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Theory of thermoelectric power factor in quantum well and quantum wire superlattices
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Calculations are presented for thermoelectric transport in quantum well and quantum wire superlattices,
using~i!, the full superlattice electronic band structure in~ii ! a multisubband inelastic Boltzmann equation for
carrier-phonon scattering. The transport direction is taken to be in the quantum well planes and along quantum
wires. It is demonstrated that these two features are needed to give a quantitative treatment of the power factor
P in superlattice systems. Results are given for PbTe and for GaAs quantum well and quantum wire superlat-
tices, including the dependence ofP on growth direction and on potential offset. For both quantum well and
quantum wire superlattices, the dependence ofP on potential offsetV0 is found to be qualitatively weaker than
in previous work based on the constant relaxation time approximation for carrier scattering. These weaker
dependences onV0 are traced mainly to the enhancement of the electron-phonon scattering rates upon con-
finement. These results give a different picture of the effects of confinement onP suggesting, for example, that
increased confinement in superlattices does not lead to significantly higherP and that free-standing structures,
such as free-standing quantum wires, may be particularly attractive for thermoelectric applications.

DOI: 10.1103/PhysRevB.64.045324 PACS number~s!: 73.50.Bk, 73.50.Lw, 73.50.Dn
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I. INTRODUCTION

There has been renewed interest in recent years in un
standing the thermoelectric transport properties of lo
dimensional semiconductor systems such as quantum
and quantum wire superlattices. This has been motivate
part by the interest in finding materials and systems for
in cleaner, more efficient cooling and power generat
applications.1 The desirability of a material for use in suc
systems is characterized by the dimensionless ‘‘figure
merit’’ 2

ZT5
P

k
T. ~1!

Here,T is the temperature,P5sS2 is the power factor, with
s the electrical conductivity andS the Seebeck coefficient
andk is the thermal conductivityk5ke1kL , which consists
of two componentske and kL corresponding to the carrie
and lattice contributions, respectively. In the past few
cades, little improvement in the figure of merit of bulk m
terials has been realized. Room temperature values of
dimensionless figure of meritZT for the bulk semiconducto
Bi2Te3 are the highest known to date, withZT'1.

Interest in the potential of quantum well and quantu
wire superlattices for thermoelectric applications has b
motivated in part by the prospect that these systems m
have high power factors and figures of merit. The first c
culations of the power factor and the figure of meritZ in
quantum well and quantum wire systems3,4 focused on the
effect on these quantities of the change in the electronic d
sity of states resulting from the reduced dimensional
These calculations attracted considerable attention bec
of the prediction of dramatic enhancements inP andZ with
0163-1829/2001/64~4!/045324~10!/$20.00 64 0453
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decreasing well and wire dimension. The model system3,4

used in these calculations were taken to have infinite con
ing potentials~no barrier layers!, and the carrier scattering
was represented within a constant relaxation time appr
mation ~CRTA!. In later work, the effects of barrier layer
with finite potential offsets were included using a Kroni
Penny description of the electronic band structure but s
treating carrier scattering within the CRTA.5–7 In the result-
ing picture,P increased from its bulk value for decreasin
well and wire widths, reaching a maximum and then decre
ing due to tunneling through the barriers. In that work, t
maximum value ofP was found to increase substantial
with increasing potential barrier height.

Recent measurements on PbTe multiple quantum w
structures8,9 demonstrated that enhanced power factors co
be achieved, thus stimulating further experimental and th
retical research on the thermoelectric properties of quan
well and wire systems. These measurements were for i
vidual conducting layers, and not for the full thre
dimensional~3D! structure including the barrier layers. I
subsequent calculations for PbTe@111# quantum wells with
infinite potential offsets,10 we included the multivalley aniso
tropic PbTe band structure and a realistic treatment of car
scattering processes beyond the CRTA. In that work,
found that P decreasedbelow the bulk value for narrow
wells due mainly to the strong lifting of the fourfold valle
degeneracy in PbTe wells produced by confinement and
because of strongly enhanced scattering rates with decr
ing well size. Subsequent calculations ofP have been per-
formed for single PbTe quantum wells11 to address the ex
perimental results of Refs. 8 and 9. However, t
formulations in Refs. 10 and 11 cannot describe the po
factor for realistic superlattices with finite potential barri
©2001 The American Physical Society24-1
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heights, which are characterized by anisotropic and nonp
bolic band structure along the superlattice directions.

