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Efficient self-consistent pseudopotential calculation of nanostructured devices
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~Received 10 July 2000; published 21 June 2001!

We have developed a full-band pseudopotential-based approach to describe semiconductor nanostructures.
The method relies on the bulk Bloch functions expansion of the system wave function that guarantees an
efficient integration of the full-band approach in self-consistent schemes where Schro¨dinger and Poisson
equations are solved iteratively. In order to gain efficiency of the method a suitable separation between
structure-dependent and material-dependent contributions to the system Hamiltonian is presented. Results are
shown for typical nanostructures.
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I. INTRODUCTION

Nanostructures based on semiconductor heterojunct
are nowadays commonly used in electronic and optoe
tronic devices. For instance, long-wavelength lasers for t
communications may have active regions formed by a
quence of quantum wells obtained from the heterojunction
two or more semiconductors.1 On the other hand, physica
phenomena related to semiconductor nanostructures su
the confinement of electron in zero, one, and two dimensi
are of great interest and have contributed to define new c
cepts in condensed matter physics.2 A proper theoretical de-
scription of semiconductor nanostructures is thus of cru
importance since it allows us both to investigate fundame
physics and to optimize nanostructure-based devices.

Traditionally, nanostructures are studied viak•p ap-
proaches in the context of the envelope function approxim
tion ~EFA!.3 In this case, only the envelope of nanostructu
wave function is described, regardless of atomic details.
spite the numerous assumptions involved,4 envelope function
approaches have obtained great success, mainly due to
compromise between the simplicity of the method and r
ability of the results.

Modern applications, however, push nanostructures to
mensions and geometries where EFA may not be as acc
as one would need. This is for example the case of quan
dots,5 strainedd layer,6 or nanometer-scale silicon meta
oxide semiconductor field-effect transistors~MOSFET’s!.7

In the latter case, oxide dimension, channel thickness,
channel length are such that the application of EFA is hig
questionable.8 On the other hand, however, as soon as
envelope function concept has to be substituted, for insta
by ab initio approaches, the complexity of the problem b
comes rapidly intractable.

Ideally, one should try to combine a complete quantu
mechanical description based on a full-band approa
avoiding at the same time the computationally prohibit
load of theab initio methods and the inherent physical lim
tations of the EFA. Moreover, charge rearrangement indu
by the presence of externally applied or internally induc
fields should be considered for a realistic description of
nanostructure. This is particularly true, for example,
nitride-based nanostructures whose properties strongly
pend on the interplay between the internal fields induced
0163-1829/2001/64~4!/045314~8!/$20.00 64 0453
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spontaneous and piezoelectric polarizations and the ch
screening.9

Many different approaches have been developed to
scribe nanostructures beyond thek•p EFA. Localized basis
approaches such as the tight-binding~TB! approach have
been extensively used to predict optical and electronic pr
erties of nanostructures.10–18 In describing nanostructures
usually the empirical version of the TB is considered.19,20 In
this context, a parametrization of the hopping and on-s
matrix elements is needed. Being a full-band approach,
TB approach overcomes the envelope function approxim
tions and allows us to define atomic details, the realistic b
structure in the whole Brillouin zone,21 strain, and charge
self-consistency.22 Moreover, the computational cost of em
pirical TB approaches is close to that ofk•p EFA ap-
proaches. The drawback of the empirical TB approach is
large number of parameters needed to accurately repro
realistic band dispersions. These parameters need to be
termined by a proper fitting of the bulk band structure o
tained with other~more first-principle! methods. Moreover,
transferability of these parameters should be required fo
physical modeling of the TB Hamiltonian.

The empirical pseudopotential method~EPM! represents a
higher level of sophistication. Few parameters are neede
define the pseudopotential, thus reducing the limitations
the TB approaches. However, the large number of pl
waves needed to accurately describe the system even fo
bulk case does not guarantee that such an approach ca
easily extended to nanostructures where dimensions of h
dreds of Å are typical.

The purpose of this article is to present a method t
maintains both the degree of physical insight of full-ba
approaches and the speed of effective-mass models. We
in fact, a physical starting point to describe the nanostr
ture, namely, the Bloch functions of the materials formi
the nanostructure. These Bloch functions will be describe
terms of local empirical pseudopotentials. We will show th
a proper separation between material- and structu
dependent terms will lead to an efficient self-consistent
lution of the Schro¨dinger and Poisson equations.

