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We present a microscopic theory of the coherent third-orgéf)) optical response of semiconductor
qguantum well microcavities, specialized to the four-wave-mixing configuration in the spectral vicinity of the
lowest exciton frequency. The theory is that of a quantum-mechanical many-electron system dipole coupled to
a classical radiation field. The many-electron dynamics is treated within the dynamics-controlled-truncation
formalism restricted to the stexciton subspace. Within this limitation, all Coulomb correlation effects are
included, resulting in an effective theory @firtual) exciton-polariton scattering. Good quantitative agreement
of the theory is obtained in comparison to the experiments reported by GonekatiPhys. Rev. Lett79,

1341 (1997. This comparison reveals the signatures of both the bound biexciton and the exciton-exciton
scattering continuum correlations. Furthermore, a proper calculation of the scattering correlations is shown to
be important: each of two common approximations, the Markov and the second Born, results in clear discrep-
ancies from the data.
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[. INTRODUCTION response of a quantum well microcavity around the heavy-

Semiconductor microcavities are the focus of many curhole exciton frequency. With the electron and hole masses as
rent research efforts. In the linear optical regime they exhibitvell as the background dielectric constant in the quantum
interesting similarities and differences to empty and atomiavell as basic input, it provides a detailed quantitative ac-
microcavities(see, e.g., Ref.)1such as normal mode split- count of the effects of Pauli blocking, exciton scattering,
ting (see, e.g., Ref. 2, and for a recent review see Ref. 3 andound coherent biexciton formation, and the cavity reso-
references thereinand cavity-polariton effects and disorder nance.
effects (see, e.g., Ref. 4—11Furthermore they are exten-  While some investigations of microcavities are based on a
sively used in applications such as vertical-cavity surfacefull quantum-mechanical formulatiofincluding a quantized
emitting lasergsee, e.g., Ref. 12 light field), we adopt the semiclassical approach that has

Besides their interesting linear optical properties, semibeen used in most work in semiconductor optics: the radia-
conductor microcavities have been found to yield insight intction field is treated as classical while the charge carriers in-
many nonlinear optical effects taking place in the semiconside the quantum well are treated as a quantum many-body
ductor quantum welf). Examples of such investigations in- (fermion) system. The quantum part of the problem is for-
clude the nonlinear behavior of normal-mode coupfinge ~ mulated in the dynamics-controlled truncatiofDCT)
observation of Rabi oscillations in microcavittésind non-  approach? which has driven much recent progress in the
linear exciton correlation, biexcitonic, and polariton- microscopic understanding of weakly nonlinear response of
scattering effects?24 semiconductord3—4?

Of course, semiconductors and semiconductor quantum In this paper we focus on the frequency regime around the
wells exhibit challenging and interesting nonlinear opticalheavy-hole exciton that allows us to restrict th€) DCT
effects even without being embedded in a microcaige, equations to the gexciton subspace. While it is feasible
e.g., Refs. 25-29 but in the strong-coupling regimé.e.,  with present-day computational resources to solve the full
near-zero detuning between the exciton and the cavity res®CT equations with Maxwell's equations self-consistently,
nance in a highQ cavity), the cavity changes strongly the the tremendous simplification provided by the ttuncation
linear and therefore also the nonlinear response of a quantusnables us to study features of exciton/polariton scattering in
well. Furthermore, the new parametric degrees of freedontwo dimensions in great detail, and to analyze the contribu-
e.g. detunings and finesse, introduced by the coupling to théons of various effects in a much more transparent way.
cavity may refine our understanding of the physical nature of Our theory agrees quantitatively with the recently
the quantum well’'s nonlinear response. published four-wave-mixing data by Gonokami and co-

The purpose of this paper is to carry out a nonlinear opworkers'**® The detailed analysis given below reveals the
tical response theory for semiconductor microcavities that isignatures of both the bound biexciton and the exciton-
based on the fermionic electron-hole Hamiltonian, and thagxciton scatteringcontinuuny correlations. Furthermore, we
can be compared to experimental signals of microcavitieswill show that the full calculation of the scattering correla-
Specifically, we present a microscopic theory for thé)  tions is important: each of two common approximations, the

0163-1829/2001/64)/04531615)/$20.00 64 045316-1 ©2001 The American Physical Society



N. H. KWONG et al. PHYSICAL REVIEW B 64 045316

SOW and the polarization density are then parallel to the QW’s
Pump plane, and they are assumed to be translationally invariant
over this plane. This last assumption is valid if the radius of
Probe the cavity is at least several times larger than the wavelength
FWM of the light (see, e.g., Ref. 45In each layer of the micro-

DBR DBR cavity, the electric field satisfies the following wave equation
in frequency space,
FIG. 1. Schematic drawing of the quantum-well microcavity.
The reflected FWM signal is opposite in direction to the probe 2 g2

2
w
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5 E(Z,a))=—477w—2P(Z,w), (2.1
C

Markov and the second Born, results in clear discrepancies
from the data. From general considerations in scatteringvhere thez axis is along the direction of the incident wave
theory, the second Born approximation is expected to fail inFig. 1). The refractive indesxn is taken to be a constant in
two dimensions, but it appears that a signal of its failure hagach layer and over the frequency range we are interested in
not been experimentally identified in semiconductor nonlin-here. The resonant polarization densRyis zero in the
ear optics before. DBR’s and the spacers. In the QW, it is calculated from the

In Sec. Il we outline the basic theoretical approach andnicroscopic theory described in the next section. Equation
derive the expression for thg®) susceptibility of a quantum (2.1) is supplemented by the conditions tlEaandJE/ 9z are
well microcavity. In Sec. Il we specialize to the four-wave- continuous across each interface between two layers. Since
mixing (FWM) configuration and compare the theoretical re-only one subband is excited, tlzedependence oP can be
sults to the experimental data. We will discuss the relativeexpressed by the band’'s confinement wave functén)
contributions of various many-body effects. Some of the asRef. 44:
sumptions and approximations made in our theory will also
be discussed and directions for future improvements and ex- P(z,w)=|&(2)|?Pp(w), (2.2
tensions indicated. In Sec. IV we summarize the main re-
sults. whereP,p(w) is the in-plane polarization densityyp(w) is

in general a functional of the average field inside the QW:

Il. MICROSCOPIC x'® THEORY OF A QUANTUM WELL  Eq(w)=/dZ£(2)|*E(z,©) and may be expanded, within
MICROCAVITY the rotating wave approximation, as follows:

In this section we derive the expression for i€’ sus- _r.oa 3 * 5
ceptibility of a quantum well microcavity. In Sec. Il A, we Pao(w) =[XVEQ](w) +[XPEqEQES] (@) + O(Ey).
define the model for the microcavity and develop the weak- (2.3
field perturbation theory for its first and third order responses 1) 3) ) , .
in terms of the quantum well's susceptibilities and the transWNerex ™ and y** are the linear and third-order suscepti-
fer matrices of the distributed Bragg reflectors. In Sec. Il B,Pilities of the two-dimensional2D) model of the QW, re-
we derive the quantum well'g® susceptibility within the ~ SPectively, and we have used the notation
DCT (Ref. 32 framework.

