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We have considered the nonlinear response of mesoscopic systems of noninteracting electrons to the time-
dependent external field. In this consideration the inelastic processes have been neglected and the electron
thermalization occurs due to the electron exchange with the reservoirs. We have demonstrated that the dia-
grammatic technique based on the method of analytical continuation or on the Keldysh formalism is capable of
describing the heating automatically. The corresponding diagrams céobaim diffusonsWe have shown the
equivalence of such a diagrammatic technique to the solution to the kinetic equation for the electron-energy
distribution function. We have identified two classes of problems with different behavior under ac pumping. In
one class of problemgpersistent current fluctuations, Kubo conductanite observable depends on the
electron-energy distribution renormalized by heating. In another class of profleamdauer conductangéhe
observable is insensitive to heating and depends on the temperature of electron reservoirs. As examples of such
problems we have considered in detail the persistent current fluctuations under ac pumping and two types of
conductance measuremeiiteandauer conductance and Kubo conductaricat behave differently under ac
pumping. We also foumulate two types of time-dependent random-matrix theories that apply in the ergodic
regime for the adiabatic and high-frequency pumping, respectively.
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. INTRODUCTION electron-phononé-ph) interaction is neglected and the sta-
tionary regime under external pumping is reached in an open

Recently there has been considerable interest in nonequéystem via the escape of “hot” electrons into the massive
librium mesoscopics. The effect of adiabatic chargeleads playing the role of an electron bath.
pumpind has been experimentally obser¢ethd discussed The questions we address in this paper are this: To what
theoretically’> Weak localization in a quantum dot under ac extent does this model apply to the nonlinear phenomena in
pumping has been theoretically studfefihe nonequilibrium  mesoscopic systems and how can one see its limitations
noise has been suggestédas a cause of both the low- through intrinsic inconsistencies and physical paradoxes?
temperature dephasing saturafiand the anomalously large Another important issue we address in this paper is how to
ensemble-averaged persistent curfefihe results of Ref. 6 describe heating effects by the impurity diagammatic tech-
are based on the earlier woPksn the ensemble-averaged dc nique without explicitly solving the kinetic equation. It turns
current caused by the quantum Aharonov-Bohm rectificatiorout that heating can be described automatically by the new
of the external ac electric field. Without the Aharonov-Bohmclass of diagrams containing the “loose diffusons” with one
magnetic flux the rectified dc current or voltagghotovol-  free end. They are contrasted to the ordinary diffusons and
taic effect”) has zero ensemble average but can exist in ineooperons which are connected in loops by the “Hikami
dividual mesoscopic samples because of the specific arrangbexes” and which describe the effect of electron phase co-
ment of impurities or irregularities in the dot’s shape. Thisherence. Thus we show the waydeparatethe heating and
effect was suggested long df@nd reconsidered very re- the dephasing effects on the level of the impurity diagram-
cently for the case of the quantum dbt. matic technique.

A theoretical description of all the effects listed above The paper is organized as follows. In Secs. Il and Il we
requires us to go beyond the linear-response theory and tiscuss the general structure of the perturbation theory in the
consider the essentially nonlinear response to the ac pumgxternal ac field using the method of analytical continuation
field. This raises a question on the “minimal model” for the and the Keldysh technique and describe simple rules of the
adequate description of nonlinear responses in mesoscopimpurity diagrammatic technique in the time domain. In Sec.
systems. For the linear conductance the minimal model is thB#l we derive the diffusion propagator§‘diffusons” and
system of noninteracting electrons with the impurity scatter-‘cooperons”) in the external ac field at different boundary
ing and interaction with the external electric field. Such aconditions. We also show in Sec Il F that there are two
model does not explicitly contain dissipation. Yet it allows types of time-dependent random-matrix theories correspond-
us to obtain a correct value of conductivity that is the keying to the ergodic regime of space-independent diffusion
quantity for the dissipation function. We will refer to a de- propagators. One of them is valid for the adiabatic low-
scription based on a model of that sort as the “dynamicafrequency pumping and another applies for the high-
approach.” In this approach the electron-electrere] and  frequency pumping. Section IV is central for the paper.
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There we introduce the loose diffusons and demonstrate that In the above equation we omitted the current Operq:\tors

evaluatin_g the diagra_ms .With '°°$e diffusons is equivalent Qr the position operatorscoupled to the vector potential
the solution of the kinetic equation for the electron-energy. r to the electric fielE =iwA  in the electron-field intgr-
distribution. We also discuss the paradoxes connected wit ction @ @

the loose diffusons in closed electronic systems. As an ex-

ample of the role of the loose diffusons we consider in Sec.

V the variance of the persistent current fluctuations under ac —jA,, transverse gauge
pumping. For mesoscopic rings connected to an electron res- Het=
ervoir by a passive lead we compute the temperature depen-

dence of the persistent current fluctuations in equilibrium

and under the harmonic ac pumping. In Sec.VI we conside@nd introduced the exact electron Green's function in the
the problem of dc conductance under ac pumping in twoabsence of the time-dependent perturbation

different experimental geometries that correspond to mea-

- — (2.2
—-rE,, longitudinal gauge

surements of the Landauer and the Kubo conductances. We W (W (r')
rederive the expression for the Landauer conductance in Golie)=2, —— ™~ (2.3
terms of the electron Green'’s function in the time domain m le—em

and show that the loose diffusons cannot be built in this
problem. It means that in systems of noninteracting electroneshere¥ ,(r) is an exact electron wave function in the me-
the Landauer conductance is insensitive to the electrorsoscopic system that corresponds to the stationary state with
energy distribution inside the mesoscopic system and thus ihe energye,,.
insensitive to heating. In contrast to that the Kubo conduc- Causality requires the physicélketarded response func-
tance is sensitive to the nonequilibrium electron distributiontion K(w-, ... ,w,) which depends on theontinuousfre-
in the corresponding system. In Sec. VIl we summarize theuenciesw;, to have no singularities in the upper half-plain
main results of the paper and point out its obvious extenef each complex variablew;. ThusK(wq, ... ,w}) iS ob-
sions. tained by theanalytical continuatiorof K(iw™®), . .. iw®)
from the imaginary discrete points;=iw(") into the upper
half-plane Imw;>0. In order to implement the analytical
continuation one represents the sum awgm Eg. (2.1) as a
contour integral over the contour that comprises all the
In this section we describe the general analytical structur@ointsie,=i7T(2n+1) [see Fig. 13)],
of the nonlinear responsa an arbitrary order in the exter-
nal field using the formalism of the analytical continuattén d
and the Keldysh diagrammatic technigiié? We will show  K(jo®), ... j0®)= f —S.tan!-( i)Go(s)Go(a—iw(l))
that causality encoded in the triangular matrix structure of c4mi 2T
the Green’s functions in the Keldysh technique alloats
most one pointvhere the string of retarded electron Green’s
functions is switched to the string of advanced Green'’s func-
tions in the expression for the nonlinear response ofran  The next step is to deform the contour along the cutg Im
bitrary order. =0, Ime=0", Ime= 0"+ »®, and so orfFig. 1(b)].
In doing that one has to take care of the analytical prop-
) . erties of the electron Green’s functioBg(¢): the integrand
A. Causality of a nonll.near response and the method in Eq. (2.4 should be regular in each strip between the
of analytical continuation neighbor cuts. This means that for imarger than that of
The formalism of analytical continuation is based on thethe upmost cut all the Green’s functio@g should be chosen
explicit assumption of causality. One starts with the electrorretardedGg. In the strip just below this cut one Green’s
Green’s functiong, ., defined on the Matsubara discrete function with the argument that takes zero value on this cut
frequencies:,= 7T(2n+1), w,=27Tn (T is the bath tem-  should be switched to the advanc€g. In the next stripe
peraturg¢ and expanded in series in the ac fiddd,. Any  another retarded Green’s function is switched from the re-
(local in time observable is expressed through the sumtarded to the advanced one and so on. Thus fos4n0 all
T2,G. .-« The nonlinear term of thkth order in this sum the retarded Green’s functions are replaced by the advanced
is Ew(i)K(iw(l), - ,iw(k))Aw(l)- --A,w, Wwhere ol ones.
=27Tn; and The next step is to shift the integration from along the
cuts to the real axis-°<E<+«. To this end we shift the
variable of integratione —E+i(0®+ .- +«®) corre-

II. ANALYTICAL STRUCTURE OF THE NONLINEAR
DYNAMICAL RESPONSE

XGoe—iwW—iw?@)---. (2.9

Kio®, ... i0®)=T2 Gylie)Gylic—in®) sponding to the + 1)th cut Ime=w®+ - - - + ). Note
e that sincei w() is a period of tanh{/2T) the above shift of
X Golie—iw®P—iw?) variables does not change tasfT) —tanhE&/2T). As a re-
sult we get in the right-hand sidehs) of Eq. (2.4) a sum of
X Golie—iw). (2.1))  the form
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k Treating the applied ac field as alassical field, we
Z GHE+i(0W+- - +w®)]. . .GHE+in®) assigh®!* the matrix vertexr®H,_; to the electron-field in-
p=0 teraction H.;, where 7° is the unit matrix in the X2
Keldysh space.
Go(E—iw®™D) Using the usual expansion of the electron Green function
G in powers of the electron-field interaction,

E
x[GE‘(e)—Gé‘(E)]tanr(ﬁ

><...G’S[E—i(w<p+1>+~~-+w("’)]]- 29

_ o _ O(t)=i 2 T{O[{GoHe-1}*Gol"}u
Now we are in a position to implement the analytical con- p=0 — —
tinuation. It reduces simply to the replacement’) — w; be-

© p
cause all the Green’s functions have the analytical properties =iy > T O{GRHe 1} GK{He 1GAIP
that guarantee the regularity of each term in the sum p=0 =0

Eq. (2.5 in the upper half-plane of each of the complex 2.9
variablesw; . :

One immediately notices the characteristic feature of Eqan d the ansats14
(2.5): it is a sum of productgstringg of Green’s functions
such that each string is a productp)functionsG(F)e followed

by the product ok—p+1 functionsG’g. There is only one KiEy— R A E

point in each string where the change of the character of Go(B)=[Go(E)~Go(E)]tan 2T)’ 2.9
analyticity occurs This property can be traced back to the

causal nature of the nonlinear response. one immediately obtains the sarfeA structure as in Eq.

