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Limits of the dynamical approach to the nonlinear response of mesoscopic systems
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We have considered the nonlinear response of mesoscopic systems of noninteracting electrons to the time-
dependent external field. In this consideration the inelastic processes have been neglected and the electron
thermalization occurs due to the electron exchange with the reservoirs. We have demonstrated that the dia-
grammatic technique based on the method of analytical continuation or on the Keldysh formalism is capable of
describing the heating automatically. The corresponding diagrams containloose diffusons. We have shown the
equivalence of such a diagrammatic technique to the solution to the kinetic equation for the electron-energy
distribution function. We have identified two classes of problems with different behavior under ac pumping. In
one class of problems~persistent current fluctuations, Kubo conductance! the observable depends on the
electron-energy distribution renormalized by heating. In another class of problems~Landauer conductance! the
observable is insensitive to heating and depends on the temperature of electron reservoirs. As examples of such
problems we have considered in detail the persistent current fluctuations under ac pumping and two types of
conductance measurements~Landauer conductance and Kubo conductance! that behave differently under ac
pumping. We also foumulate two types of time-dependent random-matrix theories that apply in the ergodic
regime for the adiabatic and high-frequency pumping, respectively.
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I. INTRODUCTION

Recently there has been considerable interest in none
librium mesoscopics. The effect of adiabatic char
pumping1 has been experimentally observed2 and discussed
theoretically.3 Weak localization in a quantum dot under
pumping has been theoretically studied.4 The nonequilibrium
noise has been suggested5,6 as a cause of both the low
temperature dephasing saturation7 and the anomalously larg
ensemble-averaged persistent current.8 The results of Ref. 6
are based on the earlier works9 on the ensemble-averaged d
current caused by the quantum Aharonov-Bohm rectifica
of the external ac electric field. Without the Aharonov-Boh
magnetic flux the rectified dc current or voltage~‘‘photovol-
taic effect’’! has zero ensemble average but can exist in
dividual mesoscopic samples because of the specific arra
ment of impurities or irregularities in the dot’s shape. Th
effect was suggested long ago10 and reconsidered very re
cently for the case of the quantum dot.11

A theoretical description of all the effects listed abo
requires us to go beyond the linear-response theory an
consider the essentially nonlinear response to the ac p
field. This raises a question on the ‘‘minimal model’’ for th
adequate description of nonlinear responses in mesosc
systems. For the linear conductance the minimal model is
system of noninteracting electrons with the impurity scatt
ing and interaction with the external electric field. Such
model does not explicitly contain dissipation. Yet it allow
us to obtain a correct value of conductivity that is the k
quantity for the dissipation function. We will refer to a d
scription based on a model of that sort as the ‘‘dynami
approach.’’ In this approach the electron-electron (e-e) and
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electron-phonon (e-ph) interaction is neglected and the st
tionary regime under external pumping is reached in an o
system via the escape of ‘‘hot’’ electrons into the mass
leads playing the role of an electron bath.

The questions we address in this paper are this: To w
extent does this model apply to the nonlinear phenomen
mesoscopic systems and how can one see its limitat
through intrinsic inconsistencies and physical paradox
Another important issue we address in this paper is how
describe heating effects by the impurity diagammatic te
nique without explicitly solving the kinetic equation. It turn
out that heating can be described automatically by the n
class of diagrams containing the ‘‘loose diffusons’’ with on
free end. They are contrasted to the ordinary diffusons
cooperons which are connected in loops by the ‘‘Hika
boxes’’ and which describe the effect of electron phase
herence. Thus we show the way toseparatethe heating and
the dephasing effects on the level of the impurity diagra
matic technique.

The paper is organized as follows. In Secs. II and III w
discuss the general structure of the perturbation theory in
external ac field using the method of analytical continuat
and the Keldysh technique and describe simple rules of
impurity diagrammatic technique in the time domain. In S
III we derive the diffusion propagators~‘‘diffusons’’ and
‘‘cooperons’’! in the external ac field at different bounda
conditions. We also show in Sec III F that there are tw
types of time-dependent random-matrix theories correspo
ing to the ergodic regime of space-independent diffus
propagators. One of them is valid for the adiabatic lo
frequency pumping and another applies for the hig
frequency pumping. Section IV is central for the pap
©2001 The American Physical Society10-1
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There we introduce the loose diffusons and demonstrate
evaluating the diagrams with loose diffusons is equivalen
the solution of the kinetic equation for the electron-ene
distribution. We also discuss the paradoxes connected
the loose diffusons in closed electronic systems. As an
ample of the role of the loose diffusons we consider in S
V the variance of the persistent current fluctuations unde
pumping. For mesoscopic rings connected to an electron
ervoir by a passive lead we compute the temperature de
dence of the persistent current fluctuations in equilibri
and under the harmonic ac pumping. In Sec.VI we cons
the problem of dc conductance under ac pumping in t
different experimental geometries that correspond to m
surements of the Landauer and the Kubo conductances
rederive the expression for the Landauer conductance
terms of the electron Green’s function in the time dom
and show that the loose diffusons cannot be built in t
problem. It means that in systems of noninteracting electr
the Landauer conductance is insensitive to the elect
energy distribution inside the mesoscopic system and thu
insensitive to heating. In contrast to that the Kubo cond
tance is sensitive to the nonequilibrium electron distribut
in the corresponding system. In Sec. VII we summarize
main results of the paper and point out its obvious ext
sions.

II. ANALYTICAL STRUCTURE OF THE NONLINEAR
DYNAMICAL RESPONSE

In this section we describe the general analytical struc
of the nonlinear responseof an arbitrary order in the exter-
nal fieldusing the formalism of the analytical continuation12

and the Keldysh diagrammatic technique.13,14 We will show
that causality encoded in the triangular matrix structure
the Green’s functions in the Keldysh technique allowsat
most one pointwhere the string of retarded electron Green
functions is switched to the string of advanced Green’s fu
tions in the expression for the nonlinear response of anar-
bitrary order.

A. Causality of a nonlinear response and the method
of analytical continuation

The formalism of analytical continuation is based on t
explicit assumption of causality. One starts with the elect
Green’s functionG«,«2v defined on the Matsubara discre
frequencies«n5pT(2n11), vn52pTn (T is the bath tem-
perature! and expanded in series in the ac fieldAv . Any
~local in time! observable is expressed through the s
T(«G«,«2v . The nonlinear term of thekth order in this sum
is (v( i )K( iv (1), . . . ,iv (k))Av(1)•••Av(k), where v ( i )

52pTni and

K~ iv (1), . . . ,iv (k)!5T(
«

G0~ i«!G0~ i«2 iv (1)!

3G0~ i«2 iv (1)2 iv (2)!

3•••G0~ i«2 iv!. ~2.1!
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In the above equation we omitted the current operatoĵ
or the position operatorsr̂ coupled to the vector potentialAv

or to the electric fieldEv5 ivAv in the electron-field inter-
action

He- f5H 2 ĵAv , transverse gauge

2 r̂Ev , longitudinal gauge
~2.2!

and introduced the exact electron Green’s function in
absence of the time-dependent perturbation

G0~ i«!5(
m

Cm~r !Cm* ~r 8!

i«2«m
, ~2.3!

whereCm(r ) is an exact electron wave function in the m
soscopic system that corresponds to the stationary state
the energy«m .

Causality requires the physical~retarded! response func-
tion K(v1 , . . . ,vk) which depends on thecontinuousfre-
quenciesv i , to have no singularities in the upper half-pla
of each complex variablev i . Thus K(v1 , . . . ,vk) is ob-
tained by theanalytical continuationof K( iv (1), . . . ,iv (k))
from the imaginary discrete pointsv i5 iv ( i ) into the upper
half-plane Imv i.0. In order to implement the analytica
continuation one represents the sum over«n in Eq. ~2.1! as a
contour integral over the contourC that comprises all the
points i«n5 ipT(2n11) @see Fig. 1~a!#,

K~ iv (1), . . . ,iv (k)!5E
C

d«

4p i
tanhS «

2TDG0~«!G0~«2 iv (1)!

3G0~«2 iv (1)2 iv (2)!•••. ~2.4!

The next step is to deform the contour along the cuts Im«
50, Im«5v (1), Im «5v (1)1v (2), and so on@Fig. 1~b!#.

In doing that one has to take care of the analytical pr
erties of the electron Green’s functionsG0(«): the integrand
in Eq. ~2.4! should be regular in each strip between t
neighbor cuts. This means that for Im« larger than that of
the upmost cut all the Green’s functionsG0 should be chosen
retardedG0

R . In the strip just below this cut one Green
function with the argument that takes zero value on this
should be switched to the advancedG0

A . In the next stripe
another retarded Green’s function is switched from the
tarded to the advanced one and so on. Thus for Im«,0 all
the retarded Green’s functions are replaced by the advan
ones.

The next step is to shift the integration from along t
cuts to the real axis2`,E,1`. To this end we shift the
variable of integration«→E1 i (v (1)1•••1v (p)) corre-
sponding to the (p11)th cut Im«5v (1)1•••1v (p). Note
that sinceiv ( i ) is a period of tanh(«/2T) the above shift of
variables does not change tanh(«/2T)→tanh(E/2T). As a re-
sult we get in the right-hand side~rhs! of Eq. ~2.4! a sum of
the form
0-2
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FIG. 1. Contours of integration:~a! initial and
~b! after deformation along the cuts. The analy
cal properties@retarded~R! or advanced (A)] of
the Green’s functions are also shown in ea
strip.
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k H G0
R@E1 i ~v (1)1•••1v (p)!#•••G0

R~E1 iv (p)!

3@G0
R~E!2G0

A~E!#tanhS E

2TDG0
A~E2 iv (p11)!

3•••G0
A@E2 i ~v (p11)1•••1v (k)!#J . ~2.5!

Now we are in a position to implement the analytical co
tinuation. It reduces simply to the replacementiv ( i )→v i be-
cause all the Green’s functions have the analytical prope
that guarantee the regularity of each term in the s
Eq. ~2.5! in the upper half-plane of each of the compl
variablesv i .

One immediately notices the characteristic feature of
~2.5!: it is a sum of products~strings! of Green’s functions
such that each string is a product ofp functionsG0

R followed
by the product ofk2p11 functionsG0

A . There is only one
point in each string where the change of the character
analyticity occurs. This property can be traced back to th
causal nature of the nonlinear response.