WE T (w)= (1) .

A. Semiclassical treatment of a quantum well microcavity X EQ]'(w) 2 X (w)EQJ(w)

A schematic diagram of our model for the microcavity is
shown in Fig. 1. A quantum wellQW), flanked by spacer 1
layers, is embedded between a pair of distributed Bragg rebx®EqEQES]i(0)= —— > J doidwrdwzd(w+w;,
flectors (DBR). The semiclassical approach to light-matter (2m)" K
coupling in semiconductor heterostructures has been ex-
plained in many works. In the dipole approximation, light
propagation through the system is governed by Maxwell's XEQk(wz)E6|(w3) (2.9
equations with the induced polarization density as sources.

We assume that the polarization density can be divided intavith i,j,k,| being the spatial vector/tensor component indi-
a background dielectric part, which is local and linear in theces. Substituting the expressiofs2) and (2.3 for P(z,w)
electric field, and a resonant part which is in general nonlinin Eq. (2.1), we obtain a nonlinear integro-differential equa-
ear(see, e.g., Ref. 43The background dielectric response is tion for the electric field inside the QW. If the incident field
then expressed as a refractive index in the usual way. Wis weak, and the dephasing times are not too long, the field
will refer to the resonant part as the polarization density. inside the QW may be expanded perturbatively in the inci-

For simplicity, we develop the formalism only for the dent field (or its peak amplitude E(z,0)=E®(z,0)
case where the propagation direction is normal to the plane- E®)(z,w)+ - - - for zinside the QW. Then, expanding Eq.
of the QW and only the first subbands of the conduction and2.1) and collecting terms of the same order, we obtain a
heavy-hole bands are resonantly excité@he electric field sequence of equations, the first two of which are

—wz— w)Xi(jsk)I (01,07,03) Eqj(wy)
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2.
@9 Xae (k") ag(k)
w2 (92 w2
ni— + —|E®)(z,0) = — 47— |&2) A xVES | (0) +2 al(k+aq)al, (k'—q)an (k) an(k)
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G EMLEO)E@)*
FITEE R (@), -3 @lk+qal(k' - q)ay(k)aqk)
eh
(2.6
wheren, is the background refractive index of the QW ma- +al(k+g)al(k’—q)ask )an(k))
terial. The iterative method of solution of the above equa-
tions, with the QW susceptibilitieg™ and y(®) as material
input, and the transfer matrices relating the electric field out- " + +
side the cavity to that inside the QW, are given in Appendix Hfiemzezhk [den- E(Hag(k)an(—k)
A. The relevant result is that the third-order reflectﬁﬂ)
and transmitted&(®) fields outside the cavity are related to +dper E(t)an(—k)ag(k)1,

the incident field £o) as where mg(m;) is the electron(hole) mass,E, is the band

gap,d.p,=gc{€|r|v) is the transition dipole matrix element,
V(q)=27mq% ep|q|, ge is the magnitude of the electron’s
charge,e, is the background dielectric constant of the QW
material, andA is the area of the normalization box. The
characteristic length and energy scales of this system are,
respectively, the exciton Bohr radiug=%2¢,/q2m,, m,

ER(z/2y,0)=C (o) [xPESEFES* 1(0), (2.7)

EQ(0)=CY(w)Eq(z;, o), (2.9

whereC,,C,, andC™® are the cavity enhancement factors
given in Appendix A(compare Ref. 46 andz, and z, are . .
the positions of the cavity’s end points on the Igdir) and being the electrzon—hc;Ie reduced mass, arjd ,the 2D exciton
right (substratgsides, respectively. For the applications con-RYdberge,=24%/m;ag. The subscripte,h,e’,h represent

sidered herey is dominated by one excitofheavy-hole all quantum numbers other than the momentum of the single
resonance. The microscopic theory fgt®) in this energy particle or hole orbitals in the respective bands. As can be

range, accounting for the interactions among the excitons, iS¢€": Only the part of the Coulomb interaction that does not
treated in the next section. cause an interband transition is retained in the model. The

remainder, which is responsible for Auger transitions and
longitudinal-transverse splitting of the exciton modes, is not
important here. As mentioned above, this approximation
makes the tremendous simplification of the many-body prob-
We work within the DCT schem® which is a perturba- lem in the DCT formalism possible. The ground state of the
tive (in the applied fielgl density-matrix formalism designed system is the electron-hole vacuum, which is assumed to be
to efficiently treat Coulomb correlations among carriers instable against electron-hole creation by virtue of a large
coherent optical processes. Under the assumptiongijiae ~ enoughk, .
initial state is the ground state, afit) the Coulomb interac- Within the)((3) regime, DCT expresses the carrier dynam-
tion does not induce interband transitions, DCT gives &cs by a coupled pair of equations for the interband polariza-
recipe to derive in principle exact, closed equations of motion and the two-electron—two-holbiexcitonig correlation.
tion for all contributing correlation functions up to any given We follow here Ref. 29see also Refs. 35 and 48s far as
order in the applied field. Although an approximate micro-the expansion of these equations in the exciton eigenfunction
scopic treatment of phonon dephasing is pos$ibféjtis a  basis is concerned. As explained above, we restrict the equa-
much more elaborate undertaking that is still being develtions to the 5 heavy-hole exciton subspace. We denote by
oped. Instead, we will adopt the common practice of lumpingo-(t) the interband polarization arising from the optical
dephasings from all sources other than carrier-carrier scattetransition from the ground state to this subspace:
ing into a set of phenomenological constants.
Our model for the electronic dynamics around the lowest
absorption band edge in the QW consists of two parabolic
bands in two dimensions. The Hamiltonian is

B. Microscopic theory of the single-quantum-welly®
susceptibility

(D=2 ¢* (K){an(—K)a(k)3j,j, 1. (210

Whereje +1/2 andj,,= *+3/2 are thezcomponents of the

A=0.+H.+A 29 spin” angular momenta Qf the electron orbital and the
172t el 29 \ole orbital h, respectively, and ¢(k)=+2ma,/[1

