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We present a microscopic theory of the coherent third-order (x (3)) optical response of semiconductor
quantum well microcavities, specialized to the four-wave-mixing configuration in the spectral vicinity of the
lowest exciton frequency. The theory is that of a quantum-mechanical many-electron system dipole coupled to
a classical radiation field. The many-electron dynamics is treated within the dynamics-controlled-truncation
formalism restricted to the 1s-exciton subspace. Within this limitation, all Coulomb correlation effects are
included, resulting in an effective theory of~virtual! exciton-polariton scattering. Good quantitative agreement
of the theory is obtained in comparison to the experiments reported by Gonokamiet al., Phys. Rev. Lett.79,
1341 ~1997!. This comparison reveals the signatures of both the bound biexciton and the exciton-exciton
scattering~continuum! correlations. Furthermore, a proper calculation of the scattering correlations is shown to
be important: each of two common approximations, the Markov and the second Born, results in clear discrep-
ancies from the data.
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I. INTRODUCTION
Semiconductor microcavities are the focus of many c

rent research efforts. In the linear optical regime they exh
interesting similarities and differences to empty and atom
microcavities~see, e.g., Ref. 1!, such as normal mode split
ting ~see, e.g., Ref. 2, and for a recent review see Ref. 3
references therein!, and cavity-polariton effects and disord
effects ~see, e.g., Ref. 4–11!. Furthermore they are exten
sively used in applications such as vertical-cavity surfa
emitting lasers~see, e.g., Ref. 12!.

Besides their interesting linear optical properties, se
conductor microcavities have been found to yield insight i
many nonlinear optical effects taking place in the semic
ductor quantum well~s!. Examples of such investigations in
clude the nonlinear behavior of normal-mode coupling,3 the
observation of Rabi oscillations in microcavities13 and non-
linear exciton correlation, biexcitonic, and polarito
scattering effects.14–24

Of course, semiconductors and semiconductor quan
wells exhibit challenging and interesting nonlinear optic
effects even without being embedded in a microcavity~see,
e.g., Refs. 25–29!, but in the strong-coupling regime~i.e.,
near-zero detuning between the exciton and the cavity r
nance in a high-Q cavity!, the cavity changes strongly th
linear and therefore also the nonlinear response of a quan
well. Furthermore, the new parametric degrees of freed
e.g. detunings and finesse, introduced by the coupling to
cavity may refine our understanding of the physical nature
the quantum well’s nonlinear response.

The purpose of this paper is to carry out a nonlinear
tical response theory for semiconductor microcavities tha
based on the fermionic electron-hole Hamiltonian, and t
can be compared to experimental signals of microcavit
Specifically, we present a microscopic theory for thex (3)
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response of a quantum well microcavity around the hea
hole exciton frequency. With the electron and hole masse
well as the background dielectric constant in the quant
well as basic input, it provides a detailed quantitative a
count of the effects of Pauli blocking, exciton scatterin
bound coherent biexciton formation, and the cavity re
nance.

While some investigations of microcavities are based o
full quantum-mechanical formulation~including a quantized
light field!, we adopt the semiclassical approach that h
been used in most work in semiconductor optics: the rad
tion field is treated as classical while the charge carriers
side the quantum well are treated as a quantum many-b
~fermion! system. The quantum part of the problem is fo
mulated in the dynamics-controlled truncation~DCT!
approach,32 which has driven much recent progress in t
microscopic understanding of weakly nonlinear response
semiconductors.33–42

In this paper we focus on the frequency regime around
heavy-hole exciton that allows us to restrict thex (3) DCT
equations to the 1s-exciton subspace. While it is feasibl
with present-day computational resources to solve the
DCT equations with Maxwell’s equations self-consistent
the tremendous simplification provided by the 1s truncation
enables us to study features of exciton/polariton scatterin
two dimensions in great detail, and to analyze the contri
tions of various effects in a much more transparent way.

Our theory agrees quantitatively with the recen
published four-wave-mixing data by Gonokami and c
workers.14,18 The detailed analysis given below reveals t
signatures of both the bound biexciton and the excit
exciton scattering~continuum! correlations. Furthermore, w
will show that the full calculation of the scattering correl
tions is important: each of two common approximations,
©2001 The American Physical Society16-1
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Markov and the second Born, results in clear discrepan
from the data. From general considerations in scatte
theory, the second Born approximation is expected to fai
two dimensions, but it appears that a signal of its failure
not been experimentally identified in semiconductor non
ear optics before.

In Sec. II we outline the basic theoretical approach a
derive the expression for thex (3) susceptibility of a quantum
well microcavity. In Sec. III we specialize to the four-wav
mixing ~FWM! configuration and compare the theoretical
sults to the experimental data. We will discuss the relat
contributions of various many-body effects. Some of the
sumptions and approximations made in our theory will a
be discussed and directions for future improvements and
tensions indicated. In Sec. IV we summarize the main
sults.

II. MICROSCOPIC x „3… THEORY OF A QUANTUM WELL
MICROCAVITY

In this section we derive the expression for thex (3) sus-
ceptibility of a quantum well microcavity. In Sec. II A, w
define the model for the microcavity and develop the we
field perturbation theory for its first and third order respon
in terms of the quantum well’s susceptibilities and the tra
fer matrices of the distributed Bragg reflectors. In Sec. II
we derive the quantum well’sx (3) susceptibility within the
DCT ~Ref. 32! framework.

A. Semiclassical treatment of a quantum well microcavity

A schematic diagram of our model for the microcavity
shown in Fig. 1. A quantum well~QW!, flanked by spacer
layers, is embedded between a pair of distributed Bragg
flectors ~DBR!. The semiclassical approach to light-matt
coupling in semiconductor heterostructures has been
plained in many works. In the dipole approximation, lig
propagation through the system is governed by Maxwe
equations with the induced polarization density as sour
We assume that the polarization density can be divided
a background dielectric part, which is local and linear in t
electric field, and a resonant part which is in general non
ear~see, e.g., Ref. 43!. The background dielectric response
then expressed as a refractive index in the usual way.
will refer to the resonant part as the polarization density.

