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Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions

D. Alfè,1,2 G. D. Price,1 and M. J. Gillan2
1Research School of Geological and Geophysical Sciences, Birkbeck and University College London, Gower Street,

London WC1E 6BT, United Kingdom
2Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT, United Kingdom

~Received 26 August 1999; revised manuscript received 7 December 2000; published 9 July 2001!

The free energy and other thermodynamic properties of hexagonal-close-packed iron are calculated by direct
ab initio methods over a wide range of pressures and temperatures relevant to the Earth’s core. Theab initio
calculations are based on density-functional theory in the generalized-gradient approximation, and are per-
formed using the projector augmented wave approach. Thermal excitation of electrons is fully included. The
Helmholtz free energy consists of three parts, associated with the rigid perfect lattice, harmonic lattice vibra-
tions, and anharmonic contributions, and the technical problems of calculating these parts to high precision are
investigated. The harmonic part is obtained by computing the phonon frequencies over the entire Brillouin
zone, and by summation of the free-energy contributions associated with the phonon modes. The anharmonic
part is computed by the technique of thermodynamic integration using carefully designed reference systems.
Detailed results are presented for the pressure, specific heat, bulk modulus, expansion coefficient and Gru¨n-
eisen parameter, and comparisons are made with values obtained from diamond-anvil-cell and shock experi-
ments.
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I. INTRODUCTION

Ab initio techniques based on density-functional theo
~DFT! have played a key role for several years in the stu
of matter under extreme conditions.1 With recent progress in
the direct ab initio calculation of thermodynamic fre
energies,2–4 there is now great scope for the systematic a
accurate calculation of thermodynamic properties ove
wide range of conditions. We present here extensive D
calculations of the free energy of hexagonal-close-pac
~hcp! iron under Earth’s core conditions, which we ha
used to obtain results for a number of other thermodyna
quantities, including the bulk modulus, expansion coe
cient, specific heat and Gru¨neisen parameter. For some
these we can make direct comparisons with experime
data, which support the accuracy and realism of the calc
tions; for others, the calculations supply information that
not yet available from experiments. An important ambiti
of the work is to determine thermodynamic functions wit
out making any significant statistical-mechanical
electronic-structure approximations, other than those
quired by DFT itself, and we shall argue that we come clo
to achieving this. The techniques we have developed
rather general, and we believe they will find applicati
to many other problems concerning matter under extre
conditions.

The importance of understanding the high-pressure
high-temperature properties of iron can be appreciated
recalling that the Earth’s core accounts for about 30% of
mass of the entire Earth, and consists mainly of iron.5 In fact,
the liquid outer core is somewhat less dense than pure i
and is generally accepted to contain light impurities such
S, O, Si or H;6 probably the density of the solid inner core
also significantly reduced by impurities.7,8 Nevertheless, the
thermodynamic properties of pure iron are fundamenta
understanding the more complex real material in the co
0163-1829/2001/64~4!/045123~16!/$20.00 64 0451
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and a large experimental effort has been devoted to mea
ing them. The difficulties are severe, because the pres
range of interest extends from 100 GPa up to nearly 4
GPa, and the temperature goes from ca. 3000 K to perh
7000 K—the temperature at the center of the core is sub
to an uncertainty of at least 1000 K.

Static compression experiments with the diamond an
cell ~DAC! have been performed on Fe up to 300 GPa
room temperature,9 and DAC experiments at temperatures
high as 3700 K have been reported up to 200 GPa.10–18 Our
present knowledge of the phase diagram of Fe comes ma
from these experiments, though there are still controvers
For pressuresp above ca. 60 GPa and temperaturesT below
ca. 1500 K it is generally accepted that the stable phas
hexagonal close packed~hcp!. Recent DAC diffraction
experiments18 indicate that hcp is actually stable for all tem
peratures up to the melting line forp.60 GPa, but earlier
work claimed that there is another phase, usually calledb, in
a region below the melting line for pressures above ca.
GPa. The existing evidence suggests that, if theb-phase is
thermodynamically stable, its structure could either
double-hcp,14,15 or orthorhombic,17 and in either case is
closely related to the usual hcp structure. According to v
recent theoretical work,19 hcp is thermodynamically slightly
more stable than double-hcp at Earth’s core pressures
temperatures. The evidence for the stability of hcp o
much of the high-temperature/high-pressure phase diag
is our motivation for concentrating on this phase in t
present work.

DAC measurements have given some information ab
thermodynamic quantities up to pressures of a few tens
GPa, but beyond this shock experiments~see, e.g., Refs. 20–
22! have no competitors. These experiments give direct v
ues of the pressure as a function of volume21 on the Hugo-
niot curve, and have also been used to obtain informa
about the adiabatic bulk modulus and some other thermo
©2001 The American Physical Society23-1
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namic quantities on this curve. These data will be import
in validating our calculations. Temperature is difficult
measure reliably in shock experiments,22 and we believe tha
our ab initio results may be valuable in providing the need
calibration.