(2.5.

B. The Keldysh diagrammatic technique

The analytical structure identical to E@.5) arises in the I1l. NONLINEAR RESPONSE IN THE TIME DOMAIN
Keldysh techni from thériangular matrix structure of : . _ i .
eligt)rlin Geri:en%ﬂﬁctigrfé'ma angular ma structure o A. Nonlocality of perturbation series in the time domain
Let us consider the structure of the expansion &),
(GR GK) for a given numbemp of the field vertices, in more detail.

G=

0 GA (2.6)  This will later help us to establish the structure of essentially
nonlinear expressions for different observables in the pres-
ence of a time-dependent ac field.

Three different contributions can be distinguished there.
In the time-domain representation, the first contribution can
. be depicted by the electron lo¢pig. 2(@)].

O(t)=i Tr{OGK(t,1)}. (2.7 It entirely consists of retarded Green functions,

where the superscrigf stands for the Keldysh component
that determines all the observabl@s
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+i| drf(7r) | dty---dt, TTOGR(t,t)) Her(t))GR(t1,ty)  —i | drf(7) | dty---dt, THOGH(t+ 7,t1) He s(t1)
J f P 0 0 p 0

X Het(tp) . .. Gg(tp—1,tp) He-r(tp) Gty t—1)]. X G (ty,t2) Het(ta) - - - Go(tp—1,tp) Her(tp) Go(ty,1)].
(3.1 3.2

The second contribution is associated with the electrormhe third contribution is associated with the electron loop
loop [Fig. 2b)] that solely contains advanced Green func-[Fig. 2(c)] built of | retarded andf— |+ 1) advanced Green
tions, functions,

+i f dty -« -dtyydtyyy - dy Tr) OGo (10 He (1) G2, ) Heg(t1-1)

XJ drdt F(1—7)G§ (-1, D[ He f(1) = Ho f(T)1GH (7 110 ) Ho (811G (1115111 2) Ho 1(1,)G 0 (2,,1) |,

Tel a_rded—adv‘afnced junction g
t et 3.3
where B. Diffusons and cooperons in the time domain
With the aim of describing the essentially nonlinear de-
~ dE . iT pendence of observables on the external time-dependent field
f(TFJEe'ETf(E):m (34  we introduce theinfinite sequence of retardethdvanced

Green functionsz§™*,

denotes the Fourier transform &fE) = tanh&/2T). o
The characteristi.c featur'e of the diagrammatic expgnsion GRA(N It t) = 2 {[GS,AHe_f]pGS,A}r —
for an observable in the time domain is that there is one p=0 v
special point(ray) on the loop of Fig. 2 whichdoes not (3.9
correspond to a single point in the time domain. It is the o _
point where the Fourier transform of the energy-distributionwhere multiplication assumes the convolution over the
function is assigned to. Of special importance is thecoordinate  and  time  variables {AB} /v
retarded-advanced junctign =[dr”dt” A ((t,t") B o (17,1).
In describing weak localization and mesoscopic phenom-
~ ena a special role is played by the disorder averages of a pair
Ga(t, (7= 7)) [ Het(7) — Hes(7')1GH(7',1). of electron Green functions called “diffusons,”
(3.9
Drr’(t+ ,t; it ut,—)
It reveals the nonlocal in the time domain structure of the — S(r— D (Lt T 1
point [see Fig. 2c)] where an arbitrarily long sequence of (7=7")D,(LLr.r")
retarded Green functions is switched to an arbitrarily long =(2mv7e) AGR(r,r':t, U)GA( rit’ t0)),
sequence of advanced Green functions.

(3.7)

and “cooperons,”
t 47T t R

=7 t t A Cor(ty t 5t th)

1
(@) (b) © =§5(t—t')Ct(7;,7]’;r,r’)

FIG. 2. Graphic representation of the expansion &g): (a) _ .. , . ,
retarded(b) advanced, an¢t) retarded-advanced loops. Rays ema- =(2mv7e) HGR(r, it H)GA(r I 1)),
nating from the electron loops correspond to the electron-field in- 3.9
teractionH,. , and a triangle stands for the observable oper@tor
In the time domain, the factdi(7) is assigned to th® vertex in  In EQs.(3.7) and(3.8) (- - -) stands for the disorder average,
the diagramsa) and(b). In diagram(c) this factor is assigned to the ¥ is the mean electron density of stateg,is the electron
retarded-advanced junction shown in bold. momentum relaxation time,. =t=+ /2, t. =t' = %'/2. The
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large conductivityo the electric partof the microwave field

can also penetrate inside the mesoscopic system. For the
usual situatio. <\, wherelL is the size of the system and

is the microwave wavelength, the electric field inside the
systemE(t) = — dA/dt is homogeneous in space.

EW® In this situation the boundary conditions read

[iV+Q(t, 7)],D,(t,t/;r,r')=0,

. (3.1
[iV+Q(t,m]1.Cilm 7'sr,r")=0,

@ ® wheren is the vector normal to the boundary at a pairsind
FIG. 3. The ring(a) and the quantum dab) geometry. we introduce a short-hand notation
é functions in Eqs(3.7) and(?_,.8) result from the assumption Q(t, ) =A t+z —A(t— j)’ (3.12
on the constant mean density of states over the relevant en- 2 2

ergy interval much smaller than the electron bandwidth.

In the transverse gauge, the functiddg(t,t’;r,r') and © _
Cu(n,7";r,r') obey the following equatiod® which corre- Q(tm=A
spond to the diffusion approximation with being the dif-
fusion constant:

(47

2+A

2

t— 2). (3.13

D. Diffusons and cooperons in the ring geometry

d . 7 7\]? b, In this case the convenient coordinat@long the ring is
g Tytb VA tty _Af<t_ E” ]D’i(t’t e proportional to the azimuthal angke=L 6/27. One can sup-
press the transverse coordinate, as the dependence on that
L o(r=r") coordinate at a small aspect ratio is negligible. The tangential
=o(t—t )m (3.9 component of the fieldd, is independent orx. Given the
© periodic boundary conditions for diffusons and cooperons,
and one can switch to the Fourier transforrbs,(t,t’;q) and
J ) Ci(#n,7";q) in Egs.(3.9 and(3.10 with the quantized mo-
s . n -m mentumg,,= (27/L)m, wherem=0,+1,=2 ... . Then the
(2(977 ty+D IV+Ar(t+ 2) +Ar(t 2” ] solution is straightforward,
—r! —y(t—t")
XCym,n'ir,r')=28(n— n,)a(r_rz), (3.10 D (t,tf;q):‘%*e—e—ofi,dr[q—dd)(m)]{
2wV 7 2’7TVT§
where we assume the electron-field interaction ) cor- (3.14
responding to the transverse gauge with the weak sfmace _ o
. . 0. e (W2y(n=n")
the scale of the elastic mean free pbthv7.) and time(on Cum 7' q)= 2" ef(D/2)fZ,dT[q7Q(C)(t,T)]2,

the scale ofr,) dependence of the external classical field 277,;75
A (t), which is also supposed to be weak enoUygi(t)|! _ _ @) _
<1. We also assume the possibility of electrons escaping th&here 6 is the step function an@*™* is defined by Egs.

mesoscopic system which is described by (gmall) escape .12 ?”d(3-13- ) ) )
An important particular case is theero-modediffusons

rate .
D,(t,t")=D,(t,t";q=0) and cooperons C(7,7")
C. The ring and the quantum dot geometry =Cu(7,7";9=0) which correspond tq=0,

Equationg3.9) and(3.10 should be supplemented by the 6,_pe” y(t—t") . @ 5
boundary conditions. Below we consider two principally dif- D, (t,t")= —————e PJedle7 ("
ferent geometries shown schematically in Fig. 3. 2TV T

One of them corresponds to the mesoscopic ring of the / (3.19
circumferenceL with a small aspect ratio pierced by the o Oy & W) (D/2) [7,deQO(t, 7]
time-dependent magnetic fieki(t) which generates the cir- Cu(n.7')= 2 e ”' T

2myTg

cular electric fieldE(t)= — dA/dt, whereA(t)=3HXr. In

this ring geometrythe diffusons and cooperons should obeyOne can see that they decay as a functiort-et’ or 7

the periodic boundary conditions. — 7’ even at an escape raje=0. This is the manifestation
The ring geometry corresponds to the pumping by theof dephasingoy the time-dependent external field. We note

magnetic partof the microwave field when the size of the that Eq.(3.7) with =0 corresponds to the electron-density

mesoscopic systerh is less than the size of the skin layer. correlation function. In the absence of electron escape the

However, for a semiconductor quantum dot with not toototal number of particles is conserved and therefore
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D,-o(t,t";q=0) must be a constant for arty-t’. This is  wherer,, is the matrix element of the vectorin the basis of
consistent with the property @@ (7, 7=0)=0. However, & ,(r) and E, is the eigenvalue that corresponds to the
there is no constraint that would prohibit a decayof(t,t") eigenfunctiond ,(r).

at a nonzeroy. Though this equation looks similar to th@maginary
time) Schralinger equation for thelynamical Stark effect
E. Diffusons and cooperons in the quantum dot geometry identifying Q as the actual electric field inside the dot would

This case is principally different because of the fielg-16ad to a mistake. Let us consider an important case of the
dependent boundary conditions E¢®.11) and the potential constant in timeelectric fieldE which corresponds té\(t)
(longitudina) nature of the electric field inside the dot. This =~ Et(.c)Then Egs(3.12 and(3.13 give Q(t, n)=—Ex
makes the description in the longitudinal gauge more conveand Q'?(t, ») = —2Et. One can see from E¢3.18) that in

nient in the quantum dot geometry. both cases the corresponding time derivati@$ and Q(®
areidentically zero
1. Equations for the diffusons and the cooperons in the The conclusion that can be immediately drawn from this
longitudinal gauge observation is that theonstant in time longitudinal (poten-
Performing the gauge transformation tial) electric fielq cannot lead to a erhasilﬁgf. Ref: 17.
This statement is not true for the circular electric field con-
Dn(t,t’;r,r’)=eiQ(d)("”)r5”(t,t’;r,r’)e‘iQ(d)(t"”)r/, sidered above. This field is not constant in the Cartesian

(3.16 coordinates and is not potential clEk 0.