For simplicity, we develop the formalism only for th
case where the propagation direction is normal to the pl
of the QW and only the first subbands of the conduction a
heavy-hole bands are resonantly excited.44 The electric field

FIG. 1. Schematic drawing of the quantum-well microcavi
The reflected FWM signal is opposite in direction to the pro
beam.
04531
es
g
n
s
-

d

-
e
-

o
x-
-

-
s
-
,

e-
r
x-

s
s.
to
e
-

e

e
d

and the polarization density are then parallel to the QW
plane, and they are assumed to be translationally invar
over this plane. This last assumption is valid if the radius
the cavity is at least several times larger than the wavelen
of the light ~see, e.g., Ref. 45!. In each layer of the micro-
cavity, the electric field satisfies the following wave equati
in frequency space,

Fn2~z,v!
v2

c2
1

]2

]z2GE~z,v!524p
v2

c2
P~z,v!, ~2.1!

where thez axis is along the direction of the incident wav
~Fig. 1!. The refractive indexn is taken to be a constant i
each layer and over the frequency range we are intereste
here. The resonant polarization densityP is zero in the
DBR’s and the spacers. In the QW, it is calculated from
microscopic theory described in the next section. Equat
~2.1! is supplemented by the conditions thatE and]E/]z are
continuous across each interface between two layers. S
only one subband is excited, thez dependence ofP can be
expressed by the band’s confinement wave functionj(z)
Ref. 44:

P~z,v!5uj~z!u2P2D~v!, ~2.2!

whereP2D(v) is the in-plane polarization density.P2D(v) is
in general a functional of the average field inside the Q
EQ(v)5*dzuj(z)u2E(z,v) and may be expanded, withi
the rotating wave approximation, as follows:

P2D~v!5@x (1)EQ#~v!1@x (3)EQEQEQ* #~v!1O~EQ
5 !,

~2.3!

wherex (1) and x (3) are the linear and third-order suscep
bilities of the two-dimensional~2D! model of the QW, re-
spectively, and we have used the notation

@x (1)EQ# i~v!5(
j

x i j
(1)~v!EQ j~v!

@x (3)EQEQEQ* # i~v!5
1

~2p!2 (
jkl

E dv1dv2dv3d~v11v2

2v32v!x i jkl
(3) ~v1 ,v2 ,v3!•EQ j~v1!

3EQk~v2!EQl* ~v3! ~2.4!

with i , j ,k,l being the spatial vector/tensor component in
ces. Substituting the expressions~2.2! and ~2.3! for P(z,v)
in Eq. ~2.1!, we obtain a nonlinear integro-differential equ
tion for the electric field inside the QW. If the incident fiel
is weak, and the dephasing times are not too long, the fi
inside the QW may be expanded perturbatively in the in
dent field ~or its peak amplitude!: E(z,v)5E(1)(z,v)
1E(3)(z,v)1••• for z inside the QW. Then, expanding Eq
~2.1! and collecting terms of the same order, we obtain
sequence of equations, the first two of which are
6-2
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Fnb
2v2

c2
1

]2

]z2GE(1)~z,v!524p
v2

c2
uj~z!u2@x (1)EQ

(1)#~v!,

~2.5!

Fnb
2v2

c2
1

]2

]z2GE(3)~z,v!524p
v2

c2
uj~z!u2$@x (1)EQ

(3)#~v!

1@x (3)EQ
(1)EQ

(1)EQ
(1)* #~v!%,

~2.6!

wherenb is the background refractive index of the QW m
terial. The iterative method of solution of the above equ
tions, with the QW susceptibilitiesx (1) andx (3) as material
input, and the transfer matrices relating the electric field o
side the cavity to that inside the QW, are given in Appen
A. The relevant result is that the third-order reflected (Er

(3))
and transmitted (Et

(3)) fields outside the cavity are related
the incident field (E0) as

Er /t
(3)~zt /zb ,v!5Cr /t~v!@x (3)EQ

(1)EQ
(1)EQ

(1)* #~v!, ~2.7!

EQ
(1)~v!5C(1)~v!E0~zt ,v!, ~2.8!

whereCr ,Ct , andC(1) are the cavity enhancement facto
given in Appendix A~compare Ref. 46!, andzt and zb are
the positions of the cavity’s end points on the left~air! and
right ~substrate! sides, respectively. For the applications co
sidered here,x (1) is dominated by one exciton~heavy-hole!
resonance. The microscopic theory forx (3) in this energy
range, accounting for the interactions among the exciton
treated in the next section.

B. Microscopic theory of the single-quantum-wellx „3…

susceptibility

We work within the DCT scheme,32 which is a perturba-
tive ~in the applied field! density-matrix formalism designe
to efficiently treat Coulomb correlations among carriers
coherent optical processes. Under the assumptions that~i! the
initial state is the ground state, and~ii ! the Coulomb interac-
tion does not induce interband transitions, DCT gives
recipe to derive in principle exact, closed equations of m
tion for all contributing correlation functions up to any give
order in the applied field. Although an approximate micr
scopic treatment of phonon dephasing is possible,47,48 it is a
much more elaborate undertaking that is still being dev
oped. Instead, we will adopt the common practice of lump
dephasings from all sources other than carrier-carrier sca
ing into a set of phenomenological constants.

Our model for the electronic dynamics around the low
absorption band edge in the QW consists of two parab
bands in two dimensions. The Hamiltonian is

Ĥ5Ĥ11Ĥ21Ĥ f ield ~2.9!

Ĥ15(
ke

F\2k2

2me
1EgGae

†~k!ae~k!1(
kh

\2k2

2mh
ah

†~k!ah~k!
04531
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Ĥ25
1

2A (
qÞ0,kk8

V~q!•F(
ee8

ae
†~k1q!ae8

†
~k82q!

3ae8~k8!ae~k!

1(
hh8

ah
†~k1q!ah8

†
~k82q!ah8~k8!ah~k!

2(
eh

„ae
†~k1q!ah

†~k82q!ah~k8!ae~k!

1ah
†~k1q!ae

†~k82q!ae~k8!ah~k!…G
Ĥ f ield5(

ehk
@deh•E~ t !ae

†~k!ah
†~2k!

1dhe•E~ t !ah~2k!ae~k!#,

where me(mh) is the electron~hole! mass,Eg is the band
gap,deh[qe^eur uv& is the transition dipole matrix elemen
V(q)52pqe

2/ebuqu, qe is the magnitude of the electron’
charge,eb is the background dielectric constant of the Q
material, andA is the area of the normalization box. Th
characteristic length and energy scales of this system
respectively, the exciton Bohr radiusa0[\2eb/qe

2mr , mr

being the electron-hole reduced mass, and the 2D exc
RydbergEb[2\2/mra0

2. The subscriptse,h,e8,h8 represent
all quantum numbers other than the momentum of the sin
particle or hole orbitals in the respective bands. As can
seen, only the part of the Coulomb interaction that does
cause an interband transition is retained in the model.
remainder, which is responsible for Auger transitions a
longitudinal-transverse splitting of the exciton modes, is n
important here. As mentioned above, this approximat
makes the tremendous simplification of the many-body pr
lem in the DCT formalism possible. The ground state of t
system is the electron-hole vacuum, which is assumed to
stable against electron-hole creation by virtue of a la
enoughEg .

