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Effect of stress on dopant and defect diffusion in Si: A general treatment
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We present a theoretical treatment of the effect of stress on dopant and defect diffusion in Si. A prior
treatmen{P. H. Dederichs and K. Schroeder, Phys. ReL782524(1978] of vacancy diffusion in strained
fcc metals is extended to include more general defects and crystallinity. The new method is applied to two
examples in Si(1) a vacancy, including Jahn-Teller distortions, d8ga B-I pair. Both are predicted to show
isotropic diffusion for(100) grown uniaxially strained film, but strong anisotropic diffusion @i films.
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The effect of stress on dopant diffusion in silicon hason the relationship of the saddle-point configuration to the
recently taken on more importance for microelectronics. Thdocal stress tensor; in this way, the symmetry of the saddle-
introduction of new materials frequently causes higherpoint determines, in addition to the stress field, the symmetry
stresses, both because of mismatches in the properties agtithe diffusivity tensor. DS noted instances where the dif-
also because of high deposition stresses in some cases. fiision in the presence of stress is anisotropic, depending on
addition, shrinking device dimensions can cause significanhe detailed symmetry of the saddlepoint configuration.
stress gradients, which act as driving forces for diffusion. " the same work, DS considered how to extend their
Stress effects on dopant diffusion have been blamed for Sid[.reatment to more complex defects, focusing on oriented de-
nificant deviations in the device characteristics for bothf€Cts (such as a dumbbell self-interstiiah cubic lattices
n-type andp-type metal-oxide semiconductor transistbfs. ~ With one atom per unit c_eII. Labeling the orlentatl_onal states

On the experimental side, contradictory results for the(of which there ares) within the cell by indexu, their result

qualitative influence of stress on boron diffusion further mo-Was

tivate a fundamental investigation of stress effects on diffu- 1 1

sion: Whereas the measurements of Aziz and co-wotKers Dap=5 > RZR;}(— > ph V), 2)
suggest that compression enhances diffusivity, other Wdrk 2 fiops S v

finds the reverse. where the hop vectors are Bravais lattice vectors and the

Much of the theoretical work regarding the effect of stresseffective jump rate is an average over internal jumps within
on diffusion assumes a hydrostatic state of stress in the sulhe cell[the sum over 4,v)]. This result is valid for the
strate, which is of course only a special c8s€.Stresses cases considered by DS, but is not general, and in particular
caused by dislocations, deposition processes, and therm@l not valid for a diamond lattice under stress. For the pur-
and geometric effects all adds up to a complex stress stajgyses of this work, we must derive the general expressions.
under a multilayered gate stack. Additionally, a stress con- A relevant example illustrates the need for a more general
centration typically exists at the gate edge caused by thgeatment. Consider, in Fig(d), the motion of a vacancy on
peeling stress peak at the free edge of the gate stack. The stressed diamond lattice. If a uniaxial stress is applied
resulting stress concentration can produce stress magnitudgﬁ)ng a bond axis, say thH@11) axis, then there will be two
approaching the material strength even at lowgifferent kinds of saddle point@ssuming for simplicity that
temperatures>*® the saddle point is midway between two lattice Sité®ng-

The only fundamental theoretical treatment of diffusion inrange diffusion along thél11) axis involves hops through
a general stress fielthat we have been able to find given  poth types of saddle points in series, where as diffusion per-
in the work of Dederichs and Schroeti&DS), who derived  pendicular to(112) involves only one type of saddlepoint.
the effect of stress on dlﬁUS|V|ty of vacancies in Simple face'We will see in this paper how to treat such genera| topo|ogy
centered-cubic crystals. However, their derivation from mi-in a systematic way. However, we expect in general that
croscopic lattice hops is a special case of a more gener@lops in series give different behavior than that predicted by
solution that we derived in the present work in order to beEq (2). As a very Simp|e examp|e, consider diffusion a|ong
able to describe diffusion in more complicated situationsan alternating chain, illustrated in Fig(k), where long-
such as the diamond lattice. N range diffusion along the chain must combine two rags (

Using common assumptions of transition state theory, D@ndp,,) in series. A steady curreftlowing along the chain
showed how to derive the continuum diffusivity tensor from requires that the differences in concentrations on the sites
the microscopic lattice hops on a primitive Bravais lattice: (c;) obey j=(cy—Cq)/py=(Cyr—Co)/Py=(Cy—C1)/Pett,

which givespes=p,pi/(Pi+ Py), thus combining the rates
(1) in series. The difference between this result and (pbe-

comes especially clear for strongly different rates such as

p,>p; - In this case, our result finds thpts~py, i.e., the
wherepy, is the jump rate an®" is the jump vector for ahop  slower rates determines the overall diffusion, which is physi-
h. The effect of stress on a jump rate depefttisoughpy,) cally sensible, whereas E(R) finds the opposite result.