22 + (apk/2)?1*2 is the normalized & heavy-hole exciton wave

e(k)ae k)+2 ah(k)ah(k) fun_ct|on (assgm_ed t_o be spln—lndependeM/g use th_e sub-
scripts* to distinguish the two optical transitioriexcitons

A 2K2
H = _
1 % [Zme
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coupled to right- and left-handed circularly polarized light, Here,W’(;X(g?) is the Coulomb matrix element including ex-
respectively. In the DCT scheme, the interband polarizatiorthange between an initial exciton state with relative momen-
is expanded in the applied fielgr. =p"+p®+ ..., the  tumq’ and the final state, ands, o is a matrix of overlap
order being indicated by the superscript. Solving the DCTintegrals between the nonorthonormal antisymmetrized two-
equations iteratively, starting from the linear order, one obexciton basis states. The expressions of these two matrices
tains a compact equation for the third-order circularly polar-are given in Appendix B. We have included in E@.14
ized interband polarizatio(see Refs. 29 and 49 for details another phenomenological dephasing constgpntfor the
two-exciton states.
iﬁip(fi)(t) The 2D polarization density in Sec. Il A is given in terms
dt™= of the interband polarization. DenotiRfy=[ x'VES’] and

—[2(0)—i72]p®(1) — 20 (VAP (0)p®* (1) PB=IXVEQEGEG™ ], we have
+VHFpO (1) p@(t) p®* (1) 4+ 2p* (1) P.=—dlp®, n=13 (2.16

L where d® =$(0)qge(r.)*, $(0) is the configuration space
' —t"\pWtypD(tr * e\l+)"
Xf_mdt Gr(t—t")p/(t)p(t") 1s exciton wavefunction atr=0, and (r.)={(c|(x
iiy)/\/§|v> is the transition dipole matrix element. Fourier

4o (0 ® S TE () transforming Eq.(2.1q) to frequency space, anq notir]g Eq.
+ _w (2.16), yields the third-order susceptibility defined in Eq.
B (2.3). Within the heavy-hole & model space)(i(jl) (with i,]
+G(t—t")pPtHpPt"), (210 ={+,-}) is a scalarx{’=;x", and, as can be seen

from Eq. (2.17), Xi(j3k)| has only two independent nonvanish-

where () (t) is the Rabi frequencytimes#), £(q) is the ing components:

energy of an exciton with center-of-mass momenynand
v, is a phenomenological dephasing constant of the exciton

~ 1
resonance. The terms proportionalA8SF, VI andG*(t X (01,05, 03)= 5[5ij5k|xi(|f’)(w1,w2,w3)
—t’) are, respectively, the contributions from phase-space
filling, the exciton mean field, and the retarded correlations + 5ik5jIXi(j3)(w21wl!w3)]! (2.17)

due to higher-ordetbeyond first Bori scatterings between
two excitons and/or the bound biexciton resonance. In termij,k,1 = +/—, and y®). = x| ¥ =x®) | Explicitly,
of the heavy-hole & wave function ¢(k), the constants

APSFandVHF are given by X w1,0;,03)
42 @ 1 (L)% U wn+ 0o
APSF:E |¢(k)|2¢(k): \/7_7Ta0 (212 :_X (wl)X ((1)23)( (4wj’))( 4((1)1 w2 wS)
3 Ael(r )"l #(0)|
X[ 5GP (w1, 02) + TV w1+ w,)], (2.18
VHF=22, V(k=k")[$(K)[2p(K ) ¢* (k)= ¢* (K')]
Kk’ where
. 2
~1.5143E,. 213 1rrQ)=VHF+2G7(Q), T (Q)=G"(Q)+G (Q).
The superscriph =+/— on the retarded correlation kernel (2.19

GMt—t’) labels the total electron-spin state of the two col-
liding excitons:+ (—) for triplet (singled. This classification
takes advantage of the block diagonality of the effective two- 1

exciton Hamiltonian in the total electron-spin channels. In GM(Q)== >, W
terms of this HamiltonianH**®) (the superscript %x” 2%

Here G(Q) is the Fourier transform oB(t),

star!ds _for “exciton-exciton), the retarded correlation ker-
nel is given by % hQ—HXX(X)Jriyb(l_)\S)_l ,Wy%)’
@(t—t’)=%0(t—t’)q%”Wg,Xé*)*[exp{—(i/h)(Hxx(M - (2.20
iy (-t gl _)\S]ﬁqlwy%) (2.14 the phase space filling contribution is
with GPF(w1,w5) = APSFQE(r ) |26* (0)
H;?(é),\)=28(q)5qqr+% [1=AS] oWt . (2.15 X X(l)::‘ul) +X(1)(w2)]. (2.2
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With all effects extraneous to our Hamiltonian embodied in
the dephasing parametes, the linear polarization is given
within our model by a Lorentzian

QEKr )P0

m, for @>0. (2.22

XD (w)=

In this case, the bracketed sum of two reciprogdl’s in Eq.
(2.22 reduces to a function depending only on the sum of —

the two excitons’ energies: 2/V(Q/2), Q=w;+ w,, 2 (b) _|m(eTfst§)l -
which is the form we use in this paper. In a more exact = 60 MG -
treatment including, for example, phonon dynamics, the ex- I
citon line shapéIm(x"))] exhibits the so-called Urbach tail
and is different from a Lorentzian, in which cas&SFin Eq.
(2.27) is a function ofw; and w, separately.

Equation(2.18 has a very simple structure. It gives the
third-order susceptibility as a product gf*’s (which carry
single-exciton propagation effe¢tand two-exciton Pauli-
blocklr}g and llnteractllqn terms. We, haYe XCX%I\()ZUIae}d by FIG. 2. Exciton-exciton(off-energy-shell forward-scattering
nume'rlcally diagonalizing the Hamiltonia . ‘Emd con- amplitude at zero momentum in the co-circularly polarization chan-
structing the Green's operatofiQ —H**™ +iy;) ™" as an  g/'and its constituent components.
eigenfunction expansion. Note that siné&®) has an elec-
tron (or holg-exchange term, optically inactive exciton particles behaves asymptotically at low energie¥ a%z)
states are also included in the eigenfunction basis here. A —27#2/M 1/In[(—2z)/e.], wherez is the (compleX en-
complication arises here regarding the overlap ma&rialso  ergy in the center-of-mass frame ald is the reduced mass.
truncated to the 4 subspack it has one eigenvalue close to This asymptotic behavior is valid for any generic Hermitian,
1, leading to a spurious peak structure in the triplet-statghort-range, even nonlocal, interaction, and it holds|&br
correlation kernelG(*)(€).*® Although this spurious peak <g_, wheres, is an energy scale that depends on the spe-
emerges only at an energy above the spectral rer§emeV  cific interaction for each problem. For an equilibrium 2D
<hw—e(0)< 5 meV) under consideration in this paper, it quantum gas in the dilute limit, the effects of the interaction
nevertheless indicates that the presence of the matrix (&n the system’s thermodynamic behavior are summarized in
—9S)~ ! might amplify the shortcomings of the 1s approxi- ¢ [Ref. 53. In terms of excitonic terminology and units, this
mation, and a quantitative analysis might be better Vith asymptotic formula reads:
being neglected. A detailed discussion of this issue will be
given in Ref. 49. All the results shown in this paper, unless it T+ iyy)~ 2ma(l-a) a2E
is stated otherwise, are calculated wiket to zero. We note Yo In{—[2Q—2&(0)+iypllect O P
that the issue of whether to includgis not critical to the (2.23
particular application of our theory examined in this paper.

