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Efficient self-consistent pseudopotential calculation of nanostructured devices
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We have developed a full-band pseudopotential-based approach to describe semiconductor nanostructures.
The method relies on the bulk Bloch functions expansion of the system wave function that guarantees an
efficient integration of the full-band approach in self-consistent schemes wherédBg®oand Poisson
equations are solved iteratively. In order to gain efficiency of the method a suitable separation between
structure-dependent and material-dependent contributions to the system Hamiltonian is presented. Results are
shown for typical nanostructures.
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[. INTRODUCTION spontaneous and piezoelectric polarizations and the charge
screening.

Nanostructures based on semiconductor heterojunctions Many different approaches have been developed to de-
are nowadays commonly used in electronic and optoelecscribe nanostructures beyond thep EFA. Localized basis
tronic devices. For instance, long-wavelength lasers for teleapproaches such as the tight-bindiifB) approach have
communications may have active regions formed by a sebeen extensively used to predict optical and electronic prop-
quence of quantum wells obtained from the heterojunction oérties of nanostructuréS$-*8 In describing nanostructures,
two or more semiconductofsOn the other hand, physical usually the empirical version of the TB is consideféd In
phenomena related to semiconductor nanostructures such #gs context, a parametrization of the hopping and on-site
the confinement of electron in zero, one, and two dimensionmatrix elements is needed. Being a full-band approach, the
are of great interest and have contributed to define new corFB approach overcomes the envelope function approxima-
cepts in condensed matter physios.proper theoretical de- tions and allows us to define atomic details, the realistic band
scription of semiconductor nanostructures is thus of cruciatructure in the whole Brillouin zorn@, strain, and charge
importance since it allows us both to investigate fundamentaself-consistency? Moreover, the computational cost of em-
physics and to optimize nanostructure-based devices. pirical TB approaches is close to that &fp EFA ap-

Traditionally, nanostructures are studied \kap ap-  proaches. The drawback of the empirical TB approach is the
proaches in the context of the envelope function approximalarge number of parameters needed to accurately reproduce
tion (EFA).2 In this case, only the envelope of nanostructurerealistic band dispersions. These parameters need to be de-
wave function is described, regardless of atomic details. Determined by a proper fitting of the bulk band structure ob-
spite the numerous assumptions involfehvelope function tained with other(more first-principlé methods. Moreover,
approaches have obtained great success, mainly due to a faiansferability of these parameters should be required for a
compromise between the simplicity of the method and reliphysical modeling of the TB Hamiltonian.
ability of the results. The empirical pseudopotential methd@PM) represents a

Modern applications, however, push nanostructures to dihigher level of sophistication. Few parameters are needed to
mensions and geometries where EFA may not be as accuratefine the pseudopotential, thus reducing the limitations of
as one would need. This is for example the case of quanturtihe TB approaches. However, the large number of plane
dots® strained & layer® or nanometer-scale silicon metal- waves needed to accurately describe the system even for the
oxide semiconductor field-effect transistafilOSFET’'S.”  bulk case does not guarantee that such an approach can be
In the latter case, oxide dimension, channel thickness, aneasily extended to nanostructures where dimensions of hun-
channel length are such that the application of EFA is highlydreds of A are typical.
questionablé. On the other hand, however, as soon as the The purpose of this article is to present a method that
envelope function concept has to be substituted, for instancepaintains both the degree of physical insight of full-band
by ab initio approaches, the complexity of the problem be-approaches and the speed of effective-mass models. We use,
comes rapidly intractable. in fact, a physical starting point to describe the nanostruc-

Ideally, one should try to combine a complete quantum-+ure, namely, the Bloch functions of the materials forming
mechanical description based on a full-band approactthe nanostructure. These Bloch functions will be described in
avoiding at the same time the computationally prohibitiveterms of local empirical pseudopotentials. We will show that
load of theab initio methods and the inherent physical limi- a proper separation between material- and structure-
tations of the EFA. Moreover, charge rearrangement inducedependent terms will lead to an efficient self-consistent so-
by the presence of externally applied or internally inducedution of the Schrdinger and Poisson equations.
fields should be considered for a realistic description of the The use of the bulk Bloch function to describe nanostruc-
nanostructure. This is particularly true, for example, intures(as, in general, all the low-symmetry systerissas old
nitride-based nanostructures whose properties strongly des the concept of envelope function approximation. Starting
pend on the interplay between the internal fields induced byrom the work of Kohi3® for the description of impurity
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states in semiconductors in terms of a bulk Bloch functionsThe three terms of the Hamiltonian in E(.) represent, re-
expansion[BBFE or linear combination of bulk bands spectively, the kinetic termH,), the crystal term¥,), and
(LCBB)], Altarelli developed the envelope function ap- the external potential ternf(s).