1
D.s=5 > RIRRP",
577 oty RoREP
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We present here the derivation of the diffusion equation
in the presence of stress for defects in Si. We begin in Sec. |
with a derivation of the diffusion tensor from microscopic
parameters, along the same lines but broader than given by
DS. In Sec. I, we connect the results of Sec. | to stress. The
resulting framework is applied in Sec. Il to the two defects
mentioned above.

|. DERIVATION OF THE DIFFUSION TENSOR FROM
MICROSCOPIC PARAMETERS

Our formulation is very much the same as done by DS:
microscopic jump rates are combined statistically to give
long-range diffusivity. We express the formulation in terms
of stress, while DS worked in terms of strdf course there
is an easy mapping between the jwo

We assume that there are well-defined stétes, energy
valleys that the system can occupy. The concept of state
here is quite general. A state can be simply a defect, such as
a vacancy, located on a particular lattice site, so that a state is

@ distinguished entirely by specifying its location; this is
I I | I | clearly the case for vacancies in elemental metals, and is
-O0—CO Om® OO treated in Sec. | A. More generally, however, the defect can
1 2 o2 "2 have other degrees of freedom. For example, the primitive
(b) cell in Si has a two-atom basis. In that case, one must specify

FIG. 1. () Diamond lattice, with bonds along a particul4d.1) on which basis site the defect is located, in addition to which
direction highlighted. If a uniaxial stress is placed along thisl) ~ primitive cell. Or, for another example, a vacancy in Si
axis, the bonds along th@11) direction are no longer equivalent to might undergo a Jahn-Teller distortion, which has three in-
the bonds in the other directions. A vacancy hopping on this latticelependent orientations. In that case, one must specify orien-
will see two types of saddle points. Long-range diffusion in thetation in addition to location. An even more complex ex-
(111) direction then involves hopping through both types of saddleample would be a cluster of impurity atoms that migrate
points in series. Diffusion perpendicular to thkll) direction is  together—the internal degrees of freedom in this case would
accomplished by hops only through the second type of saddle poine numerous. The general case—where there are internal de-
(b) Ideal alternating chain, a one-dimensional analog to the strucgrees of freedom—is treated in Sec.. | B.
ture presented ifa). The sites are successively labeled 1, 2, 1, 2, \we assume furthermore that the rate of jumping from one
etc. The hops between sites are of two types, with raf@ndp, . state to another is controlled by the difference in energy from
.Loqg-.rar.]ge diffusion occurs in series, so that the resulting dlffusw-the initial valley to the saddle point. The energy difference,
ity is limited by the slower of ratep, andp, . of course, must account for the additional work done against

. . . an external stress field. We find it convenient to introduce a

The more universal methodplogy presented in t_h's PaPEfycal reference, which is the perfect system subjected to the

admits for treatment of arbitrarily complex defects in eXter-| o al value of the external stress. We then introduce a defect

r]al figlds. The derivati_on here e;tgblishes the gengric rela}hto the local reference and measure changes in the system
tionship between detailed atomistic microscopic d'ffus'onrelative to that reference. We have coined the word “cre-

Processes ?”d. long-range Q|ffu3|V|_ty, thus ef‘a'?"”g a COMztinn” for values calculated with respect to this local refer-
plete first-principles calculation of diffusion, within the limi- ence. in order to avoid confusion with other common terms
tations of the gndgrlying fransition state th.eory. . (“forr,nation,” “migration,” “defect,” etc. ) For example,

AS.’ an application O.f th? theory, we .W'” determine the the “creation energy” is the energy required to insert a de-
specific form of the d|ffu5|9n equation in the presence Offect into the perfect, stressed lattice; likewise “creation vol-
stress for two examplesl) Si vacancy with Jahn-Teller dis- ume” describes the change in volume during that process.
tortion, and(2) boron—self-interstitial pair. These equations This choice of local reference allows a clean treatment of
require the microscopic parameters associated with the d%ﬁffusion in the presence of a nonuniform stress field.
fects; the practical means of calculating these parameters We do not consider any trapping, reaction, or dissociation
from first-principles elgctronic structure theory is left to 2 of the defects: we take only hops ti1at mainfain the unity of
subsequent papétin this Paper, we'present o.nly.one aspecliye defect. A treatment of stress effects on reactive diffusion
of the problem: the local bulk diffusion equation in the pres- . ould be beyond the scope of this paper.
ence of stress. As we explore further in the Discussion sec-
tion, a complete treatment of the effect of stress on dopant
diffusion in Si(or virtually any application, for that matter
needs to include also boundary conditions on the diffusion An example in this category is a simplenreconstructed
equation. This we also defer to a later paper. vacancy in a metal having a primitive cell with one atom

A. Defects with simple basis
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(e.g., simple cubic, body-centered cubic, and face-centereare no terms linear ik becauseXgMog)Rgo=0 (in a solid
cubio. In this case, the state is specified completely by deswith a simple basis, for every neighbor there is an opposite
ignating the spatial location of its primitive ce\. We can  neighbor that cancels

describe the system by a concentrattoon each sitel, When we substitute the series expansiony(¥) [Eq. (9)]
into the equations of motiofEq. (8)] and transform back to
p[A—B]=poexd — Blely — 2] real space, each power &fin y will be associated with a
—M /s 3) spatial derivative. Thus the second derivativeygk) at k
[AB]T=A =0 will have physical significance in the resulting diffusion
with equation. We therefore define a “solid permeability tensor”
Mag;=Msa1=Po eXF(_BS[c/?s?])' (4) po_ 1 az?’(E)l 10
= 2 okok '@
Sa=exp(— Bet)), 5 o

and the resulting diffusion equation iéz(l/S)E:ﬂc
=D:V Vc, where the diffusion tensdD is obtained from
the microscopic hop parameters by ~—

where8=1/(kgT) andp, is a basic hop rate. In these defi-
nitions, we separate the “solubility factorS of the defect in
the valley, Sy, from the “mobility factor” Mg . (The
“solubility factor” Sis not to be confused with the “solu- 1
bility limit.” The former is a property of a single phase, the D==> M0g]R80® Reo (11
latter of two phases in equilibrium. = S5 I