B. The Keldysh diagrammatic technique

The analytical structure identical to Eq.~2.5! arises in the
Keldysh technique from thetriangular matrix structure of
electron Green functions,15,14

G5S GR GK

0 GAD , ~2.6!

where the superscriptK stands for the Keldysh compone
that determines all the observablesO,

O~ t !5 i Tr$ÔGK~ t,t !%. ~2.7!
04531
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Treating the applied ac field as aclassical field, we
assign15,14 the matrix vertext0He- f to the electron-field in-
teraction He- f , where t0 is the unit matrix in the 232
Keldysh space.

Using the usual expansion of the electron Green funct
G in powers of the electron-field interaction,

O~ t !5 i (
p50

`

Tr$Ô@$G0He- f%
pG0#K% tt

5 i (
p50

`

(
l 50

p

Tr@Ô$G0
RHe- f%

lG0
K$He- fG0

A%p2 l # tt ,

~2.8!

and the ansatz15,14

G0
K~E!5@G0

R~E!2G0
A~E!#tanhS E

2TD , ~2.9!

one immediately obtains the sameR-A structure as in Eq.
~2.5!.

III. NONLINEAR RESPONSE IN THE TIME DOMAIN

A. Nonlocality of perturbation series in the time domain

Let us consider the structure of the expansion Eq.~2.8!,
for a given numberp of the field vertices, in more detail
This will later help us to establish the structure of essentia
nonlinear expressions for different observables in the p
ence of a time-dependent ac field.

Three different contributions can be distinguished the
In the time-domain representation, the first contribution c
be depicted by the electron loop@Fig. 2~a!#.

It entirely consists of retarded Green functions,
0-3
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1 i E dt f̂ ~t!E dt1•••dtp Tr@ÔG0
R~ t,t1!He- f~ t1!G0

R~ t1 ,t2!

3He- f~ t2! . . . G0
R~ tp21 ,tp!He- f~ tp!G0

R~ tp ,t2t!#.

~3.1!

The second contribution is associated with the elect
loop @Fig. 2~b!# that solely contains advanced Green fun
tions,
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2 i E dt f̂ ~t!E dt1•••dtp Tr@ÔG0
A~ t1t,t1!He- f~ t1!

3G0
A~ t1 ,t2!He- f~ t2!•••G0

A~ tp21 ,tp!He- f~ tp!G0
A~ tp ,t !#.

~3.2!

The third contribution is associated with the electron lo
@Fig. 2~c!# built of l retarded and (p2 l 11) advanced Green
functions,
~3.3!
e-
field
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m-
pair

e,
where

f̂ ~t!5E dE

2p
eiEt f ~E!5

iT

sinh~ptT!
~3.4!

denotes the Fourier transform off (E)5tanh(E/2T).
The characteristic feature of the diagrammatic expans

for an observable in the time domain is that there is o
special point~ray! on the loop of Fig. 2 whichdoes not
correspond to a single point in the time domain. It is t
point where the Fourier transform of the energy-distribut
function is assigned to. Of special importance is t
retarded-advanced junction,

G0
R~ t,t! f̂ ~t2t8!@He- f~t!2He- f~t8!#G0

A~t8,t8!.
~3.5!

It reveals the nonlocal in the time domain structure of
point @see Fig. 2~c!# where an arbitrarily long sequence
retarded Green functions is switched to an arbitrarily lo
sequence of advanced Green functions.

FIG. 2. Graphic representation of the expansion Eq.~2.8!: ~a!
retarded,~b! advanced, and~c! retarded-advanced loops. Rays em
nating from the electron loops correspond to the electron-field

teractionHe- f , and a triangle stands for the observable operatorÔ.

In the time domain, the factorf̂ (t) is assigned to theÔ vertex in
the diagrams~a! and~b!. In diagram~c! this factor is assigned to th
retarded-advanced junction shown in bold.
n
e

e

e

g

B. Diffusons and cooperons in the time domain

With the aim of describing the essentially nonlinear d
pendence of observables on the external time-dependent
we introduce theinfinite sequence of retarded~advanced!
Green functionsG0

R,A ,

GR,A~r ,r 8;t,t8!5 (
p50

`

$@G0
R,AHe- f #

pG0
R,A%r ,r8;t,t8 ,

~3.6!

where multiplication assumes the convolution over t
coordinate and time variables $AB%r ,r8;t,t8
5*dr 9 dt9 Ar ,r9(t,t9)Br9,r8(t9,t8).

In describing weak localization and mesoscopic pheno
ena a special role is played by the disorder averages of a
of electron Green functions called ‘‘diffusons,’’

Drr 8~ t1 ,t18 ;t2 ,t28 !

5d~h2h8!Dh~ t,t8;r ,r 8!

5~2pnte!
22^GR~r ,r 8;t1 ,t18 !GA~r 8,r ;t28 ,t2!&,

~3.7!

and ‘‘cooperons,’’

Crr 8~ t1 ,t18 ;t2 ,t28 !

5
1

2
d~ t2t8!Ct~h,h8;r ,r 8!

5~2pnte!
22^GR~r ,r 8;t1 ,t18 !GA~r ,r 8;t2 ,t28 !&.

~3.8!

In Eqs.~3.7! and~3.8! ^•••& stands for the disorder averag
n is the mean electron density of states,te is the electron
momentum relaxation time,t65t6h/2, t68 5t86h8/2. The

-
-

0-4
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d functions in Eqs.~3.7! and~3.8! result from the assumption
on the constant mean density of states over the relevan
ergy interval much smaller than the electron bandwidth.

In the transverse gauge, the functionsDh(t,t8;r ,r 8) and
Ct(h,h8;r ,r 8) obey the following equations16 which corre-
spond to the diffusion approximation withD being the dif-
fusion constant:

H ]

]t
1g1DF i¹1ArS t1

h

2 D2ArS t2
h

2 D G2J Dh~ t,t8;r ,r 8!

5d~ t2t8!
d~r2r 8!

2pnte
2

~3.9!

and

H 2
]

]h
1g1DF i¹1ArS t1

h

2 D1ArS t2
h

2 D G2J
3Ct~h,h8;r ,r 8!52d~h2h8!

d~r2r 8!

2pnte
2

, ~3.10!

where we assume the electron-field interaction Eq.~2.2! cor-
responding to the transverse gauge with the weak space~on
the scale of the elastic mean free pathl 5vFte) and time~on
the scale ofte) dependence of the external classical fie
Ar(t), which is also supposed to be weak enoughuAr(t)u l
!1. We also assume the possibility of electrons escaping
mesoscopic system which is described by the~small! escape
rateg.

C. The ring and the quantum dot geometry

Equations~3.9! and~3.10! should be supplemented by th
boundary conditions. Below we consider two principally d
ferent geometries shown schematically in Fig. 3.

One of them corresponds to the mesoscopic ring of
circumferenceL with a small aspect ratio pierced by th
time-dependent magnetic fieldH(t) which generates the cir
cular electric fieldE(t)52]A/]t, whereA(t)5 1

2 H3r . In
this ring geometrythe diffusons and cooperons should ob
the periodic boundary conditions.

The ring geometry corresponds to the pumping by
magnetic partof the microwave field when the size of th
mesoscopic systemL is less than the size of the skin laye
However, for a semiconductor quantum dot with not t

FIG. 3. The ring~a! and the quantum dot~b! geometry.
04531
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e

large conductivitys theelectric partof the microwave field
can also penetrate inside the mesoscopic system. For
usual situationL!l, whereL is the size of the system andl
is the microwave wavelength, the electric field inside t
systemE(t)52]A/]t is homogeneous in space.

In this situation the boundary conditions read

@ i¹1Q(d)~ t,h!#nDh~ t,t8;r ,r 8!50,
~3.11!

@ i¹1Q(c)~ t,h!#nCt~h,h8;r ,r 8!50,

wheren is the vector normal to the boundary at a pointr and
we introduce a short-hand notation

Q(d)~ t,h!5AS t1
h

2 D2AS t2
h

2 D , ~3.12!

Q(c)~ t,h!5AS t1
h

2 D1AS t2
h

2 D . ~3.13!

D. Diffusons and cooperons in the ring geometry

In this case the convenient coordinatex along the ring is
proportional to the azimuthal anglex5Lu/2p. One can sup-
press the transverse coordinate, as the dependence on
coordinate at a small aspect ratio is negligible. The tangen
component of the fieldAx is independent onx. Given the
periodic boundary conditions for diffusons and coopero
one can switch to the Fourier transformsDh(t,t8;q) and
Ct(h,h8;q) in Eqs.~3.9! and~3.10! with the quantized mo-
mentumqm5(2p/L)m, wherem50,61,62 . . . . Then the
solution is straightforward,

Dh~ t,t8;q!5
u t2t8e

2g(t2t8)

2pnte
2

e2D*
t8
t

dt[q2Q(d)(t,h)] 2
,

~3.14!

Ct~h,h8;q!5
uh2h8e

2(1/2)g(h2h8)

2pnte
2

e2(D/2)*
h8
h

dt[q2Q(c)(t,t)] 2
,

whereu t is the step function andQ(d,c) is defined by Eqs.
~3.12! and ~3.13!.

An important particular case is thezero-modediffusons
Dh(t,t8)5Dh(t,t8;q50) and cooperons Ct(h,h8)
5Ct(h,h8;q50) which correspond toq50,

Dh~ t,t8!5
u t2t8e

2g(t2t8)

2pnte
2

e2D*
t8
t

dt[Q(d)(t,h)] 2
,

~3.15!

Ct~h,h8!5
uh2h8e

2(1/2)g(h2h8)

2pnte
2

e2 ~D/2! *
h8
h

dt[Q(c)(t,t)] 2
.

One can see that they decay as a function oft2t8 or h
2h8 even at an escape rateg50. This is the manifestation
of dephasingby the time-dependent external field. We no
that Eq.~3.7! with h50 corresponds to the electron-dens
correlation function. In the absence of electron escape
total number of particles is conserved and theref
0-5
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Dh50(t,t8;q50) must be a constant for anyt.t8. This is
consistent with the property ofQ(d)(t,h50)50. However,
there is no constraint that would prohibit a decay ofDh(t,t8)
at a nonzeroh.

E. Diffusons and cooperons in the quantum dot geometry

This case is principally different because of the fie
dependent boundary conditions Eqs.~3.11! and the potential
~longitudinal! nature of the electric field inside the dot. Th
makes the description in the longitudinal gauge more con
nient in the quantum dot geometry.

1. Equations for the diffusons and the cooperons in the
longitudinal gauge

Performing the gauge transformation

Dh~ t,t8;r ,r 8!5eiQ(d)(t,h)rD̃h~ t,t8;r ,r 8!e2 iQ(d)(t8,h)r8,
~3.16!