Within thex (3) regime, DCT expresses the carrier dyna
ics by a coupled pair of equations for the interband polari
tion and the two-electron–two-hole~biexcitonic! correlation.
We follow here Ref. 29~see also Refs. 35 and 49! as far as
the expansion of these equations in the exciton eigenfunc
basis is concerned. As explained above, we restrict the e
tions to the 1s heavy-hole exciton subspace. We denote
p6(t) the interband polarization arising from the optic
transition from the ground state to this subspace:

p6~ t !5(
keh

f* ~k!^ah~2k!ae~k!&d j e1 j h ,61 , ~2.10!

where j e561/2 andj h563/2 are thez components of the
‘‘spin’’ angular momenta of the electron orbitale and the
hole orbital h, respectively, and f(k)5A2pa0 /@1
1(a0k/2)2#3/2 is the normalized 1s heavy-hole exciton wave
function ~assumed to be spin-independent!. We use the sub-
scripts6 to distinguish the two optical transitions~excitons!
6-3
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coupled to right- and left-handed circularly polarized ligh
respectively. In the DCT scheme, the interband polariza
is expanded in the applied field:p65p6

(1)1p6
(3)1 . . . , the

order being indicated by the superscript. Solving the D
equations iteratively, starting from the linear order, one
tains a compact equation for the third-order circularly pol
ized interband polarization~see Refs. 29 and 49 for details!:

i\
d

dt
p6

(3)~ t !

5@«~0!2 ig2#p6
(3)~ t !22V6~ t !APSFp6

(1)~ t !p6
(1)* ~ t !

1VHFp6
(1)~ t !p6

(1)~ t !p6
(1)* ~ t !12p6

(1)* ~ t !

3E
2`

`

dt8G̃1~ t2t8!p6
(1)~ t8!p6

(1)~ t8!

1p7
(1)* ~ t !E

2`

`

dt8@G̃1~ t2t8!

1G̃2~ t2t8!#p7
(1)~ t8!p6

(1)~ t8!, ~2.11!

whereV6(t) is the Rabi frequency~times \), «(q) is the
energy of an exciton with center-of-mass momentumq, and
g2 is a phenomenological dephasing constant of the exc
resonance. The terms proportional toAPSF, VHF, andG̃6(t
2t8) are, respectively, the contributions from phase-sp
filling, the exciton mean field, and the retarded correlatio
due to higher-order~beyond first Born! scatterings between
two excitons and/or the bound biexciton resonance. In te
of the heavy-hole 1s wave function f(k), the constants
APSF andVHF are given by

APSF5(
k

uf~k!u2f~k!5
4A2p

7
a0 ~2.12!

VHF52(
kk8

V~k2k8!uf~k!u2f~k8!@f* ~k!2f* ~k8!#

'1.514a0
2Eb . ~2.13!

The superscriptl51/2 on the retarded correlation kern
G̃l(t2t8) labels the total electron-spin state of the two c
liding excitons:1(2) for triplet ~singlet!. This classification
takes advantage of the block diagonality of the effective tw
exciton Hamiltonian in the total electron-spin channels.
terms of this HamiltonianHxx(l) ~the superscript ‘‘xx’’
stands for ‘‘exciton-exciton’’!, the retarded correlation ker
nel is given by

G̃l~ t2t8!5
1

2i\
u~ t2t8! (

qq8q9
Wq,0

xx(l)* @exp$2~ i /\!~Hxx(l)

2 igbI !~ t2t8!%#q,q9@ I 2lS#q9,q8
21 Wq8,0

xx(l) ~2.14!

with

Hq,q8
xx(l)

52«~q!dqq81(
q9

@ I 2lS#q,q9
21 Wq9,q8

xx(l) . ~2.15!
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Here, Wq,q8
xx(l) is the Coulomb matrix element including ex

change between an initial exciton state with relative mom
tum q8 and the final stateq, andSq,q8 is a matrix of overlap
integrals between the nonorthonormal antisymmetrized t
exciton basis states. The expressions of these two mat
are given in Appendix B. We have included in Eq.~2.14!
another phenomenological dephasing constantgb for the
two-exciton states.

The 2D polarization density in Sec. II A is given in term
of the interband polarization. DenotingP2D

(1)[@x (1)EQ
(1)# and

P2D
(3)[@x (3)EQ

(1)EQ
(1)EQ

(1)* #, we have

P2D6
(n) 52d6

0 p6
(n) , n51,3 ~2.16!

where d6
0 [f̃(0)qe^r 6&* , f̃(0) is the configuration space

1s exciton wavefunction at r50, and ^r 6&[^cu(x
6 iy)/A2uv& is the transition dipole matrix element. Fourie
transforming Eq.~2.11! to frequency space, and noting E
~2.16!, yields the third-order susceptibility defined in E
~2.3!. Within the heavy-hole 1s model space,x i j

(1) ~with i , j
5$1,2%) is a scalar:x i j

(1)5d i j x
(1), and, as can be see

from Eq. ~2.11!, x i jkl
(3) has only two independent nonvanis

ing components:

x i jkl
(3) ~v1 ,v2 ,v3!5

1

2
@d i j dklx ik

(3)~v1 ,v2 ,v3!

1d ikd j l x i j
(3)~v2 ,v1 ,v3!#, ~2.17!

i , j ,k,l 51/2, andx11
(3) 5x22

(3) , x12
(3) 5x21

(3) . Explicitly,

x i j
(3)~v1 ,v2 ,v3!

52
x (1)~v1!x (1)~v2!x (1)* ~v3!x (1)~v11v22v3!

qe
4u^r 1&u4uf̃~0!u4

3@d i j G
PSF~v1 ,v2!1Ti j ~v11v2!#, ~2.18!

where

T11~V!5VHF12G1~V!, T12~V!5G1~V!1G2~V!.

~2.19!

HereG(V) is the Fourier transform ofG̃(t),

G(l)~V!5
1

2 (
qq8

Wq,0
xx(l)*

3F 1

\V2Hxx(l)1 igb

~12lS!21G
q,q8

Wq8,0
xx(l) ,

~2.20!

the phase space filling contribution is

GPSF~v1 ,v2!5APSFqe
2u^r 1&u2f̃* ~0!

3F 1

x (1)~v1!
1

1

x (1)~v2!
G . ~2.21!
6-4
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With all effects extraneous to our Hamiltonian embodied
the dephasing parameterg2, the linear polarization is given
within our model by a Lorentzian

x (1)~v!52
qe

2u^r 1&u2uf̃~0!u2

\v2«~0!1 ig2
, for v.0. ~2.22!

In this case, the bracketed sum of two reciprocalx (1)’s in Eq.
~2.22! reduces to a function depending only on the sum
the two excitons’ energies: 2/x (1)(V/2), V5v11v2,
which is the form we use in this paper. In a more ex
treatment including, for example, phonon dynamics, the
citon line shape@ Im(x (1))# exhibits the so-called Urbach ta
and is different from a Lorentzian, in which caseGPSF in Eq.
~2.21! is a function ofv1 andv2 separately.