Cdmnirr) =eiQ(C)(t'”)rEt( - n';r,r’)e‘iQ(c)(t”/')r', 2. The weak-fielt.i adiabatic and a.ntiadiabatic limits
(3.17 The general solution to Eq3.21) is unknown even for

) o the space-homogeneous electric fiEfd) and in the ergodic
we switch to the longitudinal gauge. imi

limit
This transformation removes the time-dependent field
from the boundary conditions Eq€3.11). However, it re- EJt—t")>1, EJn—7')>1. (3.22
mains in the equations fdb,(t,t’;r,r’) andC(%,7';r,r')

but only as the time derivatives, However, one can find simple approximate solutions in the

weak-field limit

. J .
Qt, 7=t ) QI

C

& ~
=2%Q(C)(t,7l) In the ergodic limit Eq.(3.22 the diffusonsD,(t,t";r,r’)
and cooperon€,(7,7';r,r') are nearly space independent,
—E 7 E n 3.1 i.e., the corresponding expansions are dominated by the zero
=Et= 2 t+ 2/ (3.18 mode ®, with E,=0. By definition the next mode has the
eigenvalue equal to the Thouless enefgy=E.. For the

whereE(t) = — dA(t)/ot. _ corresponding amplitud&,, we get from Eq(3.21)
The operators in the left-hand sidéhs) of the corre-

sponding equations take the form

<1. (3.23

d . ,
arRoot QD) 2 To,Ae=(t-t),  (3.24

- d .
I _ 24
Ed_[at ty-DV +|rQ(t’”)]’ (319 \here we choose the system of coordinates in whigh
=0.
- 9 by In the weak-field limit Eq.(3.23 one can neglect in Eq.
EC:{ZE‘H’_DV +|rQ(t,17)]. 320 (321 Qr,,A,o compared toE,A o («,v#0) and obtain

the closed system of equations g, andA o,
It is convenient to expan® ,(t,t’;r,r') andCy(n,7';r.r') ;
in an infinite sum® , ,A,,® ,(r)® ,(r") over eigenfunctions v L _
® (r) of the diffusion (l)Lperator—#DV2 with the Neumann ot Auo T Eufuo t TR 40A00=0. 3.29
boundary conditionEq. (3.11) with Q(49=0]. Then the
equation for the amplitudes, , is of the form(for simplicity
we consider the case=0 and suppress the redundant indi-
ces and variables

Solving Eq.(3.29 and substitutingA o into Eq. (3.24 we
obtain

Jd t. .

5 5; oot L,Q(I)A(t—t”)Q(t”)Aoo(t”,t’)dt”=5(t—t’),
AT EALFIQ X 1A= 8(t=1) 0, (3.26
(3.2)  whereA(t) is the matrix in the vector space
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F. Time-dependent random matrix theory (TRMT )

= e Eut )
[AM; EO [roulie” "+ 1ruol;- (327 The zero-mode approximation E.22 is equivalent to

) o _ _ therandom-matrix theoryRMT). The fact that there are two
Equatlon(3._26) can be further simplified in thadiabatic  yitferent forms, Eqs(3.29,(3.30 and Eqgs(3.15), of diffu-
limit where Q(t) is dominated by the frequencies<E.. In  sons and cooperons in the zero-mode approximation suggests
this case the quantity E€3.27) can be approximated by the two different ways of defining théme-depender®MT. The

¢ function[A(t) ];;=Cj; 5(t), where idea is to define the Gaussian ensembles of time-dependent
random matrices which reproduce the expressions in Egs.

Ci. = r 1 TE 1747 AT 3.2 (3.29,(3.30 or Egs.(3.15. Then so defined TRMT can be
. Eo [FouilBul TFwol, (3.28 applied to describe not only disordered mesoscopic systems

with the diffusion motion of electrongused in the above
derivation but also ballistic quantum dots with the chaotic
electron motion.

Before proceeding with the formal derivation we address
a possible confusion based on the common wisdom that only
0, - systems in the external field with the characteristic frequenpy
= ex;{— L,Qi(d)(t"vﬂ) w<E. can be described by the random matrix theory. This

- 2 . . . e .
2TV statement is valid for a linear response but it is incorrect in

Then Eq.(3.26 can be immediately solved and we obtain for
the zero-mode amplitudes

AR (.t ;) =D, (t,t")

the nonlinear case. The point is that in the linear case the
XCij'Q]_(d)(tn, n)dtn}, (3.29  frequency ofzthg ex_t(i:xrnal field entead diffusons or coop-

erons agDg°—iw] *, wherew is the difference between

the energy variables of retarded and advanced electron Green

A (n.m':)=Ci(n,7') functions. Assuming the summation over momemtend the
fact that the first nonzero mode correspondsDig?=E,,
RS L7 ey one concludes that ab<E. the main contribution to the
Y exy — 2 W,Qi (t,7") sum over momenta is given by the zero mode wgth0. In
e

the nonlinear case the situation is more complicated since
He.¢(t) in Eq.(3.6) is a sum of two parts proportional &
: (3.30  ande '“!. As a result of the frequency fusian— w=0 in
the field-dependent diffusoftooperon self-energy part the
Equations(3.29 and (3.30 are valid in the adiabatic limit difference between the energy variables of retarded and ad-
w<E, provided that the conditions Eq&3.22 and (3.239  vanced electron Green's functions constituting a diffuson
are fulfilled. (cooperon may be zero despite>E_. This is the reason
In the oppositeantiadiabatic limit «>E., the integral why the high-frequency external field modifies the zero-
term in Eq.(3.26) is recast as the total time derivatig&hich mode approximation but does not kill it. The two modifica-
has zero time average and thus strongly oscillagéesl the tions of the TRMT are as follows.
remainder consists of the strongly oscillating term (i) For the conductors of theng topologyand thequan-

X C; Q9(t, ") d "

—Q(t)A(0)Q(t) Agt,t') and the term tum dots in the antiadiabatic limitw>E, the time-
dependent RMT is defined by the matrix Hamiltonian
t .
—f dt"Q(t)[ o/ atA(t—t")]Q(t")Ago(t”,t") H=Hy+i&(t)V,, (3.32
t/

. — . : where¢(t) is a real-time-dependent functioN, <X N random
h ki Il N h : :
that contains a weakly oscillating part. Integrating this termmatrlx Ho belongs to the Gaussian orthogonal ensemble,

by parts and using the identityA(0)=d/3t[Alijli—o  while Vv, is the realantisymmetricrandom matrix[which
=—Ddj; one extracts this weakly oscillating part corresponds to the sign in Eq. (3.33] of the same size,

—Q(DA(0)Q(1)Ag(t,t') =D[Q(1)[2Ag(t,t"). NS
(3'3]) <H8mH8 " >:_2[5mm’5nn’+5mn/5nm/]a
Not surprisingly, we conclude that in the antiadiabatic weak- 4 (3.33
field limit the system does not feel the boundary and the ., sC '
zero-mode diffusons and cooperons in the quantum dot ge- (VI™VE My = —[ Smmv Onn F Oy O 1
! ! a

ometry coincide with those in the ring geometry, E@15.

HOWeVer, in the adiabatic weak-field limit these two ge'5 being the mean level Spacing afda nonuniversal con-
ometries are principally different, since the dephasing factoktant to be identified later on. To make a link between the
in Egs. (3.29 and (3.30 contains a quadratic form in the TRMT, Eqgs.(3.32 and(3.33, and the zero-dimensional ap-
time-derivativeQ and a structural constant that depends onproximation, Eqs(3.15 and(3.29 and(3.3)), it is useful to
the system sizé&, while the dephasing factor in Eq&8.15 introduce the TRMT diffusonD,(t,t") and cooperon
contains a quadratic form iQ and is independent df. Ci(n,n') propagators,
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1., §|A\f} v §‘R|f? voAlM !

(@ (b) (© (@

FIG. 4. The retarded-advanced junctiG@ and the Green-functions’ disorder averagliilg) and (c)] resulting in the loose diffuson
shown by the wavy linéd). It ends up with the triangle; one of the triangle apexes is built upon the retarded-advanced junctibnasde
(c). The diagram(d) corresponds to the disorder averaging depictetbinDashed lines irib) and(c) denote the diffuson. Because of the
vector nature of the vertek,. ; in the transverse gauge E@®.2) the loose diffuson should “embrace” two verticés, ; in order for the
integral over the directions of electron velocity to be nonzero.