We will begin the treatment by assuming a uniform host, a5 gptained by DS.
and then extend the results at the end to a nonuniform host. | the case of a nonuniform hogas would exist, for

In a uniform host, all valleys have the same energy, so thagxample, if an applied stress field was nonunifprthen the

&)= 8c(v) @NdSx=S. The saddle-point energied(y) do  hop rates are dependent on position. A careful derivdtes

not depend on the absolute positighandB, but only onthe  pDS) shows that the diffusion equation becomes

relative position.(The saddle-point energies are not all the

same because the host is not assumed to be isotropic. In the .

presence of stress, even a cubic crystal is not isotropic. c(x,t)=V.
The concentration on sita develops in time by

c(x,t)
S(x,t)
Our notation now is somewhat different than that of DS. We
. have introduced explicitly the solid solubility fact® be-
CA__CAE PLA— BH; CeP[B—A]. ®)  cause it illustrates clearly that the equilibrium condition is
c(x,t) = S(x,t), and also that a gradient in the solubility

We can make use now of the translation symmetry of thgactor acts as a driving force for diffusidf[lt is often con-
host by expanding the solutions in plane waves within the,entional to use the local chemical potentigk

P(x.t)-¥

. (12

Brillouin zone (BZ) into a Bloch form, =(1B)In(c/9 instead ofS.] Also, we have introduced the
tensor quantityP, which is the product of the diffusivity and
CB:f u(k,t)exp(ik- Rg)d3k. (7) solubility factor. In analogy to gaseous and liquid systems,
Bz — -

we have chosen to call this the “solid permeability factor”;
Matching Fourier components of the rate equation then givelll @1 anisotropic medium, the permeability factor in general
IS a tensor quantity. The solid solubility factor depends only
u(k.t) = y(K)u(k,t)/S 3 on the valley energyEqg. (5)], the solid permeability factor
(kt)=rkjulk.t) ® depends only on the saddle-point enef&ys. (4), (9), and
with (10)], and the solid diffusivity depends on the migration en-
ergy [difference between the saddle point and valley, Eq.
K= Miog[exp(ik- Reg)— 11, (11)].
vk % (o)l €XPTK-Rao) — 1] Clearly the choice of a local reference for the energies
) L discussed previously does not affect the diffusivigyhich
where the site 0 has been chosen arbitrarily &0=R;  gepends on differences in enejghut does affect the solu-
—R,. Because we are looking for the long-time and macro,jjity factor. In comparing the relative solubility factors of a
scopic, i.e., long-wavelength evolution of the system, we exyefect at two differentstressellocations, one must calcu-
pandy(k) in powers ofk, late the energy required to insert the defect into each
(stressed location. Thus, using the stressed but otherwise
yk)=—[> M o8] RB0® Reo | : (K@ K)/2+ ok (9) pen;eict Si as a local reference is natural for the diffusion
- B - = -~ problem.

(the dyada®b defines a matrix with componerdsb;). The ) ) _

symbol : is introduced for convenience to mean the double B. Defects with nonsimple basis

dot product; i.e.a:b=Tr[a-b]. There are no terms of order  In this category are crystals with primitive cells having
unity because, by number conservatigitk=0)=0. There more than one atom in the basis, or defects with internal
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(e.g., orientational degrees of freedom. For example, the Making use of the translation symmetry of the host yields
diamond and hexagonal-close-packbdp) structures have a
two-atom basis. Also, complex defects, such as a dumbbell )
self-interstitial or vacancy with Jahn-Teller distortion, have CBbZEk: up(k,t)exp(ik-Rep). (16)
an orientation which must be specified in addition to the site. -
Some care is required in this derivation beyond the previouslatching Fourier components of the rate equation then gives
section.
We identify now a lattice site byAa}, with its cell index :
A and the inde>a which denotes the state within the cell. The Ua(k,t)= % Fan(K)up(K,1)/Sy
number of states in the basis Mges FOr @ symmetric
vacancy in diamond, as an examp¥g,,.s= 2, because there with
are two sites in the primitive cell. However, if we admit
Jahn-Teller distortions, then on each of two atomic sites a )
vacancy can have one of three orientations, so that in this Fab(E):é M[Oasb]eXKIK'BBDOa)—%b% MoaBq »

caseNg s 6. It is easy to imagine more complex defects (17)
(clusters, for exampjewhere the number of states could be
quite large. where the cellA=0 has been chosen arbitrarily. Note that

In this more general case, we must be careful to keepumber conservation is expressed as
track of all the degrees of freedom of the system when taking
the continuum limit. The situation is analogous to the calcu-
lation of the elastic constants for crystals with more than one > Tap(k=0)=0. (18
atom in the primitive cell: the internal coordinatgiternal a
strain”) must be treated explicitty—one must account for
optical modes in addition to the acoustic modéghere is
also a formal parallel to the calculation of the energy level
of a tight-binding solid: in the case of multiple-atom primi-
tive cells, multiple solutiongband$ occur. We will see that
multiple solutions occur likewise in the general solution to
the migration equation, though once we identify the generaft;)l
solutions, we will throw out all but the long-time and long-
wavelength terms to get the diffusion equation.