proach for semiconductor heterojunctid€® However, We expand the system wave functighir) over a linear
only at the end of the 1980s, did Btippoint out the full  combination of the bulk Bloch wave functiorsg(r) of all
power of the BBFE, which allows one to correctly describethe materials forming the nanostructure

any effect contained in the pseudopotential description of the

systen?® Application of the bulk Bloch function expansion 1

has been considered in the work on inversion layers in Si Y(r)y=— 2 Crdi(r), (2
MOS by Fischetti and Lau%Starting from the description in Oz

terms of e_mpmcal pseudopotentials _Of the inversion Channe\}vhereN is the number of unit cells in the large supercell that
and applying the BBFE, they obtained, under certain aPtontains our nanostructure the band index, ank the wave

proximatiqns, a full-band solytior] of the problem. This aP-yector. In a plane wave expansion, the bulk Bloch wave
proach without any approximation was later applied byfunctions are written as '

Wang and co-workefé to the problem ofl’-X mixing in
low-dimensional nanostructures containing as much &s 10

S . 1 :
atoms. The applicability of the method even in for thie % (1) =(r|nko) =—= Z BZ (G)e'GThr (3
initio description of the problem has been addressed by "k {r ) VQo G nk
Froyen?8

Our work differs from previous studies in the following with G the reciprocal lattice vector artd, the volume of the

points: (i) we will use the usual concept of the empirical Unit cell. _

pseudopotential where only few Fourier transform compo- BY Using Egs.(2) and(3) and assuming a proper repre-
nents of the pseudopotential are needed, avoiding any fittin§entation of the external potentiedee the Appendix the
procedure(Refs. 27 and 29 (i) a Hamiltonian matrix ele- chralinger equation for the nanostructure can be written as
ment separation between material-dependent and structur@-9eneralized eigenvalue probléfh:

dependent terms will be developddi) we will address the

problem of the representation of an external potential and Horer ot . COL=E> Sreror o C (4)
how to effectively couple the full-band approach to the Pois- r%r otk nk r% kot nk =k

son equation(iv) we will show that the problem of consid-
ering several materials can be solved via a generalize
Schraliner equation without requiring orthogonalization of o Y
the basis by-hand. The use of a nonorthogonalized basis is Harkror ko= (N'K' 0" [Ha|nka) +(n’k o |H|nko)
not str_ictly required(Refs. 27 anq 2Pbut can be useful to +(n'k’ o' | Hs|nko) (5)
establish fast convergence criteria.

Where

and

Il. THEORY
Sn/k/(’./’nk(r:<n,k,0',|nk0'>

The one-electron Hamiltonian for a generic nanostructure

in the presence of an external poten¥gr), is given by — 5kk,§ BZZK(G)*Bﬁk(G) (6)
ﬁZ
H=— ﬁVZJrZ > Wo(r)Vo(r—d,) +V(r) represents the bulk wave-function overl@gual to8,/,: ng
c .« only if ¢'=0).
=H,+Hot+ Hs, (1) The matrix element of each Hamiltonian term is given by

whereo is the material indexg is the atomic base indes,, ("K' o' |HiInka) = Anrir o7 ke
is the offset ofath atom in the unit cellR is the Bravais

2
ol PR ; ) f ,
v_ect_or, andvy(r) is the(periodig local atomic pseudopqten :5kk,z 2—|G+k|28§,k(G)* BC(G),
tial in real space related to theth atom of theoc material. G <m
We are assuming that all materials constituting the structure @)

have the same Bravais lattice although the approach can be
generalized to strained materiéfs