GR (t, t/)GA (1" t_ 7 AN no St
%( am )Gl ) pra® g(t+ 5 g(t 2” ]Dn(t,t ) Py
=[27v7(N)]?8(n—7n")D (t,t'), (3.39
334 g C U 7\ ]? S(n—n'")
%(Gﬁm(h.ti)Gﬁm(L,ti)) oot _§<t—§” ’Ct(ﬂ’nl):m'
1 (3.39
=E[ZWVTe(N)]Zﬁ(t—t')Ct(U,77'), By comparing with the microscopic equatiofi3.29 and

(3.30, we conclude that the nonuniversal const@nif Eq.
whereGRA(t,t") are retarded or advanced Green functions(3.33 has to be identified with the one given by Eg.28);
that correspond to the matrix Hamiltonian H, =t  the functioné(t) plays the role of the ac electric fiek(t) in
+ g2t =t'+5'12; 74(N)=m/(2N5), and v=1/5. Using Eqg. (3.18. Thus, equivalence between the microscopic ap-
the standard method of Refs. {$ee also Ref. ¥ we derive ~ Proach of Sec. Ill and the TRMT of the form E(.37) is
the following equations for the TRMT propagators: proven perturbatively.

0 n ( 77) 2] o(t—t") IV. THE “LOOSE” DIFFUSONS
—+Cl &l t+ 5| —&t—=|| (D, (tt)=———,
ot 2 2 K 2mv7e(N) In this section we show that starting from the quadratic in
(3.35 the external field order the diagrams of the impurity tech-
nique acquire a new feature: one can draw the diffuson with
9 C ” 7\ 1? S(n—n") the free end*the loose diffuson”) which carries zero mo-
PR R Ly +§(t— E” ]Ct(nﬂ]'): — mentum and zero frequency. We will show that it is exactly
7 2mv7e(N) the element which describes heating by the external field.
(3.39
A comparison with the microscopic equationi8.9) and A. The loose diffusons and the retarded-advanced junctions

(3.10 [or Eqg. (3.31)] suggests identifying the phenomeno-
logical constanC introduced in Eq(3.33 with the diffusion
coefficientD; the time-dependent functidgf(t) plays the role

of the vector potential\(t). This establishes the equivalence
between the TRMT and the zero-dimensional limit of the
microscopic theory of Sec. Il on theerturbativelevel.

(i) For thequantum dots in the adiabatic limiv<E_, ) )
the time-dependent RMT is defined by the matrix Consider the part of a diagram for an observable or a
Hamiltoniarf1* product of observables that contains the retarded-advanced

junction [Fig. 4(a)]. One can isolate the retarded-advanced
H=Ho+ &(t)Vs, (3.37 Junction from the rest of the diagram by performing the dis-
order averaging as shown in Figgb#and 4c). As result the
whereé(t) is a real-time-dependent functioH, andVg are  loose diffuson is formedFig. 4(d)] which originates from
statistically independent, adx N are random matrices be- the main body of the diagram and terminates at a triangle
longing to the Gaussian orthogonal ensenmbke Eq(3.33  that consists of the retarded-advanced junction and another
with the sign+]. field vertex adjacent to it. Given the conditidA, (t)|l<1

Again, a link between the TRMT, Eq63.37) and(3.33), one can neglect the loose diffusons terminating by a polygon
and the zero-dimensional approximation, E¢3.29 and  with the number of field vertices larger than two.

(3.30 of the full microscopic theory is easily established by = We stress that the loose diffuson can be built only using
deriving the equations for TRMT propagators. One obtainghe retarded-advanced junction. Indeed, the triangle
(see also Refs. 4 and 11 in Fig. 4(d), whose edges correspond to the average

The analytical structure of the retarded-advanced junction
Eqg. (3.5 leads after the disorder averaging to an unusual
object, theloose diffusonLet us consider this object for the
simplest ring geometry.

1. Loose diffusons in the ring geometry
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retarded and advanced Green functionéE(A)(p) 2. Loose diffusons in the quantum dot geometry

:fdr<G§(A)(r,rr;E)>efip(rfr’)=[E—gpii/(zq-e)]*l, de- Equation(4.5) holds also in the quantum dot geometry in
scribes the electron motion on the ballistic scale with thetheantiadiabaticcasew>E.. In the oppositadiabaticcase
electron momentum relaxation time, being the smallest @<E. the longitudinal gauge is more convenient than the
time scale in the problem. One may effectively approximatelfansverse gauge originally accepted in the paper. Equations
the average Green functions in the time-momentum repre_(3-t2h9) flind(?;-%(_)) a:e nothing tt;]Ut the d|ffus(,jons and cpopte_rons

L SR(A) he & functi f the f in the longitudinal gaugein the zero-mode approximation.
S—eRTZ?tlon E—R((AF))’t) by 't (_a _unctlons_ © _t e form Using Eq.(3.5 with H,.; corresponding to the longitudinal
G (p,t).—GE:Q(p) §(t)' With this approximation 6}”‘?' Eq. gauge, Eq.2.2), the loose diffuson can be represented in
(3.5 the trl_ang_le in Fig. 4d) reduces to the quadratic in the o« of the matrix elemen&s(® andr 4 as follows:
A(t) combination "

(A=At AT —t) @ D(t,n)=2wiwef(n)f dty[ JA(ty+ 7)1 dt;— dA(ty)]dt,]

r (4.6)

multiplied by a constantd is the dimensionality of momen- x> Agd) o)
e 13 w

tum spacg

7 7
ot o
t 21t1 21 7]

whereA{?) obeys Eq(3.25 with Q(t)=Q(t, — ) and Afy

(v3/0)v [ dE(PIGE_o(PGE o P=2mivDr,.  Given by Eq(3:29. | | |
4.2 Solving this equation and using th&function approxi-

mation for A(t) we obtainD(t, n):iq-;lf(n)/\,](t) with
The triangle that corresponds to Figcpis given by

2 /\7,('f)=ft dé C[E(é+ n)—E(&)]%e 779
—2mvDr[A(t) —A(t)JA(t)F(t —ty). (4.3 e

t
’ ’ \12
Without the retarded-advanced junction, all the Green XeXP[ _Ldf C[E(¢'+n)—E(&)]7,
functions in the triangle would have the same analyticRy (
or A), and the integral ove#(p) vanishes. 4.7)

Since in the dynamical approack-g ande-ph interac-  \;nere C[E(&+ 7)—E(£)]2 is the short-hand notation for

tions are neglectedhere is at most one retarded—advanced[E( &+ )— . _ _ - i
SO 7) —E(§) ]iCij[E(£+ 7) —E(§)]; andE= —dA/dt is
junction per electron loopsee Eq(3.3)], there could be not 4 time_dependent electric field. We also reinstalled the fi-
more than one loose diffuson for a diagram describing thehite escape rate.

disorder average of a single observafii{t)) and not more
thank loose diffusons for a diagram describing the disorder-
average of a product df observablegO,(ty)- - - Oy(ty))-

Each of them is given by

B. Loose diffusons and the singularity
of the quadratic response

Equations(4.5) and (4.7) have similar structureA ,(t)
contains a quadratic in the external field prefactor multiplied
D(t,n)=27TiVTeDJ dtlf dra[A(ty+7) —A(ty)]? by the exponential dephasing factor. Because of the qua-
dratic in theA prefactor the loose diffuson does not arise in
7 i the linear-response theory. However, if one considers the
t+§,t1+§;rl—r), (44 quadratic in theA response, the loose diffusons must be
taken into account while the field-dependent dephasing
should be neglected. In this approximation we have

xf(mD_,

where n=t’'—t=t;—t; and both contributions, Eq$4.2)

and(4.3), to the triangle have been summed up together. In ‘

the ring geometry only the zero-mode part Of (t,t";ry An(t)zf dED[A(E+ n)—A(E)]2e "9 (4.9

—r) survives integration over the coordinatg of the free -

en.dglaAnd using Eq.(3.15 we finally obtain D(t,7) and the similar expression in the quantum dot geometry.

=i7e "f(m)A,(1), where Consider the harmonic pumping= A, cost) f(t) that is
switched on at=0. Then at a timé> o ! the loose diffu-

N (t)=th E[A(E+ 7)— A(E)]2e 7D son averaged over the period is given by
Ui

At
m’)l e’ 4.9

. A,?(t)=2DAgs,in2(7
xexpr{—Df dE'TACE + 1)~ AET2].

¢ One can see that in the limig—O0 the loose diffuson is
(4.5 linearin t.
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We have already mentioned that the disorder average of This observation is an example of a generic rule that the
the product ofk observables contains at mdstoose diffu-  “loose propagators” in a field theory can l&iminatedby
sons. Were the linear it growth in Eq.(4.9) unrestricted, the proper choice of the initial statévacuum”) that in ki-
this would mean that the typical value of a mesoscopic obnetics includes also the energy distribution function. Equa-
servable grows linearly with the running time. For a particu-tion (4.12 gives the form of this distribution for an open
lar case of the direct current arising in a mesoscopic ringlynamical system with no intrinsic relaxation and with the
under ac pumping this statement can be found in Ref. 18. electron escape ratge For the particular case of a harmonic

Another similar statement concerns teeady-state re- pumping in the quantum dot geometry Hg.12 has been
gimewhen the limitt—oo is taken in Eq.(4.9) prior to the  established in Ref. 11.

limit y—0. One could argue from E@4.9) that the typical The renormalized energy distribution function, E4.12),
value of a mesoscopic observable in the steady state is dietains the propertlf (E= =)=+ 1 of the equilibrium dis-
verging asy—0. tribution f (E) =tanh@&/2T). This follows from the fact obvi-

However, Egs.(4.5 and (4.7) clearly show that both ous from Eq.(4.11) thatI'(»—0)=0. However, the form of
statements are artifacts of the quadratic approximation. Ithe energy distribution is different from tarH2T) and
fact because of thdield-induced dephasinghe quantity strongly depends on the spectral content of the pumping
A (1) defined by Egs(4.5 and4.7) is always smaller than field. For low bath temperatur it contains at least two
1. What is really singular in the limiy— 0 is thequadratic =~ energy scales: the bath temperatlirand an additional scale
response susceptibilityHowever, it does not mean a diverg- T, set by the conditiod’(1/T, )= y. For a harmonic pump-
ing mesoscopic quantity, since at-0 the region of validity  ing I'( %) =4yN sirf(w7/2), where
of the quadratic iPA approximation shrinks to zero.