The rate of jumping from stat§Aa} to state {Bb}
through the saddle poifiAaBb] is given by

The complete dynamics of the system are contained in
SFab(K), which is a symmetric rate matrix of SizBes
Ngates The eigenvalues are the rate constants of the relax-
ation process. At least one eigenvalue vanishds= be-
cause of number conservatipqg. (18)]. We expect gener-
lly that only one eigenvalue vanishes fee=0. This is
ecause a conserved quantity is associated with each vanish-
ing eigenvalue ak=0. We anticipate that the only con-
served quantity associated with diffusion will be the total
defect numbernwe have assumed that the defects diffuse
intact. For smallk, we have then only one relevant mode

p[Aa—Bb]= pOqu_B(SL?sa)le] —sﬁ(""v))] (that is, the slowegt All the other modes are fast and corre-
spond to short-range relaxation among the members of the
=M aaet /Saa (13 primitive cell.
with There is an easy analogy to the vibrational modes of a
solid with more than one atom in the primitive cell: in the
M{aagr = Mgbag=PoeXN —ﬁgE?SBb])' (14) vibratiqnal spectrum neéﬁr=_g there are three low-frequency
acoustic modescorresponding to three components of con-
Spa=exp(— ,38@(?)))_ (15) served momentujrand the rest are higher-frequency optical

modes. The difference is that in the diffusion problem, of
The concentration of stata in cell A develops in time course, the modes are all exponentially decaying, and so only

according to the slowest mode is relevant.
Consider, for example, the alternating chain discussed in
o the Introduction. In this system, the primitive cell consists of
Caa=—C Aa—Bb]+ 2, ¢ Bb—Aa]. : i '
ha Aa% plAa—Bb] % soP[Bb—Aal two sites, so thal is a 2x 2 matrix:

—Pi— Py ple[ik(X2*X1)1+p”e[ik(xzfxlfa)]

I'(k)= pielikta—xl 4 eliklx—xp+a)] — =Py

wherex; andx, are the site positions within the unit ced,is the periodicity of the chain, and, and p,, are the rates
associated with transitions over the two different saddle points. The two eigenvaluesyare—p,—p,
+\p?+ p;+2p,py coska). The relaxation mode associated wigh (the “optical mode’) has finite lifetime even whek

=0. This corresponds to a relaxation within the primitive cell, which occurs very quickly to bring the sublattice into
equilibrium. The ratey, of the other(*acoustic”) mode vanishes &=0 (that is, small, long-wavelength deviations from
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uniformity take a very long time to relaand so this is the (The first-order terminvolving T vanishes by symmetry;
only relevant mode. The leading order term for smals  that is,=,,['{)=0.) In the case of a simple basB(") is a

a?k?p,py /(py+py), which, when we transform to real number and it vanishes by symmefsee discussion follow-
space will become the operatoPd?/9x2. Thus, P ing Eqg. (9)]. For the general case of a nonsimple basis, the
=(a%2)p,py /(p;+py). as we expect for processes in series.matrix I'™) does not vanish.

In general NgesiS potentially large, and it is not possible  We note that the first term alone adds rates in parallel. In
to obtain an analytical form for the relevant eigenvalue.some casefor instance, those considered by D&e sec-
However, because we want only the behavior heaf (and  ond term vanishes. In general, the second term, which we
also because we know the eigenvector there—see baboev  will term the “cell correction,” is nonvanishing. To illus-
can use perturbation theory to obtain the permeability. Betrate the role of the cell correction, we examine again our
cause we are only interested in the diffusive behavior, wesimple example of the alternating chain. The first term of Eq.
want the second-order coefficient of the relevant eigenvalué20) alone gives the result discussed in the Introduction,
in an expansion itk. If we expand” to second order ik, we  which adds the rates in parallel:
get

1 a’(p,+py)/8
Pab(B)= s~ GuBun+ k- Zuy~ hOK Y+ O, (PP
—_— The cell correctiorfi.e., second term of Eq20)] gives
_ (0 ¢5) @) 3
Lo Tl + Ty +O) (19 —a®(pi—pu)?/[8(pi+pu)]

wherel'®, M andI® are the zeroth-, first-, and second- Which gives in sum the correct total result where the rates

order terms and add in series. It is clear from this simple example that Eqg.
(20) is the more general result.

ENEY It is impractical, in general, to obtain the complete eigen-

Yab= < Mioasp - system of'®) for systems wherédNg,es>2. Instead, it is
more useful to apply the perturbation method of Dalgarno
and Lewis!® because this circumvents the diagonalization. In
E% Qab: this method, one defines the vectg by the equations

(0) (1)
Eabzé M0aBb Reboa » E Ty Wp= z Papvs V a

Once these are solved far,, the second term in Eq20) is
ab=> M{0astReb0a® Raboa- computed a8, .I'{Pwy,, which is second order i)
B One must take care becauB&’ has a zero eigenvalue. The
Note thatl®~ (k) andI'®~ O(k?). In order to establish singularity can be dealt with easily in one of two equivalent
the relevant eigenvalue 10(k?), we need to carry the per- ways. One way is to forml'O=Ir®+Avev, thenw,

<

turbation out tofirst order inI'®) andsecondorder inT®. = —Jim, 3, (I'?) Ty . Another way is to solve for

We can see that,=1/\/NgaesiS the relevant eigenvector w,,ws,- - -, Wy in terms ofw,, where it can be shown
of I'§Y), with zero eigenvalue, becauieom Eq. (19)] that the contrsitgastion toy; is independent ofw,. Either
method gives a solution which has the proper meaning.

