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Effect of stress on dopant and defect diffusion in Si: A general treatment
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We present a theoretical treatment of the effect of stress on dopant and defect diffusion in Si. A prior
treatment@P. H. Dederichs and K. Schroeder, Phys. Rev. B17, 2524~1978!# of vacancy diffusion in strained
fcc metals is extended to include more general defects and crystallinity. The new method is applied to two
examples in Si:~1! a vacancy, including Jahn-Teller distortions, and~2! a B-I pair. Both are predicted to show
isotropic diffusion for~100! grown uniaxially strained film, but strong anisotropic diffusion for~111! films.
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The effect of stress on dopant diffusion in silicon h
recently taken on more importance for microelectronics. T
introduction of new materials frequently causes high
stresses, both because of mismatches in the properties
also because of high deposition stresses in some case
addition, shrinking device dimensions can cause signific
stress gradients, which act as driving forces for diffusi
Stress effects on dopant diffusion have been blamed for
nificant deviations in the device characteristics for bo
n-type andp-type metal-oxide semiconductor transistors.1,2

On the experimental side, contradictory results for
qualitative influence of stress on boron diffusion further m
tivate a fundamental investigation of stress effects on di
sion: Whereas the measurements of Aziz and co-worke3,4

suggest that compression enhances diffusivity, other wor5–8

finds the reverse.
Much of the theoretical work regarding the effect of stre

on diffusion assumes a hydrostatic state of stress in the
strate, which is of course only a special case.9–11 Stresses
caused by dislocations, deposition processes, and the
and geometric effects all adds up to a complex stress s
under a multilayered gate stack. Additionally, a stress c
centration typically exists at the gate edge caused by
peeling stress peak at the free edge of the gate stack.
resulting stress concentration can produce stress magnit
approaching the material strength even at l
temperatures.12,13

The only fundamental theoretical treatment of diffusion
a general stress field~that we have been able to find! is given
in the work of Dederichs and Schroeder14 ~DS!, who derived
the effect of stress on diffusivity of vacancies in simple fac
centered-cubic crystals. However, their derivation from m
croscopic lattice hops is a special case of a more gen
solution that we derived in the present work in order to
able to describe diffusion in more complicated situatio
such as the diamond lattice.

Using common assumptions of transition state theory,
showed how to derive the continuum diffusivity tensor fro
the microscopic lattice hops on a primitive Bravais lattice

Dab5
1

2 (
hops

Ra
hRb

hph, ~1!

whereph is the jump rate andRh is the jump vector for a hop
h. The effect of stress on a jump rate depends~throughph)
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on the relationship of the saddle-point configuration to
local stress tensor; in this way, the symmetry of the sadd
point determines, in addition to the stress field, the symme
of the diffusivity tensor. DS noted instances where the d
fusion in the presence of stress is anisotropic, depending
the detailed symmetry of the saddlepoint configuration.

In the same work, DS considered how to extend th
treatment to more complex defects, focusing on oriented
fects ~such as a dumbbell self-interstitial! in cubic lattices
with one atom per unit cell. Labeling the orientational sta
~of which there ares) within the cell by indexm, their result
was

Dab5
1

2 (
hops

Ra
hRb

h S 1

s (
mn

pmn
h D , ~2!

where the hop vectors are Bravais lattice vectors and
effective jump rate is an average over internal jumps wit
the cell @the sum over (m,n)]. This result is valid for the
cases considered by DS, but is not general, and in partic
is not valid for a diamond lattice under stress. For the p
poses of this work, we must derive the general expressio

A relevant example illustrates the need for a more gen
treatment. Consider, in Fig. 1~a!, the motion of a vacancy on
a stressed diamond lattice. If a uniaxial stress is app
along a bond axis, say the~111! axis, then there will be two
different kinds of saddle points~assuming for simplicity that
the saddle point is midway between two lattice sites!. Long-
range diffusion along the~111! axis involves hops through
both types of saddle points in series, where as diffusion p
pendicular to~111! involves only one type of saddlepoin
We will see in this paper how to treat such general topolo
in a systematic way. However, we expect in general t
hops in series give different behavior than that predicted
Eq. ~2!. As a very simple example, consider diffusion alo
an alternating chain, illustrated in Fig. 1~b!, where long-
range diffusion along the chain must combine two ratespI
andpII) in series. A steady currentj flowing along the chain
requires that the differences in concentrations on the s
(ci) obey j 5(c22c1)/pI5(c182c2)/pII5(c182c1)/peff ,
which givespeff5pIpII /(pI1pII), thus combining the rates
in series. The difference between this result and Eq.~2! be-
comes especially clear for strongly different rates such
pI@pII . In this case, our result finds thatpeff;pII , i.e., the
slower rates determines the overall diffusion, which is phy
cally sensible, whereas Eq.~2! finds the opposite result.
©2001 The American Physical Society05-1
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The more universal methodology presented in this pa
admits for treatment of arbitrarily complex defects in ext
nal fields. The derivation here establishes the generic r
tionship between detailed atomistic microscopic diffusi
processes and long-range diffusivity, thus enabling a co
plete first-principles calculation of diffusion, within the lim
tations of the underlying transition state theory.