DE(t)* .
C. Loose diffusons and the electron-energy distribution >~ fingor dot withw>E,
o . yw
Note that originating from the retarded-advanced junc- N= (4.13
tion, Eq.(3.5), the loose diffuson is proportional to the com- CW

bination f(7) A ,(t), wheref(#) is essentially the Fourier dot with w<E_.
transform of the Fermi-distribution function. From the pro-
cedure of building the loose diffuson it is clear that any dia-
gram with the loose diffuson has a parent diagram withou
the loose diffuson. For a particular case of the variance of a

persistent current in a mesoscopic ring the diagrams of Fig. 7 T, =w\N. (4.19

(or Fig. 8 with one or two loose diffusons stem from the

diagram of Fig. 6a) [or Fig. 6b)] that contains no loose This result! corresponds to the diffusion in the energy space
diffusons. One can checlsee Sec. Ythat the sum of all With T, being the displacement and being the number of

- ime— 1 i itti
diagrams of the aiven familv is equivalent to replac random-walk steps for the timg™* each with emitting or
in t%e parent diagram by y q placii(@) absorbing the energw. In this case the inverse Fourier

transformF(E) of IA:(n) is dominated by the time intervals

Y

for a strong pumping withh">1 one finds

F(t+ W.I)Z[l—An(t)]f(n)- (4.10 near zeros of'(#) and we obtain
Consider now the simplest case of the steady state. It corre- 1t Eew _
sponds to the ac pumping switched ontat—. Let us F(E)= —— tank( )e—lkllw’/\/. (4.15
define the time average 2N K
D[A(t+ 7)—A(t)]? ring or dot withw>E At T<w<T, the functionF(E) changes from—1 to +1
I'(n)= over the scald, which plays the role of the effective elec-
C[E(t+7)—E(t)]? dotwith w<E,. tron temperature. However, it has a fine structure of sharp

(4.11 small steps with the width of the transition regions being

o ) equal to the bath temperatufeand the width of the plateaus
Substituting the time averagd'(») for D[A(t+7)  peing equal taw (see Fig. 5.

—A(1)]? or CLE(t+ )~ E(1)]? in Egs.(4.5 and (4.7) we In the case of the white-noise pumpidg(z)=2Ny
obtain the functiorF(t+ »,t)=F(#») that depends only on =const for all 5#0 and we formally obtairl, —o. The
the difference of its arguments, same result follows from Eq$4.14) and(4.13 in the limit
of a closed systemy—0. On the diagrammatic level this
N yE(7n) manifests itself in the identit ,=1 that holds in the limit
F(n)= m (4.12 v—0 for all #0 and causes a cancellation of all the dia-
grams in the given family?
We conclude that the loose diffusons amount to reor- In the absence of dissipation or an electron escape the
malization of the energy distribution function a parent result that the effective electron temperature in the steady
diagram. stateT, = is trivially correct but is certainly unphysical. It
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1

[Go "(X1) — Gg * (X2) 1GK(X1,%o)
=[3KeGA-GRa3ZK+ 3R GX-GXa 3T (x;,%y).
(4.20

Before doing the next step we introduce titae-dependent
energy distribution functionn(E,t)=(1/2)1-f(E,t)],
where f(E,t) is related to the Keldysh component of the
matrix Green function,

0.8
0.6
0.4

0.2

-0.2
-0.4
-0.6 GK(rltl,rztz):J’ dT[F(t]_,T)GR(rlTathZ)
-0.8

—GA(rty, 1,7 F(7t)], (4.21)

dyg .
f(E,t)=f%e"E”F t+ o, t—

5 5] (4.22

Y Y
FIG. 5. The antisymmetric parF(E)=1-2n(E) of the )
electron-energy distribution(E) for an open mesoscopic system of
free electrons under harmonic pumping. The solid line corresponds Now we substitute Eqg4.19 and(4.2]) into Eq.(4.20),
to V=25, =1, T=0.1; the dotted line is tanB(2T,,). and perform the disorder averaging. Using the identity

clearly sets the limit of the dynamical approach and shows a i K
necessity to take account of an intrinsic dissipation in closed F(ti.t)=5— EP (G (pit1:t2)), (4.23
mesoscopic systems.

we arrive at the equation

D. Loose diffusons and the kinetic equation

J d
In this section we demonstrate that the functie(iy , t,) Fr _) F(ty,t2) = —D[A(t) —A(ty) I?F(t1,t5).

defined by Eq.(4.10 is indeed the solution to the kinetic o (4.24)
equation. For simplicity we consider the case of the ring
geometry and sey=0. The latter is easy to solve by introducing the function
To derive the kinetic equation we start with the left andF(t, 7)=F(t+ /2t— 7/2), with t=(t;+t,)/2 and =t
the right Dyson equations for thex2 Green’s functiorG, —t, being the Wigner variables
-1 _ ’ 2
(o' ~2)®G= 804 —x)), (4.163 OFtm=—D|At+7 —A(t—g” Fitm).

G®(Gy1—3)=d(x1—x)). (4.16D (4.29
] . In accordance with Eq(4.22, the variablet has a clear
Here, the standard notatidfis were adopted withx, meaning of the global running time. We supplement Eq.
=(rc.t), and (4.25 by the initial conditionE (t= —, )= () to end up
; with
Go (X =i =& —iv,—a- (4.1 ) t
F(t+ n.t)=f(7))eXP[ —Df defA(e+ 77)—A(§)]2}-

As the external ac field is a classical field, the components (4.26

3 KRA) of the self-ener
& Comparison of Eq(4.26 with Eq. (4.5 (at y=0) shows

R sK that the functionF(t,,t;) is identical to the function

0 EA) (4.18 IA:(.tl,tz) dgfined by Eq(4.10) which follows from the evalu-
ation of diagrams with loose diffusons.

This proves that the loose diffuson,(t) determines the

g(rt,r’t’)=(

are time-dependent electron-energy distribution functidii,t)
=(1/2)[1-f(E,1)],
SKRA=(JA) (%) GKEN (X1, %) (JA)(Xp).  (4.19
dnp . .
Subtracting the two Dyson equations, E¢.16), from one f(E,t)= f 7€ E(p[1-A D], (42D
another, and taking the Keldysh component of the result, one
obtains whereA ,(t) is given by Eqs(4.5 and(4.7).
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The lowest-ordeKsingle-loop diagrams contributing to the
persistent current fluctuations are shown in Fig. 6. There,
wavy lines correspond to diffusoriy) or cooperon ()
propagators, while triangles and a squesbose edges cor-
respond to the average Green functjorepresent the elec-
tron motion on the ballistic scale. On the diffusion scale, the
latter are reduced to certain constants. Applying conven-
tional rules(e.g., see Ref. 24 we convert the diagrams in
Figs. Ga) and Gb) to

(a) (b)

FIG. 6. Local(a) and nonlocalb) single-loop diagrams for the (129=4mvD Tgezf dn f2(p)
equilibrium persistent current fluctuations. Triangular vertices mark
the current operatorg,. These are th@arent diagramsfor the
persistent current fluctuations under ac pumping. X ; [Ckm,z(ﬁ,%( ﬂ)_ka( ], (5.3a

V. FLUCTUATIONS OF PERSISTENT CURRENT IN
MESOSCOPIC METALLIC RINGS IN AND OUT <|§>c>n|=(4ﬂDT§)292J dy F( ”)f dé¢
OF EQUILIBRIUM

For illustration purposes we consider in this section how 2 K2
the general formalism described above works in the particu- X % LDk ()i 1= 8) = K291,

lar problem of the persistent curréhin mesoscopic rings

pierced by a constant magnetic fluk and subject to ac Xckm72¢/¢0(§)ckm72¢/¢0(7]_5)]' (5.30
pumping. Since the disorder-averaged persistent current
noninteracting electrons considered in the grand-canonic
ensemble is exponentially snfdlve concentrate on thme-
soscopic fluctuationsf persistent current at temperatures

Ierekm=(27r/L)m with m running over all integers repre-
sents the spectrum of diffusion modes allowed for the con-
ductor with the ring topologyl. being the circumference. In

>1/1, where 1f, is the total dephasing rate, including that Egs. (5.3, the contriputions of sm_gle- and d_ouble-d_ﬁfuson
of the ac pumping. This condition allows us to neglect(cooperom diagrams have been singled out in the time do-
) main, in which

dephasing everywhere but in the loose diffusons which de-
scribe the evolution of the electron-energy distribution under o)
the ac pumping. We will show by straightforward diagram- D(t)=C(t)= 5
matic calculations that Eq4.10 indeed holds if all dia- 2mvTs
grams of the given family are taken into account. This illus- ] ]
trates how the diagrammatic technique takes care of the N fact, Eq.(5.4) allows us to effectively compactify the
correct electron-energy distribution in the nonequilibriumnenlocal diagrams, Fig.(f), so that the total fluctuations
problem. (l %& are solely expressed in terms of the contributions of the
local diagrams, Fig. (&),

exp(— Dk?t). (5.4

A. Equilibrium fluctuations of persistent currents

17 J
2 \_ 2.2 22
We start with the equilibrium fluctuations of persistent (Ipg=8mvDTee fdﬂf (”)(Da_D+<9_DD)
currents in order to specify thgarent diagramgor the prob-
lem considered. Following a standard route, we express the
persistent currentPC) in terms of exact retarded and ad- szm [Ckm—2¢/¢o( ”)_ka( 7] (5.9

vanced electron Green’s functio@§® _ . .
The fluctuations of persistent currents, E§.5), are mani-

dE . festly periodic in the fluxp, with the periodgy/2. This can
lpc=iJZ—f(E)Tr{ja[Gg(E)—Gé(E)]}- (5.)  explicitly be displayed by performing the resummation in
a . .
Eq. (5.5 using the Poisson formula
Then the variance of the persistent current fluctuations is

given by (180=2 <|§>sin2<27m q;i) (5.6)
, dE [ dE’ , _ i i
X(THGHENTHIGHED. (6.2 <|2>:4CZ”2(E [ e g
" a2\ 1p 0 x32 sink(7rTx)

To perform the impurity averaging in E¢5.2), it is conve-
nient to use a representatfér°in which slow diffusion and where T=T/E, denotes the electron temperature measured
fast ballistic modes are explicitly separated from each otherin the units of the Thouless ener@y.=#D/L?=#/ry. For
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(@) (b) ©

FIG. 7. Local single-loop daughter diagrams with d¢aeor two
(b) loose diffusons contributing to the nonequilibrium fluctuations

of persistent current. Diagrafa) arises from the disorder average

(I(t)15(t")) and diagram(b) arises from the disorder average

(I,(t)15(t")). They are complementary to the parent diagram of © @
C

Fig. 6(@). The Hikami box of the diagrarfe) is detailed in(c).

