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Shot-noise suppression by Fermi and Coulomb correlations in ballistic conductors
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We investigate the injection of degenerate Fermi-Dirac electrons into a multimode ballistic conductor under
the space-charge-limited regime. The nonequilibrium current fluctuations were found to be suppressed by both
Coulomb and Fermi correlations. We show that the Fermi shot-noise-suppression factor is limited below by the
value XgT/eg, whereT is the temperature ang: the Fermi energy of the injected electrons. The Coulomb
noise suppression factor may attain much lower valyg2qU, because of its dependence on the applied bias
U>kgT/q. The asymptotic behavior of the overall shot-noise suppression factor in a high degenerate limit was
found to bekgT/qU, independent of the material parameters.
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I. INTRODUCTION apply the recently developed analytical théSrfpr a space-
charge-limited(SCL) ballistic conductors to the case of a

Nonequilibrium fluctuations of the electric currefghot L L )
L : . . Fermi-Dirac degenerate injection. Since we address the case
noise in mesoscopic conductors have received recently sig-,",, . .~ . . )
o 19 . S : of thick (in transversal dimensionsamples, the number of
nificant attentior:? In particular, the shot noise in scattering-

free orballistic conductors has been studied extensively bott{;a:ar;]i\ggrrzliiltymgg 2mmugmgmuﬂ]asnpn;gzs olfaregfg c?rrc])ﬂ Sthig ?r:r ce-

. _5 . - . .

theorencallﬁ a.nd experlmentall)‘?, 9. by focu;mg .mamly dimensional(3D), which makes a difference with the previ-
on.the suppression of noise by Fermi cor.relatlons in quantquus considerations of a one-channel or a few-channel
point contacts under low temperatures, i.e., conductors Wlﬂauamum ballistic conductof1D or quasi-LD momentum
a small number of quantum modes. ~ space.?™® Our analysis goes beyond the linear-response re-

On the other hand, when the ballistic transport is I|m|tedgime and zero-temperature limit—the assumptions typically
by a space charge, Coulomb correlations may also result in gsed to study few-channel conductétS.In a semiclassical
shot-noise suppression. If the electron density injected into gamework, for a multimode ballistic conductor, we have de-
ballistic conductor is low, the electron gas is nondegeneratgived analytical formulas that determine thenlinear -V
and Fermi statistical correlations are not efficient. For thischaracteristics, the current-noise spectral density, and the
case the Coulomb correlations are the main source of thehot-noise suppression factors for each suppression mecha-
shot-noise suppression, as has been demonstrated by Monigm in the limit of high biases. We show that the Fermi
Carlo simulations®™* and subsequently analytically in a shot-noise-suppression factor is limited below by the value
framework of the Vlasov system of equatioidn nanoscale  determined by the properties of the injecting contébe
devices, however, the injected carriers are usually degenefatio between the temperature and the Fermi energy
ate, which is due to a high level of contact doping and theyhereas the Coulomb noise suppression may be enhanced
elevated position of the Fermi level in the contact emitter.arbitrarily strong by extending the length of the ballistic
Therefore, it is of interest to consider the situation when bothsample with a simultaneous increase of bipsovided the
mechanisms, Fermi and Coulomb correlations, actransport remains ballisticTherefore, the Coulomb suppres-
together—the case that is important not only from a fundasjon may be achieved much stronger even in samples with a
mental, but also from an applied point of viEhand has high degree of an electron degeneracy.
attracted less attention so f4r*®In Ref. 14 the problem for The paper is organized as follows. In Sec. Il we describe
a multimode degenerate conductor in the presence of the semiconductor structure under consideration and discuss
nearby gate has been posed, and the numerical results hidfi® main assumptions concerning the model. In Sec. Ill we
been presented for a two-dimensional field-effect-transistointroduce the electron distribution function over the longitu-
geometry. Monte Carlo simulations in a two-terminal geom-dinal injection energy, found by integrating over the trans-
etry, which take into account the degenerate injection fromversal modes. The analytical expression for the mean current
the contacts and Coulomb correlations in the ballistic regionis derived as a function of the self-consistent potential barrier
have been performed. The relative significance of each height. Then, in the limit of high biases, the current-voltage
mechanism in the shot-noise suppression and the limitingharacteristics beyond the Child approximation is obtained,
values for the noise suppression factors of each mechanismhich takes into account the degenerate Fermi-Dirac injec-
still remain unclear, since the analytical theory has not beetion. In Sec. IV the analytical expression for the suppressed
proposed. value of the shot-noise power is derived, in which the Fermi-