S 1o E Fg%): After the relevant eigenvalueyq) has been determined,

the permeability factor tensor follows from its definitipiq.
(10)], using ;.

As a more interesting example, the rate mafrixfor a
vacancy on a diamond latticggnoring Jahn-Teller distor-
tions and taking only nearest-neighbor hppas the struc-
% TQu{m = (0)u™, ture

abUb= ——
Nstates

Again this is number conservatigiq. (18)].
If we know the complete eigensystem B{%,

we can apply Rayleigh-Schdinger perturbation theot§in 3 » 1k c
a straightforward way. We label the relevant eigenvalue q q+ik-Z-skekY
“1," I'(k)= 1 ,
o 1 q-ik-Z—2ksk¥Y -4
- — =
StateS% ab Nstates
2
S uorg

xm; W+O(k3). (20) qz% Mo182]

y1(k)=
where
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Q= 0t @1+ Q@+ Qesta®1s,
EE% M 0182]Re201, 2= @1 T il @ T+ {3l ®1

where the subscriftis again for “creation.” The symmetry
of the shape change is determined by the symmetry of the
— defect, i.e., the principal axes will be symmetry axes of the
l_% Mio1821R820:Rs201, defect. If the def?act h:ss an orientatigfior éxamplz, a dumb-
) bell self-interstitial or a Jahn-Teller distorted vacandpe
and the sums cover nearest-neighbor hops. principal axes will be directed accordingly, but the set of
This system has two eigenvalues: principal values will be the same for all orientations. A de-
fect with cubic symmetry will have three degenerate princi-
pal values, of course. A defect with an orientation may have
' one eigenvalue unequal to the other two.
We will call the creation energy in the absence of external

y=(k)=—0q*q

1+ ! (k-2)? ! K-Y-k+O(k%)
29° -~ 20— =~—

The relevant mode iy, , and stresssé\(i)(O). In thepresence of an external stress, the cre-
ation energy must include the work required to distort the
1 207 solid in opposition to that stress, so that
P3|y @y
Again, the first term will be recognized from E@), and the \yhere the stress is evaluated locally. We have assumed here
second term is the cell correction. that the all of the defect internal states are energetically de-

A technical note: the Bloch formiEq. (16)] for a non-  generate in the absence of stredsis easy to remove that
primitive cell has some arbitrary choice implicit in it. That is, assumption in the following.The stress can break the de-
the phase factor attributed to each §|te may be _arb'trar”)generacy, depending on the orientation of the principal axes
changed. Instead of the phase factor 8gy) used in Ed. - of 02 " relative to the stress tensor. These values of

(16), we could equally well have chosen edpRg), where d in determining th lubility faci®fE
the phase factor does not depend on the position within th%cgg)_g%)d?zr;ﬁjse in determining the solubility fac®{Eqs.

e o a oty . ST, when e ystm i at e sacle AR,
y y ' ' “the shape is different from the reference condititre per-

changes the value of the matrix .eIementsFbe ut not the fect, stressed lattige which is represented by the saddle-
eigenvalues. Such a transformation, because it involves the [AaBY

wave vector, will change the values of the perturbation termgo!nt volume tenson(:)C(s) and the energy at the saddle
in Eq. (19), so thatf™ andT® are altered by the transfor- PNt becomes, under stress,
Egg;l]oirsl, ikr)x;ihaen;:.ombmanon which gives the eigenvdlkig. S[C?SBb](g) ZSE;’(—\S&;Bb](O)_}_QE(ASe;Bb] ‘o, (24)
Finally, we note that for a degenerate basis, the appropriwhere the subscrigis for “saddle point.” It is important to
ate solubility factor is the average solubility over all states;keep in mind that the reference state for the saddle point
that is, the proper solubility to use in the diffusion equationvolume is the perfect, stressed crystal, just as it was for the
[Eqg. (12)] is valley volume Q) is the change in volume/shape imposed
on the perfect, stressed crystal by placing the defect at the
A saddle point. It isnot the distortion caused in going from
States; Saa= NstateSEa: exp(—Belfy). (22 valley to saddle point; this latter is commonly called the
“migration volume.” The values ofe.) (o) are used in
This is the form expressed by O#nplied by their Eq(36);  determining the permeability tensér [Eqs.(10), (14), and
our notation is somewhat differgniThe general proof is left (17)]. =

1

Sz

for the Appendix. It is revealing to separate the effects of hydrostatic stress
(pressurgfrom those due to deviatoric stress. The deviatoric
Il. EEFECT OF STRESS ON DIFFUSION stress is defined as the traceless part of the stress:
It remains to relate the distortions in the energy surface to g=pl + Igevs
the applied stress. That is, we must specify how stress affects - T
the valley and saddle-point energies in the hop rais p=Tr[o]/3. (25
(13)]. We will assume that the host, in the absence of stres%. . N
is uniform imilarly, for the volume tensor,
.When a defgct is cregted, the sc_)Ii_d changes shapg from its Q=(Q,/3)1+Q,,
original condition. In linear elasticity, the change in the = = =
shape of a volume can be expressed as a real, symmetric Q=TI O], (26)

tensor. For example, a sphere is distorted into an ellipsoid,
and the difference can be described in complete generalitwhere ),, would be identified as the total scalar volume
(within linear elasticity by three principal values and axes: change andl, is the traceless part ¢1. We can see that the
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work against the external stress has two terms: one couples
the pressure to the total volume change, and the other
couples the deviatoric stress to the anisotropic part of the
saddle-point volume:

g:gz th"'gdev:ga- (27)