In the present paper, we give a quantitative treatmen
thermoelectric transport in quantum well and quantum w
superlattices. The transport direction is taken to be in
planes of quantum wells and along the quantum wires. F
superlattice band structure calculations are given for the e
tronic states and incorporated in a solution of the inela
3D Boltzmann equation. Detailed results are given for Ga
and PbTe quantum well and wire superlattice systems. Th
materials are chosen in part to examine the dependenceP
on systems with different band structures and different do
nant carrier scattering mechanisms. Qualitatively differ
features are obtained here which are broadly applicabl
semiconductor superlattice systems. In particular, the po
factor for both materials is found to depend only weakly
barrier height for quantum well and wire superlattices in co
trast to results obtained in the CRTA.5–7 This work also sug-
gests that free-standing quantum wire structures may
promising candidate systems for thermoelectric applicatio

In Sec. II, the theory for calculating the electrical condu
tivity and the Seebeck coefficient for in-plane thermoelec
transport in quantum well superlattices is presented. Sec
III presents the corresponding theory for thermoelec
transport along quantum wire superlattices. The results
the power factor in quantum well and quantum wire sup
lattices are given in Sec. IV.

II. THERMOELECTRIC TRANSPORT IN QUANTUM
WELL SUPERLATTICES

We consider thermoelectric transport in a quantum w
superlattice with well widtha, barrier widthb, periodd5a
1b, and potential barrier heightV0 . We take the growth
axis in thez direction. The state of the electron is specifi
by subband indexn and wave vectork5(ki ,kz), whereki

5(kx ,ky) is the in-plane component. The Boltzmann equ
tion for the superlattice for steady state electron transpor
the presence of electric fieldE and temperature gradient“T
is12

2
eE

\
•“kf n1

“ken

\
•“T

] f n

]T
5

] f n

]t U
c

, ~2!

] f n

]t U
c

5
V

8p3 (
n8

E dk8$Wn8n~k8,k! f n8~k8!@12 f n~k!#

2Wnn8~k,k8! f n~k!@12 f n8~k8!#%. ~3!

Here, f n(k,r ) is the distribution function for electrons i
superlattice state (n,k), Wnn8(k,k8) is the scattering rate
taking electrons from state (n,k) to state (n8,k8), anden(k)
is the electron energy. The collision operator] f n /]tuc ac-
counts for intra-and intersubband inelastic scattering into
out of the state (n,k).

We focus on thermoelectric transport in the plane of
quantum well layers, which is the direction of interest
most of the experimental and theoretical work to date. M
terials of interest for thermoelectric applications are typica
characterized by multiple ellipsoidal conduction band v
04532
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leys. Within the effective-mass approximation, the quant
well superlattice subband structure deriving from each b
valley can be described by a superlattice dispersion along
confinement direction, taken to be thez direction, and by an
in-plane parabolic but anisotropic subband dispersion. Th
for each valley,

en~k!5en~kz!1
\2

2 S kx
2

mx
1

ky
2

my
D . ~4!

Here, en(kz) is the superlattice dispersion for each valle
which is obtained, along with the superlattice Bloch fun
tions cnkz

(z), by numerical solution of the Schro¨dinger

equation for the Kronig-Penny potential with offsetV0 .
We calculate the contribution to the thermoelectric tra

port coefficients from the occupied subbands deriving fr
each valley and sum these contributions to obtain the
results. Intervalley scattering is neglected so that each va
is treated independently. For notational simplicity, the val
index is omitted in the expressions presented below.
each valley, we choose thex andy directions to be oriented
along the principal axes of the elliptic constant-energy s
faces. We will consider weak electric fieldsE and weak ther-
mal gradients“T oriented in the plane of the quantum well
These fields will not in general lie along the principal axes
the assumed elliptic energy surfaces. Thus, the currents
in general not be along the direction of the applied pertur
tions. The transport coefficients are, however, independen
the magnitudes ofE and “T for small values of these
quantities.12 We first evaluate the coefficients for the dire
tions of the principal axes and then obtain them for arbitr
directions by adding the contributions from the compone
of the field and temperature gradient in these principal a
directions.

Following Ref. 12, forE and“T along one of the prin-
cipal axes, taken to be thex direction, the distribution func-
tion for the nth superlattice subband can be expressed
terms of its deviationd f nk from the equilibrium~Fermi! dis-
tribution f 0 , f nk5 f 01d f nk , with

d f nk5S ] f 0

]e D \kx

mx
S eExt ln~k!1

1

T

dT

dx
t2n~k! D . ~5!

In quantum well systems, the scattering functionst1n(k) and
t2n(k) are anisotropic because of the superlattice band st
ture en(kz) along the growth direction, and because of a
underlying anisotropy of the bulk band structure. Substit
ing Eq. ~5! into the Boltzmann equation leads to two sets
coupled equations for the scattering functions:

Lc„t ln~k!…51, Lc„t2n~k!…5e2m, ~6!

Lc„$t in~k!%…5(
n8

E dk8Wnn8~k,k8!S 12 f 0n8~k8!

12 f 0n~k! D
3S t in~k!2

kx8

kx
t in8~k8! D . ~7!
4-2
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THEORY OF THERMOELECTRIC POWER FACTOR IN . . . PHYSICAL REVIEW B64 045324
These coupled equations are analogous to those obtaine
isotropic bulk materials.12,13 They are extended here to in
clude multiple superlattice subbands and anisotropy.