The use of the bulk Bloch function to describe nanostr
tures~as, in general, all the low-symmetry systems! is as old
as the concept of envelope function approximation. Start
from the work of Kohn23 for the description of impurity
©2001 The American Physical Society14-1
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states in semiconductors in terms of a bulk Bloch functio
expansion @BBFE or linear combination of bulk band
~LCBB!#, Altarelli developed the envelope function a
proach for semiconductor heterojunctions.24,25 However,
only at the end of the 1980s, did Burt4 point out the full
power of the BBFE, which allows one to correctly descri
any effect contained in the pseudopotential description of
system.26 Application of the bulk Bloch function expansio
has been considered in the work on inversion layers in
MOS by Fischetti and Laux.8 Starting from the description in
terms of empirical pseudopotentials of the inversion chan
and applying the BBFE, they obtained, under certain
proximations, a full-band solution of the problem. This a
proach without any approximation was later applied
Wang and co-workers27 to the problem ofG-X mixing in
low-dimensional nanostructures containing as much as6

atoms. The applicability of the method even in for theab
initio description of the problem has been addressed
Froyen.28

Our work differs from previous studies in the followin
points: ~i! we will use the usual concept of the empiric
pseudopotential where only few Fourier transform com
nents of the pseudopotential are needed, avoiding any fit
procedure~Refs. 27 and 29!, ~ii ! a Hamiltonian matrix ele-
ment separation between material-dependent and struc
dependent terms will be developed,~iii ! we will address the
problem of the representation of an external potential
how to effectively couple the full-band approach to the Po
son equation,~iv! we will show that the problem of consid
ering several materials can be solved via a general
Schrödiner equation without requiring orthogonalization
the basis by-hand. The use of a nonorthogonalized bas
not strictly required~Refs. 27 and 29! but can be useful to
establish fast convergence criteria.

II. THEORY

The one-electron Hamiltonian for a generic nanostruct
in the presence of an external potentialV(r ), is given by

H52
\2

2m
¹21(

s
(
a

Wa
s~r !Va

s~r2da!1V~r !

5H11H21H3 , ~1!

wheres is the material index,a is the atomic base index,da
is the offset ofath atom in the unit cell,R is the Bravais
vector, andVa

s(r ) is the~periodic! local atomic pseudopoten
tial in real space related to theath atom of thes material.
We are assuming that all materials constituting the struc
have the same Bravais lattice although the approach ca
generalized to strained materials.29,28

The weighting functionWa
s(r )5Wa

s(R), where r5R
1r0 with r0 inside the unit cell, contains the informatio
about the composition of the system and is defined as

Wa
s~R!5H 1 if the atom located atR1da

belongs to thes material

0 otherwise
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The three terms of the Hamiltonian in Eq.~1! represent, re-
spectively, the kinetic term (H1), the crystal term (H2), and
the external potential term (H3).

We expand the system wave functionc(r ) over a linear
combination of the bulk Bloch wave functionsfnk

s (r ) of all
the materials forming the nanostructure

c~r !5
1

AN
(
nks

Cnk
s fnk

s ~r !, ~2!

whereN is the number of unit cells in the large supercell th
contains our nanostructure,n the band index, andk the wave
vector. In a plane wave expansion, the bulk Bloch wa
functions are written as

fnk
s ~r !5^r unks&5

1

AV0
(
G

Bnk
s ~G!ei (G1k)•r, ~3!

with G the reciprocal lattice vector andV0 the volume of the
unit cell.

By using Eqs.~2! and ~3! and assuming a proper repre
sentation of the external potential~see the Appendix!, the
Schrödinger equation for the nanostructure can be written
a generalized eigenvalue problem:28

(
nks

Hn8k8s8,nksCnk
s 5E(

nks
Sn8k8s8,nksCnk

s , ~4!

where

Hn8k8s8,nks5^n8k8s8uH1unks&1^n8k8s8uH2unks&

1^n8k8s8uH3unks& ~5!

and

Sn8k8s8,nks5^n8k8s8unks&

5dkk8(G Bn8k
s8 ~G!* Bnk

s ~G! ~6!

represents the bulk wave-function overlap~equal todn8k8,nk
only if s85s).

The matrix element of each Hamiltonian term is given

^n8k8s8uH1unks&5An8k8s8,nks

5dkk8(G
\2

2m
uG1ku2Bn8k

s8 ~G!* Bnk
s ~G!,

~7!

^n8k8s8uH2unks&5(
a

(
s9

Wa
s9~k2k8!B n8k8s8,nks

as9 ,

~8!