As an application of the theory, we will determine th
specific form of the diffusion equation in the presence
stress for two examples:~1! Si vacancy with Jahn-Teller dis
tortion, and~2! boron–self-interstitial pair. These equatio
require the microscopic parameters associated with the
fects; the practical means of calculating these parame
from first-principles electronic structure theory is left to
subsequent paper.15 In this paper, we present only one aspe
of the problem: the local bulk diffusion equation in the pre
ence of stress. As we explore further in the Discussion s
tion, a complete treatment of the effect of stress on dop
diffusion in Si ~or virtually any application, for that matter!
needs to include also boundary conditions on the diffus
equation. This we also defer to a later paper.

FIG. 1. ~a! Diamond lattice, with bonds along a particular~111!
direction highlighted. If a uniaxial stress is placed along this~111!
axis, the bonds along the~111! direction are no longer equivalent t
the bonds in the other directions. A vacancy hopping on this lat
will see two types of saddle points. Long-range diffusion in t
~111! direction then involves hopping through both types of sad
points in series. Diffusion perpendicular to the~111! direction is
accomplished by hops only through the second type of saddle p
~b! Ideal alternating chain, a one-dimensional analog to the st
ture presented in~a!. The sites are successively labeled 1, 2, 1’,
etc. The hops between sites are of two types, with ratespI andpII .
Long-range diffusion occurs in series, so that the resulting diffus
ity is limited by the slower of ratespI andpII .
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We present here the derivation of the diffusion equat
in the presence of stress for defects in Si. We begin in Se
with a derivation of the diffusion tensor from microscop
parameters, along the same lines but broader than give
DS. In Sec. II, we connect the results of Sec. I to stress.
resulting framework is applied in Sec. III to the two defec
mentioned above.

I. DERIVATION OF THE DIFFUSION TENSOR FROM
MICROSCOPIC PARAMETERS

Our formulation is very much the same as done by D
microscopic jump rates are combined statistically to g
long-range diffusivity. We express the formulation in term
of stress, while DS worked in terms of strain~of course there
is an easy mapping between the two!.

We assume that there are well-defined states~i.e., energy
valleys! that the system can occupy. The concept of st
here is quite general. A state can be simply a defect, suc
a vacancy, located on a particular lattice site, so that a sta
distinguished entirely by specifying its location; this
clearly the case for vacancies in elemental metals, an
treated in Sec. I A. More generally, however, the defect c
have other degrees of freedom. For example, the primi
cell in Si has a two-atom basis. In that case, one must spe
on which basis site the defect is located, in addition to wh
primitive cell. Or, for another example, a vacancy in
might undergo a Jahn-Teller distortion, which has three
dependent orientations. In that case, one must specify or
tation in addition to location. An even more complex e
ample would be a cluster of impurity atoms that migra
together—the internal degrees of freedom in this case wo
be numerous. The general case—where there are interna
grees of freedom—is treated in Sec.. I B.

We assume furthermore that the rate of jumping from o
state to another is controlled by the difference in energy fr
the initial valley to the saddle point. The energy differenc
of course, must account for the additional work done aga
an external stress field. We find it convenient to introduc
local reference, which is the perfect system subjected to
local value of the external stress. We then introduce a de
into the local reference and measure changes in the sy
relative to that reference. We have coined the word ‘‘c
ation’’ for values calculated with respect to this local refe
ence, in order to avoid confusion with other common ter
~‘‘formation,’’ ‘‘migration,’’ ‘‘defect,’’ etc. ! For example,
the ‘‘creation energy’’ is the energy required to insert a d
fect into the perfect, stressed lattice; likewise ‘‘creation v
ume’’ describes the change in volume during that proce
This choice of local reference allows a clean treatment
diffusion in the presence of a nonuniform stress field.

We do not consider any trapping, reaction, or dissociat
of the defects; we take only hops that maintain the unity
the defect. A treatment of stress effects on reactive diffus
would be beyond the scope of this paper.

A. Defects with simple basis

An example in this category is a simple~unreconstructed!
vacancy in a metal having a primitive cell with one ato
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EFFECT OF STRESS ON DOPANT AND DEFECT . . . PHYSICAL REVIEW B 64 045205
~e.g., simple cubic, body-centered cubic, and face-cente
cubic!. In this case, the state is specified completely by d
ignating the spatial location of its primitive cell,A. We can
describe the system by a concentrationc on each siteA,

p@A→B#5p0 exp@2b~«c(s)
[AB]2«c(v)

A !#

[M [AB] /SA ~3!

with

M [AB]5M [BA][p0 exp~2b«c(s)
[AB] !, ~4!

SA[exp~2b«c(v)
A !, ~5!

whereb51/(kBT) andp0 is a basic hop rate. In these de
nitions, we separate the ‘‘solubility factor’’Sof the defect in
the valley, SA , from the ‘‘mobility factor’’ M [AB] . ~The
‘‘solubility factor’’ S is not to be confused with the ‘‘solu
bility limit.’’ The former is a property of a single phase, th
latter of two phases in equilibrium.!

We will begin the treatment by assuming a uniform ho
and then extend the results at the end to a nonuniform h
In a uniform host, all valleys have the same energy, so
«c(v)

A 5«c(v) and SA5S. The saddle-point energies«c(s)
[AB] do

not depend on the absolute positionsA andB, but only on the
relative position.~The saddle-point energies are not all t
same because the host is not assumed to be isotropic. I
presence of stress, even a cubic crystal is not isotropic.!

The concentration on siteA develops in time by

ċA52cA(
B

p@A→B#1(
B

cBp@B→A#. ~6!

We can make use now of the translation symmetry of
host by expanding the solutions in plane waves within
Brillouin zone ~BZ! into a Bloch form,

cB5E
BZ

u~k,t !exp~ i k•RB!d3k. ~7!