Equation~2.18! has a very simple structure. It gives th
third-order susceptibility as a product ofx (1)’s ~which carry
single-exciton propagation effects! and two-exciton Pauli-
blocking and interaction terms. We have calculatedGl by
numerically diagonalizing the HamiltonianHxx(l) and con-
structing the Green’s operator (\V2Hxx(l)1 igb)21 as an
eigenfunction expansion. Note that sinceWxx(l) has an elec-
tron ~or hole!-exchange term, optically inactive excito
states are also included in the eigenfunction basis here
complication arises here regarding the overlap matrixS ~also
truncated to the 1s subspace!: it has one eigenvalue close t
1, leading to a spurious peak structure in the triplet-st
correlation kernelG(1)(V).49 Although this spurious peak
emerges only at an energy above the spectral range~25 meV
,\v2«(0), 5 meV! under consideration in this paper,
nevertheless indicates that the presence of the matrix
2S)21 might amplify the shortcomings of the 1s approx
mation, and a quantitative analysis might be better withS
being neglected. A detailed discussion of this issue will
given in Ref. 49. All the results shown in this paper, unles
is stated otherwise, are calculated withSset to zero. We note
that the issue of whether to includeS is not critical to the
particular application of our theory examined in this pap
The conclusions reached below about various approxi
tions are valid with or without the overlap matrix. In the ne
section, the predictions withS included are shown~cf. Fig.
13! to also fit the experiment quite well.

Figures 2 and 3 showTi j and its componentsVHF and
G6(V), together withGPSF(V) for GaAs parameters:me
50.067m0 ,mh50.1m0, where m0 is the electron mass in
free space,eb513, andgb51.5 meV.G2(V) has been fur-
ther broken down into contributions from the bound biex
ton and the two-exciton continuum states.

If Wxx(l) were Hermitian, and if we takeS50, the quan-
tity Ti j (V) defined in Eq.~2.20! has the form of the off-
energy-shell forward scattering~or T-! matrix element for
two ~virtual! particles at zero momentum and total energyV
~compare Ref. 50!. The truncation to the 1s subspace and th
inclusion of exchange result in a non-HermitianWxx(l) in
our case, but we will see, in spite of this non-Hermiticit
general scattering theory~e.g., Ref. 51! is still quantitatively
useful in understanding the behavior of our numerical
sults. For example, it is known that, intwo dimensions, the
zero-momentum off-energy-shellT-matrix for two colliding
04531
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particles behaves asymptotically at low energies as52 T(z)
'22p\2/Mr1/ln@(2z)/«c#, wherez is the ~complex! en-
ergy in the center-of-mass frame andMr is the reduced mass
This asymptotic behavior is valid for any generic Hermitia
short-range, even nonlocal, interaction, and it holds foruzu
!«c , where«c is an energy scale that depends on the s
cific interaction for each problem. For an equilibrium 2
quantum gas in the dilute limit, the effects of the interacti
on the system’s thermodynamic behavior are summarize
«c @Ref. 53#. In terms of excitonic terminology and units, th
asymptotic formula reads:

T~\V1 igb!'2
2pa~12a!

ln$2@\V22«~0!1 igb#/«c%
a0

2Eb .

~2.23!

FIG. 2. Exciton-exciton~off-energy-shell! forward-scattering
amplitude at zero momentum in the co-circularly polarization ch
nel and its constituent components.

FIG. 3. Exciton-exciton~off-energy-shell! forward-scattering
amplitude at zero momentum in the counter-circularly polarizat
channel and its constituent components.
6-5
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wherea5mh /(me1mh), 2«(0) is the continuum edge. In
Figs. 2 and 3,Ti j shows only a hint of a nonsmooth logarith
mic behavior around the continuum edge, but we have fo
in more detailed numerical studies49,54 that, for gb↘0 and
the rangeu\V22«(0)u,0.01Eb , our computedTi j obeys
almost exactly the 1/ln behavior of Eq.~2.23! @with «c

'0.6Eb and a numerical constant in the numerator'1.4
times that in Eq.~2.23! in the ~11! channel, for example#.
Equation~2.23! implies that, in the (11) configuration for
instance, there is exact cancellation between the Hart
Fock and the correlation terms at\V22«(0)5gb50,
which is related to the sum rule of Ref. 41. The 1/ln functi
however varies rapidly near the origin, and our numeri
results~Fig. 2! show thatT11 is no longer small only a shor
distance away from the continuum edge and/or for a mod
ate value ofgb , 1 meV say. This tendency for the correlatio
term to partially cancel the Hartree-Fock term was also no
in Refs. 37,42.

Again, if Wxx(l) were Hermitian,2Im Gl(V) would be
non-negative and would yield the rate of scattering of t
virtual excitons of total energy\V and zero momentum into
real excitons of the same energy\V and momenta given by
the dispersion relation\uqu5A@\V22«(0)#(me1mh). Fur-
thermore, if ImGl(V) goes to zero sufficiently fast atV
→`, then Gl is analytic in the upper half of the comple
energy plane. Then forgb↘0, the real and imaginary part
of G(l) would obey a Kramers-Kronig relation, according
which ReGl would be negative at large negative energi
cross zero~at least once! inside the support of ImGl ~i.e., the
spectrum of the two-exciton Hamiltonian!, and is positive for
large positive energies. Figures 2 and 3 show that, even
our non-HermitianWxx(l), Gl displays these behaviors qui
well within the relevant energy range (210 meV,\V
22«(0),10 meV) in this paper. At higher energies, o
calculated 2Im Gl(V) actually violates non-negativity
slightly over a very short energy span, which disallows
extension to these energies of the present model with
modifications. These issues will be discussed in more de
in Ref. 49.

Our numerical results thus support the interpretation, w
the caveats discussed above, ofTi j (V) as the forward-
scattering off-energy-shellT matrix for two virtual excitons
~Fig. 4!. As is well known, theT-matrix plays a dominan
role in the statistical mechanical properties of dilute nonid
quantum gases.55 The microcavity FWM experiment to b
analyzed in the next section may thus be considered a p
of this important quantity for the interacting exciton syste
The identification of2Im Gl(V) with the rate of virtual-to-
real exciton scattering also gives a microsco
underpinning56–58of excitation-induced dephasing as usua
used in phenomenological models.59–66. However, the physi-
cal process underlying excitation-induced dephasing depe
strongly on the excitation conditions, so that processes
ferent from those considered here may be relevant in o
experimental settings.

In x (3) treatments, the second-Born approximation, cor
sponding to keeping only the first term~kinetic energy! in
Eq. ~2.15!, is often used to estimate the continuum contrib
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tions to the exciton-exciton correlation~e.g., Ref. 67!. While
this approximation may be adequate in 3D, it is quanti
tively unsatisfactory in 2D because, for vanishinggb ,
Im G1 and the continuum part of ImG2 would develop a
disconti nuity at 2«(0) @see Eq.~2.20!# while their real parts
would develop logarithmic divergences. A finitegb would
temper these singular behaviors, but Fig. 5 shows that, e
at the relatively largegb51.5 meV, the residual effect o
the singularity is still considerable. In the next section,
will show that the experimental results that we analyze
sufficiently sensitive to distinguish between the predictio
of the exact-scattering theory and its second-Born appr
mation.