-8.0 -4.0 0.0 4.0 8.0
hQ-2£0) [meV]

The conclusions reached below about various approxima- = 40 I Total ——
tions are valid with or without the overlap matrix. In the next 220t @ / Bond Blow. -
section, the predictions witB included are showiicf. Fig. = e
13) to also fit the experiment quite well. T oo
Figures 2 and 3 show'! and its componenty"F and e
G=(Q), together withG”SF(Q) for GaAs parameteran, =20 !
=0.067mg,m,=0.1my, where m, is the electron mass in &
free spacee, =13, andy,=1.5 meV.G (Q) has been fur- 'g‘g
ther broken down into contributions from the bound biexci- 5 Total — |
ton and the two-exciton continuum states. 2.0l @ Boontinuum |
If W) were Hermitian, and if we tak6=0, the quan- -
tity T'(Q) defined in Eq.(2.20 has the form of the off- § 4.0
energy-shell forward scatterin@r T-) matrix element for r
two (virtual) particles at zero momentum and total enefyy £ 20}
(compare Ref. 50 The truncation to the dsubspace and the »Ta e e
inclusion of exchange result in a non-Hermitis>®) in 00 e 4o oo 40 80
our case, but we will see, in spite of this non-Hermiticity, H.0-2£(0) [meV]

general scattering theofg.g., Ref. 51is still quantitatively

useful in understanding the behavior of our numerical re- FIG. 3. Exciton-exciton(off-energy-shell forward-scattering
sults. For example, it is known that, two dimensions, the amplitude at zero momentum in the counter-circularly polarization
zero-momentum off-energy-shéltmatrix for two colliding  channel and its constituent components.
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where a=my/(Mme+my), 2¢(0) is the continuum edge. In
Figs. 2 and 3T/ shows only a hint of a nonsmooth logarith-
mic behavior around the continuum edge, but we have found
in more detailed numerical studf€s* that, for y,\,0 and

the range|%Q —2¢(0)|<0.01E,, our computedT’ obeys
almost exactly the 1/In behavior of E@2.23 [with &,
~0.6E, and a numerical constant in the numeratoef.4
times that in Eq(2.23 in the (++) channel, for example
Equation(2.23 implies that, in the ¢ +) configuration for
instance, there is exact cancellation between the Hartree-
Fock and the correlation terms &t —2¢(0)=v,=0,
which is related to the sum rule of Ref. 41. The 1/In function
however varies rapidly near the origin, and our numerical
results(Fig. 2) show thafT** is no longer small only a short
distance away from the continuum edge and/or for a moder- FIG. 4. (@) Schematic of the excitoii matrix measured in co-
ate value ofy,, 1 meV say. This tendency for the correlation herenty® experiments. The momenta of the initial and final states

term to partially cancel the Hartree-Fock term was also note@'® Z€ro, but the energy is given by the sum of the frequencies of
in Refs. 37.42 the light fields that create the excitoril) Schematic of the domain

Again, if WM were Hermitian— Im GMQ) would be of the excitonicT matrix. The cross and dashed line indicate the

. . . position of the biexciton pole.

non-negative and would yield the rate of scattering of two
virtual excitons of total energg() and zero momentum into  tions to the exciton-exciton correlatige.g., Ref. 67. While
real excitons of the same enerfsy) and momenta given by this approximation may be adequate in 3D, it is quantita-
the dispersion relatiofi|q| = V[AQ —2£(0)](me+my,). Fur-  tively unsatisfactory in 2D because, for vanishing,
thermore, if IMG*(Q)) goes to zero sufficiently fast @@ Im G* and the continuum part of &~ would develop a
—o0, thenG* is analytic in the upper half of the complex disconti nuity at 2(0) [see Eq(2.20] while their real parts
energy plane. Then foy,™\,0, the real and imaginary parts would develop logarithmic divergences. A finitg, would
of G™ would obey a Kramers-Kronig relation, according to temper these singular behaviors, but Fig. 5 shows that, even
which ReG* would be negative at large negative energiesat the relatively largey,=1.5 meV, the residual effect of
cross zerdat least onceinside the support of I@" (i.e., the  the singularity is still considerable. In the next section, we
spectrum of the two-exciton Hamiltonigrand is positive for ~ will show that the experimental results that we analyze are
large positive energies. Figures 2 and 3 show that, even witbufficiently sensitive to distinguish between the predictions
our non-Hermitiad\V™) | G displays these behaviors quite of the exact-scattering theory and its second-Born approxi-
well within the relevant energy range—(0 me\ 7% () mation.
—2e(0)<10 meV) in this paper. At higher energies, our  The Markovian limit is another approximation sometimes
calculated —Im GM()) actually violates non-negativity used to simplify computations of Coulomb correlations in
slightly over a very short energy span, which disallows anthe continuum(e.g., Ref. 67. In the present context, we
extension to these energies of the present model withowdefine this limit to be the short memory-time limit of the
modifications. These issues will be discussed in more detagdontinuum part of the retarded exciton-exciton correlation
in Ref. 49. _ _ ~ kernelG*(t—t') in Eq. (2.11. More precisely, it is the as-

Our numerical results thus support the interpretation, W'”Eumption that the continuum part & (t—t') decays on a
the ca_veats discussed above,_ Bi(Q) as the forV\_/ard- time scale fast compared to the variationebﬂ(o)tp&l)(t). If
scattering off-energy-shell matrix for two virtual excitons his is the case. one mav to a aood approximation redlace
(Fig. 4). As is well known, theT-matrix plays a dominant this 'S ' (1).y ) 8good approx Hia