Ct~h,h8;r ,r 8!5eiQ(c)(t,h)rC̃t~h,h8;r ,r 8!e2 iQ(c)(t,h8)r8,
~3.17!

we switch to the longitudinal gauge.
This transformation removes the time-dependent fi

from the boundary conditions Eqs.~3.11!. However, it re-
mains in the equations forD̃h(t,t8;r ,r 8) andC̃t(h,h8;r ,r 8)
but only as the time derivatives,

Q̇~ t,h!5
]

]t
Q(d)~ t,h!

52
]

]h
Q(c)~ t,h!

5ES t2
h

2 D2ES t1
h

2 D , ~3.18!

whereE(t)52]A(t)/]t.
The operators in the left-hand side~lhs! of the corre-

sponding equations take the form

L̂d5H ]

]t
1g2D¹21 i rQ̇ ~ t,h!J , ~3.19!

L̂c5H 2
]

]h
1g2D¹21 i rQ̇ ~ t,h!J . ~3.20!

It is convenient to expandD̃h(t,t8;r ,r 8) andC̃t(h,h8;r ,r 8)
in an infinite sum(n,mAnmFn(r )Fm(r 8) over eigenfunctions
Fn(r ) of the diffusion operator2D¹2 with the Neumann
boundary condition@Eq. ~3.11! with Q(d,c)50]. Then the
equation for the amplitudesAnm is of the form~for simplicity
we consider the caseg50 and suppress the redundant ind
ces and variables!,

]

]t
Anm1EnAnm1 i Q̇~ t !(

l
r nlAlm5d~ t2t8!dnm ,

~3.21!
04531
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wherer nl is the matrix element of the vectorr in the basis of
Fn(r ) and En is the eigenvalue that corresponds to t
eigenfunctionFn(r ).

Though this equation looks similar to the~imaginary
time! Schrödinger equation for thedynamical Stark effect,
identifying Q̇ as the actual electric field inside the dot wou
lead to a mistake. Let us consider an important case of
constant in timeelectric fieldE which corresponds toA(t)
52Et. Then Eqs.~3.12! and ~3.13! give Q(d)(t,h)52Eh
andQ(c)(t,h)522Et. One can see from Eq.~3.18! that in
both cases the corresponding time derivativesQ̇(d) andQ̇(c)

are identically zero.
The conclusion that can be immediately drawn from t

observation is that theconstant in time longitudinal (poten
tial) electric field cannot lead to a dephasing@cf. Ref. 17#.
This statement is not true for the circular electric field co
sidered above. This field is not constant in the Cartes
coordinates and is not potential curlEÞ0.

2. The weak-field adiabatic and antiadiabatic limits

The general solution to Eq.~3.21! is unknown even for
the space-homogeneous electric fieldE(t) and in the ergodic
limit

Ec~ t2t8!@1, Ec~h2h8!@1. ~3.22!

However, one can find simple approximate solutions in
weak-field limit

uQ̇uL
Ec

!1. ~3.23!

In the ergodic limit Eq.~3.22! the diffusonsD̃h(t,t8;r ,r 8)
and cooperonsC̃t(h,h8;r ,r 8) are nearly space independen
i.e., the corresponding expansions are dominated by the
modeF0 with E050. By definition the next mode has th
eigenvalue equal to the Thouless energyE15Ec . For the
corresponding amplitudeA00 we get from Eq.~3.21!

]

]t
A001 i Q̇~ t ! (

mÞ0
r0mAm05d~ t2t8!, ~3.24!

where we choose the system of coordinates in whichr00
50.

In the weak-field limit Eq.~3.23! one can neglect in Eq
~3.21! Q̇rmnAn0 compared toEmAm0 (m,nÞ0) and obtain
the closed system of equations forA00 andAm0,

]

]t
Am01EmAm01 i Q̇~ t !rm0A0050. ~3.25!

Solving Eq.~3.25! and substitutingAm0 into Eq. ~3.24! we
obtain

]

]t
A001E

t8

t

Q̇~ t !D~ t2t9!Q̇~ t9!A00~ t9,t8!dt95d~ t2t8!,

~3.26!

whereD(t) is the matrix in the vector space
0-6
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@D~ t !# i j 5 (
mÞ0

@r0m# ie
2Emt@rm0# j . ~3.27!

Equation ~3.26! can be further simplified in theadiabatic

limit whereQ̇(t) is dominated by the frequenciesv!Ec . In
this case the quantity Eq.~3.27! can be approximated by th
d function @D(t)# i j 5Ci j d(t), where

Ci j 5 (
mÞ0

@r0m# i@Em#21@rm0# j . ~3.28!

Then Eq.~3.26! can be immediately solved and we obtain f
the zero-mode amplitudes

A00
(d)~ t,t8;h!5D̃h~ t,t8!

5
u t2t8

2pnte
2

expF2E
t8

t

Q̇i
(d)~ t9,h!

3Ci j Q̇j
(d)~ t9,h!dt9G , ~3.29!

A00
(c)~h,h8;t !5C̃t~h,h8!

5
uh2h8

2pnte
2

expF2
1

2Eh8

h
Q̇i

(c)~ t,h9!

3Ci j Q̇j
(c)~ t,h9!dh9G . ~3.30!

Equations~3.29! and ~3.30! are valid in the adiabatic limit
v!Ec provided that the conditions Eqs.~3.22! and ~3.23!
are fulfilled.

In the oppositeantiadiabatic limit v@Ec , the integral
term in Eq.~3.26! is recast as the total time derivative~which
has zero time average and thus strongly oscillates! and the
remainder consists of the strongly oscillating te
2Q(t)D(0)Q̇(t)A00(t,t8) and the term

2E
t8

t

dt9Q~ t !@]/]tD~ t2t9!#Q̇~ t9!A00~ t9,t8!

that contains a weakly oscillating part. Integrating this te
by parts and using the identityḊ(0)5]/]t@D# i j u t50
52Dd i j one extracts this weakly oscillating part

2Q~ t !Ḋ~0!Q~ t !A00~ t,t8!5D@Q~ t !#2A00~ t,t8!.
~3.31!

Not surprisingly, we conclude that in the antiadiabatic we
field limit the system does not feel the boundary and
zero-mode diffusons and cooperons in the quantum dot
ometry coincide with those in the ring geometry, Eqs.~3.15!.

However, in the adiabatic weak-field limit these two g
ometries are principally different, since the dephasing fac
in Eqs. ~3.29! and ~3.30! contains a quadratic form in th
time-derivativeQ̇ and a structural constant that depends
the system sizeL, while the dephasing factor in Eqs.~3.15!
contains a quadratic form inQ and is independent ofL.
04531
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F. Time-dependent random matrix theory „TRMT …

The zero-mode approximation Eq.~3.22! is equivalent to
the random-matrix theory~RMT!. The fact that there are two
different forms, Eqs.~3.29!,~3.30! and Eqs.~3.15!, of diffu-
sons and cooperons in the zero-mode approximation sugg
two different ways of defining thetime-dependentRMT. The
idea is to define the Gaussian ensembles of time-depen
random matrices which reproduce the expressions in E
~3.29!,~3.30! or Eqs.~3.15!. Then so defined TRMT can b
applied to describe not only disordered mesoscopic syst
with the diffusion motion of electrons~used in the above
derivation! but also ballistic quantum dots with the chaot
electron motion.

Before proceeding with the formal derivation we addre
a possible confusion based on the common wisdom that o
systems in the external field with the characteristic freque
v!Ec can be described by the random matrix theory. T
statement is valid for a linear response but it is incorrect
the nonlinear case. The point is that in the linear case
frequency of the external field entersall diffusons or coop-
erons as@Dq22 iv#21, wherev is the difference between
the energy variables of retarded and advanced electron G
functions. Assuming the summation over momentaq and the
fact that the first nonzero mode corresponds toDq25Ec ,
one concludes that atv!Ec the main contribution to the
sum over momenta is given by the zero mode withq50. In
the nonlinear case the situation is more complicated si
He- f(t) in Eq. ~3.6! is a sum of two parts proportional toeivt

and e2 ivt. As a result of the frequency fusionv2v50 in
the field-dependent diffuson~cooperon! self-energy part the
difference between the energy variables of retarded and
vanced electron Green’s functions constituting a diffus
~cooperon! may be zero despitev@Ec . This is the reason
why the high-frequency external field modifies the ze
mode approximation but does not kill it. The two modific
tions of the TRMT are as follows.

~i! For the conductors of thering topologyand thequan-
tum dots in the antiadiabatic limit, v@Ec , the time-
dependent RMT is defined by the matrix Hamiltonian

H5H01 i j~ t !Va , ~3.32!

wherej(t) is a real-time-dependent function,N3N random
matrix H0 belongs to the Gaussian orthogonal ensemb
while Va is the realantisymmetricrandom matrix@which
corresponds to the sign2 in Eq. ~3.33!# of the same size,

^H0
nmH0

n8m8&5
Nd2

p2
@dmm8dnn81dmn8dnm8#,

~3.33!

^Va,s
nmVa,s

n8m8&5
dC

p
@dmm8dnn87dmn8dnm8#,

d being the mean level spacing andC a nonuniversal con-
stant to be identified later on. To make a link between
TRMT, Eqs.~3.32! and~3.33!, and the zero-dimensional ap
proximation, Eqs.~3.15! and~3.29! and~3.31!, it is useful to
introduce the TRMT diffusonDh(t,t8) and cooperon
Ct(h,h8) propagators,
0-7
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FIG. 4. The retarded-advanced junction~a! and the Green-functions’ disorder averaging@~b! and ~c!# resulting in the loose diffuson
shown by the wavy line~d!. It ends up with the triangle; one of the triangle apexes is built upon the retarded-advanced junction, see~b! and
~c!. The diagram~d! corresponds to the disorder averaging depicted in~b!. Dashed lines in~b! and~c! denote the diffuson. Because of th
vector nature of the vertexHe- f in the transverse gauge Eq.~2.2! the loose diffuson should ‘‘embrace’’ two verticesHe- f in order for the
integral over the directions of electron velocity to be nonzero.
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^Gnm
R ~ t1 ,t18 !Gmn

A ~ t28 ,t2!&

5@2pnte~N!#2d~h2h8!Dh~ t,t8!,
~3.34!

(
n,m

^Gnm
R ~ t1 ,t18 !Gnm

A ~ t2 ,t28 !&

5
1

2
@2pnte~N!#2d~ t2t8!Ct~h,h8!,

whereGR,A(t,t8) are retarded or advanced Green functio
that correspond to the matrix Hamiltonian H,t65t
6h/2,t68 5t86h8/2; te(N)5p/(2Nd), and n51/d. Using
the standard method of Refs. 16~see also Ref. 4!, we derive
the following equations for the TRMT propagators:

H ]

]t
1CFjS t1

h

2 D2jS t2
h

2 D G2J Dh~ t,t8!5
d~ t2t8!

2pnte
2~N!

