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Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions
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The free energy and other thermodynamic properties of hexagonal-close-packed iron are calculated by direct
ab initio methods over a wide range of pressures and temperatures relevant to the Earth’s cateiritie
calculations are based on density-functional theory in the generalized-gradient approximation, and are per-
formed using the projector augmented wave approach. Thermal excitation of electrons is fully included. The
Helmholtz free energy consists of three parts, associated with the rigid perfect lattice, harmonic lattice vibra-
tions, and anharmonic contributions, and the technical problems of calculating these parts to high precision are
investigated. The harmonic part is obtained by computing the phonon frequencies over the entire Brillouin
zone, and by summation of the free-energy contributions associated with the phonon modes. The anharmonic
part is computed by the technique of thermodynamic integration using carefully designed reference systems.
Detailed results are presented for the pressure, specific heat, bulk modulus, expansion coefficienhand Gru
eisen parameter, and comparisons are made with values obtained from diamond-anvil-cell and shock experi-
ments.
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[. INTRODUCTION and a large experimental effort has been devoted to measur-
ing them. The difficulties are severe, because the pressure
Ab initio techniques based on density-functional theoryrange of interest extends from 100 GPa up to nearly 400
(DFT) have played a key role for several years in the studyGPa, and the temperature goes from ca. 3000 K to perhaps
of matter under extreme conditioh#Vith recent progress in 7000 K—the temperature at the center of the core is subject
the direct ab initio calculation of thermodynamic free to an uncertainty of at least 1000 K.
energies“ there is now great scope for the systematic and Static compression experiments with the diamond anvil
accurate calculation of thermodynamic properties over a&ell (DAC) have been performed on Fe up to 300 GPa at
wide range of conditions. We present here extensive DFFoom temperaturé@and DAC experiments at temperatures as
calculations of the free energy of hexagonal-close-packetligh as 3700 K have been reported up to 200 ErP¥ our
(hcp iron under Earth’s core conditions, which we have present knowledge of the phase diagram of Fe comes mainly
used to obtain results for a number of other thermodynamifrom these experiments, though there are still controversies.
quantities, including the bulk modulus, expansion coeffi-For pressurep above ca. 60 GPa and temperatufdselow
cient, specific heat and Gmaisen parameter. For some of ca. 1500 K it is generally accepted that the stable phase is
these we can make direct comparisons with experimentdiexagonal close packethcp. Recent DAC diffraction
data, which support the accuracy and realism of the calculaexperiment® indicate that hcp is actually stable for all tem-
tions; for others, the calculations supply information that isperatures up to the melting line f@>60 GPa, but earlier
not yet available from experiments. An important ambitionwork claimed that there is another phase, usually caleith
of the work is to determine thermodynamic functions with-a region below the melting line for pressures above ca. 40
out making any significant statistical-mechanical orGPa. The existing evidence suggests that, if Baphase is
electronic-structure approximations, other than those rethermodynamically stable, its structure could either be
quired by DFT itself, and we shall argue that we come closalouble-hcp:**® or orthorhombic)’ and in either case is
to achieving this. The techniques we have developed arelosely related to the usual hcp structure. According to very
rather general, and we believe they will find applicationrecent theoretical work® hcp is thermodynamically slightly
to many other problems concerning matter under extremenore stable than double-hcp at Earth’s core pressures and
conditions. temperatures. The evidence for the stability of hcp over
The importance of understanding the high-pressure anthuch of the high-temperature/high-pressure phase diagram
high-temperature properties of iron can be appreciated bis our motivation for concentrating on this phase in the
recalling that the Earth’s core accounts for about 30% of thgresent work.
mass of the entire Earth, and consists mainly of Fémfact, DAC measurements have given some information about
the liquid outer core is somewhat less dense than pure ironhermodynamic quantities up to pressures of a few tens of
and is generally accepted to contain light impurities such a&Pa, but beyond this shock experimefgse, e.g., Refs. 20—
S, O, Si or H® probably the density of the solid inner core is 22) have no competitors. These experiments give direct val-
also significantly reduced by impuritié.Nevertheless, the ues of the pressure as a function of voldien the Hugo-
thermodynamic properties of pure iron are fundamental taiot curve, and have also been used to obtain information
understanding the more complex real material in the coreabout the adiabatic bulk modulus and some other thermody-
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namic quantities on this curve. These data will be importantelated to the ultrasoft pseudopotentigiSPP method?® In
in validating our calculations. Temperature is difficult to principle, PAW allows one to computd with any required
measure reliably in shock experimeftsaind we believe that precision from a givel,.. In practical tests on Fe and other
our ab initio results may be valuable in providing the neededsystems?*! the technique has been shown to yield results
calibration. that are almost indistinguishable from calculations based on
The difficulties and uncertainties of experiments haveFLAPW, USPP and other DFT implementations. We aim to
stimulated many theoretical efforts. Some of the theoreticafiemonstrate in this work thd& can also be computed from
work has been based on simple atomistic models, such astge ab initio U(Ry, ...Ry) to any required precision.
represgntagtion of the total energy as a sum of pair Tq clarify the precision we are aiming for in the calcula-
pmem'z"j}'SZ' or the more sophisticated embedded-atomyion of F, we need to explain that one of the future objectives
model™ Such models can be useful, but for accuracy ancyt this work is theab initio determination of the high-
reliability they cannot match high-qualitgb initio calcula- pressure melting properties of Fe, a preliminary report on

tionshbastehd on DF{E T?_e accu(rjafcy t?]f DllzT tdepends r:/ery which has been published elsewHéresee also Refs. 44 and
much on the approximation used for the e:ectronic exc angeis)_ Our proposed strategy for determining the melting curve

correlation energyE,. It is known that the local density starts from the basic principle that at coexistence the Gibbs

approximation(LDA) is not fully satisfactory for F&° but . : -
that modern generalized-gradient approximatit®@SA) re- free energieS.(p,T) andGiiq4(p, T) of solid and liquid are

produce a wide range of properties very accurately. Thesgdual- But for a given pressure, the curvesxgh(p,T) and
include the equilibrium lattice parameter, bulk modulus andiia(P, T) cross at a shallow angle. The difference of slopes
magnetic moment of body-centered cukicd Fe at ambi-  (9Gsal/ T)p= = Sso1 @nd (Giq/IT) = — Sjq is equal to the
ent pressure¥?°and the phonon dispersion relations of the €ntropy of fusionS,= S;q— Ssq, Which is comparable tég
bce phasé®®2®9There has been much DFT work on differ- per atom. This means that to get the melting temperature
ent crystal structures of Fe at high pressures, and experimewithin an error of 5T, the noncancelling errors G, and
tal low-temperature results for the pressure as a function oBji; must not exceed c&gdT. Ideally, we should like to
volume p(V) up to p=300 GPa for the hcp structure are calculate the melting temperature to within ca. 100 K, so that
accurately predictetl Further evidence for the accuracy of noncancelling errors must be reduced to the level of ca. 10
DFT comes from the successful prediction of the bcc to hcpmeV. Our original ambition for the present work on hep Fe
transition pressur€;”® and comparison with the measured was to obtainF from the givenab initio U(Ry, .. .Ry) to
phonon density of states of the hcp phase up to pressures gfis precision, and to demonstrate that this has been
~150 GP&° With ab initio molecular dynamics, DFT cal- achieved. As we shall see, this target has probably not been
culations can also be performed on the liquid state, and wattained, but we miss it by only a small factor, which will be
have reported extensive calculations both on pure liquicestimated.
Fe?3132and on liquid Fe/S and Fe/O alloy%:3® We shall present results for thermodynamic quantities for
Recently, work has been reporfeiin which the thermal pressures 58p<400 GPa and temperatures 260D
properties of close-packed crystalline Fe under Earth’'s corez6000 K. This is a far wider range than is strictly needed for
conditions are calculated usimadp initio methods. In fact, the understanding the inner core, where pressures span the range
work itself was based on a tight-binding representation of the830< p<364 GPa andr is believed to be in the region of
total energy, but this was parametrized using extenalve 5000-6000 K. However, the wider range is essential in
initio data. The authors did not attempt to perform themaking comparisons with the available laboratory data. We
statistical-mechanical calculations exactly, but instead usegdet the lower limit of 2000 K for ouT range because this is
the so-called “particle in a cell” approximatiotf,in which  the lowestT that has been proposed for equilibrium between
vibrational correlations between atoms are ignored. In spitghe hcp crystal and the liquitat lower T, melting occurs
of these limitations, the work yielded impressive agreemenfrom the fcc phase
with shock data. We shall make comparisons with this work In the next section, we summarize tlad initio tech-
at various points in the present paper. niques, and give a detailed explanation of the statistical-
The present DFT work is based on the GGA known asmechanical techniques. The three sections after that present
Perdew-Wang 199%° The choice of functional for our investigations of the three main components of the free
exchange-correlation enerdg. exactly determines the free energy, associated with the rigid perfect lattice, harmonic
energy and all other thermodynamic quantities. By this, wdattice vibrations, and anharmonic contributions, probing in
simply mean thak,. exactly determines the total energy of each case the technical measures that must be taken to
the systenJ(Ry, .. .Ry) as a function of atomic positions achieve our target precision. Section VI reports our results
{R;}, and the standard formulas of statistical mechanics exfor all the thermodynamic quantities derived from the free
press the free enerdy exactly in terms ofU(Ry, ...Ry). energy, with comparisons wherever possible with experi-
The calculation otJ from E,. has been discussed over many mental measurements and previous theoretical values. Over-
years by many authors. The present work is based on thal discussion and conclusions are given in Sec. VII. The
projector-augmented-wave (PAW) implementation of problem of choosing good reference models for the calcula-
DFT 324041 which is an all-electron technique similar to tion of the anharmonic free energy is discussed in an Appen-
other standard implementations such as full-potential lineadix. The implications of our results for deepening our under-
augmented plane wavéSLAPW),*? as well as being closely standing of the Earth’s core will be analyzed elsewhere.
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Il. TECHNIQUES B. Components of the free energy