We consider here the scattering of electrons by~1! acous-
tic phonons via the deformation potential~DP! interaction,
and~2! polar optical phonons~POP’s! via the Fröhlich inter-
action. These are the dominant scattering mechanism
room temperature. We take the phonons to be unaffecte
the superlattice structure and the electrons to have mod
superlattice wave functions. In quantum wells and wires
scattering rates by optic phonons have been shown to
given to a good approximation by bulk plane waves for
phonons,14,15 and the superlattice periodicity has only sm
effects on the acoustic phonons. We take the optic pho
branch to be dispersionless and given by its zone ce
value \v0 , and the acoustic branch is taken to be line
with an averaged isotropic velocityv05(3C1112C12
14C44)/5.16 The electron-phonon scattering probabilities f
quantum well superlattices are

Wnn8
POP

~k,k8!5
2p

\
~N01 1

2 6 1
2 !CPOP

2 Mnn8
POP

~k,k8!d„en8~k8!

2en~k!6\v0…, ~8!

Mnn8
POP

~k,k8!5(
m

uFnkzn8k
z8
~Km!u2

Dkx
21Dky

21~Dkz1Km!2 ,

CPOP
2 5

2pe2

k* V
v0 . ~9!

Here, the1 ~2! sign is for emission~absorption!, Dki5ki8
2ki , i 5x,y,z, Km52pm/d is the reciprocal superlattic
vector, 1/k* 51/k`21/k0 , k0(k`) is the static ~high-
frequency! dielectric constant, andN051/@exp(\v0 /kBT)
21#. The superlattice overlap factor

Fnkzn8k
z8
~Km!5E

0

d

ei ~kz82kz2Km!zCn8k
z8

* ~z!Cnkz
~z!dz

~10!

is given in terms of the superlattice Bloch functio
cnkz

(z)5eikzzunkz
(z) with unkz

(z1d)5unkz
(z). These func-

tions can be expressed in closed form,17 which allows the
overlap factor to be expressed analytically. At room tempe
ture, the average electron energy is considerably larger
that of acoustic phonons involved in the deformation pot
tial scattering. Thus the scattering probability for this mec
nism is, to good approximation, elastic, and has the form

Wnn8
DP

~k,k8!5
2p

\
CDP

2 Mnn8
DP

~kz ,kz8!d„en8~k8!2en~k……,

~11!

Mnn8
DP

~kz ,kz8!5(
m

uFnkzn8k
z8
~Km!u2, CDP

2 5
E1

2kBT

2Vrv0
2 .

~12!
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Introducing the scattering rates Eqs.~8!–~12! into Eqs.~6!
and ~7! and integrating over the energy conservingd func-
tions yields the set of coupled ladder equations fort1n(k)
andt2n(k) and

j i5Sa
0~e!t ia~e!2(

a8
Saa8

1
~e!t ia8~e1\v0!

2(
a8

Saa8
2

~e!t ia8~e2\v0!, ~13!

wherea5(n,u,kz) with u5tan21(ky /kx) and j51 for i 51
ande2m for i 52. These equations are solved using an
tension of the Ritz iterative method.12 This method along
with the expressions for theS’s in Eq. ~13! is presented in the
Appendix.

For each valley, thex direction is taken along the sem
major axis of the energy ellipse. The contributions to t
electric and heat currents flowing in the superlattice fro
each valley are given by

Jex52e(
n
E dk

4p3

\kx

mx
d f nk , ~14!

JQx5(
n
E dk

4p3

\kx

mx
d f nk~e2m! ~15!

with d f nk given from Eq.~5!. These are related to the tran
port coefficients by

Jex5sEx2sS
dT

dX
, ~16!

JQx5sSTEx2ge

dT

dX
, ~17!

wheres and S are the electrical conductivity and Seebe
coefficient andge is the electrical component of the therm
conductivity at zero electric field. It is related to the electric
component of the thermal conductivity at zero current
ke5ge2sS2T. The contributions from each valley to th
transport coefficients for fields along this direction are

s5
e2kBT

mx

~mxmy!1/2

p\2d (
n

I 0n~m,T!, ~18!

sS5
2ekB

2T

mx

~mxmy!1/2

p\2d (
n

I 1n~m,T!, ~19!

ge5
kB

3T2

mx

~mxmy!1/2

p\2d (
n

I 2n~m,T!, ~20!

where

I 0n~m,T!5
1

2p E
2p

p

dhE
0

`

dj f 0

d

dj
@jx1n~j,h!#, ~21!
4-3
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I 1n~m,T!5
1

2p E
2p

p

dhE
0

`

dj f 0

d

dj
$j@j2zn~h!#x1n~j,h!%,

~22!

I 2n~m,T!5
1

2p E
2p

p

dhE
0

`

dj f 0

d

dj
$j@j2zn~h!#x2n~j,h!%,

~23!

and

x in~j,h!5
1

p E
0

2p

du cos2 u t in~j,h,u! ~24!

with h5kzd, j5@e2en(kz)#b, f 05 f 0@j,zn(kz)#, and
wherezn(kz)5@m2en(kz)#b is the scaled chemical poten
tial. The full transport coefficients are obtained by adding
contributions for all valleys and averaging over the dire
tions of the field and temperature gradient, as is describe
Sec. IV for PbTe systems. From these results the power
tor P5sS2 is obtained. Equations~18!–~20! reduce to those
in the CRTA,5,6 if we taket1n5t andt2n5(e2m)t, where
t is a constant relaxation time.