It is the objective of the present paper to address the prolend Coulomb-correlation contributions are distinguished.
lem of shot-noise suppression under the conditions of th@he results for a particular GaAs semiconductor SCL diode
interplay between Fermi and Coulomb correlations in two-are presented in Sec. V. Finally, Sec. VI summarizes the
terminal multimode ballistic conductors. To this purpose, wemain conclusions of the paper.
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Il. THE PHYSICAL MODEL pass over the fluctuating barrier contribute to the current and
noise. The nonhomogeneous electron density along the bal-

We consider a two-terminal semiconductor ba”'suclistic region is determined 69

sample with plane-parallel heavily doped contactx&t0
andx=1|. The structure may be considered ars-a&n SCL

homodiodé? in which the current is determined by a charge N(x) = jw Fo(e) de (1)
injection from the contacts rather than by intrinsic carriers of v, 2e+ D (x)— D,

the ballistic region. The applied bias between the contacts

is assumed to be fixed by a low-impedance external circuiwvhere®(x) =qge(x) —qen, is the mean potential referenced
and does not fluctuate. In order to simplify the problem, weto the minimum, with the valu&.=®(0) at the injecting
assume that due to the large difference in the carrier densitgontact. It is clear that in such a definition the contact poten-
between the contacts and the sample, and hence in the cdial is equal to the potential barrier heigld,.=qU,. Note
responding Debye screening lengths, all the band bendintdpat F(¢) is the distribution function over the longitudinal
occurs in the ballistic base, and the relative position of thekinetic energye at the injecting contact. Since during the
conduction band and the Fermi level does not change in thkallistic motion only the longitudinal electron momentum
contacts. Therefore, when the bias is changed, the potentiaday vary, the injection distribution function is averaged over
can vary exclusively inside the ballistic base, and the conthe transversal momentuh :

tacts are excluded from the considerattBnt? The electron

gas inside the contacts is assumed to be in thermal equilib- J2m [ dk,

rium. However, in contrast to the previous wofKs!? the FC(S)ZZTJ’ ——fle.ky), 2
Fermi level in respect to the bottom of the conduction band, (2m)

denoted herer, may take not only negative, but positive pareq is the dimension of a momentum spanethe elec-

values as well, i.e., the injected electrons may be either det'ron effective massj the Planck constanf(s,k, ) the oc-

generate or nondegenerate, and follow, in general, the I:er"r‘?:'upation number of a quantum state, the factor 2 takes into

Dirac distribution. Assuming the transversal size of the con- . ! - —
ductor sufficiently thick and high enough electron density,accoum the spin variable, and the additional factam/#

the electrostatic problem is considered in a one-dimensional - been introduced for normalization convenience. Assum-
2p ing that the number of transversal modes is large, the dimen-
plane geometry?

sion of a momentum spaak=3, and we can perform inte-
gration over the transversal states. Changing the variable of
integrationdk, = (2mm/#?)de, , wheree, is the transverse
electron energy, and taking into account thits,s,)