,

~3.35!

H ]

]h
1

C

2 FjS t1
h

2 D1jS t2
h

2 D G2J Ct~h,h8!5
d~h2h8!

2pnte
2~N!

.

~3.36!

A comparison with the microscopic equations~3.9! and
~3.10! @or Eq. ~3.31!# suggests identifying the phenomen
logical constantC introduced in Eq.~3.33! with the diffusion
coefficientD; the time-dependent functionj(t) plays the role
of the vector potentialA(t). This establishes the equivalenc
between the TRMT and the zero-dimensional limit of t
microscopic theory of Sec. III on theperturbativelevel.

~ii ! For thequantum dots in the adiabatic limit, v!Ec ,
the time-dependent RMT is defined by the mat
Hamiltonian4,11

H5H01j~ t !Vs , ~3.37!

wherej(t) is a real-time-dependent function,H0 andVs are
statistically independent, andN3N are random matrices be
longing to the Gaussian orthogonal ensemble@see Eq.~3.33!
with the sign1#.

Again, a link between the TRMT, Eqs.~3.37! and~3.33!,
and the zero-dimensional approximation, Eqs.~3.29! and
~3.30! of the full microscopic theory is easily established
deriving the equations for TRMT propagators. One obta
~see also Refs. 4 and 11!
04531
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H ]

]t
1CFjS t1

h

2 D2jS t2
h

2 D G2J Dh~ t,t8!5
d~ t2t8!

2pnte
2~N!

,

~3.38!

H ]

]h
1

C

2 FjS t1
h

2 D2jS t2
h

2 D G2J Ct~h,h8!5
d~h2h8!

2pnte
2~N!

.

~3.39!

By comparing with the microscopic equations~3.29! and
~3.30!, we conclude that the nonuniversal constantC of Eq.
~3.33! has to be identified with the one given by Eq.~3.28!;
the functionj(t) plays the role of the ac electric fieldE(t) in
Eq. ~3.18!. Thus, equivalence between the microscopic
proach of Sec. III and the TRMT of the form Eq.~3.37! is
proven perturbatively.

IV. THE ‘‘LOOSE’’ DIFFUSONS

In this section we show that starting from the quadratic
the external field order the diagrams of the impurity tec
nique acquire a new feature: one can draw the diffuson w
the free end~‘‘the loose diffuson’’! which carries zero mo-
mentum and zero frequency. We will show that it is exac
the element which describes heating by the external field

A. The loose diffusons and the retarded-advanced junctions

The analytical structure of the retarded-advanced junc
Eq. ~3.5! leads after the disorder averaging to an unus
object, theloose diffuson. Let us consider this object for th
simplest ring geometry.

1. Loose diffusons in the ring geometry

Consider the part of a diagram for an observable o
product of observables that contains the retarded-advan
junction @Fig. 4~a!#. One can isolate the retarded-advanc
junction from the rest of the diagram by performing the d
order averaging as shown in Figs. 4~b! and 4~c!. As result the
loose diffuson is formed@Fig. 4~d!# which originates from
the main body of the diagram and terminates at a trian
that consists of the retarded-advanced junction and ano
field vertex adjacent to it. Given the conditionuAr(t)u l !1
one can neglect the loose diffusons terminating by a poly
with the number of field vertices larger than two.

We stress that the loose diffuson can be built only us
the retarded-advanced junction. Indeed, the trian
in Fig. 4~d!, whose edges correspond to the avera
0-8
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retarded and advanced Green functionsḠE
R(A)(p)

5*dr ^G0
R(A)(r ,r 8;E)&e2 ip(r2r8)5@E2jp6 i /(2te)#21, de-

scribes the electron motion on the ballistic scale with
electron momentum relaxation timete being the smalles
time scale in the problem. One may effectively approxim
the average Green functions in the time-momentum re
sentation ḠR(A)(p,t) by the d functions of the form
ḠR(A)(p,t).ḠE50

R(A)(p)d(t). With this approximation and Eq
~3.5! the triangle in Fig. 4~d! reduces to the quadratic in th
A(t) combination

@A~ t18!2A~ t1!#A~ t18! f̂ ~ t182t1! ~4.1!

multiplied by a constant (d is the dimensionality of momen
tum space!

~vF
2/d!nE dj~p!ḠE50

R ~p!@ḠE50
A ~p!#252p inDte .

~4.2!

The triangle that corresponds to Fig. 4~c! is given by

22p inDte@A~ t18!2A~ t1!#A~ t1! f̂ ~ t182t1!. ~4.3!

Without the retarded-advanced junction, all the Gre
functions in the triangle would have the same analyticityR
or A), and the integral overj(p) vanishes.

Since in the dynamical approach (e-e and e-ph interac-
tions are neglected! there is at most one retarded-advanc
junction per electron loop@see Eq.~3.3!#, there could be not
more than one loose diffuson for a diagram describing
disorder average of a single observable^O(t)& and not more
thank loose diffusons for a diagram describing the disord
average of a product ofk observableŝO1(t1)•••Ok(tk)&.

Each of them is given by

D~ t,h!52p inteDE dt1E dr1@A~ t11h!2A~ t1!#2

3 f̂ ~h!D2hS t1
h

2
,t11

h

2
;r12r D , ~4.4!

where h5t82t5t182t1 and both contributions, Eqs.~4.2!
and ~4.3!, to the triangle have been summed up together
the ring geometry only the zero-mode part ofDh(t,t8;r1
2r ) survives integration over the coordinater1 of the free
end and using Eq.~3.15! we finally obtain D(t,h)
5 i te

21 f̂ (h)Lh(t), where

Lh~ t !5DE
2`

t

dj@A~j1h!2A~j!#2e2g(t2j)

3expH 2DE
j

t

dj8@A~j81h!2A~j8!#2J .

~4.5!
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2. Loose diffusons in the quantum dot geometry

Equation~4.5! holds also in the quantum dot geometry
theantiadiabaticcasev@Ec . In the oppositeadiabaticcase
v!Ec the longitudinal gauge is more convenient than t
transverse gauge originally accepted in the paper. Equat
~3.29! and~3.30! are nothing but the diffusons and coopero
in the longitudinal gaugein the zero-mode approximation
Using Eq.~3.5! with He- f corresponding to the longitudina
gauge, Eq.~2.2!, the loose diffuson can be represented
terms of the matrix elementsA0m

(d) and r m0 as follows:

D~ t,h!52p intef̂ ~h!E dt1@]A~ t11h!/]t12]A~ t1!/]t1#

3 (
mÞ0

A0m
(d)S t1

h

2
,t11

h

2
;2h D rm0 , ~4.6!

whereA0m
(d) obeys Eq.~3.25! with Q̇(t)5Q̇(t,2h) andA00

(d)

given by Eq.~3.29!.
Solving this equation and using thed-function approxi-

mation forD(t) we obtainD(t,h)5 i te
21 f̂ (h)Lh(t) with

Lh~ t !5E
2`

t

dj C@E~j1h!2E~j!#2e2g(t2j)

3expH 2E
j

t

dj8 C@E~j81h!2E~j8!#2J ,

~4.7!

where C@E(j1h)2E(j)#2 is the short-hand notation fo
@E(j1h)2E(j)# iCi j @E(j1h)2E(j)# j andE52]A/]t is
the time-dependent electric field. We also reinstalled the
nite escape rateg.

B. Loose diffusons and the singularity
of the quadratic response

Equations~4.5! and ~4.7! have similar structure:Lh(t)
contains a quadratic in the external field prefactor multipl
by the exponential dephasing factor. Because of the q
dratic in theA prefactor the loose diffuson does not arise
the linear-response theory. However, if one considers
quadratic in theA response, the loose diffusons must
taken into account while the field-dependent dephas
should be neglected. In this approximation we have

Lh~ t !5E
2`

t

dj D@A~j1h!2A~j!#2e2g(t2j) ~4.8!

and the similar expression in the quantum dot geometry.
Consider the harmonic pumpingA5A0 cos(vt)u(t) that is

switched on att50. Then at a timet@v21 the loose diffu-
son averaged over the period is given by

Lh~ t !52DA0
2 sin2S vh

2 D 12e2gt

g
. ~4.9!

One can see that in the limitg→0 the loose diffuson is
linear in t.
0-9
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We have already mentioned that the disorder averag
the product ofk observables contains at mostk loose diffu-
sons. Were the linear int growth in Eq.~4.9! unrestricted,
this would mean that the typical value of a mesoscopic
servable grows linearly with the running time. For a partic
lar case of the direct current arising in a mesoscopic r
under ac pumping this statement can be found in Ref. 1

Another similar statement concerns thesteady-state re-
gimewhen the limitt→` is taken in Eq.~4.9! prior to the
limit g→0. One could argue from Eq.~4.9! that the typical
value of a mesoscopic observable in the steady state is
verging asg→0.

However, Eqs.~4.5! and ~4.7! clearly show that both
statements are artifacts of the quadratic approximation
fact because of thefield-induced dephasingthe quantity
Lh(t) defined by Eqs.~4.5! and~4.7! is always smaller than
1. What is really singular in the limitg→0 is thequadratic
response susceptibility. However, it does not mean a diverg
ing mesoscopic quantity, since atg→0 the region of validity
of the quadratic inA approximation shrinks to zero.

C. Loose diffusons and the electron-energy distribution

Note that originating from the retarded-advanced ju
tion, Eq.~3.5!, the loose diffuson is proportional to the com
bination f̂ (h)Lh(t), where f̂ (h) is essentially the Fourie
transform of the Fermi-distribution function. From the pr
cedure of building the loose diffuson it is clear that any d
gram with the loose diffuson has a parent diagram with
the loose diffuson. For a particular case of the variance
persistent current in a mesoscopic ring the diagrams of Fi
~or Fig. 8! with one or two loose diffusons stem from th
diagram of Fig. 6~a! @or Fig. 6~b!# that contains no loose
diffusons. One can check~see Sec. V! that the sum of all
diagrams of the given family is equivalent to replacingf̂ (h)
in the parent diagram by

F̂~ t1h,t !5@12Lh~ t !# f̂ ~h!. ~4.10!

Consider now the simplest case of the steady state. It co
sponds to the ac pumping switched on att52`. Let us
define the time average

G~h!5H D@A~ t1h!2A~ t !#2 ring or dot withv@Ec

C@E~ t1h!2E~ t !#2 dot with v!Ec .
~4.11!