}he time argument gb'.’ inside the integral in Eq2.12), by

role in the statistical mechanical properties of dilute nonidea d takep® ide the | L f hi
quantum gase® The microcavity FWM experiment to be tand takep.” outside the integral. In frequency space, this

analyzed in the next section may thus be considered a prof&noUNts to approximating thé matrix elements by their
of this important quantity for the interacting exciton system.
The identification of—Im G(Q) with the rate of virtual-to-

real exciton scattering also gives a microscopic
underpinning®>8of excitation-induced dephasing as usually
used in phenomenological modéfs®® However, the physi-

cal process underlying excitation-induced dephasing depends
strongly on the excitation conditions, so that processes dif-
ferent from those considered here may be relevant in other

T/mag [meV]

experimental settings. -8.0 h_‘éfzg(%‘; [nggV] 8.0
In x® treatments, the second-Born approximation, corre-
sponding to keeping only the first tertkinetic energy in FIG. 5. Exciton-excitoniT-matrix in the second-Born approxi-

Eqg. (2.19), is often used to estimate the continuum contribu-mation.
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respective values & =2¢(0). As noted above, th&matrix

at this energy vanishes in the small-damping limjf\,0, ‘?
thus guaranteeing the Markov approximation to be poor in E
this limit. For y,=1.5 meV, Figs. 3 and 2 shows that taking 8
this approximation still reduces quite substantially the con- =
tribution of ImG, the scattering rate of virtual excitons to real Q
excitons, in the continuum. We will also discuss the effect of ~
this approximation on the FWM signals in the next section.
1.2
Ill. COMPARISON WITH EXPERIMENT 1.0 (X.X,X)

In this section we specialize to the degenerate four-wave- o.8 r
mixing (DFWM) configuration and compare our calculated 0.6
signals with the experimental results reported in Refs. 14,18. 0.4 f
In the experiment, a 120-A GaAs quantum well with a pair o2 |
of 670-A AlAs spacers were used. The right DBR was com- 0.0
posed of 22 pairs of GaAs/AlAs layers and the left DBR 14.5 12
pairs. The exciton resonance enesdf) was fixed while the 1.0 GY5y)
cavity resonance frequenay, could be varied. Two long- 08 r
pulsed beams of the same central frequency were incident on 0.6 |
the left surface, the pum(p) beam being exactly normal to 0.4

the surface and the proki® beam slightly angledFig. 1).
The intensity of the reflected FWM signal, which is opposite
in direction to the incident probe beam, was measured as a
function of the beam frequency. This measurement was per-
formed for various values of the cavity-exciton detunifig
=hw.—¢(0) and various polarization combinations of
pump (o), probe ), and signal §5) beams.

We show in Fig. 6 the reflected FWM signal intensities
for zero exciton-cavity detuning as calculated in our theory
and compare them to the measurements in Refs. 14,18. The

FD-DFWM signal

results are displayed as functions of the beam frequency for ror (4.7
four polarization combinations, which are designated in the 0.8 r 1
order (0 ,0¢,05), o=X,y,+, or —. Also shown is the lin- 0.6 1
ear reflectivity, from which we extract our modgl*) pa- 0.4 |

rameters: g(0)=1.552 eV, y,=0.75 meV, and 0.2 |

|$(0)(r,)|=0.035. The other parameter values for the 0.0 2 S

1.548 1.552 1.556

Energy [eV]

electron-hole hamiltonian Eq2.9) have been given at the
end of Sec. Il B. The phenomenological damping constant

b in Eq. (2.21) represents the dephasing anq decay of the FIG. 6. Comparison between thedigolid line) and experiment
correlated, coherent two-exciton systems and is, for homogetaashed ling for frequency-domain degenerate FWM signéi-
r)eously broadened excitons, cpmmonly attlributed to radiaDFWM) from a quantum-well microcavity at zero detuning be-
tive decay and phonon scatte”%!ts value is set 10 2, yyeen the lowest QW exciton resonance and the cavity resonance,
here, based on simple considerations on phonon dephasipgih at 1.552 eV. The polarizations in each panel are designated in

that have received some experimental support rec8htly. the order(pump, probe, signal The linear reflection spectrum is
While this estimate may turn out not to be perfectly accurateshown on top.

we note that the predicted FWM signals here are not very
sensitive to variations ofy, up to several tens of percent. detail below, manifestations of the microscopic many-
The refractive indices are set to 3.59 for GaAs and 2.98 foexciton dynamics. One notes here that there is good quanti-
AlAs. A small imaginary part, 0.0015, is added to each re-tative agreement between our theory and the experiment.
fractive index to fit the experimental width of the cavity  To better interpret the data, we first give a detailed analy-
resonance. sis of the spectral features of the FWM signals within our
The linear reflectivity spectrum shows the characteristidheory. Each of the three electric fields in E8.6) is a sum
normal-mode splitting. The FWM signals are dominated byof the pump and the probe fieIdE8)=E8)9+ Eg)t. The
peaks at or very close to the two polariton energies. Thelightly oblique positioning of the probe beam allowed the
signals have been normalized by matching the theoreticatxperimentalist to selectively measure the FWM signals,
and experimental peak heights at the lower polariton peak imhich comes from the field combination
the (x,y,y) channel. The relative strengths of the signalEGP(wq)ESP(w,)ES™ (w3). In our theory that treats only
peaks, and their polarization dependence, are, as explainedmormally incident beams, retaining only this combination as
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a source of they® interband polarization should give an 1000
adequate approximation to the signals in the slightly angled
configuration. We assume continuous-wave input beams:
Ef(w,)=2mEPS(w,— w) etc., wherew denotes the beam
frequency, in which case, only the diagonal € w,= w3

= w) part of the third order susceptibility ER.19 contrib-
utes to the responses:

Wy 125 (1) 2
X)X P ()] (8,675 (20)

gelr+)I*l3(0)|* i i
e\’ + FIG. 7. Interaction-dependent part of the FWM signals: The
+TI(2w)], ij=+/—. 3.1) matrix (plus G”SF) squared for various polarization configurations.

Under these conditions, the FWM signal is also a monochrotm(T**) above £(0) to give the resulting shape of
matic beam pf fr_equency): Its.tlme_—averaged fIL_Jx intensity ~T(x,+,+)(w)|2- Re(GPSF+T**) is positive over the whole
for the polarization combinations in the experiment can b nergy range, while R&* ~(2w)) crosses from negative to

written, from Eqgs.(2.4), (2.7), (2.8), and(3.1), as positive around the biexciton energy. Equatith4) then
implies that this asymmetry suppressﬁ%lxyx)(wﬂz, but

1T (mad)® [meV?]