III. THERMOELECTRIC TRANSPORT IN QUANTUM
WIRE SUPERLATTICES

For quantum wire superlattices, the Boltzmann equat
can again be cast in the form of Eqs.~6! and ~7!. The wire
superlattice dispersion for each valley is

en~k!5en~ky ,kz!1
\2kx

2

2mx
. ~25!

Here,en(ky ,kz) is the quantum wire superlattice dispersio
which is obtained along with the corresponding Bloch fun
tions through solution of the Schro¨dinger equation for the 2D
periodic Kronig-Penny potential with offsetV0 . The lack of
separability of the Schro¨dinger equation precludes a close
form solution. Instead, we expand the wire superlatt
Bloch functionscnk'

(r)5eik'•runk'
(r) in a basis of prod-

ucts of quantum well superlattice Bloch states,unk'
(r)

5(n1n2
Cnk'

(n1 ,n2)un1ky
(y)un2kz

(z), where un1ky
(y) and

un2kz
(z) are the Bloch functions for the 1D periodic potent

already described in the previous section, and solve the
sulting matrix equation for thecnk'

.
The electron-phonon scattering probabilities for quant

wire superlattices have a form similar to that for quantu
well superlattices but have a 2D reciprocal lattice:

Mnn8
POP

~k,k8!5 (
m1 ,m2

uFnk'n8k'
~Km1

,Km2
!u2

Dkx
21~Dky1Km1

!21~Dkz1Km2
!2 ,

~26!

Mnn8
DP

~k' ,k'8 !5 (
m1 ,m2

uFnk'n8k'
~Km1

,Km2
!u2 ~27!

with the overlap factor
04532
e
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Fnk'n8k
'8
~K !5E

cell
ei ~k'8 2k'2K !•rCn8k

'8
* ~r!Cnk'

~r!dr.

~28!

The solution of the inelastic multisubband Boltzma
equation for quantum wire superlattices is cast in the form
Eq. ~13!, with a5(n,ky ,kz). The solution of this equation is
described further in the Appendix.

The contributions for each valley to the transport coe
cients for fields along thex direction are

s5
2e2

pmxd
2 S 2mxkBT

\2 D 1/2

(
n

I 0n~m,T!, ~29!

sS52
2ekB

pmxd
2 S 2mxkBT

\2 D 1/2

(
n

I 1n~m,T!, ~30!

ge5
2ekB

2T

pmxd
2 S 2mxkBT

\2 D 1/2

(
n

I 2n~m,T!, ~31!

where

I 0n~m,T!5
1

~2p!2 E
2p

p

dhE
2p

p

dfE
0

`

dj f 0

d

dj

3@j1/2t1n~j,h,f!#, ~32!

I 1n~m,T!5
1

~2p!2 E
2p

p

dhE
2p

p

dfE
0

`

dj f 0

d

dj

3$j1/2@j2zn~h,f!#t1n~j,h,f!%, ~33!

I 2n~m,T!5
1

~2p!2 E
2p

p

dhE
2p

p

dfE
0

`

dj f 0

d

dj

3$j1/2@j2zn~h,f!#t2n~j,h,f!% ~34!

with h5kyd, f5kzd, j5@e2en(ky ,kz)#b, f 0
5 f 0@j,zn(ky ,kz)#, and where zn(ky ,kz)5@m
2en(ky ,kz)#b is the scaled chemical potential. The fu
transport coefficients and the power factor for a field a
obtained as described at the end of the previous section

IV. RESULTS AND DISCUSSION

The present approach is generally applicable to all qu
tum well superlattice systems. In the following, we illustra
the present treatment of the thermoelectric transport pri
pally with results for PbTe quantum well and quantum w
superlattices, which are of current interest for thermoelec
applications. All results here are forT5300 K. PbTe is a
multivalley system with fourfold degeneracy and with co
siderable anisotropy in the conduction band in the bulk. T
material parameters for PbTe are taken to beml50.35, mt
50.034, and E1525 meV, \v0514 meV, k05414, k`

533, C1151.0723107 N/cm2, C1257.683105 N/cm2, and
C4451.3223106 N/cm2.18,19
4-4
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THEORY OF THERMOELECTRIC POWER FACTOR IN . . . PHYSICAL REVIEW B64 045324
In order to elucidate the underlying physics it will b
helpful to compare these results for PbTe with those from
system with a simpler band structure, GaAs. GaAs ha
single isotropic conduction band valley, and the material
rameters used for it in the calculations aremx5my5mz
50.0665, E157 meV, \v0536 meV, k0512.9, k`

510.92, andrv0
25875 meV/Å3.