From this it is clear that the permeability factor in general o ) . .
will have an overall scalar factor that depends on the pres- F'CG- 2. Projection of a Si crystal containing a migrating Jahn-
sure and the isotropic saddle-point VO|Uﬁ‘iﬁ<p(—,3ch(s)h]- Tellgr distorteq vacancy on_the _(1)2 plane. The migrgting Siatom
The anisotropic part of the saddle-point volume, along with(Which moves in the opposite direction as the vacaigghown as
the deviatoric part of the stress tensor, will determine the? 'arge dark ball, the vacancy {a) and (c) by a small white ball.
anisotropic part of the permeability tens@um over terms The small dark balls show the other Si atoms surrounding the two
involving exd — BT Q e ])] involved vacancy sitega) is the initial configuration(b) the saddle

- Sec(s)a” Ydev .

i les of the | bili in th point with a threefold symmetry around the migration direction
Specific examples of the permea ! ity te”SF)r In the pres(111) which lies in the paper plane, afg) the final configuration.
ence of stress are worked out and displayed in Sec. Ill.

symmetric around §100) axis, so that the two transverse
. TWO EXAMPLES volumes are equal. The three orientations combined with two
lattice sites in the primitive cell makd$ .= 6.

In this section, we apply the above theory to two ex- . X .
amples of dopant diffusion in Si which are important for tior-:—ri]se solubility factor for the case with Jahn-Teller distor-

microelectronics. The first one, the neutral vacancy, is com-

plicated by the existence of the Jahn-Teller distortion and the g_ e BPOc()n] @~ Alc(v)al ~ 20t Oyt 02)

dependence of that distortion on stress and charge ‘State.

The second example is the diffusion of a B—self-interstitial + e Alcw)alTxx—20yy T 029 4 @ Flcw)aloxxt oyy=20291/3,

(B-SI) pair. . L
In both of the examples treated here, symmetry will dic-WNeréP=Trla]/3. The case of no Jahn-Teller distortion is

tate that two of the eigenvalues of all of the volume tensor&btained by takind), %}g_)O’ in which limit the solubility

will be degenerate. In the case of such degeneracy, we find {fClor becomes=e~7Pe(wn.

convenient to represent the volume tensor of a defect with 1h€ vacancy hops by a jump to a nearest-neighbor site;
orientation along direction by the saddle-point configuration has a symmetry axis along a

{111 direction’® and once again the two transverse volumes
0.=0,d®d+Qq(l —dod) are equalsee Fig. 2 Defining

with “longitudinal” ( Q) and “transverse’(the doubly de- gEZBch(s)aB'

generate() ;) values. We can then describe the volume ten-

. : —a + —(Fay, gy (- -
sor by two parameters, either the combinatidg and (), o= (yztaxt @)+ @7 (T ey anc ax) 4 @ (Tt enc )

or +e (Cayrantayy)
Qep=Q¢+20, we find the components of the permeability tensor to be
Qea=0¢— Q. Py=2€ APl cosh 2ay,) +cost2a,,) 1/ 6,

The latter pair measures the over@talaj volume and the Pyy= _Zefﬁpﬂc(s)hsmnzaxy)/él (28)

anisotropic part.

We also note that the jump direction is not generally theThe other components can be obtained by cyclic permutation
same as the symmetry axis of the saddle point, although fasf the Cartesian componentsy,z. The Jahn-Teller distor-
simple defects, such as the vacancy treated here, tharevo tion of the vacancy in its equilibrium position has no effect
the samdthe nearest neighbor hop also defines the symmensn the permeability factor.
try axis of the saddle pointHowever, this is not true for the

second example, the B-SI pair. B. Boron-—self-interstitial pair in Si

The B-SI pair results in more complex forms for the solu-
bility and permeability factors. The defect in the valley has a

As noted above, the vacancy in Si may or may not un{111) symmetry axis, with the B-SI bond aligned so that the
dergo a Jahn-Teller distortion, depending on the charge stateubstitutiongl B lies along the line between the Sl and a Si
and the stres®1519n the absence of a Jahn-Teller distor- lattice atomFig. 3@].2° The threefold symmetry around the
tion, the results derived for the perfect diamond lattice apply111) axis fixes the two transverse volumes as equal.
[see Eq(21)]. There are four orientations for the B-SI pair on each site,

In the presence of a Jahn-Teller distortion, the vacancy irand two lattice sites per primitive cell, so tHd§;,..= 8. The
the valley has three possible orientations. Each orientation isolubility factor for the boron-self-interstitial pair is

A. Vacancy (with Jahn-Teller distortion ) in Si
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—

FIG. 3. Projection of a Si crystal containing a migrating B-SI
pair on the(110) plane. The atoms involved in the diffusion process
are marked as balls, the rest as stick-only network. Substitutional Si
atoms are labeled Si, interstitial ones SlI, and B atoms with @)B.