The Markovian limit is another approximation sometim
used to simplify computations of Coulomb correlations
the continuum~e.g., Ref. 67!. In the present context, we
define this limit to be the short memory-time limit of th
continuum part of the retarded exciton-exciton correlat
kernelG̃6(t2t8) in Eq. ~2.11!. More precisely, it is the as
sumption that the continuum part ofG̃6(t2t8) decays on a
time scale fast compared to the variation ofei«(0)tp6

(1)(t). If
this is the case, one may to a good approximation replacet8,
the time argument ofp6

(1) inside the integral in Eq.~2.12!, by
t and takep6

(1) outside the integral. In frequency space, th
amounts to approximating theT matrix elements by their

FIG. 4. ~a! Schematic of the excitonT matrix measured in co-
herentx (3) experiments. The momenta of the initial and final sta
are zero, but the energy is given by the sum of the frequencie
the light fields that create the excitons.~b! Schematic of the domain
of the excitonicT matrix. The cross and dashed line indicate t
position of the biexciton pole.

FIG. 5. Exciton-excitonT-matrix in the second-Born approxi
mation.
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THIRD-ORDER EXCITON-CORRELATION AND . . . PHYSICAL REVIEW B64 045316
respective values atV52«(0). As noted above, theT-matrix
at this energy vanishes in the small-damping limitgb↘0,
thus guaranteeing the Markov approximation to be poo
this limit. Forgb51.5 meV, Figs. 3 and 2 shows that takin
this approximation still reduces quite substantially the c
tribution of ImG, the scattering rate of virtual excitons to re
excitons, in the continuum. We will also discuss the effect
this approximation on the FWM signals in the next sectio

III. COMPARISON WITH EXPERIMENT

In this section we specialize to the degenerate four-wa
mixing ~DFWM! configuration and compare our calculat
signals with the experimental results reported in Refs. 14
In the experiment, a 120-Å GaAs quantum well with a p
of 670-Å AlAs spacers were used. The right DBR was co
posed of 22 pairs of GaAs/AlAs layers and the left DBR 14
pairs. The exciton resonance energy«(0) was fixed while the
cavity resonance frequencyvc could be varied. Two long-
pulsed beams of the same central frequency were inciden
the left surface, the pump~p! beam being exactly normal t
the surface and the probe~t! beam slightly angled~Fig. 1!.
The intensity of the reflected FWM signal, which is oppos
in direction to the incident probe beam, was measured
function of the beam frequency. This measurement was
formed for various values of the cavity-exciton detuningD
[\vc2«(0) and various polarization combinations
pump (sp), probe (s t), and signal (ss) beams.

We show in Fig. 6 the reflected FWM signal intensiti
for zero exciton-cavity detuning as calculated in our the
and compare them to the measurements in Refs. 14,18.
results are displayed as functions of the beam frequency
four polarization combinations, which are designated in
order (sp ,s t ,ss), s5x,y,1, or 2. Also shown is the lin-
ear reflectivity, from which we extract our modelx (1) pa-
rameters: «(0)51.552 eV, g250.75 meV, and
uf̃(0)^r 1&u50.035. The other parameter values for t
electron-hole hamiltonian Eq.~2.9! have been given at th
end of Sec. II B. The phenomenological damping const
gb in Eq. ~2.21! represents the dephasing and decay of
correlated, coherent two-exciton systems and is, for homo
neously broadened excitons, commonly attributed to ra
tive decay and phonon scattering.68 Its value is set to 2g2
here, based on simple considerations on phonon depha
that have received some experimental support recent68

While this estimate may turn out not to be perfectly accura
we note that the predicted FWM signals here are not v
sensitive to variations ofgb up to several tens of percen
The refractive indices are set to 3.59 for GaAs and 2.98
AlAs. A small imaginary part, 0.0015, is added to each
fractive index to fit the experimental width of the cavi
resonance.

The linear reflectivity spectrum shows the characteris
normal-mode splitting. The FWM signals are dominated
peaks at or very close to the two polariton energies. T
signals have been normalized by matching the theore
and experimental peak heights at the lower polariton pea
the (x,y,y) channel. The relative strengths of the sign
peaks, and their polarization dependence, are, as explain
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detail below, manifestations of the microscopic man
exciton dynamics. One notes here that there is good qua
tative agreement between our theory and the experimen

To better interpret the data, we first give a detailed ana
sis of the spectral features of the FWM signals within o
theory. Each of the three electric fields in Eq.~2.6! is a sum
of the pump and the probe fields:EQ

(1)5EQ
(1)p1EQ

(1)t . The
slightly oblique positioning of the probe beam allowed t
experimentalist to selectively measure the FWM signa
which comes from the field combinatio
EQ

(1)p(v1)EQ
(1)p(v2)EQ

(1)t* (v3). In our theory that treats only
normally incident beams, retaining only this combination

FIG. 6. Comparison between theory~solid line! and experiment
~dashed line! for frequency-domain degenerate FWM signals~FD-
DFWM! from a quantum-well microcavity at zero detuning b
tween the lowest QW exciton resonance and the cavity resona
both at 1.552 eV. The polarizations in each panel are designate
the order~pump, probe, signal!. The linear reflection spectrum i
shown on top.
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N. H. KWONG et al. PHYSICAL REVIEW B 64 045316
a source of thex (3) interband polarization should give a
adequate approximation to the signals in the slightly ang
configuration. We assume continuous-wave input bea
E0

p(v1)52pEpd(v12v) etc., wherev denotes the beam
frequency, in which case, only the diagonal (v15v25v3
5v) part of the third order susceptibility Eq.~2.19! contrib-
utes to the responses:

x i j
(3)~v,v,v!52

ux (1)~v!u2@x (1)~v!#2

qe
4u^r 1&u4uf̃~0!u4

@d i j G
PSF~2v!

1Ti j ~2v!#, i , j 51/2. ~3.1!

Under these conditions, the FWM signal is also a monoch
matic beam of frequencyv. Its time-averaged flux intensity
for the polarization combinations in the experiment can
written, from Eqs.~2.4!, ~2.7!, ~2.8!, and~3.1!, as

I r (sp ,s t ,ss)
(3) ~v,D!5D~v,D!uT̃(sp ,s t ,ss)

~v!u 2 uE pu4 uE tu2,

~3.2!

where the factor

D~v,D!5
c

8p
uCr~v,D!u2 uC(1)~v,D!u6

ux (1)~v!u8

uqe^r 1&f̃~0!u8

~3.3!

carries the dependence on the cavity and the single-exc
propagation, andT̃(sp ,s t ,ss)

(v) contains the exciton interac
tion and Pauli-blocking effects

T̃(x,x,x)~v!5GPSF~2v!1T11~2v!1T12~2v!,

T̃(x,y,y)~v!52GPSF~2v!2T11~2v!1T12~2v!,

T̃(x,1,1)~v!5GPSF~2v!1T11~2v!,

T̃(x,1,2)~v!5T12~2v!. ~3.4!