In GaAs POP scattering dominates carrier scattering
room temperature. This is to be contrasted with PbTe
which POP scattering and DP scattering give compara
contributions to the room temperature carrier scattering.
see the physics, it will also be helpful to consider the limit
infinite potential barriers,V05`. In this limit, the superlat-
tice subbands become dispersionless, and the scatt
probabilities for wells and wires can be reduced to simp
forms.20,21

Figure 1 illustrates the importance of including a full i
elastic treatment of the carrier scattering in the Boltzma
equation. It gives calculations of the room temperature PO
limited carrier mobility in GaAs single quantum wells wit
V05` as a function of well thickness. The carrier dens
has been taken to be 1018cm23. The dashed line is from a
relaxation time approximation in which\v0 in the scattering
functions from Eq.~13! is neglected.22 The solid line is from
the solution of the full inelastic Boltzmann equation. It
evident from the figure that the relaxation time approxim
tion gives a significantly higher mobility than that obtain
from the inelastic calculation for wells with a
;100– 200 Å. This relaxation time approximation negle
the intra- and intersubband inelastic scattering, which red
the mobility. This in turn will give lower thermoelectric
power factors.

The decrease in mobility in both curves in Fig. 1 for d
creasinga below 150Å arises from the increase in the sc

FIG. 1. Carrier mobility due to polar optical phonon scatteri
for GaAs quantum wells withV05` as a function of well width in
a relaxation time approximation~dashed line! and from the inelastic
solution of the Boltzmann equation~solid line!. The thin dashed
line gives the bulk value. The carrier density is 1018 cm23.
04532
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-
-

tering rates with decreasing widths. For large well width
the contributions from many subbands converge, and
bulk value~thin dashed line! is recovered. The lower mobili-
ties obtained from the inelastic treatment for large w
widths are in agreement with the measured bulk mobilities
GaAs,23 and point to the importance of an inelastic treatme
to accurately describe carrier transport in lower-dimensio
systems.

PbTe is a good room temperature thermoelectric mate
in bulk with a ZT;0.4. Its thermoelectric properties hav
also been studied in PbTe/PbEuTe quantum well system8,9

and enhanced power factors were observed in them. B
PbTe has four highly anisotropic ellipsoidal valleys along t
@111# crystallographic directions. Here, we consider Pb
quantum well superlattices with growth axes along@111# and
@100# directions. For the@111# direction, the confinemen
lifts the fourfold valley degeneracy resolving one set of mi
bands from the longitudinal valley lying below anoth
threefold degenerate set of subbands from the oblique
leys. In the@001# orientation, the masses for all four valley
along the confinement direction are the same. Superlatt
in this orientation retain the fourfold valley degeneracy
the bulk.

For the @111# orientation, the in-plane subband structu
for the longitudinal valley is isotropic and the contribution
transport from this valley is obtained by setting in the abo
equationsmx5my5mt50.034,mz5ml50.35. For each of
the three oblique valleys, the contribution to the conductiv
has the form1

2 (sx1sy), wheresx is given by Eq.~18! with
mx50.034, my50.172, mz50.038, while sy is obtained
with mx50.172,my50.034,mz50.038.24 For the@001# ori-
entation, the confinement mass ismz50.049 for all four val-
leys, and the contribution to the conductivity for each vall
is again 1

2 (sx1sy) with mx50.085 andmy50.034 for sx
and mx50.034 andmy50.085 for sy . Analogous evalua-
tions are made forsS andge from Eqs.~19! and~20!. From
these results the total transport coefficients and the po
factor P5sS2 are obtained by summing over all valleys.

P is always a function of carrier density, and in all of th
following we evaluateP at the densities for whichP is a
maximum. In Fig. 2,P is shown for@100# PbTe quantum
well superlattices withV05` andb50 using several treat
ments of the carrier scattering.P is scaled to the bulk value
for the same treatment of carrier scattering. Previous ca
lations within the CRTA for similar systems with stron
confinement3,4 have suggested thatP should increase mono
tonically with decreasing well and wire widths, attaining va
ues well above the bulk value. This behavior is given by
dash-dotted line in Fig. 2. The dotted line givesP with car-
rier scattering by only optic phonons. The dashed cu
showsP with only scattering of carriers by acoustic phonon
which is independent of well width. To see whyP is inde-
pendent of a in this case, we note that in the high
temperature approximation to DP scattering,12 which is valid
for PbTe at room temperature, the carrier relaxation time
this fully confined case,t, is inversely proportional to the
density of electronic states per unit volume,D, which itself
varies as 1/a. Sinces;Dt, it becomes independent ofa for
acoustic phonon scattering, and thusP is independent ofa.
4-5
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The solid line in Fig. 2 showsP including both POP and
DP scattering. The relatively weak increase ofP with de-
creasing well thickness reflects the fact that DP scatte
increases with decreasing well thickness and becomes d
nant in PbTe in strongly confined well geometries asa→0,
as noted above. These results from the present inelastic t
ment are also dramatically different from those in the CR
and will be seen to have implications for PbTe superlatti
with finite V0 , particularly for the dependence onV0 .