Substituting the time averageG(h) for D@A(t1h)
2A(t)#2 or C@E(t1h)2E(t)#2 in Eqs. ~4.5! and ~4.7! we
obtain the functionF̂(t1h,t)5F̂(h) that depends only on
the difference of its arguments,

F̂~h!5
g f̂ ~h!

g1G~h!
. ~4.12!

We conclude that the loose diffusons amount to therenor-
malization of the energy distribution functionin a parent
diagram.
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This observation is an example of a generic rule that
‘‘loose propagators’’ in a field theory can beeliminatedby
the proper choice of the initial state~‘‘vacuum’’ ! that in ki-
netics includes also the energy distribution function. Eq
tion ~4.12! gives the form of this distribution for an ope
dynamical system with no intrinsic relaxation and with t
electron escape rateg. For the particular case of a harmon
pumping in the quantum dot geometry Eq.~4.12! has been
established in Ref. 11.

The renormalized energy distribution function, Eq.~4.12!,
retains the propertyF(E56`)561 of the equilibrium dis-
tribution f (E)5tanh(E/2T). This follows from the fact obvi-
ous from Eq.~4.11! thatG(h→0)50. However, the form of
the energy distribution is different from tanh(E/2T) and
strongly depends on the spectral content of the pump
field. For low bath temperatureT it contains at least two
energy scales: the bath temperatureT and an additional scale
T* set by the conditionG(1/T* )5g. For a harmonic pump-
ing G(h)54gN sin2(vh/2), where

N55
DE~ t !2

gv2
ring or dot withv@Ec

CE~ t !2

g
dot with v!Ec .

~4.13!

For a strong pumping withN @1 one finds

T* 5vAN. ~4.14!

This result11 corresponds to the diffusion in the energy spa
with T* being the displacement andN being the number of
random-walk steps for the timeg21 each with emitting or
absorbing the energyv. In this case the inverse Fourie
transformF(E) of F̂(h) is dominated by the time interval
near zeros ofG(h) and we obtain

F~E!5
1

2AN (
k52`

1`

tanhS E2vk

2T
D e2uku/AN. ~4.15!

At T!v!T* the functionF(E) changes from21 to 11
over the scaleT* which plays the role of the effective elec
tron temperature. However, it has a fine structure of sh
small steps with the width of the transition regions bei
equal to the bath temperatureT and the width of the plateau
being equal tov ~see Fig. 5!.

In the case of the white-noise pumpingG(h)52Ng
5const for all hÞ0 and we formally obtainT* →`. The
same result follows from Eqs.~4.14! and ~4.13! in the limit
of a closed systemg→0. On the diagrammatic level thi
manifests itself in the identityLh51 that holds in the limit
g→0 for all hÞ0 and causes a cancellation of all the d
grams in the given family.19

In the absence of dissipation or an electron escape
result that the effective electron temperature in the ste
stateT* 5` is trivially correct but is certainly unphysical. I
0-10
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clearly sets the limit of the dynamical approach and show
necessity to take account of an intrinsic dissipation in clo
mesoscopic systems.

D. Loose diffusons and the kinetic equation

In this section we demonstrate that the functionF̂(t1 ,t2)
defined by Eq.~4.10! is indeed the solution to the kineti
equation. For simplicity we consider the case of the r
geometry and setg50.

To derive the kinetic equation we start with the left a
the right Dyson equations for the 232 Green’s functionG,

~G0
212S! ^ G5d~x12x18!, ~4.16a!

G^ ~G0
212S!5d~x12x18!. ~4.16b!

Here, the standard notations14 were adopted withxk
5(r k ,tk), and

G0
21~x!5 i

]

]t
2jp52 i“r2A(t) . ~4.17!

As the external ac field is a classical field, the compone
SK(R,A) of the self-energy

S~r t,r 8t8!5S SR SK

0 SAD ~4.18!

are

SK(R,A)5~ ĵA!~x1!GK(R,A)~x1 ,x2!~ ĵA!~x2!. ~4.19!

Subtracting the two Dyson equations, Eqs.~4.16!, from one
another, and taking the Keldysh component of the result,
obtains

FIG. 5. The antisymmetric partF(E)5122n(E) of the
electron-energy distributionn(E) for an open mesoscopic system
free electrons under harmonic pumping. The solid line correspo
to N525, v51, T50.1; the dotted line is tanh(E/2T* ).
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@G0
21~x1!2G0

21* ~x2!#GK~x1,x2!

5@SK
^ GA2GR

^ SK1SR
^ GK2GK

^ SA#~x1 ,x2!.

~4.20!

Before doing the next step we introduce thetime-dependent
energy distribution function n(E,t)5(1/2)@12 f (E,t)#,
where f (E,t) is related to the Keldysh component of th
matrix Green function,

GK~r1t1 ,r2t2!5E dt@F~ t1 ,t!GR~r1t,r2t2!

2GA~r1t1 ,r2t!F~t,t2!#, ~4.21!

f ~E,t !5E dh

2p
e2 iEhFS t1

h

2
,t2

h

2 D . ~4.22!

Now we substitute Eqs.~4.19! and~4.21! into Eq. ~4.20!,
and perform the disorder averaging. Using the identity

F~ t1 ,t2!5
i

2pn (
p

^GK~p;t1 ,t2!&, ~4.23!

we arrive at the equation

S ]

]t1
1

]

]t2
DF~ t1 ,t2!52D@A~ t1!2A~ t2!#2F~ t1 ,t2!.

~4.24!

The latter is easy to solve by introducing the functi
F̃(t,h)5F(t1h/2,t2h/2), with t5(t11t2)/2 and h5t1
2t2 being the Wigner variables

]

]t
F̃~ t,h!52DFAS t1

h

2 D2AS t2
h

2 D G2

F̃~ t,h!.

~4.25!

In accordance with Eq.~4.22!, the variablet has a clear
meaning of the global running time. We supplement E
~4.25! by the initial conditionF̃(t52`,h)5 f̂ (h) to end up
with

F~ t1h,t !5 f̂ ~h!expH 2DE
2`

t

dj@A~j1h!2A~j!#2J .

~4.26!

Comparison of Eq.~4.26! with Eq. ~4.5! ~at g50) shows
that the function F(t1 ,t2) is identical to the function
F̂(t1 ,t2) defined by Eq.~4.10! which follows from the evalu-
ation of diagrams with loose diffusons.

This proves that the loose diffusonLh(t) determines the
time-dependent electron-energy distribution functionn(E,t)
5(1/2)@12 f (E,t)#,

f ~E,t !5E dh

2p
e2 iEh f̂ ~h!@12Lh~ t !#, ~4.27!

whereLh(t) is given by Eqs.~4.5! and ~4.7!.

ds
0-11
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V. FLUCTUATIONS OF PERSISTENT CURRENT IN
MESOSCOPIC METALLIC RINGS IN AND OUT

OF EQUILIBRIUM

For illustration purposes we consider in this section h
the general formalism described above works in the part
lar problem of the persistent current20 in mesoscopic rings
pierced by a constant magnetic fluxf and subject to ac
pumping. Since the disorder-averaged persistent curren
noninteracting electrons considered in the grand-canon
ensemble is exponentially small21 we concentrate on theme-
soscopic fluctuationsof persistent current at temperaturesT
@1/tf where 1/tf is the total dephasing rate, including th
of the ac pumping. This condition allows us to negle
dephasing everywhere but in the loose diffusons which
scribe the evolution of the electron-energy distribution un
the ac pumping. We will show by straightforward diagram
matic calculations that Eq.~4.10! indeed holds if all dia-
grams of the given family are taken into account. This illu
trates how the diagrammatic technique takes care of
correct electron-energy distribution in the nonequilibriu
problem.

A. Equilibrium fluctuations of persistent currents

We start with the equilibrium fluctuations of persiste
currents in order to specify theparent diagramsfor the prob-
lem considered. Following a standard route, we express
persistent current~PC! in terms of exact retarded and a
vanced electron Green’s functionsG0

R(A) ,

I PC5 i E dE

2p
f ~E!Tr$ ĵ a@G0

R~E!2G0
A~E!#%. ~5.1!

Then the variance of the persistent current fluctuations
given by

^I PC
2 &52E dE

2pE dE8

2p
f ~E! f ~E8!

3^Tr$ ĵG0
R~E!%Tr$ ĵG0

A~E8!%&. ~5.2!

To perform the impurity averaging in Eq.~5.2!, it is conve-
nient to use a representation22,23 in which slow diffusion and
fast ballistic modes are explicitly separated from each oth

FIG. 6. Local~a! and nonlocal~b! single-loop diagrams for the
equilibrium persistent current fluctuations. Triangular vertices m

the current operatorsĵ a . These are theparent diagramsfor the
persistent current fluctuations under ac pumping.
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The lowest-order~single-loop! diagrams contributing to the
persistent current fluctuations are shown in Fig. 6. The
wavy lines correspond to diffuson (Dk) or cooperon (Ck)
propagators, while triangles and a square~whose edges cor
respond to the average Green functions! represent the elec
tron motion on the ballistic scale. On the diffusion scale,
latter are reduced to certain constants. Applying conv
tional rules~e.g., see Ref. 24!, we convert the diagrams in
Figs. 6~a! and 6~b! to

^I PC
2 & l54pnDte

2e2E dh f̂ 2~h!

3(
m

@Ckm22f/f0
~h!2Dkm

~h!#, ~5.3a!

^I PC
2 &nl5~4pnDte

2!2e2E dh f̂ 2~h!E dj

3(
m

@km
2 Dkm

~j!Dkm
~h2j!2km22f/f0

2

3Ckm22f/f0
~j!Ckm22f/f0

~h2j!#. ~5.3b!

Herekm5(2p/L)m with m running over all integers repre
sents the spectrum of diffusion modes allowed for the c
ductor with the ring topology,L being the circumference. In
Eqs. ~5.3!, the contributions of single- and double-diffuso
~cooperon! diagrams have been singled out in the time d
main, in which

Dk~ t ![Ck~ t !5
u~ t !

2pnte
2

exp~2Dk2t !. ~5.4!

In fact, Eq.~5.4! allows us to effectively compactify the
nonlocal diagrams, Fig. 1~b!, so that the total fluctuations
^I PC

2 & are solely expressed in terms of the contributions of
local diagrams, Fig. 1~a!,

^I PC
2 &58pnDte

2e2E dh f̂ 2~h!S D
]

]D
1

]

]D
D D

3(
km

@Ckm22f/f0
~h!2Dkm

~h!#. ~5.5!