The difficulties and uncertainties of experiments ha
stimulated many theoretical efforts. Some of the theoret
work has been based on simple atomistic models, such
representation of the total energy as a sum of p
potentials,23 or the more sophisticated embedded-at
model.24 Such models can be useful, but for accuracy a
reliability they cannot match high-qualityab initio calcula-
tions based on DFT.25 The accuracy of DFT depends ve
much on the approximation used for the electronic exchan
correlation energyExc . It is known that the local density
approximation~LDA ! is not fully satisfactory for Fe,26 but
that modern generalized-gradient approximations~GGA! re-
produce a wide range of properties very accurately. Th
include the equilibrium lattice parameter, bulk modulus a
magnetic moment of body-centered cubic~bcc! Fe at ambi-
ent pressures,27–29and the phonon dispersion relations of t
bcc phase.19,32,69There has been much DFT work on diffe
ent crystal structures of Fe at high pressures, and experim
tal low-temperature results for the pressure as a function
volume p(V) up to p5300 GPa for the hcp structure a
accurately predicted.9 Further evidence for the accuracy
DFT comes from the successful prediction of the bcc to h
transition pressure,27,28 and comparison with the measure
phonon density of states of the hcp phase up to pressure
;150 GPa.30 With ab initio molecular dynamics, DFT cal
culations can also be performed on the liquid state, and
have reported extensive calculations both on pure liq
Fe29,31,32and on liquid Fe/S and Fe/O alloys.33–35

Recently, work has been reported8,36 in which the thermal
properties of close-packed crystalline Fe under Earth’s c
conditions are calculated usingab initio methods. In fact, the
work itself was based on a tight-binding representation of
total energy, but this was parametrized using extensiveab
initio data. The authors did not attempt to perform t
statistical-mechanical calculations exactly, but instead u
the so-called ‘‘particle in a cell’’ approximation,37 in which
vibrational correlations between atoms are ignored. In s
of these limitations, the work yielded impressive agreem
with shock data. We shall make comparisons with this w
at various points in the present paper.

The present DFT work is based on the GGA known
Perdew-Wang 1991.38,39 The choice of functional for
exchange-correlation energyExc exactly determines the fre
energy and all other thermodynamic quantities. By this,
simply mean thatExc exactly determines the total energy
the systemU(R1 , . . .RN) as a function of atomic position
$Ri%, and the standard formulas of statistical mechanics
press the free energyF exactly in terms ofU(R1 , . . .RN).
The calculation ofU from Exc has been discussed over ma
years by many authors. The present work is based on
projector-augmented-wave ~PAW! implementation of
DFT,32,40,41 which is an all-electron technique similar t
other standard implementations such as full-potential lin
augmented plane waves~FLAPW!,42 as well as being closely
04512
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related to the ultrasoft pseudopotential~USPP! method.46 In
principle, PAW allows one to computeU with any required
precision from a givenExc . In practical tests on Fe and othe
systems,32,41 the technique has been shown to yield resu
that are almost indistinguishable from calculations based
FLAPW, USPP and other DFT implementations. We aim
demonstrate in this work thatF can also be computed from
the ab initio U(R1 , . . .RN) to any required precision.

To clarify the precision we are aiming for in the calcul
tion of F, we need to explain that one of the future objectiv
of this work is the ab initio determination of the high-
pressure melting properties of Fe, a preliminary report
which has been published elsewhere43 ~see also Refs. 44 an
45!. Our proposed strategy for determining the melting cu
starts from the basic principle that at coexistence the Gi
free energiesGsol(p,T) andGliq(p,T) of solid and liquid are
equal. But for a given pressure, the curves ofGsol(p,T) and
Gliq(p,T) cross at a shallow angle. The difference of slop
(]Gsol/]T)p52Ssol and (]Gliq /]T)p52Sliq is equal to the
entropy of fusionSm[Sliq2Ssol, which is comparable tokB

per atom. This means that to get the melting tempera
within an error ofdT, the noncancelling errors inGsol and
Gliq must not exceed ca.kBdT. Ideally, we should like to
calculate the melting temperature to within ca. 100 K, so t
noncancelling errors must be reduced to the level of ca.
meV. Our original ambition for the present work on hcp F
was to obtainF from the givenab initio U(R1 , . . .RN) to
this precision, and to demonstrate that this has b
achieved. As we shall see, this target has probably not b
attained, but we miss it by only a small factor, which will b
estimated.

We shall present results for thermodynamic quantities
pressures 50,p,400 GPa and temperatures 2000,T
,6000 K. This is a far wider range than is strictly needed
understanding the inner core, where pressures span the r
330,p,364 GPa andT is believed to be in the region o
500026000 K. However, the wider range is essential
making comparisons with the available laboratory data.
set the lower limit of 2000 K for ourT range because this i
the lowestT that has been proposed for equilibrium betwe
the hcp crystal and the liquid~at lower T, melting occurs
from the fcc phase!.

In the next section, we summarize theab initio tech-
niques, and give a detailed explanation of the statistic
mechanical techniques. The three sections after that pre
our investigations of the three main components of the f
energy, associated with the rigid perfect lattice, harmo
lattice vibrations, and anharmonic contributions, probing
each case the technical measures that must be take
achieve our target precision. Section VI reports our res
for all the thermodynamic quantities derived from the fr
energy, with comparisons wherever possible with expe
mental measurements and previous theoretical values. O
all discussion and conclusions are given in Sec. VII. T
problem of choosing good reference models for the calcu
tion of the anharmonic free energy is discussed in an App
dix. The implications of our results for deepening our und
standing of the Earth’s core will be analyzed elsewhere.
3-2
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II. TECHNIQUES

A. Ab initio techniques

The use of DFT to calculate the energetics of many-at
systems has been extensively reviewed.25 Thermal electronic
excitations play a crucial role in the current work, and w
handle these using the standard methods of fin
temperature DFT developed by Mermin.47–49The fundamen-
tal quantity is the electronic free energyU(R1 , . . .RN ;Tel)
calculated at electronic temperatureTel with the N nuclei
fixed at positionsR1 , . . .RN . This is given byU5E2TS,
where the DFT energyE is the usual sum of kinetic
electron-nucleus, Hartree, and exchange-correlation te
and S is the electronic entropy, given by the independe
electron formula S522kBTel( i@ f i ln fi1(12fi)ln(12fi)#,
with f i the thermal~Fermi-Dirac! occupation number of or
bital i. The electronic kinetic energy and other parts ofE also
contain the occupation numbers. In exact DFT,
exchange-correlation~free! energyExc has an explicit depen
dence onTel . Very little is known about this dependenc
and we assume here thatExc has its zero-temperature form