-4.0 -2.0 0.0 2.0 4.0
ho—£(0) [meV]

X w,0,0)=

K0 0.09(@,8)=D(0,8)| Ty 4 og(@)| *|EP|*[EY2, _
Pt Pt boosts| 7, , vy(w)|?, below half the biexciton energy com-
(3.2 (xy.y) ' ) - )
pared to above the exciton resonance. This trend is rein-
where the factor forced (partially offsel for (7 x.|? (| Z(xy.p|?) by the con-
1 8 centration of the imaginary parts on the high-energy side.
c XD ()| n : ;
D(w,A)=—|Cr(w,A)|2|C(1)(a),A)|6X—~8 _ Combining the functional behaviors ob(w,A) and
8w |ae(r +) #(0)| |T((,py(,t'(,s)(w)|2 in Fig. 7, we can easily understand the

variations of the FWM signals. A sharper assessment of the
carries the dependence on the cavity and the single-excitarontributions from various processes can be obtained by
propagation, ana'(a ]UI’US)(Q,) contains the exciton interac- omitting' selectiye tgrms from the express.ions Tor in thg .
tion and Pauli-blocking effects calculations. First, it has long been realized that omitting
Coulomb correlations among the excitons, i.e., including
~T(XXX)(w):GPSF(Zw)+T++(2w)+-|—+—(2w), only the Hartree-Fock and phase-space filling terms, results
o in identical FWM signals in thexx,x), (x,y,y), and ,
+,+) configurations and no signal irx(+,—). Less obvi-
ous is the differentiation of the signatures of the several types
of correlations. From the above considerations, we expect
switching off the bound biexciton would reduce the strength
~ ‘e at the lower polariton peak in the(+,—) configuration and
T+ (@)=T""(20). (34 \would reduce the difference between the signals in the

For the purpose of understanding excitonic dynamics, théX,X,x) and the &,y,y) configurations. +Sl/vitching off the
advantage of writing the signal in this way is clear: the de-excitation-induced dephasin@ID) (ImT™" and the con-
pendences on polarization combination and cavity-excitoriinuum part of ImT " ~) would reduce the signal strength at

detuningA, reside separately @U o 0y(©) andD(w,A) thg upper polari_ton peak for all configuratior!s. T_hese expec-
. Pt . tations are confirmed by the results shown in Figs. 8 and 9.
respectivelyD(w,A) shows two peaks at the polariton en- The importance of the bound biexciton for the €, —) con-

ergies that shifiwhen the detunilztgis varied. Hgnce the figuration has also been pointed out in Refs. 30 and 31.
dependence of7, ., o,(®)| predicts the variations of the Switching off the real part of the continuu! leads to
signal peak height withA. On the other hand, the relative some changes in the signals compared to the full calculations
contributions of the various many-body ingredients to(Fig. 10, but, while these changes can be traced in detall
|§E"’pr"'tr"s)(w)|’ and the reinforcements and Cance”a’[ionsbaCk to the features of th€ matrix, they can not be easily

among them, governs the polarization dependence of the si _umma_rized. In sum, W“hif‘ the present mopiel, good agree-
nal at a fixed detuning. ent with the experiment is achieved only if all the many-

. . body effects are included.

In Fig. 7 we plot the funct|on*52}~apvat’(,s)(w)|2. No com- Among the ingredients of(®), the Hartree-Fock, phase-
ment is needed on the behavior|ﬂtx,+y,)(w)|2, since itis  space filling are easily calculated, and wave functions for the
just one of theT matrices discussed above. We can summabound biexciton are available in the literatieeg., Ref. 63
rize how the behaviors of the other three functions arise alThey can also be set in parametrized form with one or two
gebraically as follows. As seenin Fig. 2, R(SF+T* %) is  parameters in each to be fitted to experiments. By contrast, a
higher below than above the exciton resonance. This asynproper calculation of the exciton-exciton continuum correla-
metry is partially compensated for by the concentration oftions involves at least the computational effort as that in the

Tiyy) (@) =—G"5F 2w)—T " (20)+T" " (20),

Tix o, 0)(©) = GPSF2w) + T * (20),
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FIG. 9. Comparison between thedisolid line) and experiment
FIG. 8. Comparison between thedisolid line) and experiment  (dashed ling for FWM signals at zero detuning. The theoretical
(dashed ling for FWM signals at zero detuning. The theoretical signals are calculated without the contributions from EID, or the
signals are calculated without the contributions from the bounccontinuum part of InG™ (cf. Fig. 6).
biexciton (cf. Fig. 6). _ _ ) o
correlations between two continuum excitons to distinguish

calculation reported in this paper. A natural question is: carbetween a correct calculation of the scattering matrix and its
the continuum correlations be reliably estimated using soméowest-order(first and secondperturbative approximations.
simple approximations, e.g. the second Born or the MarkovThe Markov approximation to the continuum part of the

In other words, are the experiments under considerations sufaatrix was discussed in Sec. Il B, where its major effect was
ficiently sensitive to the correlated-exciton dynamics beyondshown to be a reduction of Ifi(!) above the exciton edge.
those captured in these approximations? We have alreadSigure 12 shows its effects on the calculated FWM signals at
discussed the effects of each of these approximations on theero detuning, which, as expected, are similar to those seen
T matrix in Sec. Il B. To examine the question of measur-above in Fig. 9.

ability, we have calculated the corresponding FWM signals. The above results were calculated, as explained in the
As shown for zero detuning in Fig. 11, the results with theprevious section, with the overlap mat®in Egs.(2.15 and
second-Born approximation deviate quite drastically from(2.16) set to zero. We have also performed the calculations
both the experimental data and the full calculations. Théncluding S the predicted FWM signals of which are com-
worst effect of taking this approximation is a large spuriouspared to the experiment in Fig. 13. Although the agreement
transfer of signal strength from the lower polariton peak tois slightly worse than that in Fig. 6, the predicted signals still
the upper ongwith some additional enhancemgnnh the  give a valid description of the data. In other words, although
(x,+,+) configuration. This basically results from the the T matrices calculated with and witho® show some
strong variation of R&*(2w) at low energy{Zw close to  quantitative differences, their energy and polarization depen-
€(0)], which, as discussed in Sec. Il B, comes with thedences are sufficiently similar around the two-exciton con
strong low-energy peak in I8 (2w). Another sizable dis- tinuum edge that the experimental data being analyzed do
crepancy with experiment is the spurious enhancement of theot conclusively favor either one.

upper peak in thex;x,x) configuration compared to, say, the  The results presented in this section clearly show that our
lower peak in &,y,y). The present FWM data thus appear microscopic and fermionic description of exciton correla-
sufficiently sensitive to the energy variations of the Coulombtions in the third-order FWM signal of quantum-well micro-
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FIG. 10. Comparison between theofsolid line) and experi-
ment(dashed lingfor FWM signals at zero detuning. The theoret-
ical signals are calculated without the contributions from the con

tinuum parts of RE* (cf. Fig. 6).