The fluctuations of persistent currents, Eq.~5.5!, are mani-
festly periodic in the fluxf, with the periodf0/2. This can
explicitly be displayed by performing the resummation
Eq. ~5.5! using the Poisson formula

^I PC
2 &5 (

n51

`

^I n
2&sin2S 2pn

f

f0
D ~5.6!

with

^I n
2&5

4C2n2

p1/2 S e

tD
D 2

T̃2E
0

` dx

x3/2

e2n2/(4x)

sinh2~pT̃x!
, ~5.7!

where T̃5T/Ec denotes the electron temperature measu
in the units of the Thouless energyEc5\D/L25\/tD. For

k

0-12
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generality we also introduce the coefficientC which is equal
to 1 for the case of the potential disorder~orthogonal en-
semble! considered here andC51/2 for the strong spin-orbi
interaction~symplectic ensemble!. Equation~5.7! is in com-
plete correspondence with the earlier results obtained
Refs. 25 and 26.

B. Effect of ac pumping on the persistent current fluctuations

Now let us assume that a time-dependent circular fi
A(t) @see Fig. 3~a!# is applied to the mesoscopic ring an
consider the persistent current fluctuations under ac pu
ing. The dc current in a ring~overline means the time ave
aging! I dc5I (1)(t)1I (2)(t) can be found using Eqs.~2.8!–
~3.6! @see also Fig. 2#,

I (1)~ t !5 i E dh f̂ ~h!Tr$ ĵGR~ t,t2h!2 ĵGA~ t1h,t !%,

~5.8!

I (2)~ t !5 i E dt1E dh f̂ ~h!@Aa~ t11h!2Aa~ t1!#

3Tr$ ĵGR~ t,t11h! ĵaGA~ t1 ,t !%, ~5.9!

whereGR,A are exact electron Green functions in the pr
ence of ac pumping, Eq.~3.6!.

One can check that for equilibrium electron Green fun
tions Eq. ~5.8! reduces to Eq.~5.1!. The contribution Eq.
~5.9! is present only under ac pumping. It describes two pr
cipally different effects of ac pumping. One is therectifica-
tion of the ac field discussed in Refs. 9 and 6. This effec
similar to the photovoltaic effectin a single-connected
geometry.10,11 Another one is the heating by the ac fie
which we will study starting from the simplestzero orderin
the pump field parent diagrams of Fig. 6. The heating eff
in rectification ~or photovoltaic effect! can be studied in a
similar way11 starting from the parent diagrams of thesecond
order in the pump field.10,11,27

The daughter diagrams with loose diffusons that arise
ter disorder averaging and that correspond to the parent
gram of Fig. 6~a! are given in Fig. 7. We stress that althou
the parent diagram of Fig. 6~a! arises as the result of th
disorder averaging of̂I 1

2& the daughter diagrams always in
volve I 2, which contains the retarded-advanced junction a

FIG. 7. Local single-loop daughter diagrams with one~a! or two
~b! loose diffusons contributing to the nonequilibrium fluctuatio
of persistent current. Diagram~a! arises from the disorder averag
^I 1(t)I 2(t8)& and diagram~b! arises from the disorder averag
^I 2(t)I 2(t8)&. They are complementary to the parent diagram
Fig. 6~a!. The Hikami box of the diagram~a! is detailed in~c!.
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allows us to build the loose diffuson. In a similar way we g
the nonlocal daughter diagrams that correspond to the pa
diagram of Fig. 6~b!.

Calculating the diagrams of Figs. 7 and 8 and assum
T@g,1/tf we neglect both dephasing and electron escap
the loop diffusons and/or cooperons and adopt Eq.~5.4! to
describe them. Then summing up all the diagrams of F
6–8 we arrive at the expression for the disorder aver
^I PC(t)I PC(t8)& which is exactly the same as Eq.~5.5! with
f̂ 2(h) replaced byf̂ 2(h)@12Lh(t)#@12Lh(t8)#. This leads
to the ansatz Eq.~4.10!.

In particular, for a harmonic pumping with the frequen
v5ṽEc we obtain from Eq.~4.12!

^I n
2&5

4C2n2

p1/2 S e

tD
D 2E

0

` dx

x3/2
e2n2/(4x)F2~x!, ~5.10!

where

F~x!5
T̃

sinh~pT̃x!

1

F114N sin2S ṽx

2
D G . ~5.11!

Here we assume that the ring is connected to the elec
reservoir by apassive lead@see Fig. 10~b!# which results in a
finite electron escape rateg and allows to reach a steady
state regime. The escape rate enters the constantN in Eq.
~4.13!, which is equal to the number of absorption and
emission events for the escape time and thus describes
pumping strength.

At T* 5vAN @Ec the variance of persistent current flu
tuations is strongly suppressed but still significantly depe
on the bath temperatureT even if T!T* @see Fig. 9#. For
instance, atv!Ec andT* 5vAN @Ec we obtain

^I n
2&}S Ec

T*
D 4E

0

` dx

x11/2
e2n2/(4x)

T̃2

sinh2~pT̃x!
. ~5.12!

f

FIG. 8. Nonlocal single-loop daughter diagrams: diagrams~a!
and ~b! arise from the disorder average of^I 1(t)I 2(t8)& while dia-
gram ~c! arises from the disorder average^I 2(t)I 2(t8)&. These are
complementary to the parent diagram of Fig. 6~b!. The correspond-
ing Hikami box ~d! is also shown.
0-13
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V. I. YUDSON, E. KANZIEPER, AND V. E. KRAVTSOV PHYSICAL REVIEW B64 045310
Equation~5.12! shows the dependence on the bath tempe
ture T5T̃Ec which is of the same type as in the absence
pumping Eq.~5.7!, only the magnitude of fluctuations de
creases by the factor of (Ec /T* )2!1. So the overall width
T* and the small steps in the electron-energy distribution
Fig. 5 manifest themselves in the variance of persistent
rent fluctuations.

VI. dc CONDUCTANCE UNDER ac PUMPING

In this section we consider the dc conductance in a me
scopic system under ac pumping. This problem has b
recently addressed in the work by Pedersen and Bu¨ttiker.28

Here we neglect the electron interaction and focus on
effect of heating by the ac field. It is well known that th
mesoscopic conductance fluctuations are temperature de
dent and decrease when the size of the systemL@LT where
LT5AD/T. The question we address here is whether or
the effective temperatureT* is what should stand for the
bath temperatureT in the expression forLT under ac pump-
ing. The answer is not obvious in the geometry of an op
quantum dot connected by the leads to electron reserv
@see Figs. 10~a! and 10~b!#. The point is that there areseveral
different electron-energy distributions in such a proble
The electron-energy distribution in each reservoir is s
posed to be the equilibrium Fermi distribution with a certa
chemical potential and temperature. In addition, there is
nonequilibrium electron-energy distribution inside the d
under ac pumping. We define theLandauer conductanceas
the linear dc current response to thedifference of the chemi
cal potentialsbetween two different reservoirs with the sam
temperature@Fig. 10~a!#.

Another experimental situation corresponds to meas

FIG. 9. Temperature dependence of the variance of the
harmonic of persistent current in units of (e/tD)2: the equilibrium
temperature dependence~upper curve! and two close curves~en-
larged by a factor of 5! for the nonequilibrium case withT*
520Ec corresponding toṽ510, N54 and ṽ52, N5100. The
temperature dependence is significant in the nonequilibrium c
even forT!T* .
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ments of the linear dc current response to theperturbation of
the system’s Hamiltoniancaused by the constant electr
field inside the mesoscopic system. The corresponding
sponse function will be referred to as theKubo conductance.
It can be realized as a current response in a ring tha
pierced by a magnetic flux30 @see Fig. 10~b!#. The flux is
supposed to contain two parts: one is growing linearly w
time and causes the dc electric field. Another one produ
the high-frequency pumping.

We will show that these two cases are drastically differ
~the same conclusion has been reached by Vavilov
Aleiner29!. The Landauer conductance of noninteracti
electrons isinsensitiveto heating and depends only on th
bath temperatureT. At the same time the nonequilibrium
electron-energy distribution in the mesoscopic ring does m
ter for theKubo conductance. In particular, the mesoscopi
fluctuations of the Kubo conductance should feel the eff
tive temperatureT* rather than the temperature of the ele
tron reservoirT which the mesoscopic ring is connected
by thepassive lead.

A. Landauer conductance in terms of electron Green
functions in the time domain

In order to prove the statement on the absence of se
tivity of the Landauer conductance to heating produced by
pumping in the dot and to see the key difference between
Landauer and the Kubo conductances we rederive the La
auer conductance to allow for an arbitrary ac pumping.
derive the expression for the Landauer conductance in te
of the electron Green functions we proceed along the ro
used in Ref. 11.

1. Formulation of the Landauer conductance

For simplicity we consider a zero-dimensional dot d
scribed by theN3N randomtime-dependentmatrix Hi j (t)
connected to two perfect semi-infinite (x,0) leads, each
containingM channels labeled bya. There is neither disor-

st

se

FIG. 10. Experimental geometries for the Landauer~a! and
Kubo ~b! conductances. In the case of Landauer conductance th
current I 0 is the response to the chemical potential differencem1

2m2 between two reservoirs that enter through the Fermi distri
tions of theincomingelectrons. In the case of Kubo conductan

the dc currentI 0 is the response to the perturbationĵ E0t of the
system’s Hamiltonian. Thepassive leadconnects the mesoscopi
ring to the electron reservoir with the equilibrium distribution
electrons.
0-14
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LIMITS OF THE DYNAMICAL APPROACH TO THE . . . PHYSICAL REVIEW B64 045310
der nor electron interaction with each other or with an ext
nal ac field inside the leads. Therefore the matrix Gre
functionG11,ab(t2t8,x2x8) of the Keldysh technique Eq
~2.6! for incoming electronsin the leads depends only on th
difference of time and coordinates.31 Moreover, the incom-
ing electrons are supposed to be in equilibrium at the b
temperatureT and the chemical potentialm1dm, where
dm56U/2 differs in sign for the leads 1 and 2. Then th
Keldysh componentG11,ab

K (E,x2x8) of the incoming elec-
tron Green function G11,ab(E,x2x8) in the energy-
coordinate representation takes the form@cf. Eq. ~2.9!#

G11,ab
K ~E,x2x8!5tanhS E2dma

2T D @G11,ab
R ~E,x2x8!

2G11,ab
A ~E,x2x8!#. ~6.1!

The retarded and advanced components for incoming e
tronsG11,ab

R(A) (t2t8,x2x8) in the leads are given by

G11,ab
R 5 iu~ t2t8!dabd„vF~ t2t8!2~x2x8!…, ~6.2!

G11,ab
A 52 iu~ t82t !dabd„vF~ t2t8!2~x2x8!….

~6.3!