Throughout this work, we treat the statistical mechan
of the nuclei in the classical limit, and we show later th
quantum corrections are negligible under the conditions
interest. The Helmholtz free energy of the whole system
then

F52kBT lnH 1

N!L3NE dR1 . . . dRN

3exp@2bU~R1 , . . .RN ;Tel!#J , ~1!

whereL5h/(2pMkBT)1/2 is the thermal wavelength, with
M the nuclear mass, andb51/kBT. In practice, the elec-
tronic and nuclear degrees of freedom are in thermal equ
rium with each other, so thatTel5T, but it will be useful to
keep the logical distinction between the two. Althou
U(R1 , . . .RN) is really afreeenergy, we will generally call
it the total energy function, to avoid confusion with the ove
all free energyF.

The PAW implementation of DFT has been described
detail in previous papers.40,41 The present calculations wer
done using the VASP code.50,51 The details of the core radii
augmentation-charge cutoffs, etc., are exactly as in our
cent PAW work on liquid Fe.32 Our division into valence and
core states is also the same: the 3p electrons are treated a
core states, but their response to the high compressio
represented by an effective pair potential, with the latter c
structed using PAW calculations in which the 3p states are
explicitly included as valence states. Further technical det
are as follows. All the calculations are based on the form
GGA known as Perdew-Wang 1991.38,39Brillouin-zone sam-
pling was performed using Monkhorst-Pack special point52

and the detailed form of sampling will be noted where a
propriate. The plane-wave cutoff of 300 eV was used,
actly as in our PAW work on liquid Fe.
04512
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B. Components of the free energy

Our ab initio calculations of thermodynamic propertie
are based on a separation of the Helmholtz free energyF into
the three components mentioned in the Introduction, wh
are associated with the rigid perfect crystal, harmonic latt
vibrations, and anharmonic contributions.

To explain this separation, we start from the express
for F given in Eq. ~1!. We let Fperf(Tel)
[U(R1

0 , . . .RN
0 ;Tel) denote the total free energy of th

system when all atoms are fixed at their perfect-latt
positions RI

0 , and write U(R1 , . . .RN ;Tel)5Fperf(Tel)
1Uvib(R1 , . . .RN ;Tel), which defines the vibrational en
ergy Uvib . Then it follows from Eq.~1! that

F5Fperf1Fvib , ~2!

where the vibrational free energyFvib is given by

Fvib52kBT lnH 1

L3NE dR1 . . . dRN

3exp@2bUvib~R1 , . . .RN ;Tel!#J . ~3!

~Note that we now omit the factorN! from the partition
function, since every atom is assumed to be confined to
own lattice site.! The vibrational energyUvib can be further
separated into harmonic and anharmonic parts (Uvib5Uharm
1Uanharm), in terms of which we can define the harmon
vibrational free energyFharm:

Fharm52kBT lnH 1

L3NE dR1 . . . dRN

3exp@2bUharm~R1 , . . .RN ;Tel!#J , ~4!

with the anharmonic free energy being the remain
Fanharm5Fvib2Fharm. The harmonic energyUharm is defined
in the obvious way:

Uharm5
1

2 (
I ,J

uI•~¹ I¹JU !•uJ , ~5!

whereuI is the displacement of atomI from its perfect-lattice
position (uI[RI2RI

0) and the double gradient of theab ini-
tio total energy is evaluated with all atoms at their perfe
lattice positions. Since we are dealing with a crystal, we sh
usually prefer to rewriteUharm in the more explicit form:

Uharm5
1

2 (
lsa,l 8tb

ulsaF lsa,l 8tbul 8tb , ~6!

whereulsa is the ath Cartesian component of the displac
ment of atom numbers in primitive cell number l, and
F lsa,l 8tb is the force-constant matrix. It should be noted th
the present separation ofF does not represent a separati
into electronic and nuclear contributions, since thermal el
tronic excitations influence all three parts ofF.
3-3
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Since all other thermodynamic functions can be obtain
by taking appropriate derivatives of the Helmholtz free e
ergy, the separation ofF into components implies a simila
separation of other quantities. For example, the pressup
52(]F/]V)T is pperf1pharm1panharm, where pperf
52(]Fperf/]V)T , and similarly for the componentspharm
andpanharm.

C. Phonon frequencies

The free energy of a harmonic oscillator of frequen

v is kBT ln„exp(12b\v)2exp(21
2b\v)…, which has the

high-temperature expansionkBT ln(b\v)1kBT@ 1
24 (b\v)2

1O„(b\v)4
…#, so that the harmonic free energy per atom

the vibrating crystal in the classical limit is

Fharm5
3kBT

Nks
(
ks

ln~b\vks!, ~7!

wherevks is the frequency of phonon branchs at wave vec-
tor k and the sum goes over the first Brillouin zone, withNks
the total number ofk points and branches in the sum. It w
be useful to express this in terms of the geometric averagv̄
of the phonon frequencies, defined as

ln v̄5
1

Nks
(
ks

ln~vks!, ~8!

which allows us to write

Fharm53kBT ln~b\v̄!. ~9!

The central quantity in the calculation of the frequenc
is the force-constant matrixF lsa,l 8tb , since the frequencie
at wave vectork are the eigenvalues of the dynamical mat
Dsa,tb , defined as

Dsa,tb~k!5
1

M (
l 8

F lsa,l 8tb exp@ ik•~Rl 8t
0

2Rls
0 !#, ~10!

whereRls
0 is the perfect-lattice position of atoms in primitive

cell numberl. If we have the complete force-constant matr
thenDsa,tb and hence the frequenciesvks can be obtained a
any k, so thatv̄ can be computed to any required precisio
In principle, the elements ofF lsa,l 8tb are nonzero for arbi-
trarily large separationsuRl 8t

0
2Rls

0 u, but in practice they de-
cay rapidly with separation, so that a key issue in achiev
our target precision is the cutoff distance beyond which
elements can be neglected.