^n8k8s8uH3unks&5V~k2k8!Cn8k8s8,nks , ~9!

whereWa
s9(k) and V(k) are the discrete Fourier transform

~DFT! of the W andV terms:
4-2
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Wa
s9~k!5

1

N (
R

Wa
s9~R!eik•R, ~10!

V~k!5
1

N (
R

V~R!eik•R. ~11!

The A, B, C, andS matrices~see the Appendix! depend
on the material composition of the nanostructure anddo not
depend on the particular geometry, sequence of layers,
potential profile of the nanostructure itself. Thus, given a
material set,A, B, C, andS matrices can be precalculate
and all the variation in geometry and/or in the external p
tential ~as in typical self-consistent cycle! will require only
the DFT ofW andV. This is an essential separation since t
time spent to calculateA, B, C, andS may be large while

that to obtainWa
s9(k) andV(k) is negligible.

III. SELF-CONSISTENCY

Space-charge effects due to the electronic free-charge
arrangement can be included at a Hartree level by solv
Poisson equation,

“@«~r !•“V~r !#52r~r !, ~12!

where «(r ) is the position-dependent dielectric constan22

Here we consider only the free-charge contribution to
Hartree potential, that is, electrons in the conduction b
and/or holes in the valence band, and we neglect the vale
electrons that are accounted for~non-self-consistently! in the
dielectric constant.

By using Eqs.~2! and~3!, we obtain the real-space repr
sentation ofuc(r )u2:

uc~r !u25
1

NV0
(

s8n8k8
(
snk

Cn8k8
s8 * Cnk

s

3F(G (
G8

Bn8k8
s8 ~G8!* Bnk

s ~G!ei (G2G81k2k8)•rG .

~13!

The term in square bracket is independent of structure a
for a particular choice of the materials forming the nan
structure, can be calculated, stored, and than used for o
geometries as long as the materials are the same.

From the expression of the squared wave function one
obtain the charge density at each position. It is, howev
necessary to consider explicitely the symmetry of the syst
It is always possible to define a unit cell of the~bulk! mate-
rials forming the nanostructure in such a way that some b
vectors belong to the ‘‘perpendicular’’ space, where t
translational symmetry of the system is broken and the
of the basis vectors belong to the ‘‘parallel’’ space, whe
the full periodicity of the crystal is preserved. A given Br
vais vector can thus be decomposed into perpendicular
parallel components:R5R'1Ruu . For Ruu , a reciprocal par-
allel space can be defined and consequently the Brillo
zone BZuu for thekuu vectors~with k5k'1kuu). In the case of
a dot, where the translational symmetry is lost in all thr
04531
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dimensions, the parallel space will be empty and
perpendicular space will coincide with the Bravais latti
(R5R').

In order to reduce the microscopic oscillation betwe
atomic planes a macroscopic average similar to that use
band-offset calculations30 is considered. By writingr5r0
1R' in Eq. ~13!, with r0 inside the unit cell, we can inte
grate over the unit cell volume obtaining

uc~R' ,kuu!u25
1

N (
s8n8k8

(
snk

Cn8k8
s8 * Cnk

s ei (k2k8)'•R'

3F(G (
G8

Bn8k8
s8 ~G8!* Bnk

s ~G!dGuu ,Guu8

3sinc~G'1k'2G'8 2k'8 !G . ~14!

The above expression is general and can be used regar
of the degree of quantization in the system, provided that
proper definition of perpendicular and parallel space is giv
In the above expression, we have averaged in the whole
cell; however, a smaller portion of the unit cell may be co
sidered without introducing microscopic oscillations of t
charge density. For a@001# grown zinc-blende structure on
can average the two adjacent anion-cation planes in theR'

direction and eliminate the microscopic oscillations.13

The charge densityr(R') is defined as

r~R'!52
e

~2p!DEBZi

dkuu(
n

uc~R' ,kuu ,En!u2 f̃ ~En!,

~15!

where e is the electron charge,n labels the energy levels
(En) for a given kuu , and D is the dimensionality of the
parallel space. The functionf̃ (En ,EF) is defined as follows:

f̃ ~En!5H f ~En ,EF
c ! for the conduction states

12 f ~En ,EF
v ! for the valence states,

~16!

where f (En ,EF) is the Fermi distribution function for a
given quasi-Fermi-levelEF . Electron and hole quasi-Ferm
levels,EF

c andEF
v , respectively, are different if the system

out of equilibrium as in the case optical of electrical inje
tion. At finite temperatures,f̃ (En ,EF) is in any case a well-
behaved function that is different from zero only in the pro
imity of the valence and conduction band edges.