Here we linearized the Schro¨dinger equation near the Ferm
momentum and introduced right~incoming! and left~outgo-
ing! movers C6

(a)(x,t)5A6e6 ikx2 ivFkte6 ipFx. Then the
wave function in the leads (x,0) is

C (a)~x,t !5C1
(a)~x,t !1C2

(a)~x,t !. ~6.4!

The Schro¨dinger equation for electron states inside the
cn(t) coupled to electron states in the leadsC6

(a)(x,t) is
taken in the form

(
m

@ idnm] t2Hnm~ t !#cm~ t !5(
a

Wna
† C (a)~0,t !,

~6.5!

whereWan is the 2M3N coupling matrix.
Neglecting electron-electron interaction we introduce

linear boundary conditions atx50,

2 ivF@C1
(a)~0,t !2C2

(a)~0,t !#5(
m

Wamcm~ t !. ~6.6!

For massive leads with the semiclassical electron mot
electrons adiabatically turn back atWam→0 acquiring only a
certain phase which may be included into the definition
C6

(a) .
Equations ~6.5! and ~6.6! generate the correspondin

equations for the matrix Green functions,

(
m

@ idnm] t2Hnm~ t !#G6,mb~ t,t8;x8!

5(
a

Wna
† @G16,ab~ t,t8;2x8!1G26,ab~ t,t8;2x8!#,

~6.7!
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(
m

WamG6,mb~ t,t8;x8!

52 ivF@G16,ab~ t,t8;2x8!2G26,ab~ t,t8;2x8!#,

~6.8!

where the label1 ~2! corresponds to the incoming~outgo-
ing! electrons in the leads andG6,mb is the ‘‘cross’’ Green
function of an incoming~outgoing! electron in channelb in
the leads and an electron at sitem in the dot.

According to Eq.~2.7! the currentI 1,2(t) in the leads 1 or
2 is given by the Keldysh componentsG11,aa

K (t,t;0) and
G22,aa

K (t,t;0) of the incoming and outgoing electrons,

I 1,25 ivF (
aP1,2

@G11,aa
K ~ t,t;0!2G22,aa

K ~ t,t;0!#.

~6.9!

2. Analytical structure of the scattering matrix

It is possible11 to express the Keldysh compone
G22,ab

K (t,t8;0) of the outgoing electrons in terms of th
known Keldysh componentG11,ab

K (t,t8;0) for the incom-
ing electrons using the time-dependent scattering ma
Sab(t,t8),

G22,ab
K ~ t,t8;0!5E dt1E dt2 Sag~ t,t1!

3G11,gd
K ~ t12t2 ;0! Sdb

† ~ t2 ,t8!.

~6.10!

It is crucial for us that the scattering matrixSab(t,t8) in-
volves only theretardedcomponentGmn

R (t,t8) of the elec-
tron Green functioninside the dotand the Keldysh compo
nentGnm

K (t,t8) drops out of the scattering matrix,11

Sab~ t,t8!5dabd~ t2t8!22ivF
21WanGnm

R ~ t,t8!Wmb
† .

~6.11!
We note that only the Keldysh componentGnm

K (t,t8) con-
tains information on the electron-energy distribution insi
the dot. It describes thereal transitions between energy lev
els in the dot which are constrained by the energy conse
tion law and the Pauli principle. In contrast to that the r
tarded componentGmn

R (t,t8) describesvirtual transitions
where no energy conservation applies and thus the en
distribution function is irrelevant.

Formally the fact that the scattering matrix is independ
of Gmn

K (t,t8) follows from Eqs.~6.7! and ~6.8!. Let us ex-
pressG21,ab throughG11,ab and G1,mb using Eq.~6.8!
and substitute it into Eq.~6.7!. As the result of the transfor
mation 2G11,ab appears in the rhs of Eq.~6.7! and the
matrix Hamiltonian for electrons in the dot acquires
imaginary partHnm→Hnm

R , where

Hnm
R,A5Hnm7 ivF

21~W†W!nm . ~6.12!

According to the rules of the Keldysh technique the gene
solution G1,mb

K to the transformed Eq.~6.7! involves both
0-15
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the combination Gmn
R Wna

† G11,ab
K and the combination

Gmn
K Wna

† G11,ab
A , whereG is the matrix Green function fo

electrons in the dot; for instance,

Gnm
R ~ t,t8!5@ i ] t2HR~ t !#nm

21 . ~6.13!

However, in this particular scattering problem we have

G11,ab
A ~ t,t8;x2x8.0!50. ~6.14!

Equation ~6.14! follows immediately from thed-function
and theu-function structures of Eq.~6.3!. Therefore we ob-
tain from Eqs.~6.7! and ~6.8!

G21,ab
K ~ t,t8;0!5E dt1 Sag~ t,t1!G11,gb

K ~ t1 ,t8;0!,

~6.15!

with Sag(t,t1) given by Eq.~6.11!, which contains only the
retarded componentGnm

R of the electron Green function in
the dot.

In a similar way one can expressG22,ab
K (t,t8;0) through

G21,ab
K (t,t8;0) using the Hermitean conjugated equatio

~6.7! and ~6.8! to finally arrive at Eq.~6.10!.

3. Expression for the Landauer conductance

Now we substitute Eq.~6.10! in Eq. ~6.9! with Sab(t,t8)
given by Eq.~6.11! to get for thelinear dc responsecurrent
I 05I lin(t)

I lin~ t !52vF
22UE dt1E dt2@2 i ~ t12t2! f̂ ~ t12t2!#

3Tr$~11L!WGR~ t,t1!W†LWGA~ t2 ,t !W†%

1 i ~vF
21/2!UE dt1@2 i ~ t12t ! f̂ ~ t12t !#

3Tr$~11L!W@GR~ t,t1!2GA~ t1 ,t !#W†%,

~6.16!

where we have introduced the diagonal matrixL,

Laa5H 11, aP lead 1

21, aP lead 2

0, otherwise.

~6.17!

Equation~6.16! can be simplified using the identity

GR~ t,t8!2GA~ t,t8!52GA$@G21#R2@G21#A%GR

522ivF
21E dt1GA~ t,t1!

3W†WGR~ t1,t8!, ~6.18!

which is obtained with the help of Eq.~6.12!.
In order to obtain the dcI 0 one has to average Eq.~6.16!

over t within the observation timeT→`. This means an
additional integration overt. Then using the fact thatt f̂ (t) is
04531
s

an even function one can replaceGA(t1 ,t) by GA(t,t1) in the
second term of Eq.~6.16!. After that Eq.~6.18! can be ap-
plied to yield

gLand5vF
22E

2T /2

1T /2dt

T E dt1E dh@2 ih f̂ ~h!#

3Tr$2W†~11L!WGR~ t,t1!W†LWGA~ t11h,t !

1W†WGR~ t,t1!W†~11L!WGA~ t11h,t !%. ~6.19!

Finally we assume that the 2M3N coupling matrixWan has
only 2M nonzero matrix elements, those witha5n; all
these elements are taken equal toW. Then Eq.~6.19! takes
the form

gLand5
1

2
g2E dt1E dh@2 ih f̂ ~h!#M 22

3Tr$G12
R ~ t,t1!G21

A ~ t11h,t !

1G21
R ~ t,t1!G12

A ~ t11h,t !%, ~6.20!

where f̂ (h) is the Fourier transform of tanh(E/2T); the over-
line denotes the average over timet; g52vF

21uWu2M is the
electron escape rate,M is the number of channels in eac
lead and the subscripts 1 or 2 indicate that only sites c
nected to the first or the second lead should be taken
account in the summation over matrix indices.

Using Eq.~6.18! one can4 recast Eq.~6.20! as a sum of
two partsgLand5g11g2, where

g15
i

4
gE dh@2 ih f̂ ~h!#M 21 tr$GR~ t1h,t !2GA~ t1h,t !%

~6.21!

and

g25
1

4
g2E dt1E dh@2 ih f̂ ~h!#M 22

3tr$LGR~ t,t1!LGA~ t11h,t !%. ~6.22!

In Eqs. ~6.21! and ~6.22! the symbol tr denotes the matri
trace takenonly over sites connected to leads and the ma
L in Eq. ~6.22! is given by Eq.~6.17!.

The first contributiong1 is proportional to the local den
sity of states in the regions of leads. It describes the effec
electron escape in each leadseparately. The second termg2
describes the mutual effect ofboth leads. It is similar to the
conventional termĵGRĵGA in the Kubo conductance, sinc
Tr ĵ5tr L50.

B. Why there are no loose diffusons in the problem
of Landauer conductance under ac pumping

We stress once again that the Landauer conductanc
independent of the Keldysh component of the elect
Green’s function in the dot. This is already an indication th
electronkinetics inside the dot under ac pumping is irre
evant for the Landauer conductance. In particular this me
0-16
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that the electron-energy distribution functionf̂ (h) in Eq.
~6.20! is not renormalizedin the way similar to Eq.~4.12!.

Formally this follows from the difference in the structu
of the retarded-advanced junctions. Let us compare the
retarded-advanced junction Eq.~3.5! and that in Eq.~6.22!.
The difference is that Eq.~3.5! contains the electron interac
tion with the ac pumping fieldr̂] t1

A(t1)2 r̂] t1
A(t11h) or

ĵA(t1)2 ĵA(t11h). At the same time Eq.~6.22! contains
2 ihL}L@A0(t1)2A0(t11h)# which stems from the inter
action with thedc fieldA0(t)52E0t that causes the chem
cal potential differenceU. Correspondingly, the expressio
for the loose diffuson analogous to Eq.~4.6! is proportional32

to Lm05(mFm(m)LmmF0(m)}tr L50 ~instead of rm0).
An expansion ofGR,A in powers of the ac pumping field
analogous to that leading to the triangle in Fig. 4 does
help. Because the retarded-advanced junction in Eq.~6.22!
does not contain the ac field the corresponding triangle
linear in the ac field and vanishes after averaging over timt
@cf. Eq.~4.11!#. Thus the loose diffuson corresponding to E
~6.22! vanishes in the same way as the one that correspo
to the conventional termĵGRĵGA in the Kubo conductance
The structure of Eq.~6.21! does not allow us to build the
loose diffuson because it does not contain the retard
advanced junction at all. Since the heating effect is ass
ated with the loose diffusons the above arguments allow
to conclude29 that theLandauer conductanceof noninteract-
ing electrons isnot sensitive to heating.