We calculateF lsa,l 8tb by the small-displacement metho
in a way similar to that described in Ref. 53. The basic pr
ciple is thatF lsa,l 8tb describes the proportionality betwee
displacements and forces. If the atoms are given small
placementsulsa from their perfect-lattice positions, then t
linear order the forcesFlsa are

Flsa52(
l 8tb

F lsa,l 8tbul 8tb . ~11!
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Within the ab initio scheme, all the elementsF lsa,l 8tb are
obtained for a givenl 8tb by introducing a small displace
ment ul 8tb , all other displacements being zero, minimizin
the electronic free energy, and evaluating all the forcesFlsa .
In practice, the displacement amplitudeul 8tb must be made
small enough to ensure linearity to the required precisi
and this sets the precision with which the electronic fr
energy must be minimized.

By translational symmetry, the entire force-constant m
trix is obtained by making three independent displaceme
for each atom in the primitive cell, and this means that
more than 3Nbas calculations are needed, whereNbas is the
number of atoms in the primitive cell. This number can
reduced by symmetry. If, as in the hcp crystal, all atoms
the primitive cell are equivalent under operations of t
space group, then the entire force-constant matrix can
obtained by making at most three displacements of a sin
atom in the primitive cell: fromF lsa,l 8tb for one chosen
atom l 8t, one obtainsF lsa,l 8tb for all other l 8t. Point-group
symmetry reduces the number still further if linearly ind
pendent displacements of the chosen atom are equivalen
symmetry. This is the case in the hcp structure, since
placements in the basal plane related by rotations about tc
axis by6120° are equivalent by symmetry; this means th
two calculations, one with the displacement along thec axis,
and other with the displacement in the basal plane, suffic
obtain the entireF lsa,l 8tb matrix. The basal-plane displace
ment should be made along a symmetry direction, beca
the symmetry makes the calculations more efficient. Si
the exactF lsa,l 8tb matrix has point-group symmetries, th
calculatedF lsa,l 8tb must be symmetrized to ensure that the
symmetries are respected. The symmetrization also serv
eliminate the lowest-order nonlinearities in the relation b
tween forces and displacements.53

It is important to appreciate that theF lsa,l 8tb in the for-
mula forDsa,tb(k) is the force-constant matrix in the infinit
lattice, with no restriction on the wave vectork, whereas the
ab initio calculations ofF lsa,l 8tb can only be done in super
cell geometry. Without a further assumption, it is strict
impossible to extract the infinite-latticeF lsa,l 8tb from super-
cell calculations, since the latter deliver information only
wavevectors that are reciprocal lattice vectors of the sup
lattice. The further assumption needed is that the infin
lattice F lsa,l 8tb vanishes when the separationRl 8t2Rls is
such that the positionsRls andRl 8t lie in different Wigner-
Seitz~WS! cells of the chosen superlattice. More precisely
we take the WS cell centered onRl 8t , then the infinite-lattice
value ofF lsa,l 8tb vanishes ifRls is in a different WS cell; it
is equal to the supercell value ifRls is wholly within the
same WS cell; and it is equal to the supercell value divid
by an integerP if Rls lies on the boundary of the same W
cell, whereP is the number of WS cells havingRls on their
boundary. With this assumption, theF lsa,l 8tb elements will
converge to the correct infinite-lattice values as the dim
sions of the supercell are systematically increased.

D. Anharmonicity

1. Thermodynamic integration

Although we shall show that the anharmonic free ene
Fanharmis numerically fairly small, it is far more challengin
3-4
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to calculate thanFperf or Fharm, because there is no simp
formula like Eq.~7!, and the direct computation of the mu
tidimensional integrals in the free-energy formulas such
Eq. ~4! is impossible. Instead, we use the technique of th
modynamic integration~see, e.g., Ref. 54! to obtain the dif-
ferenceFvib2Fharm, as developed in earlier papers.2–4

Thermodynamic integration is a completely general te
nique for determining the difference of free energiesF1
2F0 for two systems whose total-energy functions areU1
andU0. The basic idea is thatF12F0 represents the revers
ible work done on continuously and isothermally switchi
the energy function fromU0 to U1. To do this switching, a
continuously variable energy functionUl is defined as

Ul5~12l!U01lU1 , ~12!

so that the energy goes fromU0 to U1 asl goes from 0 to 1.
In classical statistical mechanics, the work done in an infi
tesimal changedl is

dF5^dUl /dl&ldl5^U12U0&ldl, ~13!

where^ • &l represents the thermal average evaluated for
system governed byUl . It follows that

F12F05E
0

1

dl ^U12U0&l . ~14!

In practice, this formula can be applied by calculating^U1
2U0&l for a suitable set ofl values and performing the
integration numerically. The average^U12U0&l is evalu-
ated by sampling over configuration space.

For the anharmonic free energy, a possible approach
chooseU0 as Uharm and U1 as Uvib , so thatF12F0 is the
anharmonic free energyFanharm. This was the procedure
used in our earlierab initio work on the melting of Al,3 and
a related technique was used by Sugino and Car2 in their
work on Si melting. However, the calculations are rath
heavy, and the need for extensive sampling over the e
tronic Brillouin zone in theab initio calculations makes i
difficult to achieve high precision. We have now develope
more efficient two-step procedure, in which we go first fro
the harmonicab initio systemUharm to an intermediate ref-
erence systemU ref which closely mimics the fullab initio
total energyUvib ; in the second step, we go fromU ref to
Uvib . The anharmonic free energy is thus represented a

Fanharm5~Fvib2F ref!1~F ref2Fharm!, ~15!

and the two differences are calculated by separate therm
namic integrations:

Fvib2F ref5E
0

1

dl ^Uvib2U ref&l
vr ,

F ref2Fharm5E
0

1

dl ^U ref2Uharm&l
rh . ~16!