The weighting functionW’(r)=W?(R), where r=R (N'K' o' [Halnka) = > W (K=K B0 ko
+rg with rg inside the unit cell, contains the information « o
about the composition of the system and is defined as (8
1 ifthe atom located aR+d,, (n'K" 0’ |Hg[nka) =V(K—=K")Chri o7 nker » C)
W (R)= belongs to ther material whereW? (k) andV(k) are the discrete Fourier transform
0 otherwise (DFT) of the W andV terms:
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) 1 ) , dimensions, the parallel space will be empty and the
We (K= ; W7 (R)e'™ R, (100 perpendicular space will coincide with the Bravais lattice
(R=R,).
1 In order to reduce the microscopic oscillation between
V(k)= = Z V(R)e* R, (11) atomic planes a macroscopic average similar to that used in
N ‘R band-offset calculatior$ is considered. By writingr=r,
+R, in Eqg. (13), with ry inside the unit cell, we can inte-

The A, B, C, andS matrices(see the Appendjxdepend grate over the unit cell volume obtaining

on the material composition of the nanostructure dachot
depend on the particular geometry, sequence of layers, and 1
potential profile of the nanostructure itseffhus, given a [W(R, k=< > > C",’k,*Cﬁkei(k*k')L'Ri
material set, 4, B, C, and S matrices can be precalculated N "

and all the variation in geometry and/or in the external po-

tential (as in typical self-consistent cyglevill require only x> BY, (G")*B%(G)dg, o
the DFT ofWandV. This is an essential separation since the s e "k " 1=
time spent to calculatet, B, C, andS may be large while

that to obtainWZ"(k) andV(k) is negligible. xsindG, +k, — G| —k/)|. (14)

o'n'k’ onk

I1l. SELF-CONSISTENCY . .
The above expression is general and can be used regardless

Space-charge effects due to the electronic free-charge ref the degree of quantization in the system, provided that the
arrangement can be included at a Hartree level by solvingroper definition of perpendicular and parallel space is given.
Poisson equation, In the above expression, we have averaged in the whole unit

cell; however, a smaller portion of the unit cell may be con-

Vie(r)-VV(r)]=—p(r), (12 sidered without introducing microscopic oscillations of the
where z(r) is the position-dependent dielectric constént. charge density. For gD01] grown zinc-blende structure one
Here we consider only the free-charge contribution to thecan average the two adjacent anion-cation planes irkthe
Hartree potential, that is, electrons in the conduction bandlirection and eliminate the microscopic oscillatidis.
and/or holes in the valence band, and we neglect the valence The charge density(R,) is defined as
electrons that are accounted foon-self-consistent)yin the
dielectric constant.

By using Eqs(2) and(3), we obtain the real-space repre- ~ p(R)=—
sentation of y/(r)|?:

€ 75
(2W)Dfszdk2v | (R K .E,)[FF(E,),

(15
1 ' .
P(r)|2=—— z z c’,. *Co where e is the electron chargey labels the. energy levels
| | NQo 77 ok " ke Tk (E,) for a givenk, andD is the dimensionality of the

, _ , , parallel space. The functioi(E,,,E¢) is defined as follows:
X| 2 2 Bl (G)*BR(G)el ek Ty,
¢ ¢ f(E,,EE) for the conduction states

13 f(E) [1—f(EV, ¢) forthe valence states,(16)

The term in square bracket is independent of structure and, ) S )

for a particular choice of the materials forming the nano-Where f(E, ,Eg) is the Fermi distribution function for a

structure, can be calculated, stored, and than used for oth@/ven quasi-Fermi-leve . Electron and hole quasi-Fermi-

geometries as long as the materials are the same. levels,E¢ andE}, respectively, are different if the system is
From the expression of the squared wave function one cafut of equilibrium as in the case optical of electrical injec-

obtain the charge density at each position. It is, howeverion. At finite temperatures(E, ,E¢) is in any case a well-

necessary to consider explicitely the symmetry of the systenbehaved function that is different from zero only in the prox-

It is always possible to define a unit cell of tlieulk) mate-  imity of the valence and conduction band edges.

rials forming the nanostructure in such a way that some basis The Poisson and Schiimger equationgEgs. (12) and

vectors belong to the “perpendicular’ space, where the(4), respectively are iteratively solved until convergence is

translational symmetry of the system is broken and the resieached. To speed up the convergence we use a first-order

of the basis vectors belong to the “parallel” space, whereexpansion of the method presented in Ref. 31.