A. Ab initio techniques Our ab initio calculations of thermodynamic properties
are based on a separation of the Helmholtz free eneiigyo

svstems has been extensively revieR&@ihermal electronic Mhe three components mentioned in the Introduction, which
ei/(citations lav a crucial rol?a/ in the current work. and Weare associated with the rigid perfect crystal, harmonic lattice
play ' vibrations, and anharmonic contributions.

handle these using the standard methods of finite- : : : .
249 i To explain this separation, we start from the expression
temperature DFT developed by Mernfin** The fundamen for F gven in Eq (). We let FpofT)

tal quantity is the electronic free energy(R;, .. .Ry:Te) _ 0 0.
calculated at electronic temperatufg, with the N nuclei =U(Ry, .. .Ry:Te) denote the_ total free energy of th.e
fixed at positionsR, , . . .Ry. This is given byU=E—TS, syst_gm wh%n all atom_s are fixed at their perfect-lattice
where the DFT energ\E is the usual sum of Kkinetic, positions Ry, and Wr'te_U(Rl',' ’ 'RN;TE'),:FPE”(T*?')
electron-nucleus, Hartree, and exchange-correlation termg; Yvin(R1. - - .Rn;Te), which defines the vibrational en-
and S is the electronic entropy, given by the independent-79Y Uvin- Then it follows from Eq.(1) that
electron formula S= —2kgTgZ;[ filn fj+(1—1;)In(1—1,)],
with f; the thermal(Fermi-Dirag occupation number of or-
bital i. The electronic kinetic energy and other part&€aflso  where the vibrational free enerdy,, is given by
contain the occupation numbers. In exact DFT, the
exchange-correlatiotiree) energyE,. has an explicit depen- 1
dence onT. Very little is known about this dependence, Fvib:_kBTln[ﬁf dR; ...dRy
and we assume here thaf. has its zero-temperature form.
Throughout this work, we treat the statistical mechanics
of the nuclei in the classical limit, and we show later that Xexd — BUyin(Ry, .. .RN;Te|)]]. (3)
guantum corrections are negligible under the conditions of
interest. The Helmholtz free energy of the whole system ignote that we now omit the factoN! from the partition
then function, since every atom is assumed to be confined to its
own lattice site. The vibrational energy,;, can be further
separated into harmonic and anharmonic padg,&E Upam
Fo —kBTIn{ I1 3Nj dR, .. .dRy, +Uanham)» iN terms of which we can define the harmonic

The use of DFT to calculate the energetics of many-ato

F= Fperf+ Fuib (2

vibrational free energy nam:

1
XeXF{_BU(Rl, RNaTe|)]]1 (1) Fharm:_kBTln[ﬁJ dedRN
where A=h/(27MkgT)¥? is the thermal wavelength, with xXexf — BUpam(R1, - . . Ry ;Te|)]], (4)
M the nuclear mass, and=1/kgT. In practice, the elec-

tronic and nuclear degrees of freedom are in thermal equilibgith the anharmonic free energy being the remainder

rium with each other, so that,=T, but it will be useful to ¢ —F.. —F The harmonic ener is defined
keep the logical distinction between the two. Althoughinart’ﬂzmobv‘{gus Vr\g;;: Y harm

U(R4, ...Ry) is really afreeenergy, we will generally call

it the total energy function, to avoid confusion with the over- 1

all free energyF. Uham=7 % u-(V,VyU)-uy, 5
The PAW implementation of DFT has been described in ’

detail in previous papef:*! The present calculations were whereu, is the displacement of atohfrom its perfect-lattice

done using the VASP cod@> The details of the core radii, position (u=R,—R?) and the double gradient of tfe ini-

augmentation-charge cutoffs, etc., are exactly as in our reio total energy is evaluated with all atoms at their perfect-

cent PAW work on liquid F€? Our division into valence and  |attice positions. Since we are dealing with a crystal, we shall

core states is also the same: the @ectrons are treated as usually prefer to rewritdJ . in the more explicit form:
core states, but their response to the high compression is

represented by an effective pair potential, with the latter con- 1

structed using PAW calculations in which the 3tates are Uharm=7 2 UisaPisa, 1 tpUir1g (6)
explicitly included as valence states. Further technical details Isal"th

are as follows. All the calculations are based on the form ofvhereuy, is the ath Cartesian component of the displace-
GGA known as Perdew-Wang 198%3°Brillouin-zone sam- ment of atom numbes in primitive cell numberl, and
pling was performed using Monkhorst-Pack special paifits, D571 is the force-constant matrix. It should be noted that
and the detailed form of sampling will be noted where ap-the present separation &f does not represent a separation
propriate. The plane-wave cutoff of 300 eV was used, exinto electronic and nuclear contributions, since thermal elec-
actly as in our PAW work on liquid Fe. tronic excitations influence all three parts fef
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Since all other thermodynamic functions can be obtainedithin the ab initio scheme, all the elementBi, /s are
by taking appropriate derivatives of the Helmholtz free en-obtained for a giverl’t3 by introducing a small displace-
ergy, the separation df into components implies a similar mentu,,z, all other displacements being zero, minimizing
separation of other quantities. For example, the presgure the electronic free energy, and evaluating all the fofeggs.
=—(9FIdV)t IS  Pperrt Pharm™ Panharm  Where poer  IN practice, the displacement amplitudg,; must be made

= —(9F per/ 3V) 1, and similarly for the componentsyam small enough to ensure linearity to the required precision,
and P annarm: and this sets the precision with which the electronic free

energy must be minimized.

By translational symmetry, the entire force-constant ma-
trix is obtained by making three independent displacements
The free energy of a harmonic oscillator of frequencyfor each atom in the primitive cell, and this means that no

o is kgTIn(explBhw)—expiphw)), which has the Mmore than 3, s calculations are needed, wheaxg is the

, _ 1 >, humber of atoms in the primitive cell. This number can be
high-temperature - expansiokgT In(Bhw)+keT[ 22 (Bhw) reduced by symmetry. If, as in the hcp crystal, all atoms in

+0((Bhw)*)], so that the harmonic free energy per atom ofthe primitive cell are equivalent under operations of the
the vibrating crystal in the classical limit is space group, then the entire force-constant matrix can be
obtained by making at most three displacements of a single
F _3k_BT E In( B wy0) ) atom in the primitive cell: from®, 1z for one chosen
ham™ N, o Bhoys), atoml’t, one obtaingb,g, s for all otherl’t. Point-group
symmetry reduces the number still further if linearly inde-
wherewys is the frequency of phonon braneslat wave vec-  pendent displacements of the chosen atom are equivalent by
tor k and the sum goes over the first Brillouin zone, whtgy symmetry. This is the case in the hcp structure, since dis-
the total number ok points and branches in the sum. It will placements in the basal plane related by rotations about the
be useful to express this in terms of the geometric avesage XIS by =120° are equivalent by symmetry; this means that
of the phonon frequencies, defined as two calculations, one with the displacement alongdfaeis,
and other with the displacement in the basal plane, suffice to

C. Phonon frequencies

_ 1 obtain the entirebg, (s matrix. The basal-plane displace-
No=— 2, In(wys), (8)  ment should be made along a symmetry direction, because
Nis %s the symmetry makes the calculations more efficient. Since

the exactdg, /(s Matrix has point-group symmetries, the
calculatedPs, |z must be symmetrized to ensure that these
symmetries are respected. The symmetrization also serves to
eliminate the lowest-order nonlinearities in the relation be-
. . . tween forces and displacements.