To distinguish clearly between these two parts of the ca
lation, we denote bŷ • &l

rh the thermal average taken in th
04512
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ensemble generated by the switched total energyUl
rh[(1

2l)Uharm1lU ref and by ^ • &l
vr the corresponding averag

for Ul
vr[(12l)U ref1lUvib .

The crucial point of this is thatU ref is required to consist
of an empirical model potential which quite accurately re
resents both the harmonic and anharmonic parts of theab
initio total energyUvib . Since it is a model potential, th
thermodynamic integration forF ref2Fharm can be performed
with high precision on large systems. The differenceFvib
2F ref , by contrast, involves heavyab initio calculations, but
provided a goodU ref can be found these are manageable. T
criterion for choosing a ‘‘good’’U ref is discussed in detail in
the Appendix, and the reference system used in most of
present work is presented in Sec. II D 3.

2. Calculation of thermal averages

The calculation of thermal averages is just the stand
problem of computational statistical mechanics, and can
accomplished by any method that allows us to draw unbia
samples of configurations from the appropriate ensemble
this work, we employ molecular dynamics simulation. Th
means, for example, that to calculate^U ref2Uharm&l

rh we gen-
erate a trajectory of the system using equations of mo
derived from the total energy functionUl

rh . In the usual way,
an initial part of the trajectory is discarded for equilibratio
and the remainder is used to estimate the average. The d
tion of this remainder must suffice to deliver enoughinde-
pendentsamples to achieve the required statistical precisi

The key technical problem in calculating thermal ave
ages in nearly harmonic systems is that of ergodicity. In
dynamical evolution of a perfectly harmonic system, ene
is never shared between different vibrational modes, so th
system starting at any point in phase space fails to exp
the whole of phase space. This means that in a nearly
monic system exploration will be very slow and inefficien
and it is difficult to generate statistically independe
samples. We solve this following Ref. 3: the statistical sa
pling is performed using Andersen molecular dynamics,55 in
which the atomic velocities are periodically randomized
drawing them from a Maxwellian distribution. This type o
simulation generates the canonical ensemble and comple
overcomes the ergodicity problem.

3. Reference system

As discussed in the Appendix, the computational eff
needed to calculateFvib2F ref is greatly reduced if the differ-
ence of total energiesUvib2U ref is small. More precisely, the
criterion is thatU ref should be chosen so that the me
square fluctuations ofUvib2U ref are as small as possible. I
fact, if the fluctuations are small enough, we can sim
write Fvib2F ref .^Uvib2U ref& ref , with the average taken in
the reference ensemble. If this is not good enough, the n
approximation is readily shown to be

Fvib2F ref.^Uvib2U ref& ref2
1

2kBT
Š@Uvib2U ref

2^Uvib2U ref& ref#
2
‹ref . ~17!
3-5
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The question of reference systems for Fe has already b
discussed in our recentab initio simulation work on the
high-pressure liquid.32 We showed there that a remarkab
good reference model is provided by a system interac
through inverse-power pair potentials:

U IP5
1

2 (
IÞJ

f~ uRI2RJu!, ~18!

wheref(r )5B/r a, with B and a adjusted to minimize the
fluctuations of the difference betweenU IP and theab initio
energy. Unfortunately, we shall show that this is an unsa
factory reference model for the solid, because the harmo
phonon dispersion relations produced byU IP differ markedly
from the ab initio ones. It is a particularly poor referenc
model at low temperatures where anharmonic corrections
small, because in that re´gime a good reference system mu
closely resembleUharm. However, we find thatU IP becomes
an increasingly good reference system asT approaches the
melting temperature. We therefore adopt as a general f
for the reference system a linear combination ofUharm and
U IP :

U ref5c1Uharm1c2U IP . ~19!

The coefficientsc1 and c2 are adjusted to minimize the in
tensity of the fluctuations ofUvib2U ref for each thermody-
namic state. The model forU IP is exactly the same as in ou
work on the high-pressure liquid, with the parametersa
55.86 andB such that forr 52.0 Å f(r )51.95 eV.

Now consider in more detail how this optimization ofU ref
is to be done. In principle, the ensemble in which we have
sample the fluctuations ofUvib2U ref is the one generated b
the continuously switched total energy (12l)U ref1lUvib
that governs the thermodynamic integration fromU ref to
Uvib . In practice, this is essentially the same as sampling
either of the ensembles associated withU ref or Uvib , pro-
vided the fluctuations ofUvib2U ref are indeed small. Bu
even this poses a problem. We are reluctant to sample in
ensemble ofUvib , because extensive~and expensive! ab ini-
tio calculations are needed to achieve adequate statistica
curacy. On the other hand, we cannot sample in the ense
of U ref without knowingU ref , which is what we are trying to
find. We resolve this problem by constructing an initial o
timized U ref by minimizing the fluctuations in the ensemb
of Uharm. We then use this initialU ref to generate a new se
of samples, which is then used to reoptimizeU ref . In prin-
ciple, we should probably repeat this procedure untilU ref
ceases to vary, but in practice we stop after the second it
tion. Note that even this approach requires fully converg
ab initio calculations for a large set of configurations. B
since the configurations are generated with the poten
model U ref , statistically independent samples are genera
with much less effort than if we were usingUvib to generate
them.