The Poisson and Schro¨dinger equations@Eqs. ~12! and
~4!, respectively# are iteratively solved until convergence
reached. To speed up the convergence we use a first-o
expansion of the method presented in Ref. 31.

As already pointed out in the previous section, the e
ciency of the self-consistent procedure is based on the s
rability between the contributions to the Hamiltonian comi
from external potential and the material. Indeed, the Fou
transform of the external potential is the only quantity th
needs to be calculated in each self-consistent cycle.
4-3
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IV. APPLICATION OF THE FULL-BAND PROCEDURE
TO ONE-DIMENSIONAL NANOSTRUCTURES

As a matter of example, we restrict ourselves to a sit
tion where the symmetry is broken in one direction, which
typical for many nanostructures such as superlattices, q
tum wells, or channels in high-electron-mobility transisto
~HEMT’s!. In the following calculation we use empirical lo
cal pseudopotential taken from Ref. 32.

A. GaAs quantum well and convergence of the method

In order to test the method and to define converge
criteria we have applied the full-band approach to a AlG
GaAs quantum well with several well widths. We consid
the AlAs/GaAs system grown in the@001# direction and we
choose for the unit cell of the semiconductors forming
heterojunction the following basis:

R15a~0.5,0.5,0!,

R25a~20.5,0.5,0!,

R35a~0,0,1!. ~17!

The translational symmetry is broken only in theR3 direc-
tion, allowing an easy separation between the perpendic
(R'5nR3) and parallel (Ruu5mR11 lR2) spaces. The en
ergy offset betweenGGaAs and XAlAs has been set to 20
meV. The system has a total width of 56.5 nm. We consi
two cases with and without the application of an exter
potential. The external potential consists of a linear poten
drop of 0.2 V in the well region~resulting in a electric field
of 120 kV/cm!, as shown in the inset of Fig. 1.

Figure 1 shows the calculated absolute error of the fi
quantized energy level of the conduction band as a func

FIG. 1. Calculated error for the first quantized energy level
the AlAs/GaAs quantum well as a function of the number ofk
points~i.e., number of bulk Bloch wave functions for each mater
and each band! considered in the calculation. Results are shown
a well width of 42 and 20 ML with and without the application o
an external potential. Hereki50. Inset: The conduction band pro
file of the nanostructure around the quantum well when the exte
potential is applied.
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of number ofk' points (k points! included in the expansion
Eq. ~2! ~hereki50) for a well width of 42 and 20 monolay
ers (1 ML52.83 Å), respectively. In the@001# direction,
the Brillouin zone of the bulk materials has been divided
100 k points, the total width of the system being 100R3.
Thus, the number ofk points refers to thek pointsaroundG
included in the calculation. Thek point expansion is thus
centered aroundG, which is the minimum conduction ban
~we recall the fact that, according to the choice of the u
cell, we are working with folded bands!. A better choice ofk
points can, however, be obtained by picking up only tho
points that do really contribute to the expansion. The er
has been calculated by comparing the result with that
tained with four bands and 100k points. The results shown
have been obtained considering two conduction bands
each material in the bulk-band expansion. We do not fi
significant differences in the results including a larger nu
ber of bands as long as the number ofk points included is
large enough (.10).

A close inspection of Fig. 1 reveals that the number ok
points needed to achieve results within 1 meV of error
structure dependent.27 For the larger quantum well we nee
around 30k points while we need 50k points for the
smaller one. Moreover, the presence of an external pote
defines a minimum requirement ofk points for the Fourier
representation of the potential itself. In fact, we notice fro
Fig. 1 that, for the larger well, the presence of the exter
potential implies the use of a larger number ofk points in
order to achieve the same convergence level with respe
the case without an external potential. For the smaller w
the number ofk points needed to achieve convergence in
absence of an external potential suffices for the represe
tion of the external potential when applied.