The central quantity in the calculation of the frequencies It is important to appreciate that thig,, 4 in the for-

is the force-constant matriis,,i /g, Since the frequencies 4 forp_, 15(K) is the force-constant matrix in the infinite
at wave vectok are the eigenvalues of the dynamical matrix |attice, with no restriction on the wave vectorwhereas the
Dsa,tp, defined as ab initio calculations ofbg, |5 can only be done in super-
1 cell geometry. Without a further assumption, it is strictly
_ . 0 0 impossible to extract the infinite-lattick|g, /5 from super-
Dears =31 IE Pisairtp EXHIK- (R —Rig)], (10 ceﬁ calculations, since the latter deliver information ?mly at
wavevectors that are reciprocal lattice vectors of the super-
whereRY, is the perfect-lattice position of atosin primitive  [attice. The further assumption needed is that the infinite-
cell numbei. If we have the complete force-constant matrix, |attice ®)s,1115 Vanishes when the separati®ty,—Rys is
thenDy, 1 and hence the frequenciegs can be obtained at such that the positionR,s and R, lie in different Wigner-
anyk, so thatw can be computed to any required precision.Seitz(WS) cells of the chosen superlattice. More precisely, if
In principle, the elements obs, 1z are nonzero for arbi- we take the WS cell centered &4, then the infinite-lattice
trarily large separationfR;,,—R{|, but in practice they de- Value of®s, 5 vanishes ifR; is in a different WS cell; it
cay rapidly with separation, so that a key issue in achievind® €qual to the supercell value R;s is wholly within the
our target precision is the cutoff distance beyond which theéame WS cell; and it is equal to the supercell value divided
elements can be neglected. by an integei if Rs lies on the boundary of the same WS
We calculateD, |1z by the small-displacement method, Cell. whereP is the number of WS cells havirig;s on their
in a way similar to that described in Ref. 53. The basic prin-Poundary. With this assumption, tis,, /s elements will
ciple is that®q, s describes the proportionality between CONverge to the correct infinite-lattice values as the dimen-
displacements and forces. If the atoms are given small dissions of the supercell are systematically increased.
placementas, from their perfect-lattice positions, then to
linear order the forcek |, are

which allows us to write

Frarm=3KaT IN(Bhw). (9)

D. Anharmonicity
1. Thermodynamic integration
Flea=— 2> Dsy 171U r1p - (12 Although we shall show that the anharmonic free energy
1'tB F anharmiS Numerically fairly small, it is far more challenging
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to calculate tharF e or Frym, because there is no simple ensemble generated by the switched total eneﬂéﬁe(l
formula like Eq.(7), and the direct computation of the mul- —\)U,,.+AU and by( - )} the corresponding average
tidimen§iqnal int_egrals in the free-energy formglas such asggr UY'=(1—N)U e+ NUyjp -
Eq. (4) is impossible. Instead, we use the technique of ther- The crucial point of this is thaltl ¢ is required to consist
modynamic integratiortsee, e.g., Ref. 340 obtain the dif-  of an empirical model potential which quite accurately rep-
ferenceF i, — Fparm, as developed in earlier papérs. resents both the harmonic and anharmonic parts ofathe

~ Thermodynamic integration is a completely general techinitio total energyU,;,. Since it is a model potential, the
nique for determining the difference of free energles  thermodynamic integration fdf e— Fpamcan be performed
—F, for two systems whose total-energy functions &g \jth high precision on large systems. The differerfeg,
andU,. The basic idea is thdt, —F, represents the revers- _ g . py contrast, involves heawb initio calculations, but
ible work done on continuously and |soth§rmally sywtchlng provided a goodJ, can be found these are manageable. The
the energy function frontJ, to U;. To do this switching, @  criterion for choosing a “good’U . is discussed in detail in
continuously variable energy functids, is defined as the Appendix, and the reference system used in most of the

present work is presented in Sec. Il D 3.
U,=(1—\)Ug+ AUy, (12)

so that the energy goes frod, to U; as\ goes from 0 to 1. 2. Calculation of thermal averages

In classical statistical mechanics, the work done in an infini- The calculation of thermal averages is just the standard

tesimal changel\ is problem of computational statistical mechanics, and can be
accomplished by any method that allows us to draw unbiased
dF=(dU, /d\),d\=(U;—Ug),dX, (13  samples of configurations from the appropriate ensemble. In

éhis work, we employ molecular dynamics simulation. This
means, for example, that to calculdté,.;— Uha,m);h we gen-
erate a trajectory of the system using equations of motion
1 derived from the total energy functidm;h. In the usual way,
Fl—Fozf d\ (Ui—Ug), . (14)  aninitial part of the trajectory is discarded for equilibration,
0 and the remainder is used to estimate the average. The dura-
In practice, this formula can be applied by calculatiftg, ~ tion of this remainder must suffice to deliver enouighe-
—Uy), for a suitable set of values and performing the Pendenisamples to achieve the required statistical precision.
integration numerically. The average);—Uo), is evalu- The key technical problem in calculating thermal aver-
ated by sampling over configuration space. ages in nearly harmonic systems is that of ergodicity. In the
For the anharmonic free energy, a possible approach is tdynamical evolution of a perfectly harmonic system, energy
chooseU, as Uy,mandU; asU,,, so thatF,—F, is the IS never shared between different vibrational modes, so that a
anharmonic free energf ,mam This was the procedure Systeém starting at any point in phase space fails to explore
used in our earlieab initio work on the melting of Af and  the whole of phase space. This means that in a nearly har-
a related technique was used by Sugino and? @atheir ~ Monic system .exploratlon will be very sl_ow anq inefficient,
work on Si melting. However, the calculations are rather2nd it is difficult to generate statistically independent
heavy, and the need for extensive sampling over the elec@mples. We solve this following Ref. 3: the statistical sam-
tronic Brillouin zone in theab initio calculations makes it Pling is performed using Andersen molecular dynarﬁfoﬂ,
difficult to achieve high precision. We have now developed avhich the atomic velocities are periodically randomized by
more efficient two-step procedure, in which we go first fromdrawing them from a Maxwellian distribution. This type of
the harmonicab initio systemU ., to an intermediate ref- simulation generates Fhe canonical ensemble and completely
erence systen .; which closely mimics the fullb inito ~ ©vercomes the ergodicity problem.
total energyU,;,; in the second step, we go frol, to
U,i,- The anharmonic free energy is thus represented as

where( - ), represents the thermal average evaluated for th
system governed by, . It follows that

3. Reference system

As discussed in the Appendix, the computational effort
Fanharm™ (Fuib— Fre) + (Frer— Fham, (15  needed to calculaté,j,— F is greatly reduced if the differ-
ence of total energied,;,— U ¢ is small. More precisely, the
Lriterion is thatU,,s should be chosen so that the mean
square fluctuations dfl,;,— U s are as small as possible. In
1 fact, if the fluctuations are small enough, we can simply
Fuib— Fref=J d\ (Uyip—UepY', write Fyip— Fret ={(Ui,— Ut ref, With the average taken in
0 the reference ensemble. If this is not good enough, the next
approximation is readily shown to be

and the two differences are calculated by separate thermod
namic integrations:

1
Frer— Fham= JO da <Uref_ Uharn‘>;\h' (16) 1
Fuib— l:ref2<uvib_ Ure) rei™ m([ Uvib— Uref
.- . B
To distinguish clearly between these two parts of the calcu-
lation, we denote by - )" the thermal average taken in the —(Uyip— U e ret) “dref- 7
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The question of reference systems for Fe has already been 25

discussed in our recerdb initio simulation work on the
high-pressure liquid> We showed there that a remarkably 2F
good reference model is provided by a system interacting
through inverse-power pair potentials: £ O15F

1 & 1}t

UIPZEE (IR —Ry)), (18
1#J
0.5 |

where ¢(r)=B/r¢, with B and « adjusted to minimize the
fluctuations of the difference betwedéhp and theab initio o L L L L !
energy. Unfortunately, we shall show that this is an unsatis- 0 1000 2000 3000 4000 5000 6000
factory reference model for the solid, because the harmonic T(K)

phonon dispersion relations producedy differ markedly . B o

from the ab initio ones. It is a particularly poor reference  FIG. 1. Electronic specific heat per ata@,s of the rigid per-

model at low temperatures where anharmonic corrections afgct lattice of hcp Feunits of Boltzmann's constaritg) as a func-

small, because in thafgane a good reference system must 1o Of temperature for atomic volumes: 1.0A—), 80 A

closely resembl&J ;. However, we find that),» becomes (===, 908 (- -9, and 100 & (....).

an increasingly good reference systemTaapproaches the

melting temperature. We therefore adopt as a general forng . and the pressurp,e; for any chosen volume and elec-

for the reference system a linear combinationgf,m and  tronic temperatureT,;. We do not discuss the low-

Up: temperature behavior, since there have already been many
DFT studies of thi€’~2°32The various DFT calculations are

Urer=C1Uhamt CoUp. (19 in excellent accord, and reproduce accurately the low-

The coefficientsc; andc, are adjusted to minimize the in- temperaturep(V) relation measured in DAC experimerits,

tensity of the fluctuations o) ;,— U for each thermody- especially at high pressures. The difference betyveen the
namic state. The model faJ p is exactly the same as in our Pressures calculated with the present PAW techniques and
work on the high-pressure liquid, with the parameters experimental values ranges from 9% at 100 GPa to 2.5% at