FIG. 11. Comparison between theofsolid line) and experi-
ment(dashed lingfor FWM signals at zero detuning. The theoret-
ical signals are calculated in the second-Born approximation to the
continuum parts of th& matrix (cf. Fig. 6).

cavities can explain the considered experimental data. It aklment, displayed here and elsewhere, achieved between theo-
lows for a detailed analysis of the relative weight of theries based on the semiclassical approaches and experiments
various many-body effect@xcitonic phase-space filling, ex- suggests that the quantized-field effects may not be impor-
citonic Hartree-Fock, exciton-exciton correlations includingtant for these experiments. For works on other aspects of
biexcitons for different polarization configurations. quantized-field effects in coherent semiconductor optics, see
In the remainder of the section, we critically review the e.g., Ref. 72 and references therein.
most important assumptions and approximations we have Neglecting incoherent as well as higher ordierthe ap-
taken in our theory in order to make it computationally trac-plied field) processes are generally considered justified when
table and otherwise simpler. They af&) The classical treat- the field strength is sufficiently low. Adopting a more realis-
ment of the radiation field(2) including only coherentpro- tic finite-width model of the QW and/or a more realistic band
cesses and truncating the resulting DCT hierarchy obtructure(see e.g., Ref. 73,J4vould introduce changes in
equations to third order in the external fie(8) the use of a the “input ingredients” to our theory: basically the exciton
zero-width model for the quantum well4) neglecting all  binding energy and the exciton wave funciignused in the
valence bands other than the highest heavy-hole subband aodiculation of the matrix elements. While these improve-
band-mixing effects, and5) the restriction of the four- ments on our theory are not likely to change the qualitative
fermion Hilbert space to the subspace of tweHeavy-hole  behavior of thel matrices, quantitative effects are to be ex-
(hh)-excitons in solving the third-order DCT equations. pected, the magnitude of which is unfortunately not easy to
The x® DCT equations strongly coupled tocuantized  estimate at this point. As for the optical selection rules used
cavity radiation field has been formulatétf! but applica-  in our simplified model, we note that they are consistent with
tions at the same detailed quantitative level as the presetihe selection rules obtained within a spherical model, but
work appear not to have been attempted. Improvements andcluding all band-coupling and Coulomb-correlation effects
extensions of our theory along these lines are now beingvithin the y® regime’
considered. At this point, we just note that the good agree- The truncation to the 4 hh-subspace is perhaps the most
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FIG. 12. Comparison between theofyolid line) and experi- FIG. 13. Comparison between theofsolid line) and experi-
ment (dashed lingfor FWM signals at zero detuning. The theoret- ot (gashed lingfor FWM signals at zero detuning. The theoret-
ical signals are calculated in the Markov approximation to the cony.g signals are calculated with the overlap masincluded in Egs.

tinuum parts of thel matrix (cf. Fig. 6). (2.16 and(2.2)) (cf. Fig. 6.

drastic approximation taken here. Allslstates, including ) ) .

optically inactive ones, are included in the sum over inter-& Microcavity around the lowest exciton resonance. It con-
mediate states in th& matrix. The contributions from all Sists of a classical treatment of the radiation field coupled to
other exciton eigenstates are neglected. Our numerical stu@- coherent dynamics-controlled-truncati@dCT) treatment
ies, to be reported in Ref. 49, show tffiest-orde) coupling ~ Of the quantum many-electron-hole system. Truncating the
between the 4 state and other exciton states to be small, DCT equations to the heavy-holes-Bxciton subspace, we
which justifies the truncation to a certain extent. Also be-arrived at an effective exciton-exciton scattering theory, ex-
cause of the truncation, inclusion of the overlap mafban  pressing they®) susceptibility in terms of an off-energy-
be problematic. As discussed above, we set it to zero herghell exciton scatteringor T) matrix. Owing to the dimen-
Another known defect of the truncation is the underestimasionality (=2) of the system, theT matrix is highly
tion of the biexciton binding energy: the calculated bindingnonperturbative around the exciton-exciton continuum edge,
energy here is only=70% percent of the best variational necessitating an exact diagonalization of ths-ekciton
estimate’® We have discussed the consequence of this Unkamiltonian for its calculation. The failure of two common

derestimation to the comparison with experiment in Sec. lll gpproximations, second Born and Markov, were discussed.
These issues can only be sorted out satlsfactorlly when re- The theory presented here yields predictions for the po-
sults of calculations in the full (&2h) Hilbert space, per- |arzation dependence of the FWM signals as well as the

formed to the same numerical accuracy as our calculationse ative signal strengths at the two polariton peaks. These
are available for comparison. The key features of the FWM, e ictions are in quantitative agreement with the experi-

signals that we have identified are likely to be independent of, o htal data reported in Refs. 14,18. Such a quantitative com-

this approximation. parison allows unambiguous identification of many-particle
correlations, including both biexciton and two-exciton con-
tinuum scattering.

We have presented a microscopic theory of third-order Our discussions have also identified issues to be resolved
degenerate four-wave-mixing response of a quantum well itn the future, which include the effect of the quantized nature

IV. SUMMARY
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of the photon and that of the higher-excitonic states on theight(left) side of the interface at the point in questigFig.
1s-exciton scattering. The latter is especially important if wel). In Sec. Il A, the electric field inside the QW has been
wish to extend the validity of our present theory to higherexpanded perturbatively in the externally applied field. The
light frequencies. first and third-order terms are to be obtained as the solutions
to Egs.(2.5 and(2.6) respectively. First we fix the confine-
ACKNOWLEDGMENTS ment wave function as simply(z)|2=1/L, wherelL is the
) o well width. For sufficiently small, which is the case here,
This work was supported by grants from N&Bivision  the third-order susceptibility that results is not sensitive to
of Materials ResearghJSOP, COEDIRUniversity of Ari-  the specific choice of this wave function. Being a linear
zong. We thank W. Scher for sending us part of his book equation, Eq.(2.5) is easily solved(e.g. by Green’s func-
(Ref. 29 prior to publication and Y.P. Svirko and R. Shi- tion). Its general solution may be written as
mano for useful discussions.
EMN(z,0)=EM7 (2§ ,w)expikg(z—2§)}
APPENDIX A: RADIATION FIELD IN THE QUANTUM-
WELL MICROCAVITY —EM (2§ ,w)exp—ikq(z—23)}