Matching Fourier components of the rate equation then g

u̇~k,t !5g~k!u~k,t !/S ~8!

with

g~k!5(
B

M [0B]@exp~ i k•RB0!21#,

where the site 0 has been chosen arbitrarily andRJI[RJ
2RI . Because we are looking for the long-time and mac
scopic, i.e., long-wavelength evolution of the system, we
pandg(k) in powers ofk,

g~k!52S (
B

M [0B]RB0^ RB0D :~k^ k!/21O~k4! ~9!

~the dyada^ b defines a matrix with componentsaibj ). The
symbol : is introduced for convenience to mean the dou
dot product; i.e.,a:b5Tr@a•b#. There are no terms of orde
unity because, by number conservation,g(k50)50. There
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are no terms linear ink because(BM [0B]RB050 ~in a solid
with a simple basis, for every neighbor there is an oppo
neighbor that cancels!.

When we substitute the series expansion ofg(k) @Eq. ~9!#
into the equations of motion@Eq. ~8!# and transform back to
real space, each power ofk in g will be associated with a
spatial derivative. Thus the second derivative ofg(k) at k
50 will have physical significance in the resulting diffusio
equation. We therefore define a ‘‘solid permeability tenso

P52
1

2

]2g~k!

]k]k
uk50 , ~10!

and the resulting diffusion equation isċ5(1/S)P:¹¹c
5D:¹ ¹c, where the diffusion tensorD is obtained from
the microscopic hop parameters by

D5
1

S (
B

M [0B]RB0^ RB0 ~11!

as obtained by DS.
In the case of a nonuniform host~as would exist, for

example, if an applied stress field was nonuniform!, then the
hop rates are dependent on position. A careful derivation~see
DS! shows that the diffusion equation becomes

ċ~x,t !5¹.FP~x,t !•¹S c~x,t !

S~x,t ! D G . ~12!

Our notation now is somewhat different than that of DS. W
have introduced explicitly the solid solubility factorS be-
cause it illustrates clearly that the equilibrium condition
c(x,t) } S(x,t), and also that a gradient in the solubilit
factor acts as a driving force for diffusion.16 @It is often con-
ventional to use the local chemical potentialm
5(1/b)ln(c/S) instead ofS.] Also, we have introduced the
tensor quantityP, which is the product of the diffusivity and
solubility factor. In analogy to gaseous and liquid system
we have chosen to call this the ‘‘solid permeability factor
in an anisotropic medium, the permeability factor in gene
is a tensor quantity. The solid solubility factor depends o
on the valley energy@Eq. ~5!#, the solid permeability factor
depends only on the saddle-point energy@Eqs. ~4!, ~9!, and
~10!#, and the solid diffusivity depends on the migration e
ergy @difference between the saddle point and valley, E
~11!#.

Clearly the choice of a local reference for the energ
discussed previously does not affect the diffusivity~which
depends on differences in energy!, but does affect the solu
bility factor. In comparing the relative solubility factors of
defect at two different~stressed! locations, one must calcu
late the energy required to insert the defect into ea
~stressed! location. Thus, using the stressed but otherw
perfect Si as a local reference is natural for the diffus
problem.

B. Defects with nonsimple basis

In this category are crystals with primitive cells havin
more than one atom in the basis, or defects with inter
5-3
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DAW, WINDL, CARLSON, LAUDON, AND MASQUELIER PHYSICAL REVIEW B64 045205
~e.g., orientational! degrees of freedom. For example, t
diamond and hexagonal-close-packed~hcp! structures have a
two-atom basis. Also, complex defects, such as a dumb
self-interstitial or vacancy with Jahn-Teller distortion, ha
an orientation which must be specified in addition to the s
Some care is required in this derivation beyond the previ
section.

We identify now a lattice site by$Aa%, with its cell index
A and the indexa which denotes the state within the cell. Th
number of states in the basis isNstates. For a symmetric
vacancy in diamond, as an example,Nstates52, because there
are two sites in the primitive cell. However, if we adm
Jahn-Teller distortions, then on each of two atomic site
vacancy can have one of three orientations, so that in
caseNstates56. It is easy to imagine more complex defec
~clusters, for example! where the number of states could b
quite large.

In this more general case, we must be careful to k
track of all the degrees of freedom of the system when tak
the continuum limit. The situation is analogous to the cal
lation of the elastic constants for crystals with more than o
atom in the primitive cell: the internal coordinates~‘‘internal
strain’’! must be treated explicitly—one must account f
optical modes in addition to the acoustic modes.17 There is
also a formal parallel to the calculation of the energy lev
of a tight-binding solid: in the case of multiple-atom prim
tive cells, multiple solutions~bands! occur. We will see that
multiple solutions occur likewise in the general solution
the migration equation, though once we identify the gene
solutions, we will throw out all but the long-time and long
wavelength terms to get the diffusion equation.

The rate of jumping from state$Aa% to state $Bb%
through the saddle point@AaBb# is given by

p@Aa→Bb#5p0exp@2b~«c(s)
[AaBb]2«c(v)

Aa !#

5M [AaBb] /SAa ~13!

with

M [AaBb]5M [BbAa][p0exp~2b«c(s)
[AaBb] !, ~14!

SAa[exp~2b«c(v)
Aa !. ~15!

The concentration of statea in cell A develops in time
according to

ċAa52cAa(
Bb

p@Aa→Bb#1(
Bb

cBbp@Bb→Aa#.
04520
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Making use of the translation symmetry of the host yield

cBb5(
k

ub~k,t !exp~ i k•RBb!. ~16!