—5.86 andB such that for =2.0 A ¢(r)=1.95 eV. 300 GPa, these deviatiops being only slightly greater than
Now consider in more detail how this optimizationdf. the scatter on the experlmenta_l values. Our resultg .for the
is to be done. In principle, the ensemble in which we have td'/9h-témperature thermodynamic properties of the rigid per-
sample the fluctuations &f;,— U ¢ is the one generated by fect ]attlce WI|.| be repor_ted rather pr|efly, since they mainly
the continuously switched total energy 42)U e+ AUy, confirm what is kn_own in Ies_s deta|! from previous w8,
that governs the thermodynamic integration frdin to All the cglculatlons of this sect|on.emplloy the A35
Uyp. In practice, this is essentially the same as sampling in<9 €lectronic Monkhorst-Pack set, which gives X35oints
either of the ensembles associated Witk or U,;,, pro- N the |rr_edUC|bIe wedge of the B_nlloum zone. Tests with
vided the fluctuations of);,—U o are indeed small. But finer k-point sets show that the residuapoint errors are Igss
even this poses a problem. We are reluctant to sample in tH82n 1 meV/atom fof =2000 K. We performed calculations
ensemble ofJ,;,, because extensivand expensiveab ini- pf Fper at @ set of atomic volumes from 6.2 to _11.43 At
tio calculations are needed to achieve adequate statistical aftervals of 0.2 R, and for every volume fof ¢ going from
curacy. On the other hand, we cannot sample in the ensembf90 t0 10,000 K at intervals of 200 K. The calculations also
of U,ef Without knowingU ¢, which is what we are trying to  deliver the internal energf,. and the electronic entropy
find. We resolve this problem by constructing an initial op-Spert: from which we obtain the specific heat either@g
timized U o by minimizing the fluctuations in the ensemble =(9Epert/dT)y, OF @S Cpe=T(JSper/ dT)y — consistency
of Upam. We then use this initiall o to generate a new set Petween the two methods provides a useful check.
of samples, which is then used to reoptimidey. In prin- Our results forCyr are reported in Fig. 1 for the range
ciple, we should probably repeat this procedure ubltl 0—6000 L(Sgtsgour atomic volumes. As c_expected from previ-
ceases to vary, but in practice we stop after the second iter@US WOrk,"Cpe s becomes large at high temperatures, its
tion. Note that even this approach requires fully convergey@lué of ca. Xg at 6000 K being comparable with the
ab initio calculations for a large set of configurations. But Pulong-Petit specific heat of lattice vibrationskg}, so that
since the configurations are generated with the potentidf€rmal electronic excitations are crucial to a correct descrip-
model U, statistically independent samples are generate§on of Fe thermodynamics at core conditions. @i re-

with much less effort than if we were usitdy,;, to generate sults are numerically quite close to those reported by
them. Wassermaret al,*® though the latter actually refer to fcc Fe.

The linear dependence Qf,e;on T evident in Fig. 1 at low

T [Cperr=yT+ 0O(T?)] is expected from the standard Som-

merfeld expansiot for electronic specific heat in powers of
Our DFT calculations on the rigid perfect lattice give T, which shows that the low-temperature slope is given by

Fperr» @and hence quantities such as electronic specific hea;t=%w2k§g(EF), whereg(Eg) is the electronic density of

Ill. THE RIGID PERFECT LATTICE
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' ' T ' ' be positive. To put the magnitude of this pressure in context,
----------------- we recall that at the Earth’s inner-core boundé@@B) the

% 15} e . . ; . .
(65“ pressure is 330 GPa and the temperature is believed to be in
= the range 50006000 K, the atomic volume of Fe under
2 10l i these conditions being ca. 7 2A0ur results then imply that
8 ] electronic thermal pressure accounts for £&b6 of thetotal
";_: _________________________ pressure, which is small but significant.
£ 5 .
g IV. THE HARMONIC CRYSTAL
. /—T’T‘”‘I”_I’_I’_— A. Convergence tests
7 8 9 10 We have made extensive tests to ensure that our target

V(A% precision of 10 meV/atom is attained for the harmonic free
energyFn.m- We note that at 6000 K this requires that the

FIG. 2. Electronic thermal pressurep of the rigid perfect geometric mean frequenay be calculated with a precision
lattice of hcp Fe as a function of atomic volurvefor T=2000 4 9 704 Convergence @b must be achieved with respect to
(=), 4000(~ ~ -), and 6000 K(- - ). four main parameters: the atomic displacement used to cal-

) _ culate the force-constant matris, 15; the electronic
states(DOS, i.e., the number of states per unit energy pek-point sampling; the size of the repeating cell used to obtain
atom at the Fermi energ£r. We have made separate cal- ¢, ,,5; and the density of thk-point mesh used in calcu-
culations of the DOS and obtaingdrom g(Eg), which give |ating ¢ from w, by integration over the phonon Brillouin
a useful cross-check on the low-temperature slop€ gf;. zone[see Eq7)].

In order to obtain other thermodynamic functions, we  The technical measures taken to achieve convergence are
need a fit to ouF ,¢; results. At each temperature, we fit the as follows. Integration over the phonon Brillouin zone was
results to the standard Birch-Murnaghan form, using exactlyerformed using 364 Monkhorst-Pagkpoints in the irre-
the procedure followed in our recent work on the Fe/Oducible wedge, and an atomic displacement amplitude of
systent® This involves fitting the 22 values OFper at @ 0.0148 A was used; the associated error& g, are less
given temperature using four fitting parametes ( Vo, K than 1 meV/atom in both cases. For electrogisoint sam-
andK’ in the notation of Ref. 36 We find that at all tem- pling, we use the 55X5 Monkhorst-Pack set, which re-
peratures the rms fitting errors are less than 1 meV at aflucesk-point errors to less than 0.1 meV/atom at all tem-
points. The temperature variation of the fitting parameters igeraturesT,, of interest. Finally, we tested the convergence
then represented using a polynomial of sixth degree. of Fpam With respect to the size of repeating cell used to

Electronic excitations have a significant effect on thegenerate®s, 1z, going up to cells containing 150 atoms.
pressure, as can be seen by examiningTthependence of We found that with the EK3><.2 repeating cell the error in
the perfect-lattice pressumBe= —(JF peri/?V)7. We dis-  Fram calculated at the atomic volumé=8.67 A andT
play in Fig. 2 the thermal pam pyes Of Pper, i-€., the dif-  =4300 K is a little over 2 meV/atom, and we adopted this
ference betweep,e, at a givenT and its zero-temperature Cell size for all the calculations.
value. The thermal excitation of electrons produces a posi-
tive pressure. This is what intuition would suggest, but it is
worth noting the reason. SinceF po(Te) =Fpe(0) In Fig. 3 we present the harmonic phonon dispersion re-
—3T2y(V) at low temperatures, the change of pressure dugations at the two atomic volumes 8.67 and 6.9% dilcu-
to electronic excitations idp=3T2dy/dV in this region. lated withT¢=4000 K. We are not aware of previous direct
But dy/dV>0, so that the electronic thermal pressure mustb initio calculations of the phonon frequencies of high-

B. Dispersion relations, average frequency, free energy

20
(@
— 15 —
N N
E E
>
& 10 g
2 g
g 3
T 5 [T Rl o L T SRR, WO R ey & -
0 0 1 1
r M K r A

FIG. 3. Phonon dispersion relations of hcp Fe calculated at atomic volumés67 (left pane) and 6.97 & (right pane). Frequencies
calculated directly from DFT at the two volumes are shown as solid curves. In left panel, dashed curves give frequencies from empirical
inverse-power moddkee text In right panel, dashed curves show DFT frequencie®/fei8.67 A graphed in left panel but scaled by the
factor 1.409.
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32.2 — T T T T 4000, and 6000 K. We use(aatura) log-log plot to display

. the results, so that the negative slopg=—dInw/dInV is

i the so-called phonon Gneisen paramete(The relation be-
tween yy, and the thermodynamic Gmeisen parametey

will be discussed in Sec. VI BWe note that if phonon dis-
persion curves at two different volumes are related by a

simple scaling factor, this must be the ratio@falues at the

32

I3 318

31.6 N . two volumes. The scaling factor used in Fig. 3 was obtained
NG in exactly this way from our results. The Groeisen pa-
31.4 VAN N N S S S — rametery,, increases with increasing volume, in accord with
1.9 2 21 22 23 a widely used rule of thumi We find thaty,,, goes from
InV 1.34 atv=6.7 A%to 1.70 atv=8.3 A3, but then decreases

slightly to 1.62 atvV=9.5 A3. Figure 3 also allows us to
judge the effect ofT on phonon frequencies: for all vol-
umes studied, the frequencies decrease by ca. 4% gses
from 2000 to 6000 K. However, we mention that for the

higher volumes, though not for the smaller ongsslightly

) ) } _ increases again ak, goes to still higher values. To enable
pressure hcp Fe, but there are published dispersion relatlotgﬁ,e w data to be used in thermodynamic calculations, we
derived from a “generalized pseudopotential” parameteriza- _ — '
tion of FP-LMTO calculations performed by “Serlind parameterize the temperature dependence @fdheach vol-
et al?8 using the LDA at the atomic volume 6.82°AThe ~ UMe asa+ bT2+cT3+eT®, and the volume dependence of

agreement of their phonon frequencies with ours is far fromth_e four coefficients, b, ¢ ande as a third-degree polyno-

perfect. For example, we find that the maximum frequency ifnial in V.
the Brillouin zone calculated af=6.82 A2 is at thel'-point We now return to the matter of quantum nuclear correc-

and is 21.2 THz, whereas they find the maximum frequenc;?ons' Since _thle leading hzigh—temperature correction to the
at the M-point with the value 17.2 THz. This is not unex- ree energy is;zKpT(5% )" per mode and .there are t.hree
pected, since they report that the generalized pseudopotent O‘E'FGS ﬁperz f}g’zm’ the quanrt]um czor:jectlon R‘;']afm IS
scheme fails to reproduce accurately some phonon frequeri ks (8 g“’ )")" per atom, whergw®) denotes the aver-
cies calculated directly with FP-LMTO in the fcc Fe 298 of = over wavevectors and branches. At the lowest