To describe the steady-state transport and low-frequency fr(e+e,), with fe(e)={1+exfd(e—ep)/kgT]} 1 the
noise, we use a semiclassical Vlasov system of equation§ermi-Dirac distribution, one gets
which consists of the collisionless Boltzmann transport equa-
tion for the distribution function and the Poisson equation for N,
the self-consistent electrostatic potentfat® Due to a sto- Fe(e)= \/—ln{1+exq(8F_3)/kBT]}y ()
chastic nature of the injection, the distribution function and, mkgT

consequently, the self-consistent potential both fluctuate inhereN =2(2mmksT)3%(27%)3 is the effective density
Cc

time. The nonuniform distribution of the injected carriers of states. Integrating the distribution functid8) over the

Igads o the creation Of. the _pc_)tentlal minimugp at a posi- energy, one obtains the electron density injected from the
tion Xx=xq. The potential minimum acts as a barrier for the o1~

electrons by reflecting a part of them back to the contact,

thereby affecting the transport and noise properties. It is the

potential minimur_n fluctuations that induce thg Iong—range No= wac(s)d_s: &fw|n(l+e‘f‘zz)dz, 4
Coulomb interactions and lead to the suppression of the in- 2\Je Jmlo

jected current fluctuation.We assume that the applied bias

qU>5kgT, whereq is the electron charge arklis the tem-  whereé=egr/kgT is the reduced Fermi energy. The injected
perature. From this follows that the current is determined byelectron density may also be expressed in a more familiar
only one injecting contadtat x=0 for definiteness and the  form

electrons from this contact that are able to pass over the

barrier and arrive at the receiving contact>at!| are all

absorbed with probability 1, since the corresponding energy NO:ENC]:1/2(§)' ®
states are empty. All the electrons injected from the receiving

contact are reflected back because of the high-bias conditiowhereF, is the Fermi-Dirac integral of index 1/2. Since the
Their contribution to the current and noise is negligible. An-Fermi-Dirac integralsF; of different indexeg will be fre-

Ill. DISTRIBUTION FUNCTION AND MEAN CURRENT

other assumption on the biaslik,<U<U,,, whereU,,= quently used throughout the paper, their properties are sum-
—¢m is the potential barrier height, ard,, is the bias at marized in the Appendix. Note thal, is half of the contact
which the potential barrier vanish&ln this limit (“virtual- electron densityN Fy,5(&), since only the electrons with

cathode approximation); only the electrons that are able to positive momenta are injected into the sample.
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15 When the Fermi energy is above the potential barrier by
severakgT, it is the degenerate injection limit and, by using
Eq. (A6), one gets the approximate formula for the current

2
a“+ —|.
3

/1,

(10

IQEIF

(o+73) 1 2 . . .
. It is seen from Fig. 1, that formul@L0) is accurate atv>2.

Note that the case of nhondegenerate injectiGn— 3, may
occur when the contact electron density is either nondegen-
erate or degenerate, depending on the position of the Fermi
energy with respect to the conduction band edge character-
FIG. 1. Current as a function of the positien of the Fermi  ized by the parametef. For £<—3, the contact electron
energy e in respect to the potential barrie®., a=(er  density is nondegenerate, and this is the case of the Maxwell-
®.)/kgT. The asymptotic approximations for nondegenerate and3oltzmann injection, analyzed in detail in Ref. 12. Let us

degenerate limits are plotted. demonstrate that our formulas are in agreement with that
o o . case. Equatior{5) gives the injected electron density,
=X, one obtains the electron density at the potential mini-
mum: | =1y e Un'ke, (1)
N,,= foc Fe(e)——— 1 =N Fy @), (6)  Wherelyg=1g(2Ng/N¢) =gANy\2kgT/7rm is the emission
P 2\e— 2 current for the Maxwell-Boltzmann distributiopcompare

with Eq. (46) of Ref. 12. For £>—3 anda<—3, the in-

Whe_r_ea= Ef’ Fh_ ?;C)/k‘?-r is the pa_rﬁmeter characrt]erlzmg th_eljected electrons that pass over the barrier are nondegenerate,
p03|.t|on of the ermi energy with respect to the potentialy, e contact electrons are degenerate; hence the approxi-
barrier. The densit\N,, is an important parameter for com-