C. Sensitivity of the Kubo conductance to heating

However, this is not true for the Kubo conductance wh
is sensitiveto heating. Consider an experimental situati
shown in Fig. 10~b!. Here the electric fieldE0 is produced by
the linear in time component of the magnetic flux pierci
the mesoscopic ringf05LA052LE0t. The ac pumping is
produced by the oscillating part of the magnetic fluxfac(t)
5A(t)L. In the framework of the dynamical approach t
steady-state regime is only reachable if the mesoscopic
tem is connected to the reservoir by apassive lead. It sup-
ports no net current but results in the particle exchange
tween the mesoscopic system and the reservoir necessa
remove heat produced by the ac pumping. Phenomeno
cally, the effect of the passive lead is described by the esc
rateg. This geometry corresponds exactly to the formali
developed in Secs. II and III, where

He- f~ t !5H01H15 ĵE0t2 ĵA~ t !. ~6.23!

Now each ray in Fig. 2 represents a sumH01H1. Since we
are interested in the linear response toH0, one ray is special:
it corresponds toH0 while all other rays correspond toH1.
Then using Eqs.~2.8!–~3.6! one obtainsI 05I lin(t)5@s1
1s21s3#E0, where

s15E dt1E dh f̂ ~h!Tr$ ĵGR~ t,t1! ĵ @2 i t 1#GR~ t1 ,t2h!

2 ĵGA~ t1h,t1! ĵ @2 i t 1#GA~ t1 ,t !%, ~6.24!
04531
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s25E dt1E dh@2 ih f̂ ~h!#Tr$ ĵGR~ t,t1! ĵGA~ t11h,t !%,

~6.25!

s35E dt1 Tr$ ĵG(a)~ t,t1! ĵ @2 i t 1#GA~ t1 ,t !

1 ĵGR~ t,t1! ĵ @2 i t 1#G(a)~ t1 ,t !%. ~6.26!

HereGR,A(t,t8) are Green functions in the mesoscopic sy
tem subject to ac pumping and

G(a)~ t,t8!5E dt9E dh f̂ ~h!GR~ t,t91h!

3@H1~ t91h!2H1~ t9!#GA~ t9,t8!.

~6.27!

The first two parts, Eqs.~6.24! and~6.25!, do not allow us to
build the loose diffuson for exactly the same reasons as E
~6.21! and ~6.22! for the Landauer conductance. Howeve
the ‘‘anomalous’’ Green functionG(a) in Eq. ~6.26! contains
the retarded-advanced junction of the same structure as
discussed in Sec. IV which does allow us to build the loo
diffuson. This is the part where the heating effects origin
from.

One can see the direct analogy with the situation d
cussed in Sec. V B. The role played by the currentI (2), Eq.
~5.9!, is now played by the part of conductances3. The
parent diagrams for the problem of conductance fluctuati
are the usual two-diffuson and two-cooperon diagrams c
sidered in Refs. 33. All the daughter diagrams with one
two additional loose diffusons can be obtained from the d
order averageŝs1,2s3& and^s3

2&, respectively. It is not dif-
ficult to show that all of them again lead to the renormaliz
tion of the energy distribution function given by Eq.~4.12!.

D. The difference between the Landauer
and the Kubo conductance

Let us discuss the difference between the experime
situations described by the Landauer and the Kubo cond
tances. The principal difference between them is that
quantity we call the Landauer conductance is the linear c
rent response to the variations of theparameters of the elec
tron reservoirs~the chemical potential difference! while the
Kubo conductance is the linear current response to the va
tion of thesystem’s Hamiltonian@the termH0 in Eq. ~6.23!#.
We stress that the difference lies in thephysical situations
and not in themethods of description. For instance, thepho-
tovoltaic effectcan be considered both in the framework
the scattering matrix approach11 and in the nonlinear re-
sponse approach similar to the one we used in Sec.V for
persistent current fluctuations. In both cases the result is
pressed in terms of therenormalizedelectron energy distri-
bution Eq.~4.12!. The reason is that the photovoltaic curre
is a nonlinear response to the variation of the syste
Hamiltonian @H1 in Eq. ~6.23!# caused by the ac pumpin
field which should be treated in the same way as the va
tion H0 in Eq. ~6.23! that causes the Kubo conductance. Th
0-17
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is why in terms of the sensitivity to heating the photovolta
effect is similar to the Kubo conductance and drastically d
ferent from the Landauer conductance.

We note that the key difference between these two si
tions examplified by Figs. 10~a! and 10~b! is that the initial
density matrix att52`, prior to switching on the interac-
tion with external ac field~which is a starting point in the
Keldysh formalism13!, is alreadynonequilibriumin the prob-
lem of Landauer conductance@Fig. 10~a!#, since it involves
two Fermi distributions with different chemical potentials. A
the same time in the situation represented by Fig. 10~b! the
initial density matrix is equilibrium.

VII. CONCLUSION

In the present paper we have considered a general for
ism of the dynamical approach to nonlinear response of
soscopic systems. For completeness of presentation an
tutorial purposes we have shown how the causality princ
leads to the powerful machinery ofanalytical continuation12

which is most conveniently realized in the matrix algebra
the Keldysh technique.13,15,14The principal goal of the pape
was to demonstrate the capability of the dynamical appro
and its apparent limitations. We have shown that the d
grammatic technique developed in Refs. 22 and 23 autom
cally describes the electron diffusion in the energy sp
under the action of ac pumping. We considered a few sim
examples of how the renormalization of the electron-ene
distribution occurs due to the loose diffusons and ha
demonstrated its equivalence to the solution to the kin
equation.

We have shown that the quadratic response in theclosed
mesoscopic systems is singular in the dynamical appro
because of the singularity of theloose diffusonsin the qua-
dratic in the pump field approximation. Yet in contrast
Ref. 18 this does not lead to an infinite dc current aris
under ac pumping, as the quadratic inA approximation
breaks down well before the singularity develops itself. T
situation is somewhat opposite to that described in Ref.
The ensemble-averaged dc current does not depend on
singular loose diffusons whatsoever19 and thus is finite any-
way. The mesoscopic fluctuations of the dc current in
isolated ring arezero because the corresponding effecti
temperatureT* →` in the absence of dissipation or an ele
tron escape. This clearly shows that the dynamical appro
based on the ‘‘minimal model’’ of noninteracting electro
in an impurity potential interacting with the external classic
field is insufficientfor describing the closed systems.

However, this model is reasonable foropenmesoscopic
systems connected with the electron reservoir by mas
leads. We have carefully studied the case of the Landa
conductance in a quantum dot under ac pumping, since
one can see the danger ofad hoc replacement of the bar
electron-energy distribution by the renormalized one with
simultaneous deletion of all the diagrams with the loose
fusons. The correct diagrammatic analysis shows that
diagrams with the loose diffusons do not arise in this pr
lem, and the electron-energy distribution that enter, e.g.,
variance of conductance fluctuations, stays unrenormal
by heating. At the same time, the same type of diagramm
04531
-

a-

al-
e-
for
le

f

h
-
ti-
e
le
y
e
ic

ch

g

e
8.
the

n

ch

l

ve
er
re

e
-
e
-
e

ed
ic

analysis shows that the variance of the Kubo conductanc
sensitive to the renormalization of electron-energy distrib
tion. This sets yet another borderline between these two
mulations of the problem of conductance and shows th
deep physical difference and significance of the experime
geometry for conductance measurements.

Though the results presented in the paper are purely
turbative, there is a bridge to nonperturbative schemes.
obvious extension of the present theory is the tim
dependent random matrix theory~TRMT! which applies to
the problem of quantum dot under ac pumping. We fou
that in contrast to the equilibrium or the linear-response th
ries, there aretwo different TRMT formulations, Eqs.~3.37!
and ~3.32!, one for the adiabatic pumping with the typic
frequencyv smaller than the Thouless energyEc and an-
other one for the case of high frequenciesv@Ec . The cor-
responding matrix Hamiltonians have different symmet
they are real symmetric for the adiabatic case and contai
imaginary antisymmetric time-dependent part~with zero
time average! in the case of high frequencies.

Another obvious extension is the functional formulatio
in terms of thenonlinear s model.34 In this connection we
note that in all field theories with the correct vacuum, t
loose propagators may not arise. In the particular formulat
of the nonlinears model based on the Keldysh formalis
the electron-energy distribution is a part of the vacuum
lution. However, the example of the Landauer conducta
~that depends on the bare energy-distribution function! and
the Kubo conductance or the photovoltaic effect11 ~that de-
pends on the renormalized energy-distribution functio!
shows that the vacuum could be nonunique or contain dif
ent sectors which enter in a different way in one or anot
observable.

Finally we mention the effect of the electron-electron i
teraction. It seems plausible that in the presence of
electron-electron interaction the Landauer conductance
be sensitive to heating. Another effect of electron interact
is the inelastic electron scattering. In our dynamical ap-
proach we have neglected this effect at all. In open mes
copic systems this has resulted in the electron-energy di
bution Eq.~4.12! of a very peculiar form. The characterist
feature of this distribution is that it depends not only on t
effective temperature T* but also on the bath temperatu
T!T* . The consequence of this two-parameter depende
takes its extreme form in the temperature dependence o
persistent current or photovoltaic current fluctuations. In p
ticular, Eq.~5.12! shows how theseparation of parameters
occurs in the variance of the persistent current fluctuati
under ac pumping. The parameterT* turns out to determine
only theprefactorin front of the function that depends on th
bath temperatureT. Such a behavior is only possible
electron-electron interaction is neglected. Inelastic proces
due to electron-electron interaction are always favorable
the Fermi-distribution function with some effective temper
ture Tel . They work to diminish all the deviations from th
Fermi distribution and should certainly reduce the dep
dence of the persistent current fluctuations on the bath t
perature. This~or similar temperature dependences for t
photovoltaic effect! can be a useful tool for the experiment
0-18
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investigation of electron-electron interaction in an op
quantum dot.
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Éksp. Teor. Fiz.30, 248 ~1979! @JETP Lett.30, 228 ~1979!#.

23S. Hikami, Phys. Rev. B24, 2671~1981!.
24B. L. Altshuler, V. E. Kravtsov, and I. V. Lerner, inMesoscopic

Phenomena in Solids, edited by B. L. Altshuler, P. A. Lee, and
R. A. Webb~North-Holland, Amsterdam, 1991!.

25E. K. Riedel and F. von Oppen, Phys. Rev. B47, 15 449~1993!.
26G. Montambaux, inQuantum Fluctuations, Les Houches, Session

LXIII, 1995, edited by E. Giacobino, S. Reynaud, and J. Zin
Justin~Elsevier Science, New York, 1996!.

27V. E. Kravtsov and V. I. Yudson~unpublished!.
28M. H. Pedersen and M. Bu¨ttiker, Phys. Rev. B58, 12 993~1998!.
29M. G. Vavilov and I. L. Aleiner, cond-mat/0103177~unpub-

lished!.
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