the full periodicity of the crystal is preserved. A given Bra-  As already pointed out in the previous section, the effi-

vais vector can thus be decomposed into perpendicular angdency of the self-consistent procedure is based on the sepa-

parallel component®=R, +R|. ForR;;, a reciprocal par- rability between the contributions to the Hamiltonian coming

allel space can be defined and consequently the Brillouifrom external potential and the material. Indeed, the Fourier

zone BZ for thek|| vectors(with k=k, +k|)). In the case of transform of the external potential is the only quantity that

a dot, where the translational symmetry is lost in all threeneeds to be calculated in each self-consistent cycle.
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10 Spryy— ——— of number ofk, points ( pointg included in the expansion,
3 osl { Eq. (2) (herek;=0) for a well width of 42 and 20 monolay-
S - , i ers (1. ML=2.83 A), respectively. In th¢001] direqtipn, _
2, ol 7 ] the Brillouin zone of the bulk materials has been divided in
5 3 oo v ] 100 k points, the total .Width of the system being RO
% 107 S o ‘ ‘ ] Thus, the number df points refers to thé pointsaroundl’
< 0 zlgepth [nm4]0 60 included in the calcu_lathn. Thi _pqlnt expansion is thus
3 . e centered aroundl, which is the minimum conduction band
=10 20 ML well | (we recall the fact that, according to the choice of the unit
o) 42 ML well cell, we are working with folded bangisA better choice ok
Q 10* | points can, however, be obtained by picking up only those
L — Without potential points that do really contribute to the expansion. The error
==== With potential has been calculated by comparing the result with that ob-
107

: ' . . tained with four bands and 10R points. The results shown
0 20 Numg(:ar of k 680ints 80 100 have been lobt_ained considering two c_onduction bands.for
each material in the bulk-band expansion. We do not find
FIG. 1. Calculated error for the first quantized energy level inSignificant differences in the results including a larger num-
the AlAs/GaAs quantum well as a function of the numberkof Der of bands as long as the numberkopoints included is
points(i.e., number of bulk Bloch wave functions for each material large enough % 10).
and each banctonsidered in the calculation. Results are shown for A close inspection of Fig. 1 reveals that the numbek of
a well width of 42 and 20 ML with and without the application of points needed to achieve results within 1 meV of error is
an external potential. Herlg=0. Inset: The conduction band pro- structure dependeff.For the larger quantum well we need
file of the nanostructure around the quantum well when the externairound 30k points while we need 5& points for the
potential is applied. smaller one. Moreover, the presence of an external potential
defines a minimum requirement &fpoints for the Fourier
representation of the potential itself. In fact, we notice from
Fig. 1 that, for the larger well, the presence of the external
As a matter of example, we restrict ourselves to a situaPOtential implies the use of a larger numberkopoints in
tion where the symmetry is broken in one direction, which jsC'der to achieve the same convergence level with respect to
typical for many nanostructures such as superlattices, quafi?€ caseé without an external potential. For the smaller well,
tum wells, or channels in high-electron-mobility transistorst® number ok points needed to achieve convergence in the
(HEMT's). In the following calculation we use empirical lo- a}bsence of an external pqtentlal sufflcgs for the representa-
cal pseudopotential taken from Ref. 32. tion of the external potential when applied.

IV. APPLICATION OF THE FULL-BAND PROCEDURE
TO ONE-DIMENSIONAL NANOSTRUCTURES

A. GaAs quantum well and convergence of the method B. Confining potentials and one material approximation

'In'order to test th_e method and to define convergence |n many situations it may be a good approximation to
criteria we have applied the full-band approach to a AlGakepresent a heterojunction by using a single material and ap-
GaAs quantum well with SeVe.ral well W|dthS We C0n5|derp|ying a Conﬁning potentia| to m|m|c the presence of the
the AlAs/GaAs system grown in tH®01] direction and we pand discontinuity. This could be the case of

choose for the unit cell of the semiconductors forming thegaas/ALGa _,As structures with low Al concentrations
heterojunction the following basis: where the difference between the electron masses of the two