Figure 3 shows these same results forP including both
POP and DP scattering for PbTe@100# quantum wells with
V05`, and corresponding results for GaAs. Here, the se
logarithmic plot extends over a wider range of well width
For both cases, at large well widths,P approaches the bulk

FIG. 2. Power factorP for PbTe@100# quantum well superlat-
tices withV05` and the barrier widthb50 scaled to correspond
ing bulk value. Different treatments of the carrier scattering
used, as described in text.

FIG. 3. Power factorsP for PbTe@100# and GaAs quantum wel
superlattices withV05` and b50 scaled to corresponding bul
P’s as a function of well width.
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value. To obtain this limit correctly, many 2D subbands h
to be included, and the convergence of our results for qu
tum wells asa→` to the bulk result demonstrates the acc
racy of the numerical treatment used here. For narrow we
P for each material approaches a constant value, reflec
the dominance of the DP scattering asa→0 for infinite po-
tentials, as discussed above. The weak DP scattering in G
causes this limiting value ofP to be much larger than fo
PbTe.

We now consider superlattices with finite potential bar
ers. Figure 4 gives the results for@100# PbTe quantum wells
with b5a and increasingV0 . The dependence ona here is
similar to that already found in calculations using t
CRTA.5,6 For wide wellsP lies below the bulk value. This
arises because the charge carriers are constrained to
preferentially through the quantum wells, resulting in a d
creased current per total unit area as compared to bulk an
a decreasedP. For decreasinga,P increases, reaches a max
mum, and then decreases again due to tunneling. This be
ior is a consequence of the increased effects of carrier
neling through barriers asa→0. The enhancement ofP over
the bulk value arises from the changes in the carrier den
of states upon electron confinement in relatively narr
wells.

An important difference between the present results
the earlier results from the CRTA is that here the maxim
P as a function ofa is not much affected byV0 . This point
is shown in Fig. 5, where the maxima in the curves ofP vs a
are given as functions ofV0 . In the CRTA, these maxima o
P increase withV0, whereas in the full calculations they ar
nearly independent ofV0. Physically we find that for in-
creasingV0 the increased scattering rates due to stron
carrier confinement offset the density of states enhancem
resulting in a weak dependence ofP on V0 . To see this
increased scattering in more detail, Fig. 6 gives the ca
lated in-plane mobility as a function of well thickness for
carrier density of 1018cm23. For V05200 meV, the effects
of confinement are small, and the mobility remains near
bulk value. With increasingV0 the mobility decreases due t

e

FIG. 4. Power factor for PbTe@100# quantum well superlattices
with b5a as a function of well thickness for several values ofV0 .
4-6
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the increased scattering rates produced by confinem
Thus, for V051000 meV, the mobility is closer to that fo
V05` for large well widths, but it approaches the bulk val
for narrow wells where carrier tunneling becomes importa

GaAs provides an example of a bulk material in which t
room temperature scattering rates from POP’s are la
compared to those of DP scattering by acoustic phono
Figure 7 shows the maxima in the curves ofP as a function
of a plotted vsV0 for GaAs quantum well superlattices. Th
solid line gives the results from the full calculation, and t
dashed line gives the results for the CRTA. As was true
PbTe~see Fig. 5!, hereP is quite insensitive toV0 . Although

FIG. 5. Maxima taken fromP vs a curves for@100# PbTe quan-
tum well superlattices as a function of potential offsetV0 for equal
well and barrier widths (b5a). Solid curve is from inelastic
treatment and dotted line is from the constant relaxation t
approximation.

FIG. 6. Carrier mobility for PbTe@100# quantum wells scaled
to the bulk value as a function of well thickness for seve
values ofV0 .
04532
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the POP interaction leads to an increase inP for V0→` and
a→0 as seen in Fig. 3, this does not occur in the m
realistic region of parameter space considered in Fig. 7. T
for PbTe and GaAs quantum well superlattices we concl
that the dependence ofP on V0 is relatively weak. We sug-
gest that this behavior will be found to be typical of sem
conductor superlattices.

PbTe @111# quantum well superlattices provide an e
ample of systems in which the degeneracy of the conduc
bands is lifted with increasing potential offset, leading
interesting changes in the power factor. Figure 8 showsP as
a function of a for @111# PbTe quantum well superlattice
with b5a and with three different barrier heights. Fo
weaker confinement,V05200 meV, the valley degeneracy
not much lifted, causingP to lie closer to the bulk value
With increasingV0 the conduction band valley degeneracy

e

l

FIG. 7. Maxima taken fromP vs a curves for GaAs quantum
well superlattices as a function of potential offsetV0 for equal well
and barrier widths (b5a). Solid curve is from inelastic treatmen
and dotted line is from the constant relaxation time approximati

FIG. 8. P as a function ofa for @111# PbTe quantum well su-
perlattices withb5a and three different barrier heights.
4-7
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increasingly lifted. This results in fewer valleys contributin
to conduction and in a corresponding reduction ofP.