. ! : mate formula(11) for the current is no longer valid, and one
puting the current noise, as WI|| be_seen below. has to use a more general relation, E3).
The steady-state current is obtained‘by It should be also noted that in the general case of a Fermi-
Dirac injection, the contact emission current js= | ¢ F1(§).
:_j F.(e)de @ This is the maximum(saturation current that is achieved
2mle, © ' when the applied bia&J=U_,, the barrier vanishesdy,
=0, a=¢), and the conduction is no longer space-charge
whereA is the cross-sectional area. Substituting the distributimited. The current in units of its saturation value is simply
tion function(3), one gets

- | . ]:1(&) 12
|:|Ff In(1+e* Y)dy=1cF(a), (8) log Fi(&)° (12
0
where |e=47qAm(kgT)?/(274)% and F, is the Fermi- It was shown in a previous papérthat the asymptotic

Dirac integral(see the Appendix It is seen that under the behavior of the current in SCL ballistic conductors obeys the
ballistic SCL conduction, the current is determined by theChild law in the leading-order terms independently of the
relative position of the Fermi energy and the potential barrieinjection distribution:
through the parametet. This is in contrast to the case of
diffusive conductors, in which the current is determined by 4 5q U32
. . qu

scattering strength. The parametesummarizes the depen- | chig== KA\ / , (13
dence of the current on the applied bias and the length of the 9 |2
conductor, since they both affect the potential barrier height,
whereas the factdr: is independent of those characteristics.where « is the dielectric permittivity, and is the length of

Figure 1 illustrates the electric current as a functiorwof the ballistic conductor. However, this formula is only accu-
given by Eq.(8). When the Fermi energy is sufficiently be- rate at very high biases, in the range where the SCL conduc-
low the potential barrierg < — 3, only the exponential tail of tion is difficult to maintain. This is a consequence of a rough
the contact distribution function is injectgdondegenerate approximation, in which the velocity spread of electrons at
injection limit). Under this condition, according to the ap- the potential minimum is neglected. To obtain a satisfactory
proximate formulas for the Fermi-Dirac integrdla5), the  good approximation at lower biases, it is necessary to keep
current becomes the next-order terms that are specific with respect to the in-

jection distribution. The general formula for an arbitrary in-
|~ pe“. (9) jection function has been recently derivid:
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JmF (e+®.)eY? de ® ke .
3 0 ¢ ¢ 5 s, P, Ic(g)/ln:::n 0.05 (b)
I=lcpig| 1+ Jau [~ - (19
F.(e+d,)de k
0
In our case of the injection distribution functiai8), one 0.00
finds the following expression: 0 crer 10
3V [keT Fal @)
I'=1Icpig| 1+ - . (15
2 qu Fi(a)
- . 10
In the nondegenerate limiy<<—3, one obtains L3,/ Fy) e/ kT
—1, and Eq.(15) leads to the Langmuir formula for the 5
Maxwell-Boltzmann injectiort? In the opposite limit of high FIG. 2. Shot-noise power per unit enerfys) and partial cur-
degeneracya>1, one gets rentl (&) for injected electrons for two casgs) degenerates=>5;
(b) nondegenerate,é=—3. Here, Kuom=29le/KgT, lnom
8 [eg—qU =g /kgT.
I~ chig 1+§\/—qu m), (16) FiTB

, . i __integration'® but the Fermi noise-suppression effect is
which can be used to estimate the current for Fermi ba”'St'%resent in Eq.(20). Indeed, in the degenerate limite

conductors_ beyond the Ch'ld_ approximation. Here, we "®> kg T, the partial currentl7) is a linear function of energy,
mark tha.t in the degenerate limit andaz_g>qum, the cur- I.(s)~(cr—¢), at s—0 [see Fig. 2a)]. This occurs be-
rent (1) is independent of temperatuiein both terms. For - o556 of the increase of the number of transversal states as
an arbitrary degree of degeneracy, the general EXPressiqhe longitudinal energy decreases. Despite the increasing
(15) can be used. of the number of states, the shot-noise power per unit energy
represented by the functiaf20) is constant ak <ep [Fig.
IV. CURRENT NOISE 2(a)]. As aresultK(e)/2ql.(g)~1/é<1 ate—0, indicating