R,=a(0.5.0.5,0 materials at thd™ point of the conduction band may be ne-

1 e glected. A similar situation occurs in all the cases where the
R,=a(—0.5,0.5,0 presence of the heterojunction can be represented by proper
2 e boundary conditions. As a matter of example, in silicon
Rs=2(0,0,1). (17) MOS structures the SiJSi band discontinuity is very large

and we can reasonably assume that the wave function of the
The translational symmetry is broken only in tRg direc-  electron vanishes at the interface between silicon and oxide
tion, allowing an easy separation between the perpendiculdinfinite barrier approximatior*3 In all these situations
(R, =nR3) and parallel R;=mR;+IR;) spaces. The en- Egs.(6)—(8) can be greatly simplified in the following way,
ergy offset betweerd g as and Xaas has been set to 204
meV. The system has a total width of 56.5 nm. We consider
two cases with and without the application of an external Snrk’ o nko = Okk’ Onn (18
potential. The external potential consists of a linear potential
drop of 0.2 V in the well regiorfresulting in a electric field
of 120 kV/cm), as shown in the inset of Fig. 1.

Figure 1 shows the calculated absolute error of the first
quantized energy level of the conduction band as a function (N"K'|H1+ Ho|nk) = E e Scr Snn » (19

and
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whereE, is the bulk energy dispersion of the material. By = 0.8 : - E
using this simplified expression we can write the full-band % \ \\_/‘ l———
Schralinger equation as 206 r\ ]
i} \ T = =
o4t \\ |-~
2 [Enk‘skk’énn’+V(k_k’)cn'k’,nk]cn’k’:Ecnk- E \\
n'k’ L02F XN\ | e
(20) § N ]

Thus, the full-band results can be obtained from the knowl- § 00 r a) .
edge of the band dispersion and theoefficients. 15 | ' ' '

It should be noticed that if in E¢20) we approximate §
Cnrkr k= Ok Oy We obtain the equation reported by Fis- ©
chetti and Laux. In order to justify this approximation we i 1.0
have calculated thé terms for the case of silicon. We found 2
that Cpryr nk=Cnk' nkOnns (With an off-diagonal component 3 05
several order of magnitude lower than the diagona) oflee s
value ofC,y ni for the first conduction band range between B b)
0.9 and 1.0. Thus we can conclude that the approximation of i 09 20 20 50 30
Ref. 8 is well justified within 10% of error. Depth [nm]

C. Self-consistent results for a AIAgGaAs HEMT FIG. 2. (a) Self-consistent conduction band edge profile of the

AlAs/GaAs HEMT-like structure for thd’ and X valley. The first

In this last section, we consider the self-consistent fu"'three squared envelope wave functions are also shown. The zero of
band result for a AlAs/GaAs HEMT-like structures. Let Us y,q anvelope corresponds to the energy of the quantized level. Here

consider the unit cell defined in Sec. IVA. The two- g__g (1) Electron charge density in the nanostructure.
dimensional Brillouin zone has an irreducible wedgjé/)

defined b
Y tact (with a barrier high of¢pg=0.8eV). We choose a quan-

tum region of 200 ML(56.5 nm centered around the quan-
kx) (21) tized channelGaAs while the total width of the device is

3 um. The top 35 nm layer of AlAs close to the Schottky

The k integration needed to calculate the charge densitgontact is n-doped with Np=2x10'* cm™®. The one-

Eq. (15), is obtained by using a speciapoint sampling® of ~ dimensional Poisson equation, Ed>2), is solved using a
the irreducible wedge. However, only a small portion of thefixed potential at the metal-AlAs contact equal to theplus
irreducible wedge will contribute to the density, formed by the gate biagif applied while the zero-field condition is
the conduction band statésr valence band states when con- imposed at the opposite end of the structure. According to
sidered close to Fermi level. Thus, in order to reduce thethe discussion of Sec. IV A we choose &lpoints and two

computation effort, we select only those points of the IW¢onduction bands in the bulk band expansion for each semi-
belonging to these most significative regions. We have founggnduyctor.

that convergent results can be obtained with a small number Figure 2a) shows the calculated conduction band enve-
of specialk points in these regions. For instance, in the AIAs/|ope atT and X points. Also depicted are the first three