Matching Fourier components of the rate equation then gi

u̇a~k,t !5(
b

Gab~k!ub~k,t !/Sb

with

Gab~k!5(
B

M [0aBb]exp~ i k•RBb0a!2dab(
Bc

M [0aBc] ,

~17!

where the cellA50 has been chosen arbitrarily. Note th
number conservation is expressed as

(
a

Gab~k50!50. ~18!

The complete dynamics of the system are contained
Gab(k), which is a symmetric rate matrix of sizeNstates
3Nstates. The eigenvalues are the rate constants of the re
ation process. At least one eigenvalue vanishes atk50 be-
cause of number conservation@Eq. ~18!#. We expect gener-
ally that only one eigenvalue vanishes fork50. This is
because a conserved quantity is associated with each va
ing eigenvalue atk50. We anticipate that the only con
served quantity associated with diffusion will be the to
defect number~we have assumed that the defects diffu
intact!. For smallk, we have then only one relevant mod
~that is, the slowest!. All the other modes are fast and corr
spond to short-range relaxation among the members of
primitive cell.

There is an easy analogy to the vibrational modes o
solid with more than one atom in the primitive cell: in th
vibrational spectrum neark50 there are three low-frequenc
acoustic modes~corresponding to three components of co
served momentum! and the rest are higher-frequency optic
modes. The difference is that in the diffusion problem,
course, the modes are all exponentially decaying, and so
the slowest mode is relevant.

Consider, for example, the alternating chain discussed
the Introduction. In this system, the primitive cell consists
two sites, so thatG is a 232 matrix:
into
m

G~k!5S 2pI2pII pIe
[ ik(x22x1)]1pIIe

[ ik(x22x12a)]

pIe
[ ik(x12x2)]1pIIe

[ ik(x12x21a)] 2pI2pII
D

wherex1 and x2 are the site positions within the unit cell,a is the periodicity of the chain, andpI and pII are the rates
associated with transitions over the two different saddle points. The two eigenvalues areg652pI2pII

6ApI
21pII

212pIpII cos(ka). The relaxation mode associated withg2 ~the ‘‘optical mode’’! has finite lifetime even whenk
50. This corresponds to a relaxation within the primitive cell, which occurs very quickly to bring the sublattice
equilibrium. The rateg1 of the other~‘‘acoustic’’! mode vanishes atk50 ~that is, small, long-wavelength deviations fro
5-4
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EFFECT OF STRESS ON DOPANT AND DEFECT . . . PHYSICAL REVIEW B 64 045205
uniformity take a very long time to relax! and so this is the
only relevant mode. The leading order term for smallk is
a2k2pIpII /(pI1pII), which, when we transform to rea
space, will become the operatorP]2/]x2. Thus, P
5(a2/2)pIpII /(pI1pII), as we expect for processes in seri

In general,Nstatesis potentially large, and it is not possibl
to obtain an analytical form for the relevant eigenvalu
However, because we want only the behavior neark50 ~and
also because we know the eigenvector there—see below!, we
can use perturbation theory to obtain the permeability.
cause we are only interested in the diffusive behavior,
want the second-order coefficient of the relevant eigenva
in an expansion ink. If we expandG to second order ink, we
get

~19!

whereG(0), G(1), andG(2) are the zeroth-, first-, and secon
order terms and

qab[(
B

M [0aBb] ,

qa[(
b

qab ,

Zab[(
B

M [0aBb]RBb0a ,

Yab[(
B

M [0aBb]RBb0a^ RBb0a .

Note thatG(1);O(k) andG(2);O(k2). In order to establish
the relevant eigenvalue toO(k2), we need to carry the per
turbation out tofirst order inG(2) andsecondorder inG(1).

We can see thatvb51/ANstatesis the relevant eigenvecto
of Gab

(0) , with zero eigenvalue, because@from Eq. ~19!#

(
b

Gab
(0)vb5

1

ANstates
(

b
Gab

(0)50.

Again this is number conservation@Eq. ~18!#.
If we know the complete eigensystem ofG(0),

(
b

Gab
(0)ub

(m)5gm~0!ua
(m) ,

we can apply Rayleigh-Schro¨dinger perturbation theory18 in
a straightforward way. We label the relevant eigenva
‘‘1,’’

g1~k!5
1

Nstates
(
ab

Gab
(2)2

1

Nstates

3 (
m.1

U(
ab

ua
(m)Gab

(1)U2

gm~0!
1O~k3!. ~20!
04520
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~The first-order terminvolving G(1) vanishes by symmetry
that is,(abGab

(1)50.) In the case of a simple basis,G (1) is a
number and it vanishes by symmetry@see discussion follow-
ing Eq. ~9!#. For the general case of a nonsimple basis,
matrix G(1) does not vanish.

We note that the first term alone adds rates in parallel
some cases~for instance, those considered by DS!, the sec-
ond term vanishes. In general, the second term, which
will term the ‘‘cell correction,’’ is nonvanishing. To illus-
trate the role of the cell correction, we examine again o
simple example of the alternating chain. The first term of E
~20! alone gives the result discussed in the Introducti
which adds the rates in parallel:

a2~pI1pII !/8

The cell correction@i.e., second term of Eq.~20!# gives

2a2~pI2pII !
2/@8~pI1pII !#

which gives in sum the correct total result where the ra
add in series. It is clear from this simple example that E
~20! is the more general result.