crystal?® in addition, the LDA used by them is known to Yolume oOf interest,V=7 A%, (0?)12m is roughly 15
underestimate phonon frequencies in“Fe. T_Hz. At the lowest temperature of intere$t= ZOOQ K;.thIS
Casual inspection suggests that our dispersion curves @VeS @ quantum correction of 3 meV/atom, which is small
the two atomic volumes are almost identical apart from arfompared with our target precision.
overall scale factor. This suggestion can be judged from the
right-hand panel of Fig. 3, where we plot as dashed curves ¢. Harmonic phonon specific heat and thermal pressure
the dispersion curves af=8.67 A® scaled by the factor _
1.409—the reason for choosing this factor will be explained If the mean frequency» were independent of tempera-
below. The comparison shows that the curves at the twéure, the constant-volume specific h€af,,due to harmonic
volumes are indeed related by a single scaling factor t®honons would be exactlykg per atom in the classical limit
within ca. 5%. We also take the opportunity here to checkemployed here. We find that its temperature dependence
how well the inverse-power potential model, [see Eq. Yields a slight increase @,y above this value, but this is
(18)] reproduces phonon frequencies. To do this, we tak@ever greater than 0.Rp under the conditions of interest.
exactly the same parameteBsand « specifying ¢(r) that ~ The harmonic phonon pressysg,m, as a function of atomic
reproduced well the properties of the liqufdnamely «  Vvolume at different temperatures is reported in Fig. 5. Com-
=5.86 andB such that forr=2.0 A#(r)=1.95 eV. The Pparison with Fig. 2 shows thatym is always much bigger
phonons calculated from this model are compared with théby a factor of at least thrg¢ethan the electronic thermal
ab initio phonons at atomic volumg=8.67 A in the left Pressure under the conditions of interest. At ICB conditions
panel of Fig. 3. Although the general form of the dispersion(P= 330 GPa;T~5000-6000 K), ppamaccount for ca. 15%
curves is correctly reproduced, it is clear that the model give§f the total pressure.
only a very rough description, with discrepancies of as much
as 30% for some frequencies.
We performed direcab initio calculations of the disper-
sion relations and hence the geometric mean frequerioy A. Optimization of reference system
seven volumes spaced roughly equally from 9.72t0 6.39 A |t s stressed in Sec. Il D 3 and in the Appendix that op-
and for each of these volumes g from 1000 to 10,000 K timization of the reference system greatly improves the effi-
at intervals of 500 K. The results far as function of volume ciency of the anharmonic calculations. We investigated the
are reported in Fig. 4 for the three temperatufgs=2000, construction of the reference system in detail at the atomic

FIG. 4. Geometric-mean phonon frequerﬁyof hcp Fe as a
function of atomic volume/ for T=2000(—), 4000(— — -), and
6000 K (- - -). The natural logarithm of the two quantities is plotted,

with o in units of rad § andV in units of A2.

V. ANHARMONIC FREE ENERGY
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T T ' ' T ing Simpson’s rule, which gives an integration precision well

50 | T . in excess of our target. To investigate the influence of system
= - size, integration fromJ,,m to U, was performed for sys-
40 Ty tems of 12 different sizes, going from 16 to 1200 atoms. The

calculations were also repeated with the force-constant ma-
------------------------- trix in Upam generated with cells containing from 16 to 150

P (GPa)

orF T ] atoms(see Sec. Il ¢ These tests showed that if the thermo-
B 7 dynamic integration is done with a system of 288 atoms and

20 |- - the force constant used ftJ, ., is generated with the 36-
T atom cell, then the resulting differen¢gq— Fpam iS CON-

10 L L ! ! I verged to better than 3 meV/atom.
7 8 9 10 To compute the difference;,—F., We used the

second-order expansion formula given in ELy7). Given the
small size of the fluctuations &f,;,— U, we expect this to

FIG. 5. The harmonic thermal pressupg,m as a function b€ very accurate. The calculationsref, — F s were all done
of atomic volumeV for T=2000(—), 4000(— — -), and 6000 K  with the 16-atom system. Tests with 36- and 64-atom sys-

v (A%

(- - -). tems show that this free-energy difference is converged with
. S respect to size effects to within ca. 2 meV.
volume 8.67 &, with the optimizations performed for a  |n classical statistical mechanids,.mis expected to go

simulated system of 16 atoms. The calculation of the anharysT2 4t |ow temperatures, and in fact we find that our results
monic free energy itself for a system as small as this woulg, Fannamare well represented b§ ,narm=a(V) T2 for all

not be adequate, but we expect this system size to suffice f‘?ﬁe temperatures studied. The volume dependenaé\6f is

the optimization olU . The initial sample of configurations _ : _
. . . adequately represented &(V)=a;+ a,V, with a;=1.8
(see Sec. Il D Bwas taken from a simulation of duration 100 %10°° eVK 2 and a,=—4.8<10 0 eVA 2 K2 per

ps performed with the total enerdyam. With velocity ran- : . .
domization typically every 0.2 ps. Configurations were takenatom' Th's’. means that fqr the atomic vo!umes of interest the
nharmonic free energy is always negative, so that anharmo-

every 1 ps, so that we obtain a sample of 100 configurations.. " . _ .
In computing the energy differendé,;, — U . for these con- nicity stabilizes the solid. The temperature at which anhar-
I re

figurations, theab initio energyU.,, was always computed monicity becomes appreciable is higher for smaller atomic

using 5< 5% 3 Monkhorst-Pack electronie-point sampling ~ Volumes.
(38 k-points in the full Brillouin zong Once the preliminary
optimization had been performed with configurations gener- C. Anharmonic specific heat and pressure
ated like this, the resultingy s was used to produce a new
set of 100 configurations with an Andersen MD simulation
of the same duration as before, and the reference system
reoptimized.

This entire procedure was carried out at temperatures

Within the parametrization just described, the anharmonic
Wcontribution to the constant-volume specific h€tpamiS
Sisoportional toT and varies linearly with/. As an indication
o‘?f its general size, we note th@,,,,mincreases from 0.09

1000 and 4000 K. The values of the optimization coefficientd® 0-18Ks at 2000 K and from 0.28 to 0.58; at 6000 K as
[see Eq(19)] werec,=0.2, c,=0.8 at the high temperature V goes from 7 to 10 A The anharmonic contribution to the

and ¢c;=0.7, c,=0.3 at the low temperaturéWe do not Pressure is independent of volume, and is proportionafto
require thatc,+c,=1, though this happens to be the caselt increases from 0.4 to 3.5 GPa&goes from 2000 to 6000
here) As expected, resembled) . quite closely at the K, so that even at high temperatures it is barely significant.
low temperature antll,» quite closely at the high tempera-
ture. VI. THERMODYNAMICS OF THE SOLID

In view of the labor involved in the optimization, we
wanted to find out whether the detailed choicecpfandc,
makes a large difference to the strength of the fluctuations
Uyiv— Uef, Which can be characterized by the quant@y
=[({5AU%IN]Y?, where SAU=AU—(AU), with AU
=U,jp— U. To do this, we computed these fluctuations at
several temperatures, using the reference models just gaents.
scribed, i.e., without optimizing the; coefficients at each

We now combine the parametrized forms Ff, Fnam
ANdFannampresented in the previous three sections to obtain
the total free energy of the hcp crystal, and hence, by taking
appropriate derivatives, a range of other thermodynamic
functions, starting with those measured in shock experi-

temperature. We find that witty = 0.2, c,= 0.8 the quantity A. Thermodynamics on the Hugoniot

Q has very small values in the range 0-08.09 eV in all In a shock experiment, conservation of mass, momentum
cases, and we therefore used this way of making the refeand energy requires that the presspgg the molar internal
ence system in all subsequent calculations. energyEy, and the molar volume/; in the compression

_ o o wave are related by the Rankine-Hugoniot formtfla:
B. From harmonic ab initio to reference to full ab initio

The thermodynamic integration fromb initio harmonic E _ e _
to reference was done with nine equally-spakegboints us- 7 PiVo= Vi =Ew—Eo, (20
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FIG. 7. Experimental andb initio temperature as a function of

FIG. 6. Experimental anab initio Hugoniot pressurep as &  pressure on the Hugoniot. Black circles with error bars and white
function of atomic volume/. Symbols show the measurements of yiamonds are measurements due to Ebal. (Ref. 22 and esti-

Brown and McQueeriRef. 21. Solid curve isab initio pressure  mates due to Brown and McQueéRef. 21), respectively. Solid
obtained when calculated equ”'_b”“m volume of bee Fe is used inyhy dashed curves asb initio results obtained using theoretical
the Hugoniot-Rankine equation; dotted curve is the same, but with,q experimental bee volumes. The comparison is meaningful only

experimental equilibrium volume of bcc Fe. The comparison isuptoapressure of ca. 250 GRertical dotted ling at which point
meaningful only up to a pressure of ca. 250 GRarizontal dotted o experiments indicate melting.