B. Confining potentials and one material approximation

In many situations it may be a good approximation
represent a heterojunction by using a single material and
plying a confining potential to mimic the presence of t
band discontinuity. This could be the case
GaAs/AlxGa12xAs structures with low Al concentration
where the difference between the electron masses of the
materials at theG point of the conduction band may be n
glected. A similar situation occurs in all the cases where
presence of the heterojunction can be represented by pr
boundary conditions. As a matter of example, in silic
MOS structures the SiO2 /Si band discontinuity is very large
and we can reasonably assume that the wave function o
electron vanishes at the interface between silicon and o
~infinite barrier approximation!.8,33 In all these situations
Eqs.~6!–~8! can be greatly simplified in the following way

Sn8k8s8,nks5dkk8dnn8 ~18!

and

^n8k8uH11H2unk&5Enkdkk8dnn8 , ~19!

l
r
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whereEnk is the bulk energy dispersion of the material. B
using this simplified expression we can write the full-ba
Schrödinger equation as

(
n8k8

@Enkdkk8dnn81V~k2k8!Cn8k8,nk#Cn8k85ECnk .

~20!

Thus, the full-band results can be obtained from the kno
edge of the band dispersion and theC coefficients.

It should be noticed that if in Eq.~20! we approximate
Cn8k8,nk5dkk8dnn8 we obtain the equation reported by Fi
chetti and Laux.8 In order to justify this approximation we
have calculated theC terms for the case of silicon. We foun
that Cn8k8,nk.Cnk8,nkdnn8 ~with an off-diagonal componen
several order of magnitude lower than the diagonal one!. The
value ofCnk8,nk for the first conduction band range betwe
0.9 and 1.0. Thus we can conclude that the approximatio
Ref. 8 is well justified within 10% of error.

C. Self-consistent results for a AlAsÕGaAs HEMT

In this last section, we consider the self-consistent fu
band result for a AlAs/GaAs HEMT-like structures. Let u
consider the unit cell defined in Sec. IV A. The tw
dimensional Brillouin zone has an irreducible wedge~IW!
defined by

0<kx,
2p

a
, 0<ky,minS kx ,

2p

a
2kxD . ~21!

The ki integration needed to calculate the charge den
Eq. ~15!, is obtained by using a specialk point sampling34 of
the irreducible wedge. However, only a small portion of t
irreducible wedge will contribute to the density, formed
the conduction band states~or valence band states when co
sidered! close to Fermi level. Thus, in order to reduce t
computation effort, we select only those points of the I
belonging to these most significative regions. We have fo
that convergent results can be obtained with a small num
of specialk points in these regions. For instance, in the AlA
GaAs case, we obtain convergence for by using threekuu
points with ukuuu,0.06 and 18kuu points with ukuu
2(0,0.85)u,0.2 ~here we use 2p/a units!.

The self-consistent procedure has not been applied
rectly to the AlAs/GaAs quantum well. In fact the dimensio
of a typical HEMT will be of the order of several micron
and the potential will vary over this scale. Boundary con
tions should be imposed at the real edges of the devi
However, electrons will accumulate mainly in the quantiz
channel. In order to be able to handle the problem, we h
use an embedded calculation: the whole structure is divi
into a quantum region where the full-band approach is c
sidered and in a semiclassical region where quantization
fects are not present. In the latter region a classical th
dimensional Thomas-Fermi description is used to calcu
the electron density~if present! and ionized doping density

The structure we have considered consists of an A
buffer, 42 ML of GaAs forming the quantum well, and 13
ML of AlAs ending with a metal to form the Schottky con
04531
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tact ~with a barrier high offB50.8eV!. We choose a quan
tum region of 200 ML~56.5 nm! centered around the quan
tized channel~GaAs! while the total width of the device is
3 mm. The top 35 nm layer of AlAs close to the Schottk
contact is n-doped with ND5231018 cm23. The one-
dimensional Poisson equation, Eq.~12!, is solved using a
fixed potential at the metal-AlAs contact equal to thefB plus
the gate bias~if applied! while the zero-field condition is
imposed at the opposite end of the structure. According
the discussion of Sec. IV A we choose 61k points and two
conduction bands in the bulk band expansion for each se
conductor.

Figure 2~a! shows the calculated conduction band env
lope at G and X points. Also depicted are the first thre
envelope squared wave functions where the zero of e
wave function has been set to the energy of the correspo
ing energy level. The total electron density is shown in F
2~b!. Electron confinement occurs both in the well and in t
barrier. The former is related to the GaAsG conduction band
minimum while the barrier states are those arising from thX
states of the AlAs. The electron density is spread over
real GaAs channel and over theparasiticAlAs channel. The
presence of the parasitic channel has negative influenc
the HEMT performance and should be reduced as much
possible. Electron in the parasitic AlAs channel are a
quantized. On the right end they are confined by the AlA
GaAs barrier and on the left side by the potential profi
However, due both to the large effective masses of the A
conduction minima and to the extension of the confini
region the energy quantization is quite small. We sho
point out that the integration in the 2D Brillouin zone inki
5(0,0) andki5(0,0.85)2p/a represents the two situation

FIG. 2. ~a! Self-consistent conduction band edge profile of t
AlAs/GaAs HEMT-like structure for theG andX valley. The first
three squared envelope wave functions are also shown. The ze
the envelope corresponds to the energy of the quantized level.
EF50. ~b! Electron charge density in the nanostructure.
4-5
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where quantization arises from electrons with longitudi
mass and from electrons with transversal mass in theX val-
leys, respectively.

