}‘bzzoo andb=0 the
CRTA predicts a divergence iR(P~1/a“) for Vy—o and _ + _
a—0.% The results presented here show tﬁa‘emoains finite &7 Se)ni(e)=S"(e)(ethiwe) =S (e) Ti(e_ﬁw((’kl)
for all a because of the enhancement of carrier scattering in
this limit. Still, P for both PbTe and GaAs wire superlattices Here, S° is the sum of both the out-scattering and in-
with Vo= andb=0 is much higher than that for superlat- scattering contributions of all the elastic processes and the
tices with barrier material present, which suggests that “freeOut-scattering contributions of the inelastic terms, wigle
standing” quantum wire systems may give hiBrand high andS~ represent the in-scattering processes due to absorp-
figures of meriZT. Such quantum wire systems are currentlytion and emission, respectively. To begin the procedure, the
being investigated experimentally. energy variable is discretized with steps whose size is much

In summary, we have given a quantitative theoretical desmaller than the LO phonon energy. The valuerpft en-
scription of the power factor for thermoelectric transport inergy € is connected to a ladder of's ate* 1% wg, wherel is
superlattices and have made calculations for PbTe and Ga integer. On the zeroth iteraticB andS™ are set to zero,
quantum well and quantum wire superlattices. These calcugiving Ti(o)(e)zfilso(e). Subsequent iterative values are
lations include(i) 3D superlattice band structure usediin obtained in terms of previous values as

PP Bulk

0.5 }

FIG. 12. Power factor® for PbTe[111] quantum wire super-
lattices described in the text for potential offsets indicated, and wel
widths equal to barrier widthd=a.

&+ S.Se (e N e—hawg)+2,S,, ()M Y(e—tiwg)

(m) i

e (e (e

(A2)
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The Ss and 7s in Eq. (A2) are valid for arguments
=¢,(k"). The expressions for th8s are

SUe)=2 [She () +S, (]+SNEU(e)  (A3)
with
. 1—fo(e+fimg)
0+ 0 o)\ POP \,
Saa,(€)=(No+%i%)wow'\ﬂm,(k,k )

X O (e+ hwg— e (KL))AK,A 6, (A4)

and

SPR(€)= Yac 2 Mo (kz KO (e en (K;)AK,
n’ .k,
(A5)
Here,Mfmo,P(k,k’) andMEE,(kz,k;) are taken from Eq49)
and(12), respectively, with

2 1/2 2
€ (mxmy) ! EI

( mxmy) vz kBT
YpoP— m T o, T

'Yaczzﬂ_pVIZ %2 A
(A6)
In Eq. (Ad), K" = (K= ,ky- k) with k,. andk,. given by

2m 1/2
kX+:(ﬁ_2x) [eiﬁwo—en/(ké)]llzcosﬁ',

2m 1/2
— y N11/2 i ’
kyt—(—z) [exfiwo— e (K] ¥2sing’, (A7)
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and O is the Heaviside step functiomyk, and A@ are the
weighting factors for the quadrature over and 6. The in-
scattering processes due to POP absorption and emission are
related to Eq(A4) as

. o ke
S. . (=S (e) I:—.
X

(A8)

For quantum wire superlattices, a similar iterative procedure
is used. Now, the quadrature is over the 2D superlattice vari-
ablesky, andk; , which range from—=/d to m/d. The ex-
pressions for th&s become

. 1—fy(erxhwg) ,
S (€)= (Not 3+ 3) Yoor— 1oy (M (KkiKL)
1-fu(e)

+MPV kK ) IO (e hwo— enr (K] K))AKAK,,
(A9)

nfzc(e):')’ac E Mgz(k'k’)e(e_en’(k),”ké))

n’.kj.ky
X Ak, Ak,, (A10)
e’ m, EZ  mkgT
YPOF™ i h2 @0 YacT o2 2T T
(A11)

Here,MEnO,P(k,k’) andMEE,(kz,k;) are taken from Eqg26)

and (27) respectively, andk’=(=kg k; k;), with k;
=ky. andk,. =(2m, /4?2 [e+hwo— €n (K, k)] Y2
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