It is impractical, in general, to obtain the complete eige
system ofG(0) for systems whereNstates.2. Instead, it is
more useful to apply the perturbation method of Dalgar
and Lewis,18 because this circumvents the diagonalization.
this method, one defines the vectorwb by the equations

(
b

Gab
(0)wb52(

b
Gab

(1)vb ; a.

Once these are solved forwb , the second term in Eq.~20! is
computed as(abvaGab

(1)wb , which is second order inG(1).
One must take care becauseG(0) has a zero eigenvalue. Th
singularity can be dealt with easily in one of two equivale
ways. One way is to formGL

(0)[G(0)1Lv ^ v, then wa

52 limL→`(bc(GL
(0))ab

21Gbc
(1)vc . Another way is to solve for

w2 ,w3 ,•••,wNstates
in terms of w1, where it can be shown

that the contribution tog1 is independent ofw1. Either
method gives a solution which has the proper meaning.

After the relevant eigenvalue (g1) has been determined
the permeability factor tensor follows from its definition@Eq.
~10!#, usingg1.

As a more interesting example, the rate matrixG for a
vacancy on a diamond lattice~ignoring Jahn-Teller distor-
tions and taking only nearest-neighbor hops! has the struc-
ture

G~k!5S 2q q1 i k•Z2
1

2
k^ k:Y

q2 i k•Z2
1

2
k^ k:Y 2q

D ,

where

q[(
B

M [01B2] ,
5-5
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DAW, WINDL, CARLSON, LAUDON, AND MASQUELIER PHYSICAL REVIEW B64 045205
Z[(
B

M [01B2]RB201,

Y[(
B

M [01B2]RB201RB201,

and the sums cover nearest-neighbor hops.
This system has two eigenvalues:

g6~k!52q6qF11
1

2q2
~k•Z!22

1

2q
k•Y•k1O~k3!G .

The relevant mode isg1 , and

P5
1

2 FY2
Z^ Z

q G . ~21!

Again, the first term will be recognized from Eq.~2!, and the
second term is the cell correction.

A technical note: the Bloch form@Eq. ~16!# for a non-
primitive cell has some arbitrary choice implicit in it. That i
the phase factor attributed to each site may be arbitra
changed. Instead of the phase factor exp(ik•RBb) used in Eq.
~16!, we could equally well have chosen exp(ik•RB), where
the phase factor does not depend on the position within
unit cell, but only on the position of the whole cell. Th
amounts to only a unitary transformation, of course;
changes the value of the matrix elements ofG, but not the
eigenvalues. Such a transformation, because it involves
wave vector, will change the values of the perturbation ter
in Eq. ~19!, so thatG(1) andG(2) are altered by the transfor
mation, but the combination which gives the eigenvalue@Eq.
~20!# is invariant.

Finally, we note that for a degenerate basis, the appro
ate solubility factor is the average solubility over all stat
that is, the proper solubility to use in the diffusion equati
@Eq. ~12!# is

S̄A[
1

Nstates
(

a
SAa5

1

Nstates
(

a
exp~2b«c(v)

(A) !. ~22!

This is the form expressed by DS@implied by their Eq.~36!;
our notation is somewhat different#. The general proof is left
for the Appendix.

II. EFFECT OF STRESS ON DIFFUSION

It remains to relate the distortions in the energy surface
the applied stress. That is, we must specify how stress aff
the valley and saddle-point energies in the hop rates@Eq.
~13!#. We will assume that the host, in the absence of str
is uniform.

When a defect is created, the solid changes shape from
original condition. In linear elasticity, the change in th
shape of a volume can be expressed as a real, symm
tensor. For example, a sphere is distorted into an ellips
and the difference can be described in complete gener
~within linear elasticity! by three principal values and axes
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Vc5Vc1 t̂1^ t̂11Vc2 t̂2^ t̂21Vc3 t̂3^ t̂3 ,

where the subscriptc is again for ‘‘creation.’’ The symmetry
of the shape change is determined by the symmetry of
defect, i.e., the principal axes will be symmetry axes of
defect. If the defect has an orientation~for example, a dumb-
bell self-interstitial or a Jahn-Teller distorted vacancy!, the
principal axes will be directed accordingly, but the set
principal values will be the same for all orientations. A d
fect with cubic symmetry will have three degenerate prin
pal values, of course. A defect with an orientation may ha
one eigenvalue unequal to the other two.

We will call the creation energy in the absence of exter
stress«c(v)

Aa (0). In thepresence of an external stress, the c
ation energy must include the work required to distort t
solid in opposition to that stress, so that

«c(v)
Aa ~s!5«c(v)

Aa ~0!1Vc(v)
(a) :s ~23!

where the stress is evaluated locally. We have assumed
that the all of the defect internal states are energetically
generate in the absence of stress.~It is easy to remove tha
assumption in the following.! The stress can break the d
generacy, depending on the orientation of the principal a
of Vc(v)

a relative to the stress tensor. These values
«c(v)(s) are used in determining the solubility factorS @Eqs.
~15! and ~22!#.

Similarly, when the system is at the saddle point@AaBb#,
the shape is different from the reference condition~the per-
fect, stressed lattice!, which is represented by the saddl
point volume tensorVc(s)

[AaBb] and the energy at the sadd
point becomes, under stress,

«c(s)
[AaBb]~s!5«c(s)

[AaBb]~0!1Vc(s)
[AaBb] :s, ~24!

where the subscripts is for ‘‘saddle point.’’ It is important to
keep in mind that the reference state for the saddle p
volume is the perfect, stressed crystal, just as it was for
valley volume.Vc(s) is the change in volume/shape impos
on the perfect, stressed crystal by placing the defect at
saddle point. It isnot the distortion caused in going from
valley to saddle point; this latter is commonly called t
‘‘migration volume.’’ The values of«c(s)(s) are used in
determining the permeability tensorP @Eqs. ~10!, ~14!, and
~17!#.