Finally, we would like to address the question about
computational load of such calculations. Starting from a cl
sical initial guess of the potential profile, the final result
obtained in circa 10 self-consistent cycles. The overall c
culation is achieved in one hour on a typical single-proces
workstation. The calculation of theA, B, C, and S matrix
elements is much more expansive and may require m
hours of computation. However, as discussed in the prev
sections, such matrix elements need to be calculated
once. Moreover, the structure of such matrix elements c
for a straightforward parallelization where each element
the matrix can be calculated on a different processor.

D. Comparison with other approaches

In the following we will briefly compare our approac
with the one of Refs. 27 and 29~hereafter called LCBB!. In
the LCBB method one needs to know the form of t
pseudopotential in all of the reciprocal space up to cer
cutoff. This can be obtained with fitting procedures~see, for
example, Ref. 35!. In contrast, our approach is based on t
spirit of the usual empirical pseudopotential theory wh
only few Fourier transform components of the pseudopot
tial ~for few G) are needed. This allows us to use all t
empirical pseudopotential parameterizations developed
far. The drawback of our method concerns the treatmen
the interface. At the interface we change abruptly the p
odic pseudopotential. However, this error is negligible if w
consider a smooth interface or a large nanostructure as
will show in the following.

We have calculated the electronic properties of a AlA
GaAs quantum well with our approach and the LCB
method. We use the pseudopotential of Ref. 35. Figure
and 4 show the energy of the conduction band confi
states in the well as a function of the well width. Figure
represents the results for an abrupt interfaces while Fig

FIG. 3. Comparison between our method and the one of R
27 and 29 for a AlAs/GaAs quantum well as a function of w
width. An abrupt interface is considered.
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represents the results for a smooth interfaces with a 2 ML
transition region between the two materials. In the transit
region we use a linear interpolation of the two pseudopot
tials.

For a narrow quantum well~10 ML! we obtain a maxi-
mum difference between our method and the LCBB meth
of about 15 meV for the abrupt interface case, which redu
to 5 meV in the smooth interface case. The discrepancy
tween the two methods reduces drastically~'1 meV! by
increasing the size of the well, and it is of the order of 1 m
for the results of the previous sections. We should point o
as discussed in Refs. 27 and 29, that bulk-band expan
methods are suited for large nanostructure description w
full diagonalization methods can be used for small na
structures.

V. CONCLUSIONS

We have developed a full-band pseudopotential-based
proach to describe semiconductor nanostructures.
method based on the Bloch band expansion of the sys
wave function allows us for an integration in a se
consistent scheme. To perform such integrations we h
made a suitable separation between structure-dependen
material-dependent contributions to the system Hamilton
The efficency of the full-band self-consistent approach
been demonstrated for AlAs/GaAs high-electron-mobil
transistor structures, showing how relaxation of any en
lope function approximation can be achieved even at
self-consistent level without making the problem compu
tionally intractable.
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s. FIG. 4. Comparison between our method and the one of R
27 and 29 for a AlAs/GaAs quantum well as a function of w
width. An 2 ML smoothed interface is considered.
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APPENDIX: MATRIX ELEMENTS

The coefficient for the crystal potential part of the Ham
tonian (H2) can be easily obtained by direct evaluation
the matrix element in Eq.~8!:

B n8k8s8,nks
as9 5H (

G,G8,G9
Bn8k8

s8 ~G8!* Bnk
s ~G!Va

s9~G9!

3e2 iG9•da sinc~G1G92G81k2k8!J ,

~A1!

where

sinc~G1G92G81k2k8!5sinc~a1!sinc~a2!sinc~a3!,
~A2!

with sinc(a i)5sin(pai)/(pai). The real coefficientsa i ,i
51, . . . ,3 aredefined by

G1G92G81k2k85a1G11a2G21a3G3 , ~A3!

whereG1 ,G2 ,G3 are the reciprocal lattice basis.
For the external potential term (H3, we must define a

reasonable approximation that makes the matrix elem
separable in two parts: one that is potential dependent
easy to calculate, and the second that is potential inde
dent. In the following we discuss two complementary a
proximations.