) ) o o FIG. 8. Nonlocal single-loop daughter diagrams: diagrade)s
generality we also introduce the coefficihtwhich is equal  and (b) arise from the disorder average @f (t)1,(t')) while dia-

to 1 for the case of the potential disord@rthogonal en-  gram (c) arises from the disorder averadie(t)!,(t')). These are
semblg considered here ard= 1/2 for the strong spin-orbit  complementary to the parent diagram of Figh)6 The correspond-
interaction(symplectic ensembjeEquation(5.7) is in com-  ing Hikami box (d) is also shown.
plete correspondence with the earlier results obtained in
Refs. 25 and 26. allows us to build the loose diffuson. In a similar way we get
the nonlocal daughter diagrams that correspond to the parent
B. Effect of ac pumping on the persistent current fluctuations ~ diagram of Fig. €0).
Calculating the diagrams of Figs. 7 and 8 and assuming
>1v,1/t, we neglect both dephasing and electron escape in
the loop diffusons and/or cooperons and adopt B¢ to

Now let us assume that a time-dependent circular fiel
A(t) [see Fig. 8] is applied to the mesoscopic ring and

consider the persistent current fluctuations under ac PUMRyascribe them. Then summing up all the diagrams of Figs.
INg. The dc_(_ﬁ_ﬁclurrent 'g a fingoverline means the time aver- 5 g e arrive at the expression for the disorder average
asg'g@ lgc= ll ('t:)_H (t) can be found using Eq$2.8— (|, (t)I,(t’)) which is exactly the same as E@.5) with
(3.6) [see also Fig. P £2(#) replaced byf?(7)[1— A ()1~ A ,(t')]. This leads
to the ansatz Eq4.10.
|(1)(t):if dy f(p) THJGR(t,t— ) —jGA(t+ 7,0}, Irlparticular, for a harmonic pumping with the frequency
(5.9 w=wE. we obtain from Eq(4.12

. N 2 4C%n% [ e |? =dx —n2/(4x) =2
|<2’(t>=|f dtlf dn f(m[Aaltit 7)—Au(ty)] (=% = f —5© F2(x), (5.10
T D 0 X
XTHIGR(t,ty+ 7)) ,GA(ty, D)}, (5.9  where
where GRA are exact electron Green functions in the pres- ~
; T 1
ence of ac pumping, Eq3.6). (x)= (5.11)
One can check that for equilibrium electron Green func- sinh( 7 TX) @ '

[ wx
tions Eq. (5.8 reduces to Eq(5.1). The contribution Eq. 1+4Nsm2(7”

(5.9 is present only under ac pumping. It describes two prin-

cipally different effects of ac pumping. One is thectifica-  Here we assume that the ring is connected to the electron

tion of the ac field discussed in Refs. 9 and 6. This effect iseservoir by gassive leadsee Fig. 1(b)] which results in a

similar to the photovoltaic effectin a single-connected finjte electron escape rate and allows to reach a steady-

geometry'®'* Another one is the heating by the ac field state regime. The escape rate enters the conafaint Eq.

which we will study starting from the simplesero orderin (4,13, which is equal to the number of absorption and/or

the pump field parent diagrams of Fig. 6. The heating effeCemission events for the escape time and thus describes the

in rectification (or photovoltaic effegtcan be studied in a pumping strength.

similar way* starting from the parent diagrams of thecond At T, = w\N'’>E_ the variance of persistent current fluc-

orderin the pump _f'eldl- T . , tuations is strongly suppressed but still significantly depends
The daughter diagrams with loose diffusons that arise afy, the path temperatur® even if T<T, [see Fig. 9 For

ter disorder averaging and that correspond to the parent digisiance. atw<E. andT = wN'>E, we obtain

gram of Fig. 6a) are given in Fig. 7. We stress that although ’ ¢ * ¢

the parent diagram of Fig.(& arises as the result of the 4., =5

disorder averaging ol f) the daughter diagrams always in- <|2>x< f ﬂefnzl(mT—_ (5.12

volve | ,, which contains the retarded-advanced junction and " o xt12 sint?(7Tx)

Ec
Te
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FIG. 10. Experimental geometries for the Landager and
Kubo (b) conductances. In the case of Landauer conductance the dc
currentl is the response to the chemical potential differepge
— uo between two reservoirs that enter through the Fermi distribu-
0 2 4 6 & 10 12 14 16 18 20 tions of theincomingelectrons. In the case of Kubo conductance

T/E, the dc current is the response to the perturbatii)Eot of the
system’s Hamiltonian. Th@assive leadconnects the mesoscopic

FIG. 9. Temperature dependence of the variance of the firsting to the electron reservoir with the equilibrium distribution of
harmonic of persistent current in units af/ ¢p)?: the equilibrium  electrons.
temperature dependencepper curve and two close curvegen-
larged by a factor of b for the nonequilibrium case witff,  ments of the linear dc current response tofikeeturbation of
=20E, corresponding taw=10, N=4 andw=2, N=100. The  the system’s Hamiltoniamaused by the constant electric
temperature dependence is significant in the nonequilibrium casge|d inside the mesoscopic system. The corresponding re-
even forT<T, . sponse function will be referred to as tkebo conductance

It can be realized as a current response in a ring that is
Equation(5.12 shows the dependence on the bath temperapierced by a magnetic fli% [see Fig. 1(b)]. The flux is
ture T=TE, which is of the same type as in the absence ofsupposed to contain two parts: one is growing linearly with
pumping Eq.(5.7), only the magnitude of fluctuations de- time and causes the dc electric field. Another one produces
creases by the factor oE(/T,)?<1. So the overall width the high-frequency pumping.
T, and the small steps in the electron-energy distribution of We will show that these two cases are drastically different
Fig. 5 manifest themselves in the variance of persistent curthe same conclusion has been reached by Vavilov and
rent fluctuations. Aleiner®). The Landauer conductance of noninteracting

electrons isinsensitiveto heating and depends only on the

bath temperaturd. At the same time the nonequilibrium

VI. dc CONDUCTANCE UNDER ac PUMPING electron-energy distribution in the mesoscopic ring does mat-

In this section we consider the dc conductance in a mesd€' for theKubo conductanceln particular, the mesoscopic

scopic system under ac pumping. This problem has beeffuctuations of the Kubo conductance should feel the effec-
recently addressed in the work by Pedersen antikgn2®  tive temperaturd, rather than the temperature of the elec-

Here we neglect the electron interaction and focus on th&On reservoirT which the mesoscopic ring is connected to
effect of heating by the ac field. It is well known that the Py thepassive lead
mesoscopic conductance fluctuations are temperature depen-

dent and decrease when the size of the sydtenh.+ where A. Landauer conductance in terms of electron Green
L+=+D/T. The question we address here is whether or not functions in the time domain

the effective temperaturé, is what should stand for the In order to prove the statement on the absence of sensi-

bath temperaturg in the expression fokr under ac pump- tivity of the Landauer conductance to heating produced by ac

ing. The answer is not obvious in the geometry of an Ope! umping in the dot and to see the key difference between the
guantum dot connected by the leads to electron reservoits

: S Candauer and the Kubo conductances we rederive the Land-
[s_,ee Figs. 1@) and 1@b)]. Th_e pointis th‘f"t there asgveral auer conductance to allow for an arbitrary ac pumping. To
different electron-energy distributions in such a problem

The electron-enerav distribution in each reservoir is su derive the expression for the Landauer conductance in terms
gy dis S . P5f the electron Green functions we proceed along the route
posed to be the equilibrium Fermi distribution with a certain

chemical potential and temperature. In addition, there is théjSGd in Ref. 11.

nonequilibrium electron-energy distribution inside the dot

. . 1. Formulation of the Lan r con n
under ac pumping. We define th@ndauer conductancas ormulation of the Landauer conductance

the linear dc current response to ttiéference of the chemi- For simplicity we consider a zero-dimensional dot de-
cal potentialsbetween two different reservoirs with the same scribed by theN XN randomtime-dependentnatrix H;;(t)
temperaturg¢Fig. 10a)]. connected to two perfect semi-infinitex<0) leads, each

Another experimental situation corresponds to measurecontainingM channels labeled by. There is neither disor-
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der nor electron interaction with each other or with an exter-

nal ac field inside the leads. Therefore the matrix Green E WmG e ma(t,t’;x")

functionG., 4 ,(t—t’,x—x") of the Keldysh technique Eq. "