GaAs case, we obtain convergence for by using thitge oy ei0pe squared wave functions where the zero of each
points with [k;[<0.06 and 18k, points with [k \ave function has been set to the energy of the correspond-
~(0,0.85)<0.2 (here we use @/a units). . ing energy level. The total electron density is shown in Fig.
The self-consistent procedure has not been "?‘Pp"e‘?' d5(b). Electron confinement occurs both in the well and in the
rectly to the AlAs/GaAs quantum well. In fact the dimension barrier. The former is related to the GaRonduction band

of a typical HEMT will be of the order of several microns ~~ " : . L
and the potential will vary over this scale. Boundary condi-Minmum while the barrier states are those arising fromxhe

tions should be imposed at the real edges of the deviceStetes of the AlAs. The electron density is spread over the
However, electrons will accumulate mainly in the quantized ®@ GaAs channel and over tparasitic AlAs channel. The
channel. In order to be able to handle the problem, we havBresence of the parasitic channel has negative influence in
use an embedded calculation: the whole structure is divideth® HEMT performance and should be reduced as much as
into a quantum region where the full-band approach is ConpOSSible. Electron in the paraSitiC AlAs channel are also
sidered and in a semiclassical region where quantization efluantized. On the right end they are confined by the AlAs/
fects are not present. In the latter region a classical thre€GaAs barrier and on the left side by the potential profile.
dimensional Thomas-Fermi description is used to calculatélowever, due both to the large effective masses of the AlAs
the electron densityif presenj and ionized doping density. conduction minima and to the extension of the confining
The structure we have considered consists of an AlAgegion the energy quantization is quite small. We should
buffer, 42 ML of GaAs forming the quantum well, and 131 point out that the integration in the 2D Brillouin zone ki
ML of AlAs ending with a metal to form the Schottky con- =(0,0) andk;=(0,0.85)2r/a represents the two situations

2w
o T

2 )
Osk<—, Osky<min
a
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FIG. 3. Comparison between our method and the one of Refs. FIG. 4. Comparison between our method and the one of Refs.
27 and 29 for a AlAs/GaAs quantum well as a function of well 27 and 29 for a AlAs/GaAs quantum well as a function of well
width. An abrupt interface is considered. width. An 2 ML smoothed interface is considered.

where quantization arises from electrons with longitudinalrepresents the results for a smooth interface$ &it2 ML
mass and from electrons with transversal mass inlval-  transition region between the two materials. In the transition
leys, respectively. region we use a linear interpolation of the two pseudopoten-
Finally, we would like to address the question about thetials.
computational load of such calculations. Starting from a clas- For a narrow quantum welll0 ML) we obtain a maxi-
sical initial guess of the potential profile, the final result ismum difference between our method and the LCBB method
obtained in circa 10 self-consistent cycles. The overall calof about 15 meV for the abrupt interface case, which reduces
culation is achieved in one hour on a typical single-processoto 5 meV in the smooth interface case. The discrepancy be-
workstation. The calculation of thel, B, C, andS matrix ~ tween the two methods reduces drasticadtyl meV) by
elements is much more expansive and may require manicreasing the size of the well, and it is of the order of 1 meV
hours of computation. However, as discussed in the previour the results of the previous sections. We should point out,
sections, such matrix elements need to be calculated onigs discussed in Refs. 27 and 29, that bulk-band expansion
once. Moreover, the structure of such matrix elements callghethods are suited for large nanostructure description while
for a straightforward parallelization where each element ofull diagonalization methods can be used for small nano-
the matrix can be calculated on a different processor. structures.

D. Comparison with other approaches V. CONCLUSIONS

In the following we will briefly compare our approach  \We have developed a full-band pseudopotential-based ap-
with the one of Refs. 27 and 2@ereafter called LCBBIn  proach to describe semiconductor nanostructures. The
the LCBB method one needs to know the form of themethod based on the Bloch band expansion of the system
pseudopotential in all of the reciprocal space up to certaiwvave function allows us for an integration in a self-
cutoff. This can be obtained with fitting procedursege, for  consistent scheme. To perform such integrations we have
example, Ref. 3b In contrast, our approach is based on themade a suitable separation between structure-dependent and
spirit of the usual empirical pseudopotential theory wherematerial-dependent contributions to the system Hamiltonian.
only few Fourier transform components of the pseudopotenThe efficency of the full-band self-consistent approach has
tial (for few G) are needed. This allows us to use all thebeen demonstrated for AlAs/GaAs high-electron-mobility
empirical pseudopotential parameterizations developed s@ansistor structures, showing how relaxation of any enve-
far. The drawback of our method concerns the treatment obpe function approximation can be achieved even at the
the interface. At the interface we change abruptly the periself-consistent level without making the problem computa-
odic pseudopotential. However, this error is negligible if wetionally intractable.
consider a smooth interface or a large nanostructure as we
will show in the following.