We now turn to quantum wire superlattices and consi
PbTe wire systems with two orientations. We find that qu
tum wire superlattices have qualitatively different behavi
in some respects than do quantum well superlattices. Fo
‘‘ @100#’’ quantum wire superlattices, the confinement dire
tions are taken to be@001# and @010#, and the transport di-
rection is taken along@100#. For ‘‘@111#’’ quantum wire su-
perlattices, the confinement directions are@111# and @112̄#,
and the transport direction is@11̄0#. The valley degeneracy
is lifted by confinement in the@111# superlattices, and it is
not lifted in the@100# superlattices. The quantum wires a
taken to have square cross section and are arranged
square lattice.

Figure 9 givesP for PbTe@100# quantum wire superlat
tices. The dependence ofP on a is qualitatively similar to
that found for this system in the CRTA, as was the ca
above for the corresponding quantum well superlattic
Once again, for finiteV0 ,P is smaller than the bulk value fo
large wire widths, it reaches a maximum for decreasinga,
and then it decreases due to carrier tunneling. The de
dence onV0 of the maxima inP as a function ofa for PbTe
quantum wire superlattices is shown in Fig. 10. In contras
the quantum well case shown in Fig. 5, theseP exhibit a
noticeable maximum atV05500 meV that lies above th
CRTA value for the correspondingV0 and is about 50% ove
the bulk value. This difference is traced to the form of t
inelastic scattering in the one-dimensional geometry.
large values ofV0 , the increased scattering rates causeP to
drop. Figure 11 gives the corresponding results for Ga
quantum wire superlattices. For this case, a weaker de
dence ofP on V0 is observed as compared to the correspo
ing case of PbTe because of the relatively stronger POP s
tering.

Figure 12 shows the power factor for@111# quantum wire
superlattices as a function of wire size for different poten

FIG. 9. Power factorsP vs wire widtha for @100# quantum wire
superlattices described in text with potential offsets and bar
widths indicated.
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offsets. For modest potential offset,V05200 meV,P remains
close to the bulk value because of strong barrier penetra
of the carrier wave function. With increasing confinementP
decreases due to the lifting of the valley degeneracy, as in
case of PbTe@111# quantum well superlattices discusse
above. However, this decrease is not as rapid with increa
barrier height as it is in quantum well superlattices~Fig. 8!
for two reasons. First, the strong asymmetry in the bulk ba
structure combined with the two confinement directions
wires causes the lifting of the valley degeneracy with
creasing confinement to be weaker than it is for wells. S

r FIG. 10. Maxima fromP vs a curves for@001# PbTe quantum
wire superlattices as functions of potential offsetV0 for equal well
and barrier widths (b5a). Solid curve is from the inelastic
treatment and dashed line is from the constant relaxation t
approximation.

FIG. 11. Maxima taken fromP vs a curves for GaAs quantum
wire superlattices as functions of potential offsetV0 for equal well
and barrier widths (b5a). Solid curve is from the inelastic
treatment and dashed line is from the constant relaxation t
approximation.
4-8
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THEORY OF THERMOELECTRIC POWER FACTOR IN . . . PHYSICAL REVIEW B64 045324
ondly, for a given barrier height the wire wave functio
spreads more into the barrier region than is true for wells
the approach to the limiting case ofV05`, b5a is a weaker
function of V0 .

For quantum wire superlattices withV05`, b5a,P re-
mains below the bulk value for alla for the case of PbTe~see
Fig. 9!. For GaAs,P increases modestly and approach
P/Pbulk;2 for a→0. We note that for the quantum wir
superlattices considered here the wire region is only1

4 of the
full volume of the system, and forV05` this barrier mate-
rial strongly reducesP. For corresponding well superlattice
the well region is1

2 of the system volume. Thus, the barri
material has a more profound effect on thermoelectric tra
port in wires than in wells.

For quantum wire superlattices withV05` andb50 the
CRTA predicts a divergence inP(P;1/a2) for V0→` and
a→0.4 The results presented here show thatP remains finite
for all a because of the enhancement of carrier scatterin
this limit. Still, P for both PbTe and GaAs wire superlattic
with V05` andb50 is much higher than that for superla
tices with barrier material present, which suggests that ‘‘fr
standing’’ quantum wire systems may give highP and high
figures of meritZT. Such quantum wire systems are curren
being investigated experimentally.

In summary, we have given a quantitative theoretical
scription of the power factor for thermoelectric transport
superlattices and have made calculations for PbTe and G
quantum well and quantum wire superlattices. These ca
lations include~i! 3D superlattice band structure used in~ii !