In this appendix, we summarize the calculations of the A
electric field inside the QW and the enhancement factors + = x(0)ES(w)[codkg(z—25))— 1],
relating the field inside the QW to that outside the cavity. npL
The treatment here will be brief, more detailed explanations (A1)
of the methods being readily available in the standard refer-
ences(see, e.g., Ref. 3 and references therein where Ko=npw/c. The solution depends on two undeter-
We start with some notational conventions. The z coordi-mined parameterE ™" (z5 ,w) andEM ™ (z5 , ) that give
nates of the cavity’s left end, the cavity’s right end, thethe field and itsz derivative atzg , the left end of the QW.
QW'’s left end, and the QW'’s right end are labelgd, z, , By integrating both sides of EA1) over z, the averaged
zy , andz; , respectively. The superscript(—) denotes the field over the QW is obtained to be

EM*(zg ,0){exdikg(z—25)]-1}+EM (2§ ,w){exd —iko(z—25)]—1}

EQ)(w)= (A2)
o N )(1 sin(kQL))
i — VD) 1- ————
Q n2L X kol
|
Using E§’(w) as the driving field for the third order DCT n, n,
equation in Sec. IIB, we obtain the source term g+ £+ —+1 -1
BELEWLED* : . R N 1] n, )
[x**Eq’Eq’Eg’™ ] to Eq.(2.6), which may again be solved e =My, - M”_E
in the same way as E@2.5). The solution, which we do not R L M, My
write down here, is used to calculate th€) enhancement Ny ny
factor below. (Ad)

The propagation of the electric field through the DBR’s
and the spacer layers are treated by the standard trans
matrix formalism. As solution to the Maxwell wave equa-
tion, the electric field in each dielectric layer, with refractive
indexn, is written as

Apother matrix: N;=diag(e'i%,e %), propagates the
ield amplitudes acrosdrom left to righ a dielectric layer
of width d; and refractive index;, with kj=n;w/c. The
transfer matrix between any two layers in a DBR can be
constructed as a product of thesé’s and \’s. The propa-
E(Z’w):E+(zw)eik(z—;)_E—(zw)e—ik(z—;), (A3) gation through- thg QW has the added complication of the
- o resonant polarization. Denoted Byqy, the transfer matrix
where k=nw/c and E*(z,w) and E~(z,») are, respec- that propagates thfest-orderfield amplitudes fronz, to z;
tively, the right and left going field amplitudes at an arbitrary can be obtained with EAl) and the interfacédis)conti-

point z inside the layer. Written as a column vector, thesenuity conditions. In this work we have only used the-0
field amplitudes are related to those in other layers by dimit of Mqw, which is
X 2 matrices that depend only on the material parameters.

Referring to Fig. 1, at the interface between two dielectric _ 1+8, =B __27Tw )

layers, with refractive index; (n,) on the left(right) say, ew=l g 1-8,) ’_In_ScX (@), (AS)
the transfer matrix\M,4 relating the field amplitudes on the

right to those on the left of the interface is whereng is the spacer refractive index. The transfer matrix
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propagating the first-order field across the entire QW microwhereby; ,i,j=1,2 are the elements &f .

cavity Mcay can thus be written adlcay=MgMoyMr,

whereM 1 propagates across the left DBR fran to z, and APPENDIX B: COULOMB AND OVERLAP MATRICES
Mg across the right DBR fronz; to z; . M+ and Mg are

products ofM's and As as explained aboveM ., repre- In Eqg. (2.15 we wrote the effective-exciton Hamiltonian

in terms of the Coulomb matri¥**® and the overlap ma-

sents two linear equations, the solution of which is fixed b trix S We give th licit . f th i .
two boundary conditions at the ends of the cavity: the incom-t[]'?f5 app:ng;xe € explicit expressions ot these matrices in

ing field on the left side is the applied field, and there is no o . .
incoming field on the right side. With the solution, the linear _The Hamiltonian is blo<_:k dlagonal n the_ total _eIectron
enhancement fact@"), relating the field average inside the Spin state.s7\= +(._) for triplet (smgle?. In this ba5|_s,.t.he

’ Coulomb interaction between twa Excitons from an initial

(1) inci i is gi
QW Eq” to the incident fieldE,, is given by state with relative momentuy’ to a final state withg is

m
C(l)(w):tll_t21_m_z;(t12_t22)l (A6) W;,Xé/”=W§,X$)|direm+KWE,XCE/MIex, (B1)
where t;; and my; ,i,j=1,2 are the elements dfl; and where
MCAV! reSpeCtiVer. WXX, . :V o~/ M At M r_
The solution to Eq(2.6) gives the connection between the aqlairee= V(A= AIM(Q=Q")M(Q" ~q)
third-order field amplitudes outside the two ends of the QW,
which again in theL—0 limit, is given by W)(;’Xq,|exzz V(k—k")¢* (k+a(g—q’))
Kk’
E(3)+ Z+ E(3)+ 77
@), (%) X ¥ [k + B(a+a )L (k)~ (k)]
E®~(zf)) T E®(z)
. X[p(k+a(qg—q')+p(a+q"))
27w
e i[X<3>Eg>E8>Eg>*](1). — oK' +a(q—-q")+B(q+a’)]. (B2

Herea=my/(mg,+my), B=m./(m.+my), and (k) is the
(A7) 1s-exciton wave function. In the direct term, the so-called
These amplitudes are again propagated to outside the cavigxcitonic transition element is given by
by M1 andMg. Since the third-order field originating from
inside the QW, the appropriate boundary condition is that of
zero incoming field on both ends. The cubic enhancement
factorsC, andC;, relating the third order fields outside the
cavity, E®)(z; ,w) andE)(z , ) respectively, to the third
order interband polarization inside the QW, is given by

M(Q)=; ¢* (K[ ¢(k+Ba)—p(k—aq)].  (B3)

We note that the direct term goes to zero at lpwleaving
the exchange term mostly responsible for the low-energy be-
havior of theT matrix discussed in Sec. Il B. Finally, the

w [byy+bysy overlap matrix element is
Cillw)=—2mi— —} (A8)
Nl My,
Sqa =2 ¢" (Kt aa)$* (K+a'+Ba)d(k+aq) e
. W m12
Cilw)=2mi——| byt bio———(by1+byy)|, (A9
f(w)=2m nc| P1rt P12 m22( 21 22)} (A9) « (k+q+ 8q"). B4)
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