(2.6) for incoming electronn the leads depends only on the =—ive[G, - aﬁ(t!t,;_xl)_G—i aﬂ(t,t’;—x’)],
difference of time and coordinatdsMoreover, the incom- - -

ing electrons are supposed to be in equilibrium at the bath (6.8
temperatureT and the chemical potentigh+ du, where  where the labek (—) corresponds to the incoming@utgo-
op=xU/2 differs in Slgn for the leads 1 and 2. Then theing) electrons in the leads ar@. , is the “cross” Green
Keldysh componer®" , ap(E,x=X") of the incoming elec-  function of an mcommg(outgomg electron in channeB in
tron Green functionG, . ,5(E,x—x") in the energy- the leads and an electron at sitein the dot.

coordinate representation takes the fdich Eq. (2.9)] According to Eq.(2.7) the current ; (t) in the leads 1 or
Es 2 is given by the Keldysh componeﬁ+ ae(t,1;0) and
e , K
Gk, ap(EX—X )—tanl‘(—z_l_ >[G++ wp(EX—x") G- _ ,.(1,t;0) of the incoming and outgoing electrons,
~ G Wp(Ex=x)]. (6. l1o=ive 2 [GF Lo(tH0)~GE (0],
The retarded and advanced components for incoming elec- (6.9

trons GEY, 4(t—t',x—x') in the leads are given by
' 2. Analytical structure of the scattering matrix
GT | p=10(t—t')8,p0e(t—t) = (x=X"), (6.2 It is possiblé! to express the Keldysh component
A o ) , G aﬁ(tt ;0) of the outgomg electrons in terms of the
Gl s ap= —1O(' —1) 8,p6e(t—t") = (x=X")). known Keldysh componer®'; | 4(t,t’;0) for the incom-
6.3 ing electrons using the time- dependent scattering matrix
Here we linearized the Schiimger equation near the Fermi S,(t,t"),
momentum and introduced rigkihcoming and left(outgo-
ing) movers \I_f(:“)(x,t)=Aie—"‘X_ ekle*IPEX - Then the GK_ 4(tt7:0)= fdtlf dt, S, (tty)
wave function in the leadx&0) is

PO =T+ O(x,1). (6.4 XGLs yati=12i0) Spplta 1),

(6.10
The Schrdinger equation for electron states inside the dot

¥,(t) coupled to electron states in the Ieaﬂé{‘)(x,t) is It is crucial for us that the scattermg matrSgyB(tt ) in-
taken in the form - volves only theretarded componentGR (t,t") of the elec-

tron Green functiorinside the dotand the Keldysh compo-
_ nentGK (t,t') drops out of the scattering matriX,

2 [ Bumdh = Hom(D) 10in(1) = 2 Wo, W(01), o N 2io= W GR (LW
Sap(t,t")=8,58(t—=1") = 2ive "Wy Gop(t,t" ) Wg

(6.11
We note that only the Keldysh compondﬁﬁm(t t’) con-
tains information on the electron-energy distribution inside
the dot. It describes theesal transitions between energy lev-
els in the dot which are constrained by the energy conserva-
—iv[ P00 -V (0)]= Womihn(t). (6.6 tion law and the Pauli principle. In contrast to that the re-
m R . . .
tarded componentG(t,t") describesvirtual transitions
For massive leads with the semiclassical electron motiorywvhere no energy conservation applies and thus the energy
electrons adiabatically turn back\at,,— 0 acquiring only a  distribution function is irrelevant.
certain phase which may be included into the definition of Formally the fact that the scattering matrix is independent

(6.9

whereW,,, is the 2V X N coupling matrix.
Neglecting electron-electron interaction we introduce the
linear boundary conditions at=0,

AN of GK (t,t") follows from Egs.(6.7) and (6.8). Let us ex-
Equations (6.5 and (6.6) generate the corresponding pressG_, .z throughG, . ,z andG, s using Eq.(6.8)
equations for the matrix Green functions, and substitute it into Eq6. 7) As the result of the transfor-

mation 25, , .,z appears in the rhs of E¢6.7) and the
. ., matrix Hamiltonian for electrons in the dot acquires an
% [18nmdt = Ham(D]1G . ma(t,t":x") imaginary partH,,—HR_, where

HRA=H  Tiv- (WW), .. 6.1
:2 Wga[gﬂ,ag(t,t’:—X’)+§_¢,aﬁ(t.t';—x')], nm nm+1UE "~ ( )nm (6.12

According to the rules of the Keldysh technique the generic
(6.7) solution Gﬁ’mﬁ to the transformed Eq6.7) involves both
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the combination G} W} ,G%, ., and the combination

GrW!,G% | .5, WhereG is the matrix Green function for

electrons in the dot; for instance,

Grm(tt)=[ia—HX(O)]om. (6.13
However, in this particular scattering problem we have
Gh ., 4Lt ;x—x">0)=0. (6.14

Equation (6.14 follows immediately from thed-function
and the#-function structures of Eq6.3). Therefore we ob-
tain from Eqgs.(6.7) and (6.9

Glf-*—,aﬁ(t!tl;o):f dtl Say(titl)Gﬁ-f—,yﬁ(tlut,;O);
(6.15
with S,,(t,t;) given by Eq.(6.11), which contains only the

retarded componer®® of the electron Green function in

the dot.
In a similar way one can expreéﬁf_'aﬂ(t,t’;O) through

PHYSICAL REVIEW B64 045310

an even function one can repla@é(t, ,t) by GA(t,t,) in the
second term of Eq(6.16). After that Eq.(6.18 can be ap-
plied to yield

_2 +72dt A
JLand= UV f 7f dtlfdn[—lnf(ﬂ)]
—T/2
X Tr{—W'(1+ A)WGR(t,t )W AWGA(t, + 7,1)
+W'WGR(t,t)WT(1+ A)WGA(t, + 7,1)}. (6.19

Finally we assume that theM2x N coupling matrixw,,, has
only 2M nonzero matrix elements, those with=n; all
these elements are taken equaMio Then Eq.(6.19 takes
the form

1 2 -z -2
Giand=5 ¥ dt, | dy[—inf(n)IM

XTr{G(t,t1)Ghy(ty + 7,t)

+GR(t,ty) Gty + 7,0}, (6.20

K ’. B ; : : ~
G 4p(t,t";0) using the Hermitean conjugated equationsyheref() is the Fourier transform of tanB(2T); the over-

(6.7) and (6.8 to finally arrive at Eq.(6.10.

3. Expression for the Landauer conductance

Now we substitute Eq6.10 in Eq. (6.9) with S,4(t,t")
given by Eq.(6.11) to get for thelinear dc responseurrent

lo=1in(t)
I“n(t):—vEZUJ dtlJ’ dt[ —i(ty—to) F(t1—t,)]
X Tr{(1+ A)WGR(t,t) WTAWGA(t,,t) W'}

+i(v,§l/2)UJ dt[—i(t;—t)F(t,—1)]

XTr{(1+A)W[GR(t,t;) — GA(t,,t) W'},

(6.1
where we have introduced the diagonal matkix
+1, aeleadl
A,,=1 —1, aclead?2 (6.1

0, otherwise.

Equation(6.16 can be simplified using the identity

GR(t,t") —GAtt')=-GN[G 1R~ [G1MGR
=—2iv,§lf dt,GA(t,t,)

X WIWGR(t,t), (6.189

which is obtained with the help of E¢6.12).
In order to obtain the dt, one has to average E(5.16
over t within the observation time&/—«. This means an

additional integration ovet: Then using the fact thaf(t) is

line denotes the average over timey=2v; }|W|?M is the
electron escape ratd) is the number of channels in each
lead and the subscripts 1 or 2 indicate that only sites con-
nected to the first or the second lead should be taken into
account in the summation over matrix indices.

Using Eq.(6.18 one cafi recast Eq(6.20 as a sum of
two partsg, an¢= 91+ 9., where

gf%J dyl—inf () IM~ te{GR(t+ 7,t) = GA(t+ 7,1)}
(6.21)

and

1 -
047 | dt [ anl-infinm 2

X tr{AGR(t,t)) AGA(t, + 7,1)}. (6.22

In Egs.(6.21) and (6.22 the symbol tr denotes the matrix
trace takeronly over sites connected to leads and the matrix
A in Eq. (6.22 is given by Eq.(6.17).

The first contributiong, is proportional to the local den-
sity of states in the regions of leads. It describes the effect of
electron escape in each leséparately The second term,
describes the mutual effect bbthleads. It is similar to the

conventional termjGRjG* in the Kubo conductance, since
Trj=tr A=0.

B. Why there are no loose diffusons in the problem
of Landauer conductance under ac pumping

We stress once again that the Landauer conductance is
independent of the Keldysh component of the electron
Green’s function in the dot. This is already an indication that
electronkineticsinside the dot under ac pumping is irrel-
evant for the Landauer conductance. In particular this means
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that the electron-energy distribution functi&mn) in Eqg.
(6.20 is not renormalizedn the way similar to Eq(4.12.
Formally this follows from the difference in the structure
of the retarded-advanced junctiond et us compare the
retarded-advanced junction E@.5 and that in Eq(6.22.
The difference is that Eq3.5) contains the electron interac-

tion with the ac pumping field' 3, A(t;)—rd, A(t,+ ) or

JA(t;) —jA(t;+ 7). At the same time Eq(6.22 contains
—ipAocA[Ag(t) —Ap(ty+ 7)] which stems from the inter-
action with thedc field Ag(t) = — Egt that causes the chemi-
cal potential differencéJ. Correspondingly, the expression
for the loose diffuson analogous to Hd.6) is proportionat?
0 A o=2n® (M)A L Po(Mm)xtr A=0 (instead ofr ).
An expansion ofGR” in powers of the ac pumping field

analogous to that leading to the triangle in Fig. 4 does not

help. Because the retarded-advanced junction in(EQ2

does not contain the ac field the corresponding triangle is

linear in the ac field and vanishes after averaging over time
[cf. Eq.(4.1))]. Thus the loose diffuson corresponding to Eq.