line), at which point the experiments indicate melting.

amount which should be expected from the known inaccura-

whereE, andV, are the internal energy and volume in the cies of the GGA applied to Fe. A similar comparison with
zero-pressure state before the arrival of the wave. The quafhe experimental Hugoniot was given in the tight-binding
tities directly measured are the shock-wave and material veptal-energy work of Wassermat al.*® and their agreement
locities, which allow the values gfy; andV, to be deduced. was as good as ours. We discuss the significance of this later.
From a series of experimentpy; as a function ofvy (the Our Hugoniot temperature as function of pressure is com-
so-called Hugonigtcan be derived. The measurement of pared with the experimental results of Yebal?? in Fig. 7.
temperature in shock experiments is attempted bufye also include in the figure the estimates for Hugoniot
problematic’? temperature due to Brown and McQuéérThe latter esti-

The Hugoniot curvepy(Vy) is straightforward to com- mates were based on the basic thermodynamic rel&tion:
pute from our results: for a givev,,, one seeks the tempera-
ture at which the Rankine-Hugoniot relation is satisfied; §T=—T(y/Vv)dV+[(Vy—V)dP+(P-Pg) dV]/(2C,)
from this, one obtaingy (and, if required,Ey). In experi- 21)
ments on FeY, andE, refer to the zero-pressure bcc crystal,
and we obtain their values directly from GGA calculations, between infinitesimal changes dff, dV, anddP along the
using exactly the same PAW technique and GGA as in thélugoniot. This relation contains the constant-volume spe-
rest of the calculations. Since bcc Fe is ferromagnetic, spigific heat C, and the Groeisen parametety, for which
polarization must be included, and this is treated by spirBrown and McQueen had to make assumptions. &umi-
interpolation of the correlation energy due to Voskoal,*®  tio temperatures fall substantially below those of Yaial,,
as described in Refs. 32 and 41. The valu&gfncludes the and this supports the suggestion of Ref. 36 that the &tcad.
harmonic vibrational energy at 300 K, calculated fraim  measurements overestimate the Hugoniot temperature by ca.
initio phonon dispersion relations for ferromagnetic bcc Fe.1000 K. On the other hand, our temperatures agree rather

Our ab initio Hugoniot is compared with the measure- closely with the Brown and McQueen estimates. When we
ments of Brown and McQueéhin Fig. 6. The agreement is examine(Sec. VI B) their assumptions abo@, and y, we
good, with discrepancies ranging from 10 GPa \at shall see that they were reasonable, though the agreement
=7.8 A3 to 12 GPa aV=8.6 A’. These discrepancies are between their temperatures and ours is also partly due to
only slightly greater than those found for the room- cancellation of errors between terms in E21).
temperature statip(V) curve (see Sec. I), which can be A further quantity that can be extracted from shock ex-
regarded as giving an indication of the intrinsic accuracy ofperiments is the bulk sound velocityg as a function of
the GGA itself. Another way of looking at the accuracy to beatomic volume on the Hugoniot, which is given hys
expected of the GGA is to recalculate the Hugoniot using the= (Ks/p)Y?, with Ks=—V(dp/dV)s the adiabatic bulk
experimental value of the bcg, (11.8 A3, compared with  modulus anch the mass density. Sindés can be calculated
theab initio value of 11.55 &). The Hugoniot calculated in from ourab initio pressure and entropy as functionsvoénd
this way is also plotted in Fig. 6, and we see that this givesl, our calculatecKg can be directly compared with experi-
almost perfect agreement with the experimental data in thenental valuegFig. 8). Here, there is a greater discrepancy
pressure range 166240 GPa. We deduce from this that the than one would wish, with the theoretical values falling sig-
ab initio Hugoniot deviates from the experimental data by annificantly above theKg values of both Refs. 21 and 20, al-
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FIG. 8. Experimt_ental andb initio adiabatic bulk modulu&g FIG. 10. Total constant-volume specific heat per a@jr(units
on the Hugoniot. Diamonds and pluses are measureme_nts due {p kg) of hcp Fe as a function of pressure on isothefrs2000 K
Jeanloz(Ref. 20 and Brown and McQueefRef. 21, respectively.  (continuous curves 4000 K (dashed curvésand 6000 K(dotted

Solid and dashed curves aaé initio results obtained using theo-  ¢rveg. Heavy and light curves show present results and those of
retical and experimental bcc volumes. Refs. 8 and 36, respectively.

though we note that the two sets of experimental results dis- ) ) ) o
agree by an amount comparable with the discrepancgmdynam'ca”y stable. In comparing with the predictions of
between theory and experiment. efs. 8 and 36, we use the explicit numerical results from

For what it is worth, we show in Fig. 9 a comparison Ref. 36 for thermodynamic quantities on the 2000 K iso-
between our calculated thermal expansivity on the Hugoniotherm. For the higher temperatures, we rely on the approxi-
with values extracted from shock data by JeadfoEhe lat-  mate parametrized formulas given in Ref. 8.
ter are very scattered, but is clear that the theoretical values The total constant-volume specific heat per atopn(Fig.
have similar magnitude. However, our values vary little10) emphasizes again the importance of electronic excita-
along the Hugoniot, whereas the experimental values seem tions. In a purely harmonic syster@,, would be equal to

decrease rather rapidly with increasing pressure. 3kg, and it is striking thatC, is considerably greater than
that even at the modest temperature of 2000 K, while at 6000
B. Other thermodynamic quantities K it is nearly doubled. The decrease ©f with increasing

We conclude our presentation of results by reportin Ou'pressure evident in Fig. 10 comes from the suppression of
ab initio predictions opf uantities which chara)éterige hcg Feelectronic excitations by high compression, and to a smaller
. P q P P€extent from the suppression of anharmonicity. We note that
at high pressures and temperatures, and allow some further . .
! ; L our C, values are significantly higher than those of Refs. 8
comparisons with the predictions of Refs. 8 and 36. Our . . . . .
. : aqd 36; the main reason for this seems to be our inclusion of

results are presented as a function of pressure on 'SOthermSaanharmonic corrections and thedependence of harmonic

T=2000, 4000, and 6000 K. At each temperature, we giv b

. Yrequencie€! Brown and McQueett made assumptions
results only for the pressure range where, according to our

reliminary ab initio melting curve®® the hcp phase is ther- about the higfp/high-T behavior ofC, in order to estimate
P y 9 ' pp the Hugoniot temperaturésee above Sec. VI)A Their as-

sumptions were that the lattice contribution@g is equal to
3R above the Debye temperature and that the electronic con-

3F . tribution can be represented in the forByw(V/V,e) T,
o5 | | whereV 4 is a reference density, argl, andy® are constants
. whose values were taken from earlier theoretical
oL e calculations’® Since anharmonic and electronic contributions
are negligible at low temperatures, our calcula@@dagrees
with the Brown-McQueen values on the Iqwiow-T part of
the Hugoniot. However, ou€, rises slightly faster, mainly
because of anharmonicity, and becomes ca. 3% higher than
theirs at 200 GPa, the difference between the two decreasing
50 100 150 200 250 again thereafter. N . .
P(GPa) The thermal expansivityr (Fig. .1]) is one of the few
cases where we can compare with DAC measurent@nts.
FIG. 9. Experimental andb initio thermal expansivity on the The latter show that decreases strongly with increasing
Hugoniot. Diamonds are measurements due to Jeaez 20.  Pressure and ouab initio results fully confirm this. Our re-
Solid and dashed curves aab initio results obtained using theo- Sults also show that increases significantly with tempera-
retical and experimental bcc volumes. ture. Both trends are also shown by the calculations of Refs.
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FIG. 11. Thermal expansivityr of hcp Fe as a function of FIG. 13. Gruneisen parametey as a function of pressure on

pressure on isotherm&=2000 K (continuous curves 4000 K isotherms atT=2000 K (continuous curves 4000 K (dashed
(dashed curves and 6000 K(dotted curves Heavy and light curves, and 6000 K(dotted curves Solid and light curves show
curves show present results and those of Refs. 8 and 36, respearesent results and those of Refs. 8 and 36, respectively.

tively. Black circle with error bar is experimental value of Duffy

and AhrengRef. 62 at T=5200+ 500 K. Diamonds are DAC val- pressure physics, because it relates the thermal pre§sure
ues due to Boehl&? for temperatures between 1500 and 2000 K. the differencepth betweenp at givenv and T and p at the
sameV but T=0) and the thermal energidifference Ey,
betweenE at givenV and T and E at the sameV but T
=0). Assumptions about the value gfare frequently used
in reducing shock data from Hugoniot to isotherm. If one

_mpdulus, Wh'Ch is equal toap/a‘l’_)v , IS important because agsumes thay depends only oW, then the thermal pressure
it is sometimes assumed to be independent of pressure an
and energy are related by

temperature over a wide range of conditions, and this con-
stancy is used to extrapolate experimental data. Our pre- V= +E 22)
dicted isotherms fomK+ (Fig. 12 indicate that its depen- PiV="YEm,

dence onp is indeed weak, especially at low temperatures g relation known as the Mie-Gneisen equation of state. At
but that its dependence oh certainly cannot be ignored, |ow temperatures, where only harmonic phonons contribute
since it increases by at least 30% Bgjoes from 2000 to to E,, andpy,, y should indeed be temperature independent
?9{00 IK at h'ilgh pres]sur_es. Wasdset;]nHrall?e (]E_Ofge th) qualif- above the Debye temperature, becalige= 3kg T per atom,
atively similar conclusions, and they also find values of ca,nq 1 \— 3k TdIn widin V=3ksTyg, SO that y=ygn,