III. THE RIGID PERFECT LATTICE

Our DFT calculations on the rigid perfect lattice giv
Fperf, and hence quantities such as electronic specific h
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Cperf and the pressurepperf for any chosen volume and elec
tronic temperatureTel . We do not discuss the low
temperature behavior, since there have already been m
DFT studies of this.27–29,32The various DFT calculations ar
in excellent accord, and reproduce accurately the lo
temperaturep(V) relation measured in DAC experiments9

especially at high pressures. The difference between
pressures calculated with the present PAW techniques
experimental values ranges from 9% at 100 GPa to 2.5%
300 GPa, these deviations being only slightly greater th
the scatter on the experimental values. Our results for
high-temperature thermodynamic properties of the rigid p
fect lattice will be reported rather briefly, since they main
confirm what is known in less detail from previous work.8,36

All the calculations of this section employ the 15315
39 electronic Monkhorst-Pack set, which gives 135k-points
in the irreducible wedge of the Brillouin zone. Tests wi
finer k-point sets show that the residualk-point errors are less
than 1 meV/atom forT>2000 K. We performed calculation
of Fperf at a set of atomic volumes from 6.2 to 11.4 Å3 at
intervals of 0.2 Å3, and for every volume forTel going from
200 to 10,000 K at intervals of 200 K. The calculations a
deliver the internal energyEperf and the electronic entropy
Sperf, from which we obtain the specific heat either asCperf
5(]Eperf/]T)V , or as Cperf5T(]Sperf/]T)V – consistency
between the two methods provides a useful check.

Our results forCperf are reported in Fig. 1 for theTel range
026000 K at four atomic volumes. As expected from pre
ous work,8,36,56Cperf becomes large at high temperatures,
value of ca. 2kB at 6000 K being comparable with th
Dulong-Petit specific heat of lattice vibrations (3kB), so that
thermal electronic excitations are crucial to a correct desc
tion of Fe thermodynamics at core conditions. OurCperf re-
sults are numerically quite close to those reported
Wassermanet al.,36 though the latter actually refer to fcc Fe
The linear dependence ofCperf on T evident in Fig. 1 at low
T @Cperf5gT1O(T2)# is expected from the standard Som
merfeld expansion57 for electronic specific heat in powers o
T, which shows that the low-temperature slope is given
g5 1

3 p2kB
2g(EF), whereg(EF) is the electronic density o

FIG. 1. Electronic specific heat per atomCperf of the rigid per-
fect lattice of hcp Fe~units of Boltzmann’s constantkB) as a func-
tion of temperature for atomic volumes: 7.0 Å3 ~——!, 8.0 Å3

~— — —!, 9.0 Å3 ~– – –!, and 10.0 Å3 ~ . . . !.
3-6
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states~DOS, i.e., the number of states per unit energy
atom! at the Fermi energyEF . We have made separate ca
culations of the DOS and obtainedg from g(EF), which give
a useful cross-check on the low-temperature slope ofCperf.

In order to obtain other thermodynamic functions, w
need a fit to ourFperf results. At each temperature, we fit th
results to the standard Birch-Murnaghan form, using exa
the procedure followed in our recent work on the Fe
system.35 This involves fitting the 22 values ofFperf at a
given temperature using four fitting parameters (E0 , V0 , K
andK8 in the notation of Ref. 35!. We find that at all tem-
peratures the rms fitting errors are less than 1 meV at
points. The temperature variation of the fitting parameter
then represented using a polynomial of sixth degree.

Electronic excitations have a significant effect on t
pressure, as can be seen by examining theT dependence o
the perfect-lattice pressurepperf52(]Fperf/]V)T . We dis-
play in Fig. 2 the thermal partDpperf of pperf, i.e., the dif-
ference betweenpperf at a givenT and its zero-temperatur
value. The thermal excitation of electrons produces a p
tive pressure. This is what intuition would suggest, but it
worth noting the reason. SinceFperf(Tel)5Fperf(0)
2 1

2 T2g(V) at low temperatures, the change of pressure
to electronic excitations isDp5 1

2 T2dg/dV in this region.
But dg/dV.0, so that the electronic thermal pressure m

FIG. 2. Electronic thermal pressureDpperf of the rigid perfect
lattice of hcp Fe as a function of atomic volumeV for T52000
~—!, 4000~– – –!, and 6000 K~- - -!.
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be positive. To put the magnitude of this pressure in cont
we recall that at the Earth’s inner-core boundary~ICB! the
pressure is 330 GPa and the temperature is believed to b
the range 500026000 K, the atomic volume of Fe unde
these conditions being ca. 7 Å3. Our results then imply tha
electronic thermal pressure accounts for ca. 4 % of thetotal
pressure, which is small but significant.

IV. THE HARMONIC CRYSTAL

A. Convergence tests

We have made extensive tests to ensure that our ta
precision of 10 meV/atom is attained for the harmonic fr
energyFharm. We note that at 6000 K this requires that th
geometric mean frequencyv̄ be calculated with a precision
of 0.7%. Convergence ofv̄ must be achieved with respect t
four main parameters: the atomic displacement used to
culate the force-constant matrixF lsa,l 8tb ; the electronic
k-point sampling; the size of the repeating cell used to obt
F lsa,l 8tb ; and the density of thek-point mesh used in calcu
lating v̄ from vks by integration over the phonon Brillouin
zone@see Eq.~7!#.