We have calculated the electronic properties of a AlAs/
GaAs quantum well with our approach and the LCBB We would like to thank Dr. F. Della Sala and Dr. M.
method. We use the pseudopotential of Ref. 35. Figures Bovolotskyi for stimulating discussion about bulk-band ex-
and 4 show the energy of the conduction band confineghansion methods. This work has been partially funded by
states in the well as a function of the well width. Figure 3MURST, CNR progetto 5% Microelettronica, and by the Of-
represents the results for an abrupt interfaces while Fig. fice of Naval Research.
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APPENDIX: MATRIX ELEMENTS

C., P BO'I’ , G')*B.(G eiﬂ'(al+a2+a3)
The coefficient for the crystal potential part of the Hamil- " 7 "™ % g wie (G Bl G)

tonian (H,) can be easily obtained by direct evaluation of

the matrix element in Eq8): Xsind ay)sind a;)sind az), (A7)
., , in the directionG; where the potential does not changejs
B o oo™ > B, (G')* B;’k(G)Vg"(G”) an integer number and sing() = ., .
G.G".G" Another kind of separability can be obtained if the poten-
tial varies smoothly in the space. In this case we can consider
xe 1" % 5ingG+G"— G’ +k—k') |, that the Fourier transform of the potential is limited to the

first Brillouin zone(BZ) related to the unit cell choose. So, if
(A1) we assume that the following relation holds,

where
V(k) for keBZ
SiNAG+G"— G’ +k—k’)=sind a;)sind a,)sind as), V(k)Z{O otherwise (AB)
(A2)
with sinc(a;) =sin(wa))/(7ma;). The real coefficientsa; ,i we can than use the sampling theorem to exp¥4s3$ in a
=1,...,3 aredefined by more convenient way:

G+G'—G'+k—k'=a;G;+ @,Gy+ 3G, (A3)

whereG,,G,,G; are the reciprocal lattice basis. V(r)=2 V(R)sin({ﬁxr—R))sin({%~(r—R))
For the external potential termHs, we must define a R 2m 2m

reasonable approximation that makes the matrix element Gs

separable in two parts: one that is potential dependent but ><sin%—~(r—R)). (A9)

easy to calculate, and the second that is potential indepen- 2m

dent. In the following we discuss two complementary ap- ) ) o ]
proximations. By using this expression in E¢A4) we obtain the separa-

The expression for the potential matrix element is bility between the Fourier transform of the potential and the
material depend pafEqg. (9)] with

l H ’ ’
(n’k’a’|H3|nka)=—j drE Z V(r)e|(G+k*G —k')-r
Q Q G G/
Corcor ko= 1| 2 2 ReC, 6, 6,(G+k=G'=K')
G!

XB/, . (G")*Bp(G). (A4)
If we consider that the potential is constant inside the unit “B° (G'V*B.(G A10
cell [i.e., V(R+rg)=V(R) for ry varying in the unit cel, (G Br G) (A10)
we obtain
where
(n'k" o' |Halnko)=V(k—k")
(T' 1 _ I 1!
X% g Bn’k’(G/)* gk(G)Q_O Recblng,G3(G+k G k )
1 for(G+k—G'—k’')eBZ
. I X . All
xj /(CHk=C"=K)Togr, (AB) 0 otherwise. (ALY)
Q
with Within this approximation we limit the potential ik space;

however, the real-space shape will vary smoothly avoiding
1 . the step profile of the other case.
V(k)= N > V(R)ek R, (A6) The use of the forms in EA7) or Eq. (A10) for the C
R .. .

coefficient will depend on the problems we have to solve.
If we decompos&+k—G' —k'=a,G;+a,G,+a3zGsand  Typically in a self-consistent scheme the potential varies
ro=pB1R1+ BoRo+ B3R5 with a; and B; real numbers and slowly and the form of Eq(A10) is preferred. On the other
R; the Bravais lattice basis, we finally have the form of Eq.hand, if the potential is used to mimic a band discontinuity,
(9) with than the form in Eq(A7) should be considered.
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