FIG. 12. Power factorsP for PbTe@111# quantum wire super-
lattices described in the text for potential offsets indicated, and w
widths equal to barrier widths,b5a.
04532
o

s

s-

in

-

-

As
u-

a multisubband inelastic Boltzmann equation for carr
transport. We have shown that these two features are ne
for a quantitative treatment of thermoelectric transport in
perlattice systems. We find that a strong dependence ofP on
orientation occurs for both PbTe quantum well and quant
wire superlattice systems. It results from the anisotropic m
tivalley bulk band structure, which causes the effect
masses for each valley to depend on the choice of confi
ment direction and lifts the valley degeneracy along all b
special directions. For PbTe quantum well superlattices,
find that the increased carrier scattering rates that occur
increasing confinement cause the power factor to remain
the bulk value for all barrier heights, a result that contra
strongly with the large enhancements inP predicted from
calculations employing the constant relaxation time appro
mation. For both PbTe and GaAs quantum wire superlattic
only modest increases inP are seen for a wide range o
realistic potential offsets. These results lead us to sug
that the features presented here are to be expected fo
semiconductor superlattice systems. We suggest here
significant enhancements inP can be achieved only by elimi
nating the parasitic effect of heat transport through the b
rier material, which might be achieved, for example, in fre
standing wire systems.
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APPENDIX

Here we first outline the Ritz procedure for systems w
isotropic band structure and a single subband.12,13 In this
case, the Boltzmann equation can be reduced to a sim
form than Eq.~13!:

j i5S0~e!t i~e!2S1~e!t i~e1\v0!2S2~e!t i~e2\v0!.
~A1!

Here, S0 is the sum of both the out-scattering and i
scattering contributions of all the elastic processes and
out-scattering contributions of the inelastic terms, whileS1

and S2 represent the in-scattering processes due to abs
tion and emission, respectively. To begin the procedure,
energy variable is discretized with steps whose size is m
smaller than the LO phonon energy. The value oft i at en-
ergye is connected to a ladder oft i ’s at e6 l\v0 , wherel is
an integer. On the zeroth iteration,S1 andS2 are set to zero,
giving t i

(0)(e)5j i /S0(e). Subsequent iterative values a
obtained in terms of previous values as

ll
t ia
~m!~e !5

j i1(a8Saa8
1

~e!t ia8
~m21!

~e2\v0!1(a8Saa8
2

~e!t ia8
~m21!

~e2\v0!

Sa
0~e!

. ~A2!
4-9
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The S’s and t’s in Eq. ~A2! are valid for arguments
>en8(k8). The expressions for theS’s are

Sa
0~e!5(

a8
@Saa8

01
~e!1Saa8

02
~e!#1Snkz

0,ac~e! ~A3!

with

Saa8
06

~e!5~N01 1
2 6 1

2 !gPOP

12 f 0~e6\v0!

12 f 0~e!
Mnn8

POP
~k,k8!

3U„e6\v02en8~kz8!…DkzDu, ~A4!

and

Snkz

0,ac~e!5gac (
n8,kz8

Mnn8
DP

~kz ,kz8!U„e2en8~kz8!…Dkz .

~A5!

Here,Mnn8
POP(k,k8) andMnn8

DP (kz ,kz8) are taken from Eqs.~9!
and ~12!, respectively, with

gPOP5
e2

2pk*
~mxmy!1/2

\2 v0, gac5
EI

2

2prn l
2

~mxmy!1/2

\2

kBT

\
.

~A6!

In Eq. ~A4!, k85(kx6 ,ky6 ,kz8) with kx6 andky6 given by

kx65S 2mx

\2 D 1/2

@e6\v02en8~kz8!#1/2cosu8,

ky65S 2my

\2 D 1/2

@e6\v02en8~kz8!#1/2sinu8, ~A7!
te

y

us

04532
and U is the Heaviside step function;Dkz and Du are the
weighting factors for the quadrature overkz and u. The in-
scattering processes due to POP absorption and emissio
related to Eq.~A4! as

Saa8
6

~e!5Saa8
06

~e!
kx6

kx
. ~A8!

For quantum wire superlattices, a similar iterative proced
is used. Now, the quadrature is over the 2D superlattice v
ablesky8 andkz8 , which range from2p/d to p/d. The ex-
pressions for theS’s become

Saa8
06

~e!5~N01 1
2 6 1

2 !gPOP

12 f 0~e6\v0!

12 f 0~e!
@Mnn8

POP
~k,k18 !

1Mnn8
POP

~k,k18 !#U„e6\v02en8~ky8 ,kz8!…DkyDkz ,

~A9!

Snkz

0,ac~e!5gac (
n8,ky8,kz8

Mnn8
DP

~k,k8!U„e2en8~ky8 ,kz8!…

3Dky ,Dkz , ~A10!

gPOP5
e2

2pk*
mx

\2 v0 , gac5
E1

2

2p2rv l
2

mx

\2

kBT

\
.

~A11!

Here,Mnn8
POP(k,k8) andMnn8

DP (kz ,kz8) are taken from Eqs.~26!

and ~27! respectively, andk68 5(6kx8 ,ky8 ,kz8), with kx8
5kx6 andkx65(2mx /\2)1/2 @e6\v02en8(ky8 ,kz8)]

1/2.
nd
I,
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