To calculate the current noise, one has to define the partidl’® Noise suppression effect. In contrast, for nondegenerate

injection current (&) at the contact and its fluctuation prop- ¢@S€, both functionscexd (er—e)/ksT] and K(e)/2qlc(e)
erties. From Eq(8) it follows that ~1 [Fig. 2(b)], which leads to the Poisson noise. Addition-

ally, we note that, sinck-~ T?, the injection noise vanishes,
I (en—e)/kgT K(e)—0, in the limit T—0.
l.(e)= kB—TIn[1+e F '], 7 The current-noise spectral density for the electron flow,

_ _ ~when Coulomb correlations are disregarded, is givel? by
which corresponds to the current carried by electrons with

injection (longitudina) energies betwees ande +de, giv- uncor [
ing after the integration the total emission curreipt ST=]  K(e)de. (21
=[5lc(e)de. _ o .
The correlation function for the fluctuations of the partial Here, the integration is performed over the energies above
injection currents may be written generally as the barrier heightd., since only the electrons transmitted
over the barrier contribute to the current noise at high biases.
(dlc(e)dl(e"))=K(e)(Af)S(e—g"), (18 Substitution of expressio(R0) yields
whereAf is the frequency bandwidttwe assume the low- uncor_ o
frequency limi}. For the particular case of Fermi 3D injec- ST=2qle In(1+e%) =2q1eFo(a). (22)
tion, the functionK (¢) is determined by *® From this result we find the shot-noise-suppression factor
caused by Fermi correlations
K—ZZQAJdkaklfk 19
(8)_ qT (27T)d (8: J_)[ (8, J_)] ( ) _S?Jncor_ }—O(a) (23)

F_ - .
The integration over the transversal states may be performed 2q1 Fafa)

explicitly by taking into account thatfe(1—f¢)= " This function is plotted in Fig. 3. It is clear that in the non-
—kgT(dfe/de) and [ode, fe(ete )[1-fe(ete.)]  degenerate limit, one getsF§/F;)—1, and obviouslyl'r
=kgT fe(&). This gives a simple expression: —1. An important feature is thdt is a decreasing function
2| of a. In the degenerate limite>1, it approaches the
. . 2=
K(s)= — fe(e). (20) asymptotic behavior:
B
We remind the reader thatis thelongitudinal energy com- Te~ # (24)
ponent. The Fermi factor 1f has disappeared after the a+ (7%3a)
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5= p2ql <l 30
1= 29 qu” (30
In this formula, the constan® is determined only byx:

B 7 [Fufa)]?
Bla)=9|1 1 Tl Fya))” (31
To distinguish the noise suppression caused by different
mechanisms, one can define the shot-noise-suppression fac-
tor due to a pure Coulomb suppression

S kgT Fi(a)
-5 0 5 10 Ie= ' =B 61
o guneer T qU Fo(a)

(32

FIG. 3. Fermi shot-noise-suppression fackgr and shot-noise  whereas the overall shot-noise-suppression factor becomes
parametep as functions of the position of the Fermi energyThe

asymptotic approximations for nondegenerate and degenerate limits =TT _i_ kB_T 33)
are shown. Y F_qu_’BqU'
It is seen from Fig. 3 that formulé24) is accurate ate>3. It is seen that the current noise may be suppressed by both