It is revealing to separate the effects of hydrostatic str
~pressure! from those due to deviatoric stress. The deviato
stress is defined as the traceless part of the stress:

s5pI 1sdev,

p[Tr@s#/3. ~25!

Similarly, for the volume tensor,

V5~Vh/3!I 1Va ,

Vh[Tr@V#, ~26!

where Vh would be identified as the total scalar volum
change andVa is the traceless part ofV. We can see that the
5-6
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work against the external stress has two terms: one cou
the pressure to the total volume change, and the o
couples the deviatoric stress to the anisotropic part of
saddle-point volume:

s:V5pVh1sdev:Va . ~27!

From this it is clear that the permeability factor in gene
will have an overall scalar factor that depends on the p
sure and the isotropic saddle-point volume@exp(2bpVc(s)h#.
The anisotropic part of the saddle-point volume, along w
the deviatoric part of the stress tensor, will determine
anisotropic part of the permeability tensor~sum over terms
involving exp@2b Tr@Vc(s)a•sdev#)].

Specific examples of the permeability tensor in the pr
ence of stress are worked out and displayed in Sec. III.

III. TWO EXAMPLES

In this section, we apply the above theory to two e
amples of dopant diffusion in Si which are important f
microelectronics. The first one, the neutral vacancy, is co
plicated by the existence of the Jahn-Teller distortion and
dependence of that distortion on stress and charge sta19

The second example is the diffusion of a B–self-intersti
~B-SI! pair.

In both of the examples treated here, symmetry will d
tate that two of the eigenvalues of all of the volume tens
will be degenerate. In the case of such degeneracy, we fi
convenient to represent the volume tensor of a defect w
orientation along directiond̂ by

Vc5Vcld̂^ d̂1Vct~ I 2d̂^ d̂!

with ‘‘longitudinal’’ ( Vcl) and ‘‘transverse’’~the doubly de-
generateVct) values. We can then describe the volume te
sor by two parameters, either the combinationVcl andVct ,
or

Vch[Vcl12Vct ,

Vca[Vcl2Vct .

The latter pair measures the overall~scalar! volume and the
anisotropic part.

We also note that the jump direction is not generally
same as the symmetry axis of the saddle point, although
simple defects, such as the vacancy treated here, the twoare
the same~the nearest neighbor hop also defines the sym
try axis of the saddle point!. However, this is not true for the
second example, the B-SI pair.

A. Vacancy „with Jahn-Teller distortion … in Si

As noted above, the vacancy in Si may or may not u
dergo a Jahn-Teller distortion, depending on the charge s
and the stress.10,15,19In the absence of a Jahn-Teller disto
tion, the results derived for the perfect diamond lattice ap
@see Eq.~21!#.

In the presence of a Jahn-Teller distortion, the vacanc
the valley has three possible orientations. Each orientatio
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symmetric around â100& axis, so that the two transvers
volumes are equal. The three orientations combined with
lattice sites in the primitive cell makesNstates56.

The solubility factor for the case with Jahn-Teller disto
tion is

S5e2bpVc(v)h@e2bVc(v)a(22sxx1syy1szz)

1e2bVc(v)a(sxx22syy1szz)1e2bVc(v)a(sxx1syy22szz)#/3,

wherep5Tr@s#/3. The case of no Jahn-Teller distortion
obtained by takingVc(v)a→0, in which limit the solubility
factor becomesS5e2bpVc(v)h.

The vacancy hops by a jump to a nearest-neighbor s
the saddle-point configuration has a symmetry axis alon
$111% direction,15 and once again the two transverse volum
are equal~see Fig. 2!. Defining

a[2bsVc(s)a/3,

d[e2(ayz1azx1axy)1e2(1ayz2azx2axy)1e2(2ayz1azx2axy)

1e2(2ayz2azx1axy),

we find the components of the permeability tensor to be

Pxx52e2bpVc(s)h@cosh~2axy!1cosh~2azx!#/d,

Pxy522e2bpVc(s)h sinh~2axy!/d. ~28!

The other components can be obtained by cyclic permuta
of the Cartesian componentsx,y,z. The Jahn-Teller distor-
tion of the vacancy in its equilibrium position has no effe
on the permeability factor.

B. Boron–self-interstitial pair in Si

The B-SI pair results in more complex forms for the so
bility and permeability factors. The defect in the valley has
^111& symmetry axis, with the B-SI bond aligned so that t
~substitutional! B lies along the line between the SI and a
lattice atom@Fig. 3~a!#.20 The threefold symmetry around th
^111& axis fixes the two transverse volumes as equal.