For the purpose of understanding excitonic dynamics,
advantage of writing the signal in this way is clear: the d
pendences on polarization combination and cavity-exc
detuningD, reside separately inT̃(sp ,s t ,ss)

(v) andD(v,D)

respectively.D(v,D) shows two peaks at the polariton e
ergies that shift when the detuningD is varied. Hence thev
dependence ofuT̃(sp ,s t ,ss)

(v)u predicts the variations of the

signal peak height withD. On the other hand, the relativ
contributions of the various many-body ingredients
uT̃(sp ,s t ,ss)

(v)u, and the reinforcements and cancellatio
among them, governs the polarization dependence of the
nal at a fixed detuning.

In Fig. 7 we plot the functionsuT̃(sp ,s t ,ss)
(v)u2. No com-

ment is needed on the behavior ofuT̃(x,1,2)(v)u2, since it is
just one of theT matrices discussed above. We can summ
rize how the behaviors of the other three functions arise
gebraically as follows. As seen in Fig. 2, Re(GPSF1T11) is
higher below than above the exciton resonance. This as
metry is partially compensated for by the concentration
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Im(T11) above «(0) to give the resulting shape o
uT̃(x,1,1)(v)u2. Re(GPSF1T11) is positive over the whole
energy range, while Re„T12(2v)… crosses from negative to
positive around the biexciton energy. Equation~3.4! then
implies that this asymmetry suppressesuT̃(x,x,x)(v)u2, but
boostsuT̃(x,y,y)(v)u2, below half the biexciton energy com
pared to above the exciton resonance. This trend is r
forced~partially offset! for uT̃(x,x,x)u2 (uT̃(x,y,y)u2) by the con-
centration of the imaginary parts on the high-energy side

Combining the functional behaviors ofD(v,D) and
uT̃(sp ,s t ,ss)

(v)u2 in Fig. 7, we can easily understand th
variations of the FWM signals. A sharper assessment of
contributions from various processes can be obtained
omitting selective terms from the expressions forTi j in the
calculations. First, it has long been realized that omitt
Coulomb correlations among the excitons, i.e., includ
only the Hartree-Fock and phase-space filling terms, res
in identical FWM signals in the (x,x,x), (x,y,y), and (x,
1,1) configurations and no signal in (x,1,2). Less obvi-
ous is the differentiation of the signatures of the several ty
of correlations. From the above considerations, we exp
switching off the bound biexciton would reduce the streng
at the lower polariton peak in the (x,1,2) configuration and
would reduce the difference between the signals in
(x,x,x) and the (x,y,y) configurations. Switching off the
excitation-induced dephasing~EID! (Im T11 and the con-
tinuum part of ImT12) would reduce the signal strength
the upper polariton peak for all configurations. These exp
tations are confirmed by the results shown in Figs. 8 and
The importance of the bound biexciton for the (x,1,2) con-
figuration has also been pointed out in Refs. 30 and
Switching off the real part of the continuumTi j leads to
some changes in the signals compared to the full calculat
~Fig. 10!, but, while these changes can be traced in de
back to the features of theT matrix, they can not be easily
summarized. In sum, within the present model, good agr
ment with the experiment is achieved only if all the man
body effects are included.

Among the ingredients ofx (3), the Hartree-Fock, phase
space filling are easily calculated, and wave functions for
bound biexciton are available in the literature~e.g., Ref. 69!.
They can also be set in parametrized form with one or t
parameters in each to be fitted to experiments. By contra
proper calculation of the exciton-exciton continuum corre
tions involves at least the computational effort as that in

FIG. 7. Interaction-dependent part of the FWM signals: theT
matrix ~plus GPSF) squared for various polarization configuration
6-8
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THIRD-ORDER EXCITON-CORRELATION AND . . . PHYSICAL REVIEW B64 045316
calculation reported in this paper. A natural question is: c
the continuum correlations be reliably estimated using so
simple approximations, e.g. the second Born or the Mark
In other words, are the experiments under considerations
ficiently sensitive to the correlated-exciton dynamics beyo
those captured in these approximations? We have alre
discussed the effects of each of these approximations on
T matrix in Sec. II B. To examine the question of meas
ability, we have calculated the corresponding FWM signa
As shown for zero detuning in Fig. 11, the results with t
second-Born approximation deviate quite drastically fro
both the experimental data and the full calculations. T
worst effect of taking this approximation is a large spurio
transfer of signal strength from the lower polariton peak
the upper one~with some additional enhancement! in the
(x,1,1) configuration. This basically results from th
strong variation of ReG1(2v) at low energy@\v close to
«(0)], which, as discussed in Sec. II B, comes with t
strong low-energy peak in ImG1(2v). Another sizable dis-
crepancy with experiment is the spurious enhancement o
upper peak in the (x,x,x) configuration compared to, say, th
lower peak in (x,y,y). The present FWM data thus appe
sufficiently sensitive to the energy variations of the Coulo

FIG. 8. Comparison between theory~solid line! and experiment
~dashed line! for FWM signals at zero detuning. The theoretic
signals are calculated without the contributions from the bou
biexciton ~cf. Fig. 6!.
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correlations between two continuum excitons to distingu
between a correct calculation of the scattering matrix and
lowest-order~first and second! perturbative approximations
The Markov approximation to the continuum part of theT
matrix was discussed in Sec. II B, where its major effect w
shown to be a reduction of Im(Ti j ) above the exciton edge
Figure 12 shows its effects on the calculated FWM signal
zero detuning, which, as expected, are similar to those s
above in Fig. 9.

The above results were calculated, as explained in
previous section, with the overlap matrixS in Eqs.~2.15! and
~2.16! set to zero. We have also performed the calculatio
including S, the predicted FWM signals of which are com
pared to the experiment in Fig. 13. Although the agreem
is slightly worse than that in Fig. 6, the predicted signals s
give a valid description of the data. In other words, althou
the T matrices calculated with and withoutS show some
quantitative differences, their energy and polarization dep
dences are sufficiently similar around the two-exciton c
tinuum edge that the experimental data being analyzed
not conclusively favor either one.