the temperaturd and the biadJ. This is in contrast to the
pure Fermi suppressiof25), which is sensitive tol, but
independent of the bias. The dependencdJocomes from
2 2kgT the Coulomb correlations and originates from the function
T?'n=g= : (25  y(e). The coefficient3 is a parameter that depends on the
degree of degeneracy, as follows from E81). For the
The numerical factor in Eq25) depends on the dimension- Fermi 3D injection,8 is a decreasing function af ranging
ality of a momentum space. By taking different valuesdof between two limiting valuegsee Fig. 3 Bmin<B<Pwms
in Egs. (2) and(19), one can gel'f"=ckgT/er with c=2  where Byg=9(1— 7/4)~1.9314 is a limiting value in the
(d=3), 3/2(d=2),and 1 @=1). In all the cases, the shot- nondegenerate limittMaxwell-Boltzmann injectiojy and
noise Fermi suppression is determined by the ratio betweefi,;,=1 is a limiting value in the degenerate limit. For high
the temperature of the injected electrohsnd their Fermi  degeneracy, the approximate formula may be obtained
energyeg . For a fixede, the suppression may be enhancedby using the expansions for the Fermi-Dirac integi@6),
by decreasing the temperature-0, but it is independent of one gets
the bias, the ballistic length and the other parameters of the
conductor.
The current noise, which takes into account both Fermi
and Coulomb correlations, is determinedby

The limiting minimal value forl'¢ occurs when the barrier
vanishes ¢=¢),

2
,8%14-5—2, a>1. (34)
o

Figure 3 demonstrates the validity of such an approximation.

* The asymptotic behavior of the Coulomb suppression factor
_ 2
S= L,Cy (e)K(e)de, (26) ¢ in a high degenerate limit is obtained as
where the energy-resolved shot-noise-suppression factor 1leg—d,
c~5 qu ep— P >KgT, (35
3
y(e)=—=[Ve—P.—v], (27)  which takes the minimal value &t=U,,:
vqu
and the constant for an arbitrary injection distribution is mine i _ (36)
given by'® ¢ 2qU
N It should be emphasized that the difference between the two
v= m_ (29 noise-suppression mechanisms is fundamental: White
Fo(®c) cannot be decreased further by varying the parameters of the

By using Egs(3) and(6), we find for the Fermi 3D injection conductor, since its minimal value is fixed by the contact
propertied by the parameteg as follows from Eq.(25)]. In

JakeT Fpo @) contrast, the factof'c may be decreased by increasing the
2 Fola) (290 ballistic lengthl of the conductor, since for longer conduc-
tors the critical biadJ ., under which the barrier disappears is

Thus, for the current-noise powé26), after using Eqs(20),  higher, andl'c may drop deeper. As a consequericenay
(27), and(29), we find also attain much lower values. It is important to highlight,

v=
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mechanisms essentially suppress shot noise at ldrdaut

10 B A I'c is always much lower thafir under SCL conditions.

VI. SUMMARY

In conclusion, we have derived the analytical formulas
that describe the mean current and the shot-noise power in
degenerate space-charge-limited ballistic conductors. In the
framework of a semiclassical Vlasov system of equations,
which takes into account the fluctuations of the potential
profile self-consistently, we have obtained a deep shot-noise
suppression of more than two orders of magnitude caused by

10 100 1000 two independent mechanisms: Fermi and Coulomb correla-
U/ kT tions. The derived formulas clearly distinguish the shot-noise

FIG. 4. Shot-noise-suppression factoFs: (Fermj, T (Cou- suppression factors cqused separately by Fgrmi cqrrelations

lomb), and T=T'¢I'¢ (tota), and potential barrier height,, as (23, Coulomb correlation£32), and by the joint action of

functions of applied biasU. The asymptotic limiting lines both[Eq. (33)]. ) _ ) )
Bue(keT/qU) andkgT/qU for I' are shown by dashes. We show that the Fermi shot-noise-suppression factor is

limited below by the ratio between the temperature and

that in both nondegenerate and degenerate limits, the totfiermi energy of the contact electrons. The Coulomb noise-
shot-noise suppression facterkgT, and can therefore be Suppression factor, however, may attain much lower values

reduced by decreasing the temperature. egl2qU, because of its dependence on the applied bias
>KkgT/q. The asymptotic behavior of the overall shot-noise-

suppression factor in a high degenerate limit was found to be

kgT/qU, independently of the material parameters. Finally,
To illustrate the results, consider the Gaé-n ballistic ~ for the degenerate Fermi-Dirac injection, the asymptotic for-

diode of lengthl=0.5 um at T=4 K. For this temperature Mmula for the mean current beyond the Child approximation is

and m=0.067Mn,, the effective density of states ibl; proposed:

~6.7x10" cm 3. Assuming the contact doping 1.6

X 10'® cm™3, the reduced Fermi energy~10, and the con- ACKNOWLEDGMENTS

tact electrons are degenerate. For this set of parameters,

the Debye screening length associated with the contact W€ areé grateful to V. A. Kochelap for valuable discus-
degenerate electron density is approximately, sions. This work has been partially supported by the Gener-

= xKa T/ PNF_ (€)1~ 14 nm. SinceLp<<|, the space- alitat de Catalunya, Spain, and the NATO linkage Grant No.

charge effects and, therefore, the Coulomb shot-noise su;ﬁTECH'LG 974610.
pression are important in a wide range of biases.

Let us introduce the normalized bias&s=qU/kgT and APPENDIX: FERMI-DIRAC FUNCTIONS
Vn=qU,,/kgT. The calculation of the steady-state potential AND THEIR APPROXIMATIONS
profile for different biase¥ shows that the potential barrier
varies fromV,,~11.2 atV=10 toV,,=0 atV=V_,~705
(Ug=243 mV) (see Fig. 4 In this range, the charge-
limited conduction is controlled by the barrier heighit,,
and by increasing the bias, one can observe the crossover
from nondegenerate o=&(—V,,<—1) to degenerate (2 Fila)= == ,
<a<10) injection. This crossover is illustrated in Fig. 4, F(j+1)Jo1+e @
where the shot-noise suppression faciord’, andI'¢ are o . S
plotted as functions of bias. Indeed, the Fermi suppressioWherer_(J) IS the_gamma function O_f the indgx For the
factor T'x varies from 1 at low biases to 2+0.2 at high expressions of this paper, tHé functions take the values
biases, in agreement with formulé23)—(25). Moreover, the I'(3)=V#/2, I'(3)=3\n/4, T(1)=T(2)=1.
factorI" lies between two asymptotic linegjs(kgT/qU) at For positive indexe§, the Fermi-Dirac integrals can also
low biases(nondegenerate limiandksT/qU at high biases be rewritten[obtained by integrating by part&1)]:
(degenerate limjt in agreement with Eq.33) and the varia-
tion of B in Fig. 3. The Coulomb correlation factdrc de-
creases with bias up to the lowest valee).0078 atU
=U,, . After that value it increases sharply to 1 due to the
disappearance of the potential barrier. The sharp increase of A simple relation between the integrals of different orders
I'c at U=U,, is discontinuous in this asymptotic theory, is
which neglects the high-order terms in the expansions. The
exact calculatiorf® give a smoother behavior. Note that both Fi(a)=dFj;1/da. (A3)

0.01

V. EXAMPLE

The Fermi-Dirac functions are encountered, whenever
one wants to describe the electronic transport in degenerate
semiconductor or metallic systems, and they are defin&d as

1 = yldy

(A1)

Fila)= f:yH In(1+e* V)dy. (A2)

J
rg+1)
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Unfortunately, these integrals cannot be resolved analytically Fila)=e" Vj, (A5)
except for the trivial cases:
Fola)=In(1+e%), j=0 and for thedegenerate limjta>1,
Fola)=(1+e )7 j=-1 (A4) o) @l tl G i+, 1)
()= — i S =
However, for small and large, one may use the approxi- ! (J+DI(j+1) 6 a2 o
mate formula® for the nondegenerate limita<—2, (AB)
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