(6.22 vanishes in the same way as the one that corresponcf

to the conventional termGRjG* in the Kubo conductance.
The structure of Eq(6.21) does not allow us to build the
loose diffuson because it does not contain the retarde

advanced junction at all. Since the heating effect is assoc
ated with the loose diffusons the above arguments allow one

to concludé® that theLandauer conductancef noninteract-
ing electrons inot sensitive to heating.

C. Sensitivity of the Kubo conductance to heating

lﬁ‘O
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7= | oty [ ol =i () ITHIGR L IGA L+ 7.0},
(6.25

o3= f dty Tr{JG@(t,t,)j[ —it,]GA(ty,1)

+JGR(t,t)][ =it 1G@(ty,1)}. (6.26

Here GRA(t,t") are Green functions in the mesoscopic sys-
tem subject to ac pumping and

G<a>(t,t’)=f dt”f dy F(9)GR(t,t"+ n)

X [Hl(t"'f' 77) —Hl(t")]GA(t",t,).
(6.27

The first two parts, Eq€6.24) and(6.25, do not allow us to
build the loose diffuson for exactly the same reasons as Eqgs.
9.2]) and (6.22 for the Landauer conductance. However,
the “anomalous” Green functio®® in Eq. (6.26 contains

the retarded-advanced junction of the same structure as we

qciiiscuss,ed in Sec. IV which does allow us to build the loose

iffuson. This is the part where the heating effects originate
m.

One can see the direct analogy with the situation dis-
cussed in Sec. VB. The role played by the curiéf, Eq.
(5.9, is now played by the part of conductanegq. The
parent diagrams for the problem of conductance fluctuations
are the usual two-diffuson and two-cooperon diagrams con-

However, this is not true for the Kubo conductance whichSidered in Refs. 33. All the daughter diagrams with one or
is sensitiveto heating. Consider an experimental situationtWo additional loose diffusons can be obtained from the dis-

shown in Fig. 10b). Here the electric field, is produced by

order averageéo, ,o3) and(a3), respectively. It is not dif-

the linear in time component of the magnetic flux piercingfiCU't to show that all of them again lead to the renormaliza-

the mesoscopic ringgg=LAy= —LEgt. The ac pumping is
produced by the oscillating part of the magnetic flix{t)
=A(t)L. In the framework of the dynamical approach the

steady-state regime is only reachable if the mesoscopic sys-

tem is connected to the reservoir bypassive leadlt sup-

ports no net current but results in the particle exchange bes'it
tween the mesoscopic system and the reservoir necessary, g,
remove heat produced by the ac pumping. Phenomenologj:
cally, the effect of the passive lead is described by the escap
rate y. This geometry corresponds exactly to the formalismtr

developed in Secs. Il and Ill, where

Het(t)=Hot+H,=]Egt—jA(1). (6.23
Now each ray in Fig. 2 represents a sfp+H;. Since we
are interested in the linear responség one ray is special:
it corresponds tdH, while all other rays correspond ;.
Then using Egs(2.8—(3.6) one obtainsly=I,(t)=[0o1
+ 0'2"’ 0'3] Eo, Whel’e

o= f dty f dn f() TrHjGR(t,ty)J[ —it,1GR(ty,t— 7)

—JGA(t+ 7,ty)J[ — it 1GA(ty, D)}, (6.24

tion of the energy distribution function given by Eg.12).

D. The difference between the Landauer
and the Kubo conductance

Let us discuss the difference between the experimental
uations described by the Landauer and the Kubo conduc-
ces. The principal difference between them is that the
uantity we call the Landauer conductance is the linear cur-
nt response to the variations of tharameters of the elec-

on reservoirs(the chemical potential differeng&vhile the
Kubo conductance is the linear current response to the varia-
tion of thesystem’s Hamiltoniafthe termH in Eq. (6.23)].

We stress that the difference lies in thhysical situations
and not in themethods of descriptior-or instance, theho-
tovoltaic effectcan be considered both in the framework of
the scattering matrix approathand in the nonlinear re-
sponse approach similar to the one we used in Sec.V for the
persistent current fluctuations. In both cases the result is ex-
pressed in terms of theenormalizedelectron energy distri-
bution Eq.(4.12. The reason is that the photovoltaic current
is a nonlinear response to the variation of the system’s
Hamiltonian[#H, in Eq. (6.23] caused by the ac pumping
field which should be treated in the same way as the varia-
tion H, in Eq. (6.23 that causes the Kubo conductance. That
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is why in terms of the sensitivity to heating the photovoltaic analysis shows that the variance of the Kubo conductance is
effect is similar to the Kubo conductance and drastically dif-sensitive to the renormalization of electron-energy distribu-
ferent from the Landauer conductance. tion. This sets yet another borderline between these two for-
We note that the key difference between these two situamulations of the problem of conductance and shows their
tions examplified by Figs. 16) and 1@b) is that the initial  deep physical difference and significance of the experimental
density matrix at= —oo, prior to switching on the interac- geometry for conductance measurements.
tion with external ac fleldWthh is a Starting pOint in the Though the results presented in the paper are pure|y per-
Keldysh formalisn®), is alreadynonequilibriumin the prob-  turbative, there is a bridge to nonperturbative schemes. The
lem of Landauer conductan¢€ig. 10a)], since it involves  gpvious extension of the present theory is the time-
two Fermi distributions with different chemical potentials. At dependent random matrix theofJRMT) which applies to
the same time in the situation represented by Figbjlthe  the problem of quantum dot under ac pumping. We found
initial density matrix is equilibrium. that in contrast to the equilibrium or the linear-response theo-
VIl. CONCLUSION ries, there aréwo different TRMT formulations, Eq¥3.37)
and (3.32, one for the adiabatic pumping with the typical
In the present paper we have considered a general formafrequencyw smaller than the Thouless ener§y and an-
ism of the dynamical approach to nonlinear response of mesther one for the case of high frequencies E.. The cor-
soscopic systems. For completeness of presentation and fe#sponding matrix Hamiltonians have different symmetry:
tutorial purposes we have shown how the causality principlehey are real symmetric for the adiabatic case and contain an
leads to the powerful machinery ahalytical continuatiof? imaginary antisymmetric time-dependent pdvtith zero
which is most conveniently realized in the matrix algebra oftime averaggin the case of high frequencies.
the Keldysh techniqué>*>'*The principal goal of the paper ~ Another obvious extension is the functional formulation
was to demonstrate the capability of the dynamical approachn terms of thenonlinear o model** In this connection we
and its apparent limitations. We have shown that the dianote that in all field theories with the correct vacuum, the
grammatic technique developed in Refs. 22 and 23 automatieose propagators may not arise. In the particular formulation
cally describes the electron diffusion in the energy spac®f the nonlinearc model based on the Keldysh formalism
under the action of ac pumping. We considered a few simpl¢he electron-energy distribution is a part of the vacuum so-
examples of how the renormalization of the electron-energyution. However, the example of the Landauer conductance
distribution occurs due to the loose diffusons and havedthat depends on the bare energy-distribution fungteamd
demonstrated its equivalence to the solution to the kinetithe Kubo conductance or the photovoltaic effé¢that de-
equation. pends on the renormalized energy-distribution fungtion
We have shown that the quadratic response inctbsed  shows that the vacuum could be nonunique or contain differ-
mesoscopic systems is singular in the dynamical approacént sectors which enter in a different way in one or another
because of the singularity of tHeose diffusonsn the qua- observable.
dratic in the pump field approximation. Yet in contrast to  Finally we mention the effect of the electron-electron in-
Ref. 18 this does not lead to an infinite dc current arisingteraction. It seems plausible that in the presence of an
under ac pumping, as the quadratic An approximation electron-electron interaction the Landauer conductance will
breaks down well before the singularity develops itself. Thebe sensitive to heating. Another effect of electron interaction
situation is somewhat opposite to that described in Ref. 18s the inelastic electron scatteringln our dynamical ap-
The ensemble-averaged dc current does not depend on theoach we have neglected this effect at all. In open mesos-
singular loose diffusons whatsoet®and thus is finite any- copic systems this has resulted in the electron-energy distri-
way. The mesoscopic fluctuations of the dc current in arbution Eq.(4.12 of a very peculiar form. The characteristic
isolated ring arezero because the corresponding effective feature of this distribution is that it depends not only on the
temperaturél, — o in the absence of dissipation or an elec- effective temperature ,T but also on the bath temperature
tron escape. This clearly shows that the dynamical approach<T, . The consequence of this two-parameter dependence
based on the “minimal model” of noninteracting electrons takes its extreme form in the temperature dependence of the
in an impurity potential interacting with the external classicalpersistent current or photovoltaic current fluctuations. In par-
field is insufficientfor describing the closed systems. ticular, Eq.(5.12 shows how theseparation of parameters
However, this model is reasonable fopenmesoscopic occurs in the variance of the persistent current fluctuations
systems connected with the electron reservoir by massivender ac pumping. The parameigy turns out to determine
leads. We have carefully studied the case of the Landauamly theprefactorin front of the function that depends on the
conductance in a quantum dot under ac pumping, since hefgath temperaturél. Such a behavior is only possible if
one can see the danger afl hocreplacement of the bare electron-electron interaction is neglected. Inelastic processes
electron-energy distribution by the renormalized one with thedue to electron-electron interaction are always favorable to
simultaneous deletion of all the diagrams with the loose difthe Fermi-distribution function with some effective tempera-
fusons. The correct diagrammatic analysis shows that theire T,;. They work to diminish all the deviations from the
diagrams with the loose diffusons do not arise in this prob+ermi distribution and should certainly reduce the depen-
lem, and the electron-energy distribution that enter, e.g., thdence of the persistent current fluctuations on the bath tem-
variance of conductance fluctuations, stays unrenormalizeperature. This(or similar temperature dependences for the
by heating. At the same time, the same type of diagrammatiphotovoltaic effectcan be a useful tool for the experimental
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