10 MPa K" at T=2000 K. However, we note that the gen- piqp depends only oW. But in high-temperature Fe, the

eral tendency in our results fary to increase with pressure emperature independence pfwill clearly fail, because of
at low pressures is not found in the results of Ref. 36 at 200 lectronic excitationgand anharmonicity

K. In par'ucular, .they found a ma”“?d increasedifr with Our results fory (Fig. 13 indicate that it varies rather
decreasing, which does_not oceur in our results. little with either pressure or temperature in the region of
The = thermodynamic ~ Gneisen  parameter y  jiarest At temperatures below ca. 4000 K, it decreases with
=V(dp/dE)y=aK:VIC, plays an important role in high- increasing pressure, as expected from the behavior of the
T T T . T phonon Grmeisen parametey,, (see Sec. IV R This is
also expected from the often-used empirical rule of thtfmb
e v=(VIVy)9, whereV, is a reference volume arglis a con-

8 and 36, though the latter differ from ours in showing con-
siderably larger values af at low pressure and temperature.
The productaK; of expansivity and isothermal bulk

% 14 7 stant exponent usually taken to be roughly unity. Sikte
e —— decreases by a factor of about 0.82%ampes from 100 to 300
o GPa, this empirical relation would make decrease by the
S 12r ] same factor over this range, which is roughly what we see.

However, the pressure dependenceyd$ very much weak-
10 b i ened ad increases, until at 6000 k is almost constant. Our
results agree moderately well with those of Refs. 8 and 36 in
L : L : L giving a valuey=1.5 at high pressures, but at low pressures
50 100 150 200 250 300 350 there is a significant disagreement, since they find a strong
P (GPa) increase ofy to values of over 2.0 ap—0, whereas our

FIG. 12. Product of expansion coefficiesmtand isothermal bulk ~ values never exceed 1.6. _
modulusK as a function of pressure on isotherffis 2000 K In making their estimates of the Hugoniot temperature,
(continuous curves 4000 K (dashed curvésand 6000 K(dotted ~ Brown and McQueéit assumed thatdE/dp),=V/y is a
curves. Heavy and light curves show present results and those ofonstant equal to 2.8510°° m® mol~*. This implies that
Refs. 8 and 36, respectively. v is ca. 2.2 on the low/low-T part of the Hugoniot,
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whereas our calculations give ca. 1.5. However, with increasso it is gratifying to find close agreement over the pressure
ing pressure, the Brown-McQueen value pfapproaches range of interest. The closeness of this agreement is inher-
ours, being only ca. 8% higher at 200 GPa. Given the differently limited by the known inaccuracies of the GGA em-
ences between thef, and y values and ours, one might ployed, and we have shown that the discrepancies are of the
expect a larger disagreement between their Hugoniot temexpected size. An important prediction of the calculations is
peratures and our&Sec. VI A). However, it turns out that the temperaturd(p) on the Hugoniot, since temperature is
there is some cancellation between the differences in theotoriously difficult to obtain in shock experiments. Our re-
various terms of Eq.21) which brings the temperature sults support the reliability of the shock temperatures esti-
curves into the quite close agreement that we have seenated by Brown and McQueéh,and, in agreement with
(Fig. 7). Wassermaret al,*® we find that the temperatures of Yoo
et al?? are too high by as much as 1000 K. This incidentally
lends support to the reliability of the Brown and McQueen
VII. DISCUSSION AND CONCLUSIONS estimate of ca. 5500 K for the melting temperature of Fe at
Our primary interest in th|s Work iS in the properties Of 243 GPa. The Situation iS not so Satisfactory f0r the adiabatiC
hcp iron at high pressures and temperatures, but in order Ik modulusKs on the Hugoniot, since owb initio values
investigate them usingb initio methods we have needed to S€em to be ca. 8% above the shock values. But it should be
make technical developments, which have a wider signifirfemembered that even at ambient conditiabsinitio and
cance. The major technical achievement is that we have beéxperimental bulk moduli frequently differ by this amount.
able to calculate thab initio free energy and other thermo- The difficulties may be partly on the experimental side, since
dynamic properties with completely controlled statistical-even for bcc Fe at ambient conditions, experimektabal-
mechanical errors, i.e., errors that can be reduced to aryes span a range of 8%.
required extent. Anharmonicity and thermal electronic exci- Our calculations fully confirm the strong influence of
tations are fully included. The attainment of high precisionelectronic thermal excitation$:>® At the temperaturesT
for the electronic and harmonic parts of the free energy has 6000 K of interest for the Earth’s core, their contribution
required no particular technical innovations, though carefufo the specific heat is almost as large as that due to lattice
attention to sources of error is essential. The main innovatioiibrations, in line with previous estimates. They also have a
is in the development of well optimized reference systemsignificant effect on the Gneisen parametey, which plays
for use with thermodynamic integration in the calculation ofa key role in the thermodynamics of the core, and is poorly
the anharmonic part, without which adequate precisiortonstrained by experiment. Our finding thatlecreases with
would be impossible. With the methods we have developedncreasing pressure foF <4000 K accords with an often-
it becomes unnecessary to approximate the electronic strugsed rule of thumB? but electronic excitations completely
ture with semiempirical representations, or to resort to thehange this behavior at core temperatures000 K, where
statistical-mechanical approximations that have been used in has almost constant values of ca. 1.45, in accord with
the past. experimental estimates in the range 1.1 to%:%.Compari-
We have assessed in detail the precision achieved in thgon with the earlier tight-binding calculations of Wasserman
various parts of the free energy. There are two kinds of eret al®® both for y and for the quantityaK; is not fully
rors: those incurred in the calculation of the free energiesatisfactory. We find two kinds of disagreement at low tem-
themselves, and those produced by fitting the results to polyperatures. First, they find an increase @Kt as p—0,
nomials. We have seen that the errors in calculating thavhereas we find the opposite. Even more seriously, their
perfect-lattice free energ¥ s are completely negligible, strong increase ofy as p—0 is completely absent in our
though there may be small fitting errors of perhaps 1 meViesults. The source of these disagreements requires further
atom. In the harmonic paFR,m, the calculational errors are investigation.
ca. 3 meV/atom, most of which comes from spatial trunca- In summary, we have presented extensibenitio calcu-
tion of the force-constant matrix; the fitting error B, lations of the free energy and a range of other thermody-
are of about the same size. The most serious errors are in tfi@mic properties of iron at high pressures and temperatures,
anharmonic parf ,nam and these are ca. 5 meV/atom in in which all statistical-mechanical errors are fully under con-
the calculation and ca. 4 meV/atom in the fitting. The overalitrol, and a hightand quantifiegiprecision has been achieved.
technical errors therefore amount to ca. 15 meV/atom, whichVe find close agreement with the most reliable shock data.
is slightly larger than our target of 10 meV/atom. Ab initio values are provided for important, but experimen-
We stress that the precision just quoted does not take inttlly poorly determined quantities, such as the i@isen pa-
account errors incurred in the particular implementation ofrfameter.
DFT (PAW in the present wonk for example the error as-
sociated with the chosen split between valence and core
states. Such errors can in principle be systematically reduced,
but we have not attempted this here. Nor does it account for The work of D.A. is supported by NERC Grant GST/02/
the inaccuracy of the chosdn, or for the neglect of the 1454 to G. D. Price and M. J. Gillan and by the Royal So-
temperature dependence B, . ciety. We thank NERC and EPSRC for allocations of time on
The most direct way to test the reliability of our methodsthe Cray T3E machines at Edinburgh Parallel Computer
is comparison with shock data f@(V) on the Hugoniot®  Center and Manchester CSAR service, these allocations be-
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fessor J.-P. Poirier and Dr. L. Vadlo, and helpful com- The second reason for choosihg, carefully is that we
ments on the original version of the manuscript by Professofant to reduce the number afpoints needed to perform the
R. E. Cohen. integration over\. But this number is determined by the