P (0, )/P,(0) (arb. units)

shows the initial configuration(b) one possible quasihexagonal 0
saddle point, andc) one possible final configuration. G, (arb. units)
S= e—Bpﬂc(v>h(e—wyz— 75~ Oxy 4 @~ Wyzt Wzxt Oxy FIG. 4. Influence of the cell correction term on the solid perme-
ability of a vacancy in an uniaxiallj011] strained Si crystal: The
+ et oy axt Oxy4 @t @yt Oax Oxy) (4, cell correction predicts a decrease of the diffusion alongktaris,

whereas without cell correction, the opposite behavior is predicted.
where w=2p0,),0/3. AP P

The migration inp-type Si occurs when the Sl pushes into IV. DISCUSSION
the lattice site occupied by the B, which is displaced to a '
nearby hexagonal or quasihexagonal $Feg. 3b)]; since With specific examples in hand, we are now able to dis-

the hexagonal interstitial is a saddle point for the positive cuss certain aspects of the results. First, we will examine the
and a local minimum close to the saddle point for the neutraimportance of the so-called cell correctifihe second term
charge staté’ it is assumed to be the dominant saddle pointin Eq. (20)]. Second, we will look at the qualitative aspects
in p-type Si in this paper. The quasihexagonal site has af the predictions for a very feasible situation—a strained Si
(111) symmetry axis. The B in the quasihexagonal site isfilm. Since the significant aspect of the present work deals
surrounded by 6 Si atoms, anyone of which may now bewith the deviatoric part of the stress, which produces aniso-
displaced by the B, leading again to a B-SI pair. The resulttropic diffusion, we will not be concerned with the hydro-
ing hops can berin, 2nn, or even 3in. There are a total of  static (isotropig part.
768 paths that contribute to the reduced rate mdtEg. The cell correction is very significant in the case of the
(17)]. The symmetry between the two sites of the sublatticevacancy in Si. Take, as a specific example, a state of stress
can be used to block diagonalifg®, T™, andI'® [from  whereay, is the only nonvanishing component, which cor-
Eq.(19)] to 4x4 and the resulting parts can be handled in aresponds to uniaxial stress along@l1] direction. In this
straightforward, if tedious, way. The resulting permeability state, the permeability tensor has these principal 4044,
tensor is [011], and[100]. The correct answer for the diffusion along
P=ciptCoy, (29 the x axis is[from Eq. (28)]
which corresponds to the first- and second-order perturbation Pxxcsechi2fQ¢s)a0y3),

terms[as in Eq.(20)]:
[ a-(20] whereas without cell correction, we would find

C1= g/(‘”\x)\y)\z)a
Pyx COSKZBQc(s)aUyz/3)
Prx= (L NINZHNINZHNAND),
(see Fig. 4. We see from this, that compression aldog1]

Pry=—5(1— 7\3)\3_ )\5)\)2(4- )\5)\5)/11, shouldsuppresghe Qiffusion along thex axis, whereas with- _
out the cell correction, we would have found the opposite
02:§/(132\x)\y)\z(1+)\32/)\§+ A2+ )\)2()\3)), behavior. The same i§ not true for the B-SI pair, E2)),
where the cell correction is limited to less than 3% for the
Xo= — (LEAN =N NND)?, (30) ~ case cited.

In both examples given here, a state of deviatoric stress
Xoy=— 14 2)\57\34_)\3)\24 )\217\;1_)\3)\3_27\5)\5)\?: can produce considerable anisotropy in the resulting diffu-
sion. Generally one expects that the anisotropy will be larg-

est at low temperatures and high stresses. Both examples are

=exp—BpQ ,
¢ P= Apon) characterized by having saddle points w{tt11) symmetry,

N, =exXP(28Q(5)a0%,/3), which results in a permeability tensor which depend; only
on the stress componenis,,, o,«, and o,, (relative

Qeeh=Qest2Q(5t to the c_ube axgs The anisotropy of the permeability
tensor in these two examples is proportional to

Qeig)a=Qes)i = Qs - ,BQC(S)a\/cryZZvL azzx+ (rxzy at small stress or sma@.
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The anisotropy caused by a saddle point with1) sym-  cases of nonuniform host or interfaces between uniform
metry is best illustrated by considering a simple state ohosts. The present work shows the proper way to calculate
stress which could be produced in a thin film of Si grownthe so-called cell corrections to the permeability tensor for
coherently with a substrate of different lattice constdat ~ the most general case of intact diffusion in a crystal, and we
example, SiGp If the growth axis i(100), then the stress have worked out two specific examples for Si: a vacancy
tensor is diagonal in the cube orientation, and the diffusiorfwith Jahn-Teller distortion and a B-SI pair. Specific con-
of vacancies or B-Sl| pairs is isotropic. However, for aclusions are drawn regarding the qualitative form of the dif-
growth direction of(111), the diffusion perpendicular to the fusion in a strained film: If the growth axis of the film is
film will be very different than the diffusion within the plane. (100, the diffusion of vacancies or B-SI pairs is isotropic;
For vacancy diffusion, the ratio of out-of-plane to in-planefor (111) films, however, strong anisotropies can exist be-
diffusivity is tween the diffusivity tensor components in growth direction
and perpendicular to it, depending on the magnitude of the
creation volume anisotropy and the strain. In a subsequent
papert® we will obtain the microscopic parametefsol-
umes from first-principles electronic structure calculations.