The technical measures taken to achieve convergence
as follows. Integration over the phonon Brillouin zone w
performed using 364 Monkhorst-Packk-points in the irre-
ducible wedge, and an atomic displacement amplitude
0.0148 Å was used; the associated errors inFharm are less
than 1 meV/atom in both cases. For electronick-point sam-
pling, we use the 53535 Monkhorst-Pack set, which re
ducesk-point errors to less than 0.1 meV/atom at all tem
peraturesTel of interest. Finally, we tested the convergen
of Fharm with respect to the size of repeating cell used
generateF lsa,l 8tb , going up to cells containing 150 atom
We found that with the 33332 repeating cell the error in
Fharm calculated at the atomic volumeV58.67 Å andT
54300 K is a little over 2 meV/atom, and we adopted th
cell size for all the calculations.

B. Dispersion relations, average frequency, free energy

In Fig. 3 we present the harmonic phonon dispersion
lations at the two atomic volumes 8.67 and 6.97 Å3 calcu-
lated withTel54000 K. We are not aware of previous dire
ab initio calculations of the phonon frequencies of hig
empirical
e

FIG. 3. Phonon dispersion relations of hcp Fe calculated at atomic volumesV58.67 ~left panel! and 6.97 Å3 ~right panel!. Frequencies
calculated directly from DFT at the two volumes are shown as solid curves. In left panel, dashed curves give frequencies from
inverse-power model~see text!. In right panel, dashed curves show DFT frequencies forV58.67 Å3 graphed in left panel but scaled by th
factor 1.409.
3-7
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pressure hcp Fe, but there are published dispersion rela
derived from a ‘‘generalized pseudopotential’’ parameteri
tion of FP-LMTO calculations performed by So¨derlind
et al.28 using the LDA at the atomic volume 6.82 Å3. The
agreement of their phonon frequencies with ours is far fr
perfect. For example, we find that the maximum frequency
the Brillouin zone calculated atV56.82 Å3 is at theG-point
and is 21.2 THz, whereas they find the maximum freque
at theM-point with the value 17.2 THz. This is not unex
pected, since they report that the generalized pseudopote
scheme fails to reproduce accurately some phonon freq
cies calculated directly with FP-LMTO in the fcc F
crystal;28 in addition, the LDA used by them is known t
underestimate phonon frequencies in Fe.29

Casual inspection suggests that our dispersion curve
the two atomic volumes are almost identical apart from
overall scale factor. This suggestion can be judged from
right-hand panel of Fig. 3, where we plot as dashed cur
the dispersion curves atV58.67 Å3 scaled by the factor
1.409—the reason for choosing this factor will be explain
below. The comparison shows that the curves at the
volumes are indeed related by a single scaling factor
within ca. 5%. We also take the opportunity here to che
how well the inverse-power potential modelU IP @see Eq.
~18!# reproduces phonon frequencies. To do this, we t
exactly the same parametersB and a specifyingf(r ) that
reproduced well the properties of the liquid,32 namely a
55.86 andB such that forr 52.0 Å f(r )51.95 eV. The
phonons calculated from this model are compared with
ab initio phonons at atomic volumeV58.67 Å in the left
panel of Fig. 3. Although the general form of the dispers
curves is correctly reproduced, it is clear that the model gi
only a very rough description, with discrepancies of as mu
as 30% for some frequencies.

We performed directab initio calculations of the disper
sion relations and hence the geometric mean frequencyv̄ for
seven volumes spaced roughly equally from 9.72 to 6.393,
and for each of these volumes forTel from 1000 to 10,000 K
at intervals of 500 K. The results forv̄ as function of volume
are reported in Fig. 4 for the three temperaturesTel52000,

FIG. 4. Geometric-mean phonon frequencyv̄ of hcp Fe as a
function of atomic volumeV for T52000 ~—!, 4000~– – –!, and
6000 K~- - -!. The natural logarithm of the two quantities is plotte

with v̄ in units of rad s21 andV in units of Å3.
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4000, and 6000 K. We use a~natural! log-log plot to display
the results, so that the negative slopegph[2d ln v̄/d ln V is
the so-called phonon Gru¨neisen parameter.~The relation be-
tween g th and the thermodynamic Gru¨neisen parameterg
will be discussed in Sec. VI B.! We note that if phonon dis-
persion curves at two different volumes are related by
simple scaling factor, this must be the ratio ofv̄ values at the
two volumes. The scaling factor used in Fig. 3 was obtain
in exactly this way from ourv̄ results. The Gru¨neisen pa-
rametergph increases with increasing volume, in accord w
a widely used rule of thumb.58 We find thatgph goes from
1.34 atV56.7 Å3 to 1.70 atV58.3 Å3, but then decrease
slightly to 1.62 atV59.5 Å3. Figure 3 also allows us to
judge the effect ofTel on phonon frequencies: for all vol
umes studied, the frequencies decrease by ca. 4% asTel goes
from 2000 to 6000 K. However, we mention that for th
higher volumes, though not for the smaller ones,v̄ slightly
increases again asTel goes to still higher values. To enab
the v̄ data to be used in thermodynamic calculations,
parameterize the temperature dependence of lnv̄ at each vol-
ume asa1bT21cT31eT5, and the volume dependence
the four coefficientsa, b, c ande as a third-degree polyno
mial in V.

We now return to the matter of quantum nuclear corr
tions. Since the leading high-temperature correction to
free energy is 1

24 kBT(b\v)2 per mode and there are thre
modes per atom, the quantum correction toFharm is
1
8 kBT(b\^v2&1/2)2 per atom, wherêv2& denotes the aver
age of v2 over wavevectors and branches. At the lowe
volume of interest,V57 Å3, ^v2&1/2/2p is roughly 15
THz. At the lowest temperature of interest,T52000 K; this
gives a quantum correction of 3 meV/atom, which is sm
compared with our target precision.