There are four orientations for the B-SI pair on each s
and two lattice sites per primitive cell, so thatNstates58. The
solubility factor for the boron-self-interstitial pair is

FIG. 2. Projection of a Si crystal containing a migrating Jah

Teller distorted vacancy on the (121̄) plane. The migrating Si atom
~which moves in the opposite direction as the vacancy! is shown as
a large dark ball, the vacancy in~a! and ~c! by a small white ball.
The small dark balls show the other Si atoms surrounding the
involved vacancy sites.~a! is the initial configuration,~b! the saddle
point with a threefold symmetry around the migration directi
(111) which lies in the paper plane, and~c! the final configuration.
5-7
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S5e2bpVc(v)h~e2vyz2vzx2vxy1e2vyz1vzx1vxy

1e1vyz2vzx1vxy1e1vyz1vzx2vxy!/4,

wherev[2bVc(v)as/3.
The migration inp-type Si occurs when the SI pushes in

the lattice site occupied by the B, which is displaced to
nearby hexagonal or quasihexagonal site@Fig. 3~b!#; since
the hexagonal interstitial is a saddle point for the positi
and a local minimum close to the saddle point for the neu
charge state,20 it is assumed to be the dominant saddle po
in p-type Si in this paper. The quasihexagonal site ha
^111& symmetry axis. The B in the quasihexagonal site
surrounded by 6 Si atoms, anyone of which may now
displaced by the B, leading again to a B-SI pair. The res
ing hops can be 1nn, 2nn, or even 3nn. There are a total of
768 paths that contribute to the reduced rate matrix@Eq.
~17!#. The symmetry between the two sites of the sublatt
can be used to block diagonalizeG(0), G(1), andG(2) @from
Eq. ~19!# to 434 and the resulting parts can be handled in
straightforward, if tedious, way. The resulting permeabil
tensor is

P5c1r1c2x, ~29!

which corresponds to the first- and second-order perturba
terms@as in Eq.~20!#:

c15z/~4lxlylz!,

rxx5~11ly
2lz

21lz
2lx

21lx
2ly

2!,

rxy525~12ly
2lz

22lz
2lx

21lx
2ly

2!/11,

c25z/~132lxlylz~11ly
2lz

21lz
2lx

21lx
2ly

2!!,

xxx52~11ly
2lz

22lz
2lx

22lx
2ly

2!2, ~30!

xxy52112lx
2ly

21ly
4lz

41lz
4lx

42lx
4ly

422lx
2ly

2lz
4 ,

z[exp~2bpVc(s)h!,

lz[exp~2bVc(s)asxy/3!,

Vc(s)h[Vc(s) l12Vc(s)t ,

Vc(s)a[Vc(s) l2Vc(s)t .

FIG. 3. Projection of a Si crystal containing a migrating B-
pair on the~110! plane. The atoms involved in the diffusion proce
are marked as balls, the rest as stick-only network. Substitution
atoms are labeled Si, interstitial ones SI, and B atoms with a B~a!
shows the initial configuration,~b! one possible quasihexagon
saddle point, and~c! one possible final configuration.
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IV. DISCUSSION

With specific examples in hand, we are now able to d
cuss certain aspects of the results. First, we will examine
importance of the so-called cell correction@the second term
in Eq. ~20!#. Second, we will look at the qualitative aspec
of the predictions for a very feasible situation—a strained
film. Since the significant aspect of the present work de
with the deviatoric part of the stress, which produces ani
tropic diffusion, we will not be concerned with the hydro
static ~isotropic! part.

The cell correction is very significant in the case of t
vacancy in Si. Take, as a specific example, a state of st
wheresyz is the only nonvanishing component, which co
responds to uniaxial stress along a@011# direction. In this
state, the permeability tensor has these principal axes:@011#,

@011̄#, and@100#. The correct answer for the diffusion alon
the x axis is @from Eq. ~28!#

Pxx}sech~2bVc(s)asyz/3!,

whereas without cell correction, we would find

Pxx}cosh~2bVc(s)asyz/3!

~see Fig. 4!. We see from this, that compression along@011#
shouldsuppressthe diffusion along thex axis, whereas with-
out the cell correction, we would have found the oppos
behavior. The same is not true for the B-SI pair, Eq.~30!,
where the cell correction is limited to less than 3% for t
case cited.

In both examples given here, a state of deviatoric str
can produce considerable anisotropy in the resulting di
sion. Generally one expects that the anisotropy will be la
est at low temperatures and high stresses. Both example
characterized by having saddle points with^111& symmetry,
which results in a permeability tensor which depends o
on the stress componentssyz , szx , and sxy ~relative
to the cube axes!. The anisotropy of the permeabilit
tensor in these two examples is proportional
bVc(s)aAsyz

2 1szx
2 1sxy

2 at small stress or smallb.

Si

FIG. 4. Influence of the cell correction term on the solid perm
ability of a vacancy in an uniaxially@011# strained Si crystal: The
cell correction predicts a decrease of the diffusion along thex axis,
whereas without cell correction, the opposite behavior is predic
5-8
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The anisotropy caused by a saddle point with^111& sym-
metry is best illustrated by considering a simple state
stress which could be produced in a thin film of Si grow
coherently with a substrate of different lattice constant~for
example, SiGe!. If the growth axis iŝ 100&, then the stress
tensor is diagonal in the cube orientation, and the diffus
of vacancies or B-SI pairs is isotropic. However, for
growth direction of̂ 111&, the diffusion perpendicular to th
film will be very different than the diffusion within the plane
For vacancy diffusion, the ratio of out-of-plane to in-pla
diffusivity is

P'

Pi
54/@113 exp~x!# ~31!

with x52 8
3 bVc(s)a@(C1112C12)C44#/@C1112(C12

1C44)#(Da/a) and Da is the difference in in-plane lattice
constants. The anisotropy ratio approaches 4 or 0, depen
on the sign ofVc(s)aDa. For the B-SI pair,

P'