variation of the averagéJ,—U,), as\ goes from O to 1. It
is readily shown that ifJ, is close toU, then this variation
is also completely determined by the fluctuation strength
(8AU?),, so one arrives at the same criterion as before for
Our calculation of the anharmonic pdft,,mOf theab  choosingU,. The third reason is that one wishes to suppress
initio free energy makes use of a reference system whossystem-size errors. Since the evaluation of the free erfeggy
total energy is a linear combination of thb initio harmonic  associated withJ,, is extremely rapid, it can be performed
energy and the energy of a model based on a purely repulsivier very large systems, and size errors can be eliminated in
pair potential(see Sec. IID 8 We have shown that this F,. All the errors are therefore concentratedmip— F,, and
reference system gives an efficient way of computinghence in (U;—Ugp),. By minimizing the fluctuation
Fanharm HOwever, we recognize that our choice of referencestrength, one also helps to mafl; —U,), as small as pos-
system may seem surprising, since it is well known thatsible, so that size errors have the least possible influence.
models based only on pair potentials cannot give a complete For all these three reasons, the key criterion in the choice
account of the energetics of transition metals. The knowrf reference system is that the fluctuation strength be mini-
inadequacies of such models led many years ago to improvadlal; provided one is concerned only with computational ef-
schemes such as the embedded-atom maBAM)**®  ficiency and the correct calculation Bf,.mto a specified
and other closely related modéfs®’ This appendix has sev- precision, then nothing else matters.
eral aims: first, we clarify the sense in which our chosen |n the light of this criterion, we now ask whether the
reference system gives a computational scheme that is nehoice of a reference system based on pair potentials rather
only correct but also efficient; second, we recall the ways irthan on some more sophisticated model like EAM makes our
which pair-potential descriptions of transition metals are in-task more difficult. The main problem with using pair poten-
adequate, but we note that these ways are not necessarilgls for metals is that they give a fundamentally wrong de-
relevant to the calculation of anharmonic free energies; thirdscription of the changes of electronic bonding associated
we present numerical results that allow us to study how thevith changes of coordination. A real-space analysis sAows
calculation ofF ;ynamWwWorks if the EAM is used as the refer- that the bonding energy of an atom in a metal should be
ence model for the anharmonic free energy, and we conclud@ughly proportional taz*?, with z its coordination number,
that little is gained by doing this; finally, we explain the whereas a pair potential model will give an erroneous pro-
latter conclusion by showing that the EAM reduces almosfportionality toz. The consequence is that the formation en-
exactly to a repulsive pair-potential model for the presentergies of coordination defects such as vacancies or surfaces
anharmonic calculations. A more general analysis of theyill be wrongly given by a pair model. However, in calcu-
ideas that follow will be reported elsewhere. lating the anharmonic free energy, no significant changes of
We start by emphasizing that the final results Ffnam  coordination are involved, so that the reference model is not
cannot depend on the choice of reference model. This ibeing asked to do anything where a pair model would show
simply because the free energy is a function of state, and thigs inadequacy. All the reference model has to do is to de-
reversible work performed in going from the harmonic to thescribe correctly the energy fluctuations of the anharmonically
anharmonic system cannot depend on the path followed. Bufibrating crystal, i.e., to give a small value of the fluctuation
the path is specified by the choice of reference model. Istrength(SAU?),, and the fact that it cannot describe sur-
follows that this choice cannot affect the numerical value offaces or vacancies is irrelevariChe concentration of real
Fannarm The choice of reference model is nevertheless cruyvacancies in a high temperature crystal might or might not be
cial, because it determines the computational effort needed toegligible, but this is not the point at issue here. In fact, for
obtainF snham There are three separate reasons for this. Theeasons discussed elsewhgtag effect of vacancies on the
first reason is that thermodynamic integration requires thé¢ree energy of the real crystal is almost certainly negligjble.
evaluation of U, —Ug), [see Eq(14)], where in the present The practical effectiveness of a reference system based on
caseUg is the reference system amd} is the full ab initioc  a combination of harmoni@b initio and a pair-potential
system. SincéU,— Ug), can only be evaluated by statistical model was demonstrated in Secs. V A and V B. Given the
sampling and involves costlgb initio calculations, it is im-  very small size of the fluctuation strength quoted there, our
portant to minimize the amount of sampling, i.e., the lengthspecified tolerance of 10 meV is already obtained with very
of the simulation run needed to bring the statistical uncerdittle statistical sampling and with a single point, and size
tainty below the specified tolerance on the precigi@ctall  errors also fall within the tolerance. Nevertheless, the recent
that the target tolerance in the present work is 10 meV/atomuse of the EAM by other research groth® to study high-
But this uncertainty is governed by the fluctuation of thep/high-T Fe makes it interesting to consider the conse-
quantity U;— U, being averaged, so the criterion for a quences of using the EAM as a reference system in the
“good” Uy is that the strength of the fluctuations of the present work.

APPENDIX REFERENCE MODELS FOR
ANHARMONIC FREE ENERGY
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To study this, we have made trial calculations based onion to go from the harmonic EAM to the full EAM; finally,
the EAM recently used by Belonoshlat al®® to calculate  we use the second-order formula given in ELj) to deter-
the high-pressure melting curve of Fe. This EAM has themine the difference between full EAM and PAW free ener-
standard forrfP in which the total energ,,,==E; isasum  gies. From this, we subtract the harmonic free endigy,
of energiesE; of atomsi, and eactE; consists of two parts: 0f the PAW system to obtain the anharmonic free energy
first, a purely repulsive energg® represented as a sum of Fanharm The resulting values oF ;;nam at the three states
inverse-power pair potentia®"= S e(a/r;;)", wherer ; is mentl_onled abr?.vf] arﬁ 0'|O44’ —0.042, and— Q.gSgheV, rle—
the interatomic separation and the sum excluide$; sec- spg%nve Y Ové '(8: S do%d()g%e Compafeg V\r’]'t f.t_e \f/a ues
ond, an “embedding” part=(p;) which accounts for the . 57, ~0.048, and—0.038 eV given by the fitting func-

i . : o tion discussed in the texsee Sec. V B The agreement is
metallic bonding mainly due to partial filling of thdabanlsizs. satisfactory bearing in mind the statistical errors of typically

The embedding functiofk(p) is represented as-€Cp™, 15 mey on all values. The important fact here is not that
and the density; fgr atomi is given by the sum over neigh- ¢ oomes out essentially the same as before, which is
borsp;=Xj(a/r;;)". The parameters in this EAM were de- gxpected, but that the quality of the EAM as a reference

termined in Ref. 45 by fitting to first-principles energies of system, though good, is no better than that of the reference
hcp and liquid Fe calculated using the full-potential linear-,,qodel described in the text.

ized muffin-tin orbital(FPLMTO) technique. To check the  The conclusion from these numerical tests is that refer-

quality of this EAM as a reference model, we have studiedyce systems based either on the EAM or on purely repulsive
the energies it produces for a thermal sample of configuran,ir potentials can be made to reproduce almost perfectly the
tions generated by direct molecular d_ynamlcs S|mulat|on_ of &p initio total energy of the higi- anharmonic Fe system.
64-atom cell of hcp Fe performed using our PAW techniquegyt clearly this implies that these two types of reference
at the stateT=6700 K andV=7.186 A/atom, which is  gystem must be almost identical to each other for the atomic
close to our preliminary calculated melting cufewe find configurations sampled in thermal equilibrium. This implica-
that the EAM and PAW energies are fairly close, but that the;gp, may at first be surprising, but becomes less so if one
agreement can be further improved by adjusting the strengtynsiders what the EAM does. All the metallic bonding in
and exponent of the EAM inverse-power potential&fi*,  the EAM is in the embedding densipy for each atom. Even

leaving the embedding enerdy(p;) untouched. On doing at high T, we find that this fluctuates only weakly. Writing
this, we find the exponem=5.93, which is very close to the -

; : _pi=p+ Sp;, wherep is the thermal average of,, we can
value we obtained when we used the inverse power potenn% P 'pIF WFP— E'(2) S0, With ?1 o .
alone(see Sec. V A The quality of fit of the EAM to our tnen writeF(p;) =F(p) +F'(p) dp;. With this approxima-

PAW energies can be characterized by the quanty tion, _the EAM reduces to a pair_-potential r_nodel, S."‘i?? .
—[(5AU2)/N]Y2, where the fluctuation strength is calcu- consists of a sum over atom pairs. The pair potential in this

lated here as a time average in the m.d. run. We find théreduced” form of the EAM consists of a strongly varying

valueQ=0.09 eV. If we do exactly the same thing using there/pulsive termE{® and a weakly varying bonding term
pure inverse-power reference model described in the text, wE oi- To guantify this, we have examined the numerical
also find the valueQ=0.09 eV, so that the quality of the size of the ﬂuctua‘uonseof these _two terms. We find that the
EAM as a reference model is not significantly different from Mean square values Bf** fluctuations are typically between
that of the inverse-power model. We also note that the pho30 and 50 times those &%(p;) fluctuations. Closer analysis
non frequencies obtained from the EAM are almost the sam&hows that this large factor comes from three sources: first,
as those of the pure inverse-power reference sy&emSec. the square-root dependencefdfp) on p; second, the lower

IV B). inverse-power exponent ip; compared with that irE{*";

We have used the EAM by itself as a reference modelthird, the fact thatE{*” is numerically about twicé(p;) at
without further changes of parameters, to calculate the arthe pressures of interest. Since the fluctuationg8fare so
harmonic free energy of our PAW system at three thermodominant, the crucial requirement in using the EAM as a
dynamic statesT=6000 K,V=6.97 A’/atom;T=4500 K, reference model is that the repulsive potential be optimized:
V=8.67 A’/atom; andT=4000 K,V=8.67 A’/atom. The one loses little by ignoring the fluctuations of the embedding
calculations are done in three stages: first, we calculate thenergy and treating the latter simply as a volume-dependent
harmonic phonon frequencies of the EAM, and hence itsonstant. In this sense, the EAM reduces almost exactly to
harmonic free energy; next, we use thermodynamic integrasur reference model based on pair potentials.
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