The expression for the potential matrix element is

^n8k8s8uH3unks&5
1

VE
V

dr(
G

(
G8

V~r !ei (G1k2G82k8)•r

3Bn8k8
s8 ~G8!* Bnk

s ~G!. ~A4!

If we consider that the potential is constant inside the u
cell @i.e., V(R1r0)[V(R) for r0 varying in the unit cell#,
we obtain

^n8k8s8uH3unks&5V~k2k8!

3(
G

(
G8

Bn8k8
s8 ~G8!* Bnk

s ~G!
1

V0

3E
V0

ei (G1k2G82k8)•r0dr0 ~A5!

with

V~k!5
1

N (
R

V~R!eik•R. ~A6!

If we decomposeG1k2G82k85a1G11a2G21a3G3 and
r05b1R11b2R21b3R3 with a i and b i real numbers and
Ri the Bravais lattice basis, we finally have the form of E
~9! with
04531
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Cn8k8s8,nks5(
G

(
G8

Bn8k8
s8 ~G8!* Bnk

s ~G!eip(a11a21a3)

3sinc~a1!sinc~a2!sinc~a3!, ~A7!

in the directionGi where the potential does not change,a i is
an integer number and sinc(a i)5da i

.
Another kind of separability can be obtained if the pote

tial varies smoothly in the space. In this case we can cons
that the Fourier transform of the potential is limited to t
first Brillouin zone~BZ! related to the unit cell choose. So,
we assume that the following relation holds,

V~k!5H V~k! for kPBZ

0 otherwise
~A8!

we can than use the sampling theorem to expressV(r ) in a
more convenient way:

V~r !5(
R

V~R!sincS G1

2p
•~r2R! D sincS G2

2p
•~r2R! D

3sincS G3

2p
•~r2R! D . ~A9!

By using this expression in Eq.~A4! we obtain the separa
bility between the Fourier transform of the potential and t
material depend part@Eq. ~9!# with

Cn8k8s8,nks5H(G (
G8

RectG1 ,G2 ,G3
~G1k2G82k8!

3Bn8k8
s8 ~G8!* Bnk

s ~G!J , ~A10!

where

RectG1 ,G2 ,G3
~G1k2G82k8!

3H 1 for ~G1k2G82k8!PBZ

0 otherwise.
~A11!

Within this approximation we limit the potential ink space;
however, the real-space shape will vary smoothly avoid
the step profile of the other case.

The use of the forms in Eq.~A7! or Eq. ~A10! for the C
coefficient will depend on the problems we have to sol
Typically in a self-consistent scheme the potential var
slowly and the form of Eq.~A10! is preferred. On the othe
hand, if the potential is used to mimic a band discontinu
than the form in Eq.~A7! should be considered.
4-7



rs

ro

.J
no
.

nn

i,

r-

.

u

ys

,

lids

v. B
in
e
s.

h,

f,

Ap-

s
M.

ett.

l.

b

are

FRANCESCO CHIRICO, ALDO DI CARLO, AND PAOLO LUGLI PHYSICAL REVIEW B64 045314
1A. Yariv, Optical Electronics in Modern Communications~Ox-
ford University Press, New York, 1997!.

2J.H. Davies,The Physics of Low-Dimensional Semiconducto
An Introduction~Cambridge University Press, UK, 1997!.

3G. Bastard,Wave Mechanics Applied to Semiconductor Hete
structures~Les Edition de Physique, Les Ulis, 1988!.

4M.G. Burt, J. Phys.: Condens. Matter4, 6651 ~1992!; 11, R53
~1999!.

5A. Mizel and M.L. Cohen, Phys. Rev. B57, 9515~1998!.
6F. Seiferth, F.G. Johnson, S.A. Merrit, S. Fox, R.D. Whaley, Y

Chen, M. Degenais, and D.R. Stone, IEEE Photonics Tech
Lett. 9, 1340 ~1997!; A. Di Carlo, A. Reale, L. Tocca, and P
Lugli, IEEE J. Quantum Electron.34, 1730~1998!.

7Hon-Sum Philip Wong, D.J. Frank, P.M. Solomon, C.H.J. Wa
and J.J. Welser, Proc. IEEE87, 537 ~1999!.