The results presented in this section clearly show that
microscopic and fermionic description of exciton corre
tions in the third-order FWM signal of quantum-well micro

d

FIG. 9. Comparison between theory~solid line! and experiment
~dashed line! for FWM signals at zero detuning. The theoretic
signals are calculated without the contributions from EID, or t
continuum part of ImG6 ~cf. Fig. 6!.
6-9



t a
he
-
ng

e
av
c

o

a

se
a
in
ee

theo-
ents
or-
of

see

hen
s-
nd

n

e-
ive
x-
to
ed
ith
but
ts

st

t-
on

t-
the

N. H. KWONG et al. PHYSICAL REVIEW B 64 045316
cavities can explain the considered experimental data. I
lows for a detailed analysis of the relative weight of t
various many-body effects~excitonic phase-space filling, ex
citonic Hartree-Fock, exciton-exciton correlations includi
biexcitons! for different polarization configurations.

In the remainder of the section, we critically review th
most important assumptions and approximations we h
taken in our theory in order to make it computationally tra
table and otherwise simpler. They are:~1! The classical treat-
ment of the radiation field,~2! including onlycoherentpro-
cesses and truncating the resulting DCT hierarchy
equations to third order in the external field,~3! the use of a
zero-width model for the quantum well,~4! neglecting all
valence bands other than the highest heavy-hole subband
band-mixing effects, and~5! the restriction of the four-
fermion Hilbert space to the subspace of two 1s heavy-hole
~hh!-excitons in solving the third-order DCT equations.

The x (3) DCT equations strongly coupled to aquantized
cavity radiation field has been formulated,70,71 but applica-
tions at the same detailed quantitative level as the pre
work appear not to have been attempted. Improvements
extensions of our theory along these lines are now be
considered. At this point, we just note that the good agr

FIG. 10. Comparison between theory~solid line! and experi-
ment~dashed line! for FWM signals at zero detuning. The theore
ical signals are calculated without the contributions from the c
tinuum parts of ReG6 ~cf. Fig. 6!.
04531
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ment, displayed here and elsewhere, achieved between
ries based on the semiclassical approaches and experim
suggests that the quantized-field effects may not be imp
tant for these experiments. For works on other aspects
quantized-field effects in coherent semiconductor optics,
e.g., Ref. 72 and references therein.

Neglecting incoherent as well as higher order~in the ap-
plied field! processes are generally considered justified w
the field strength is sufficiently low. Adopting a more reali
tic finite-width model of the QW and/or a more realistic ba
structure~see e.g., Ref. 73,74! would introduce changes in
the ‘‘input ingredients’’ to our theory: basically the excito
binding energy and the exciton wave function~s! used in the
calculation of the matrix elements. While these improv
ments on our theory are not likely to change the qualitat
behavior of theT matrices, quantitative effects are to be e
pected, the magnitude of which is unfortunately not easy
estimate at this point. As for the optical selection rules us
in our simplified model, we note that they are consistent w
the selection rules obtained within a spherical model,
including all band-coupling and Coulomb-correlation effec
within the x (3) regime.75

The truncation to the 1s hh-subspace is perhaps the mo

-

FIG. 11. Comparison between theory~solid line! and experi-
ment~dashed line! for FWM signals at zero detuning. The theore
ical signals are calculated in the second-Born approximation to
continuum parts of theT matrix ~cf. Fig. 6!.
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drastic approximation taken here. All 1s states, including
optically inactive ones, are included in the sum over int
mediate states in theT matrix. The contributions from al
other exciton eigenstates are neglected. Our numerical s
ies, to be reported in Ref. 49, show the~first-order! coupling
between the 1s state and other exciton states to be sm
which justifies the truncation to a certain extent. Also b
cause of the truncation, inclusion of the overlap matrixScan
be problematic. As discussed above, we set it to zero h
Another known defect of the truncation is the underestim
tion of the biexciton binding energy: the calculated bindi
energy here is only'70% percent of the best variation
estimate.76 We have discussed the consequence of this
derestimation to the comparison with experiment in Sec.
These issues can only be sorted out satisfactorily when
sults of calculations in the full (2e,2h) Hilbert space, per-
formed to the same numerical accuracy as our calculati
are available for comparison. The key features of the FW
signals that we have identified are likely to be independen
this approximation.

IV. SUMMARY

We have presented a microscopic theory of third-or
degenerate four-wave-mixing response of a quantum we

FIG. 12. Comparison between theory~solid line! and experi-
ment~dashed line! for FWM signals at zero detuning. The theore
ical signals are calculated in the Markov approximation to the c
tinuum parts of theT matrix ~cf. Fig. 6!.
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a microcavity around the lowest exciton resonance. It c
sists of a classical treatment of the radiation field coupled
a coherent dynamics-controlled-truncation~DCT! treatment
of the quantum many-electron-hole system. Truncating
DCT equations to the heavy-hole 1s-exciton subspace, we
arrived at an effective exciton-exciton scattering theory,
pressing thex (3) susceptibility in terms of an off-energy
shell exciton scattering~or T) matrix. Owing to the dimen-
sionality ~52! of the system, theT matrix is highly
nonperturbative around the exciton-exciton continuum ed
necessitating an exact diagonalization of the 1s-exciton
Hamiltonian for its calculation. The failure of two commo
approximations, second Born and Markov, were discusse

The theory presented here yields predictions for the
larization dependence of the FWM signals as well as
relative signal strengths at the two polariton peaks. Th
predictions are in quantitative agreement with the exp
mental data reported in Refs. 14,18. Such a quantitative c
parison allows unambiguous identification of many-parti
correlations, including both biexciton and two-exciton co
tinuum scattering.

Our discussions have also identified issues to be reso
in the future, which include the effect of the quantized natu

-

FIG. 13. Comparison between theory~solid line! and experi-
ment~dashed line! for FWM signals at zero detuning. The theore
ical signals are calculated with the overlap matrixS included in Eqs.
~2.16! and ~2.21! ~cf. Fig. 6!.
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of the photon and that of the higher-excitonic states on
1s-exciton scattering. The latter is especially important if w
wish to extend the validity of our present theory to high
light frequencies.
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APPENDIX A: RADIATION FIELD IN THE QUANTUM-
WELL MICROCAVITY

In this appendix, we summarize the calculations of
electric field inside the QW and the enhancement fac
relating the field inside the QW to that outside the cavi
The treatment here will be brief, more detailed explanatio
of the methods being readily available in the standard re
ences~see, e.g., Ref. 3 and references therein!.