P,

P

with X= 5B (9)al (C111+2C12)Cygl/[C11+2(Cy,

+Cag)](Aa/a) and Aa is the difference in in-plane lattice
constants. The anisotropy ratio approaches 4 or 0, depending ACKNOWLEDGMENTS
on the sign ofQ).5,Aa. For the B-SI pair,

4[1+3 exgx)] (31

We would like to thank Professor Michael AziHar-
=) 4 ex 348 ex vard), Dr._WllheIm Wolfer (Lawrence_ leerm(_)re Na'qonal
—= oL X (320  Laboratories and Dr. Stephen FoilegSandia National
Py 4+19exgy)+21exg2y) Laboratories in Californigfor useful discussions concerning

which approaches 32/21 or 0, depending on the signs.  this work.
We emphasize again that the quantities used in the defi-

nition of c_reation energy and volum_e are entirely local: N0 APPENDIX A: DERIVATION OF SOLUBILITY FACTOR

reference is made to remote reservoirs as could be done if the FOR DEGENERATE BASIS

bulk were in equilibrium with a free surface, for example.

That is, we are not concerned with where the point defect We want to establish the equation of motion in the diffu-

originates. Instead, we are explicitly treating the motion ofsive limit from the master equatiaiin reciprocal spade

an existing point defect from one region to another within

the bulk, resulting in a change of energy given by differences

in the local energies of Eq23). The full treatment should Ua= Tap(KUp/Sy, (A1)

include interaction with surfaces and interfaces, and the pos- b -

sibility of equilibration, like in the form of boundary condi-

tions. This is implicit in the “nonlocal” volume of Azizt  where the sum is over states within the c&l(k) (a matrix

al.,>* for example. Many of the related experimentsin-  of orderNged has exactly one eigenvalue which approaches

volve diffusion near a free surface or an interface with anzero ask—0; the eigenvector for this eigenvalue is

oxide or nitride. The results, comparison, and interpretation= 1/\/Nges This is the mode relevant to diffusion. The other

of those various experiments must take into account the e~ 1 eigenvalues are all nonvanishing ks-0; they

fects of the boundary conditions. For example, the resolutiomccount for the rate of local equilibration among the states

of the apparent contradictions as to stress effects on borowithin the cell. As far as the diffusive behavior is concerned,

diffusion may lie with the different types of boundaries the exact values of the faster rates are unimportant. Instead, it

present in the experiments; certainly such considerations aiie sufficient to look for the leading behavior kin both

important. Likewise, the idea of the nonlocal activation vol- space and time. In that limil; is adequately represented by

ume introduced by Az depends on the location of va-

cancy sourcessuch as a free surfaceVhat we present here

is only one aspect of the problem — the local bulk diffusion

equation in the presence of stress. A proper treatment, in- . . .

cluding boundary conditions on the differential equationswherey IS the relevant aggnvald&amshes ak—'>0)'andA

and reactions between diffusing spedifes example, B, SI, |§ some fnytg value that will drop out of the diffusion equa-

and B-S), will be left to a later paper. tion. Defining r.=\S,, ~Xa()=Ua(t)/ra, and gy
=I"4/(rar,), we can rewrite the master equatidgn. (Al)]
as

[ap=7yvavp+ A(Sap—vavp), (A2)

V. CONCLUSIONS

In an effort to examine the effect of stress on defect and )
dopant diffusion in Si, we have had to generalize the results Xa=2 DX - (A3)
of Dederichs and Schroeder. We have found it convenient in b
this work to define the solid-state solubility factor and per- _
meability factor (tensoj, which are easily applied to the Taking the Laplace transforiny,(t)— xa(S)] gives
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S [88u5— B ap]v6(S) = xa(0). (Ad) the matrix [s8,5—~ ®ap] is then - Y)Y rarp/(SNgtaed
b +(s—=A)"! [8ap—ralb/(SNgaed ]. This formally separates
We only need to solve this set of equations in the limit thatthe short-time behaviotsecond term from the long-time
y<A. We can accomplish this by perturbing the solutionbehavior (first term), and we can safely drop the second
away from y=0. We first find the eigensystem b))  term. _ N _

=A (85— vavp)/(ralp,). This matrix has one eigenvalue at 0 Finally, summing over all states within a cell gives the
andNgges 1 eigenvalues ah = A (2,1/S,)/Ngues The ei- concentration in the Eellu(s)EE_aua(s), and the solution
genvector for the mode with eigenvalue Oris(this is just  (in Laplace spadeis u(s)=(s—y) [Z,ua(0)] which is
the equilibrium condition:[ y,=r,]—[u,*S,]). Now we  simply a restatement of the diffusion equation in the text.
can calculate the shift in the 0 eigenvalue due to the pertur- The appropriate time constant for the diffusion equation is
bation &)= y/(Ngaetalb). The first-order shift in the ei- then y= YNgiated (22Sa); or, equivalently, the proper solu-
genvalue is y=3 . dPr,/(Sr2)=7/S, where S  hility factor in the diffusion equation iS=(2,S,)/Nstates
=(2,S.)/Ngiares IN the appropriate limit, the inverse of [see Eq(22)].
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