8M.V. Fischetti and S.E. Laux, Phys. Rev. B48, 2244~1993!.
9F. Della Sala, A. Di Carlo, P. Lugli, F. Bernardini, V. Fiorentin

R. Scholz, and J.M. Jancu, Appl. Phys. Lett.74, 2002~1999!; A.
Di Carlo, F. Della Sala, P. Lugli, V. Fiorentini, and F. Berna
dini, ibid. 76, 3950~2000!.

10T.B. Boykin, J.P.A. van der Wagt, and J.S. Harris, Phys. Rev
43, 4777~1991!; T.B. Boykin Phys. Rev. B51, 4289~1995!.

11S.K. Kirby, D.Z.-Y. Ting, and T.C. McGill, Phys. Rev. B48,
15 237~1993!.

12M.S. Kiledjian, J.N. Schulman, K.L. Wang, and K.V. Roussea
Phys. Rev. B46, 16 012~1992!.

13J.N. Schulman and Y.C. Chang, Phys. Rev. B31, 2056~1985!.
14G. Armelles and V.R. Velasco, Phys. Rev. B54, 16 428~1996!.
15I.A. Papadogonas, A.N. Andriotis, and E.N. Economou, Ph

Rev. B55, 10 760~1997!.
16M. Di Ventra and A. Baldereschi, Phys. Rev. B57, 3733~1998!.
17D. Porezag, Th. Frauenheim, Th. Ko¨hler, G. Seifert, and R.

Kaschner, Phys. Rev. B51, 12 947 ~1995!; M. Elstner, D.
Porezag, G. Jungnickel, J. Elsner, M. Haugk, Th. Frauenheim
Suhai, and G. Seifert,ibid. 58, 7260~1998!.

18A. Di Carlo, Phys. Status Solidi B217, 703~2000!, and reference
therein.
04531
:

-

.
l.

,

B

,

.

S.

19J.C. Slater and G.F. Koster, Phys. Rev.94, 1498~1954!; D. Chadi
and M.L. Cohen, Phys. Status Solidi B68, 405 ~1975!; W.A.
Harrison, Phys. Rev. B8, 4487 ~1973!; J. A. Majewski and P.
Vogl, The Structure of Binary Compounds, edited by F.R. de
Boer and D.G. Pettifor~Elsevier, Amsterdam, 1989!.

20P. Vogl, H.P. Hjalmarson, and J.D. Dow, J. Phys. Chem. So
44, 365 ~1983!.

21J-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Re
57, 6493 ~1998!; R. Scholz, J-M. Jancu, and F. Bassani,
Tight-Binding Approach to Computational Materials Scienc,
edited by P.E.M. Turchi, A. Gonis, and L. Colombo, Mater. Re
Soc. Symp. Proc.491 ~Materials Research Society, Pittsburg
1998!, p. 383.

22Aldo Di Carlo, S. Pescetelli, M. Paciotti, P. Lugli, and M. Gra
Solid State Commun.98, 803 ~1996!.

23W. Kohn, in Solid State Physics: Advances in Research and
plications, edited by F. Seitz and D. Turnbull~Academic, New
York, 1957!, Vol. 5, p. 257.

24M. Altarelli, in Heterojunction and Semiconductor Superlattice,
edited by G. Allan, G. Bastard, N. Boccara, M. Lannoo, and
Voos ~Springer, Berlin, 1986!, p. 12.

25G.T. Einevoll and L.J. Sham, Phys. Rev. B49, 10 533~1994!.
26B.A. Foreman, Phys. Rev. Lett.80, 3823~1998!; 81, 425 ~1998!;

Phys. Rev. B54, 1909~1996!.
27L.-W. Wang, A. Franceschetti, and A. Zunger, Phys. Rev. L

78, 2819~1997!.
28S. Froyen, J. Phys.: Condens. Matter8, 11 029~1996!.
29L.-W. Wang and A. Zunger, Phys. Rev. B59, 15 806~1999!.
30A. Baldereschi, S. Baroni, and R. Resta, Phys. Rev. Lett.61, 734

~1988!.
31A. Trellakis, A.T. Galick, A. Pacelli, and U. Ravaioli, J. App

Phys.81, 7880~1997!.
32M. V. Fischetti and S. E. Laux, IBM DAMOCLES Project. We

site: http://www.research.ibm.com/0.1um/laux
33Such approximation should be relaxed if thin oxide effects

investigated.
34S. Froyen, Phys. Rev. B39, 3168~1989!.
35K.A. Mader and A. Zunger, Phys. Rev. B50, 17 393~1994!.
4-8