We start with some notational conventions. The z coor
nates of the cavity’s left end, the cavity’s right end, t
QW’s left end, and the QW’s right end are labeledzt

6 , zb
6 ,

z0
6 , andz1

6 , respectively. The superscript1(2) denotes the
rm

t
t

’s
ns
a-
ve

ry
s

er
tri

e

04531
e

r

e
rs
.
s
r-

i-

right~left! side of the interface at the point in question~Fig.
1!. In Sec. II A, the electric field inside the QW has be
expanded perturbatively in the externally applied field. T
first and third-order terms are to be obtained as the solut
to Eqs.~2.5! and~2.6! respectively. First we fix the confine
ment wave function as simplyuj(z)u251/L, whereL is the
well width. For sufficiently smallL, which is the case here
the third-order susceptibility that results is not sensitive
the specific choice of this wave function. Being a line
equation, Eq.~2.5! is easily solved~e.g. by Green’s func-
tion!. Its general solution may be written as

E(1)~z,v!5E(1)1~z0
1 ,v!exp$ ikQ~z2z0

1!%

2E(1)2~z0
1 ,v!exp$2 ikQ~z2z0

1!%

1
4p

nb
2L

x (1)~v!EQ
(1)~v!@cos„kQ~z2z0

1!…21#,

~A1!

where kQ5nbv/c. The solution depends on two undete
mined parametersE(1)1(z0

1 ,v) and E(1)2(z0
1 ,v) that give

the field and itsz derivative atz0
1 , the left end of the QW.

By integrating both sides of Eq.~A1! over z, the averaged
field over the QW is obtained to be
EQ
(1)~v!5

E(1)1~z0
1 ,v!$exp@ ikQ~z2z0

1!#21%1E(1)2~z0
1 ,v!$exp@2 ikQ~z2z0

1!#21%

ikQLF11
4p

nb
2L

x (1)~v!S 12
sin~kQL !

kQL D G . ~A2!
be

the

rix
Using EQ
(1)(v) as the driving field for the third order DCT

equation in Sec. II B, we obtain the source te
@x (3)EQ

(1)EQ
(1)EQ

(1)* # to Eq. ~2.6!, which may again be solved
in the same way as Eq.~2.5!. The solution, which we do no
write down here, is used to calculate thex (3) enhancemen
factor below.

The propagation of the electric field through the DBR
and the spacer layers are treated by the standard tra
matrix formalism. As solution to the Maxwell wave equ
tion, the electric field in each dielectric layer, with refracti
index n, is written as

E~z,v!5E1~ z̄,v!eik(z2 z̄)2E2~ z̄,v!e2 ik(z2 z̄), ~A3!

where k5nv/c and E1( z̄,v) and E2( z̄,v) are, respec-
tively, the right and left going field amplitudes at an arbitra
point z̄ inside the layer. Written as a column vector, the
field amplitudes are related to those in other layers by
32 matrices that depend only on the material paramet
Referring to Fig. 1, at the interface between two dielec
layers, with refractive indexn1 (n2) on the left~right! say,
the transfer matrixM21 relating the field amplitudes on th
right to those on the left of the interface is
fer

e
2
s.
c

S ER
1

ER
2D 5M21S EL

1

EL
2D , M215

1

2S n1

n2
11

n1

n2
21

n1

n2
21

n1

n2
11
D .

~A4!

Another matrix: Nj5diag(eik jdj ,e2 ik j dj), propagates the
field amplitudes across~from left to right! a dielectric layer
of width dj and refractive indexnj , with kj5njv/c. The
transfer matrix between any two layers in a DBR can
constructed as a product of theseM’s andN’s. The propa-
gation through the QW has the added complication of
resonant polarization. Denoted byMQW , the transfer matrix
that propagates thefirst-orderfield amplitudes fromz0

2 to z1
1

can be obtained with Eq.~A1! and the interface~dis!conti-
nuity conditions. In this work we have only used theL→0
limit of MQW , which is

MQW5S 11b r 2b r

b r 12b r
D , b r5 i

2pv

nsc
x (1)~v!, ~A5!

wherens is the spacer refractive index. The transfer mat
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propagating the first-order field across the entire QW mic
cavity MCAV can thus be written asMCAV5MBMQWMT,
whereMT propagates across the left DBR fromzt

2 to z0
2 and

MB across the right DBR fromz1
1 to zb

1 . MT and MB are
products ofM’s andN’s as explained above.MCAV repre-
sents two linear equations, the solution of which is fixed
two boundary conditions at the ends of the cavity: the inco
ing field on the left side is the applied field, and there is
incoming field on the right side. With the solution, the line
enhancement factorC(1), relating the field average inside th
QW EQ

(1) to the incident fieldE0, is given by

C(1)~v!5t112t212
m21

m22
~ t122t22!, ~A6!

where t i j and mi j ,i , j 51,2 are the elements ofMT and
MCAV , respectively.

The solution to Eq.~2.6! gives the connection between th
third-order field amplitudes outside the two ends of the Q
which again in theL→0 limit, is given by

S E(3)1~z1
1!

E(3)2~z1
1!

D 5MQWS E(3)1~z0
2!

E(3)2~z0
2!

D
1

2pv

nsc
i @x (3)EQ

(1)EQ
(1)EQ

(1)* #S 1

1D .

~A7!

These amplitudes are again propagated to outside the c
by MT andMB . Since the third-order field originating from
inside the QW, the appropriate boundary condition is tha
zero incoming field on both ends. The cubic enhancem
factorsCr andCt , relating the third order fields outside th
cavity,Er

(3)(zt
2 ,v) andEt

(3)(zb
1 ,v) respectively, to the third

order interband polarization inside the QW, is given by

Cr~v!522p i
v

nsc
Fb211b22

m22
G , ~A8!

Ct~v!52p i
v

nsc
Fb111b122

m12

m22
~b211b22!G , ~A9!
er

s

h,

G

04531
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wherebi j ,i , j 51,2 are the elements ofMB .

APPENDIX B: COULOMB AND OVERLAP MATRICES

In Eq. ~2.15! we wrote the effective-exciton Hamiltonia
in terms of the Coulomb matrixWxx(l) and the overlap ma-
trix S. We give the explicit expressions of these matrices
this appendix.

The Hamiltonian is block diagonal in the total electro
spin states:l51(2) for triplet ~singlet!. In this basis, the
Coulomb interaction between two 1s excitons from an initial
state with relative momentumq8 to a final state withq is

Wq,q8
xx(l)

5Wq,q8
xx(l)udirect1lWq,q8

xx(l)uex , ~B1!

where

Wq,q8
xx udirect5V~q2q8!M ~q2q8!M ~q82q!

Wq,q8
xx uex5(

kk8
V~k2k8!f* „k1a~q2q8!…

3f* @k81b~q1q8!#@f~k!2f~k8!#

3@f„k1a~q2q8!1b~q1q8!…

2f„k81a~q2q8!1b~q1q8!…#. ~B2!

Herea5mh /(me1mh), b5me /(me1mh), andf(k) is the
1s-exciton wave function. In the direct term, the so-call
excitonic transition element is given by

M ~q!5(
k

f* ~k!@f~k1bq!2f~k2aq!#. ~B3!

We note that the direct term goes to zero at lowq, leaving
the exchange term mostly responsible for the low-energy
havior of theT matrix discussed in Sec. II B. Finally, th
overlap matrix element is

Sq,q85(
k

f* ~k1aq!f* ~k1q81bq!f~k1aq8!f

3~k1q1bq8!. ~B4!
.
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