Pi
5

4 exp~x!@318 exp~x!#

4119 exp~x!121 exp~2x!
~32!

which approaches 32/21 or 0, depending on the signs.
We emphasize again that the quantities used in the d

nition of creation energy and volume are entirely local:
reference is made to remote reservoirs as could be done i
bulk were in equilibrium with a free surface, for examp
That is, we are not concerned with where the point def
originates. Instead, we are explicitly treating the motion
an existing point defect from one region to another with
the bulk, resulting in a change of energy given by differen
in the local energies of Eq.~23!. The full treatment should
include interaction with surfaces and interfaces, and the p
sibility of equilibration, like in the form of boundary condi
tions. This is implicit in the ‘‘nonlocal’’ volume of Azizet
al.,3,4 for example. Many of the related experiments3–8 in-
volve diffusion near a free surface or an interface with
oxide or nitride. The results, comparison, and interpretat
of those various experiments must take into account the
fects of the boundary conditions. For example, the resolu
of the apparent contradictions as to stress effects on b
diffusion may lie with the different types of boundarie
present in the experiments; certainly such considerations
important. Likewise, the idea of the nonlocal activation v
ume introduced by Aziz21 depends on the location of va
cancy sources~such as a free surface!. What we present here
is only one aspect of the problem — the local bulk diffusi
equation in the presence of stress. A proper treatment
cluding boundary conditions on the differential equatio
and reactions between diffusing species~for example, B, SI,
and B-SI!, will be left to a later paper.

V. CONCLUSIONS

In an effort to examine the effect of stress on defect a
dopant diffusion in Si, we have had to generalize the res
of Dederichs and Schroeder. We have found it convenien
this work to define the solid-state solubility factor and p
meability factor ~tensor!, which are easily applied to th
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cases of nonuniform host or interfaces between unifo
hosts. The present work shows the proper way to calcu
the so-called cell corrections to the permeability tensor
the most general case of intact diffusion in a crystal, and
have worked out two specific examples for Si: a vacan
~with Jahn-Teller distortion!, and a B-SI pair. Specific con
clusions are drawn regarding the qualitative form of the d
fusion in a strained film: If the growth axis of the film i
^100&, the diffusion of vacancies or B-SI pairs is isotropi
for ^111& films, however, strong anisotropies can exist b
tween the diffusivity tensor components in growth directi
and perpendicular to it, depending on the magnitude of
creation volume anisotropy and the strain. In a subsequ
paper,15 we will obtain the microscopic parameters~vol-
umes! from first-principles electronic structure calculation
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APPENDIX A: DERIVATION OF SOLUBILITY FACTOR
FOR DEGENERATE BASIS

We want to establish the equation of motion in the diff
sive limit from the master equation~in reciprocal space!,

u̇a5(
b

Gab~k!ub /Sb , ~A1!

where the sum is over states within the cell.G(k) ~a matrix
of orderNstates) has exactly one eigenvalue which approach
zero ask→0; the eigenvector for this eigenvalue isva

51/ANstates. This is the mode relevant to diffusion. The oth
Nstates21 eigenvalues are all nonvanishing ask→0; they
account for the rate of local equilibration among the sta
within the cell. As far as the diffusive behavior is concerne
the exact values of the faster rates are unimportant. Instea
is sufficient to look for the leading behavior ink in both
space and time. In that limit,G is adequately represented b

Gab5gvavb1L~dab2vavb!, ~A2!

whereg is the relevant eigenvalue~vanishes ask→0) andL
is some finite value that will drop out of the diffusion equ
tion. Defining r a[ASa, xa(t)[ua(t)/r a , and Fab
[Gab /(r ar b), we can rewrite the master equation@Eq. ~A1!#
as

ẋa5(
b

Fabxb . ~A3!

Taking the Laplace transform@xa(t)→x̃a(s)# gives
5-9
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(
b

@sdab2Fab#x̃b~s!5xa~0!. ~A4!

We only need to solve this set of equations in the limit th
g!L. We can accomplish this by perturbing the soluti
away from g50. We first find the eigensystem ofFab

(0)

[L(dab2vavb)/(r ar b). This matrix has one eigenvalue at
andNstates21 eigenvalues atL̄[L((a1/Sa)/Nstates. The ei-
genvector for the mode with eigenvalue 0 isr a ~this is just
the equilibrium condition:@xa}r a#→@ua}Sa#). Now we
can calculate the shift in the 0 eigenvalue due to the per
bation Fab

(1)[g/(Nstatesr ar b). The first-order shift in the ei-

genvalue is ḡ5(abr aFab
(1)r b /((cr c

2)5g/S̄, where S̄
[((aSa)/Nstates. In the appropriate limit, the inverse o
ra
tu

rl,

pl

T

04520
t

r-

the matrix @sdab2Fab# is then (s2ḡ)21 r ar b /(S̄Nstates)

1(s2L̄)21 @dab2r ar b /(S̄Nstates)#. This formally separates
the short-time behavior~second term! from the long-time
behavior ~first term!, and we can safely drop the secon
term.

Finally, summing over all states within a cell gives th
concentration in the cell,ũ(s)[(aũa(s), and the solution
~in Laplace space! is ũ(s)5(s2ḡ)21@(aua(0)# which is
simply a restatement of the diffusion equation in the text

The appropriate time constant for the diffusion equation
then ḡ5gNstates/((aSa); or, equivalently, the proper solu
bility factor in the diffusion equation isS̄[((aSa)/Nstates
@see Eq.~22!#.
de
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