C. Harmonic phonon specific heat and thermal pressure

If the mean frequencyv̄ were independent of tempera
ture, the constant-volume specific heatCharmdue to harmonic
phonons would be exactly 3kB per atom in the classical limi
employed here. We find that its temperature depende
yields a slight increase ofCharm above this value, but this is
never greater than 0.25kB under the conditions of interes
The harmonic phonon pressurepharm as a function of atomic
volume at different temperatures is reported in Fig. 5. Co
parison with Fig. 2 shows thatpharm is always much bigger
~by a factor of at least three! than the electronic therma
pressure under the conditions of interest. At ICB conditio
(p5330 GPa,T;500026000 K!, pharmaccount for ca. 15%
of the total pressure.

V. ANHARMONIC FREE ENERGY

A. Optimization of reference system

It is stressed in Sec. II D 3 and in the Appendix that o
timization of the reference system greatly improves the e
ciency of the anharmonic calculations. We investigated
construction of the reference system in detail at the ato
3-8
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THERMODYNAMICS OF HEXAGONAL-CLOSE-PACKED . . . PHYSICAL REVIEW B64 045123
volume 8.67 Å3, with the optimizations performed for
simulated system of 16 atoms. The calculation of the anh
monic free energy itself for a system as small as this wo
not be adequate, but we expect this system size to suffice
the optimization ofU ref . The initial sample of configuration
~see Sec. II D 3! was taken from a simulation of duration 10
ps performed with the total energyUharm, with velocity ran-
domization typically every 0.2 ps. Configurations were tak
every 1 ps, so that we obtain a sample of 100 configuratio
In computing the energy differenceUvib2U ref for these con-
figurations, theab initio energyUvib was always computed
using 53533 Monkhorst-Pack electronick-point sampling
~38 k-points in the full Brillouin zone!. Once the preliminary
optimization had been performed with configurations gen
ated like this, the resultingU ref was used to produce a ne
set of 100 configurations with an Andersen MD simulati
of the same duration as before, and the reference system
reoptimized.

This entire procedure was carried out at temperature
1000 and 4000 K. The values of the optimization coefficie
@see Eq.~19!# werec150.2, c250.8 at the high temperatur
and c150.7, c250.3 at the low temperature.~We do not
require thatc11c251, though this happens to be the ca
here.! As expected,U ref resemblesUharm quite closely at the
low temperature andU IP quite closely at the high tempera
ture.

In view of the labor involved in the optimization, w
wanted to find out whether the detailed choice ofc1 andc2
makes a large difference to the strength of the fluctuation
Uvib2U ref , which can be characterized by the quantityQ
5@^dDU2&/N#1/2, where dDU5DU2^DU&, with DU
5Uvib2U ref . To do this, we computed these fluctuations
several temperatures, using the reference models just
scribed, i.e., without optimizing theci coefficients at each
temperature. We find that withc150.2, c250.8 the quantity
Q has very small values in the range 0.0520.09 eV in all
cases, and we therefore used this way of making the re
ence system in all subsequent calculations.

B. From harmonic ab initio to reference to full ab initio

The thermodynamic integration fromab initio harmonic
to reference was done with nine equally-spacedl-points us-

FIG. 5. The harmonic thermal pressurepharm as a function
of atomic volumeV for T52000 ~—!, 4000~– – –!, and 6000 K
~- - -!.
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ing Simpson’s rule, which gives an integration precision w
in excess of our target. To investigate the influence of sys
size, integration fromUharm to U ref was performed for sys-
tems of 12 different sizes, going from 16 to 1200 atoms. T
calculations were also repeated with the force-constant
trix in Uharm generated with cells containing from 16 to 15
atoms~see Sec. II C!. These tests showed that if the therm
dynamic integration is done with a system of 288 atoms a
the force constant used forUharm is generated with the 36
atom cell, then the resulting differenceF ref2Fharm is con-
verged to better than 3 meV/atom.

To compute the differenceFvib2F ref , we used the
second-order expansion formula given in Eq.~17!. Given the
small size of the fluctuations ofUvib2U ref , we expect this to
be very accurate. The calculations ofFvib2F ref were all done
with the 16-atom system. Tests with 36- and 64-atom s
tems show that this free-energy difference is converged w
respect to size effects to within ca. 2 meV.

In classical statistical mechanics,Fanharmis expected to go
asT2 at low temperatures, and in fact we find that our resu
for Fanharmare well represented byFanharm5a(V)T2 for all
the temperatures studied. The volume dependence ofa(V) is
adequately represented bya(V)5a11a2V, with a151.8
31029 eV K22 and a2524.8310210 eV Å23 K22 per
atom. This means that for the atomic volumes of interest
anharmonic free energy is always negative, so that anhar
nicity stabilizes the solid. The temperature at which anh
monicity becomes appreciable is higher for smaller atom
volumes.

C. Anharmonic specific heat and pressure

Within the parametrization just described, the anharmo
contribution to the constant-volume specific heatCanharm is
proportional toT and varies linearly withV. As an indication
of its general size, we note thatCanharmincreases from 0.09
to 0.18kB at 2000 K and from 0.28 to 0.53kB at 6000 K as
V goes from 7 to 10 Å3. The anharmonic contribution to th
pressure is independent of volume, and is proportional toT2.
It increases from 0.4 to 3.5 GPa asT goes from 2000 to 6000
K, so that even at high temperatures it is barely significa

VI. THERMODYNAMICS OF THE SOLID

We now combine the parametrized forms forFperf, Fharm,
andFanharmpresented in the previous three sections to obt
the total free energy of the hcp crystal, and hence, by tak
appropriate derivatives, a range of other thermodyna
functions, starting with those measured in shock exp
ments.

A. Thermodynamics on the Hugoniot

In a shock experiment, conservation of mass, momen
and energy requires that the pressurepH , the molar internal
energyEH , and the molar volumeVH in the compression
wave are related by the Rankine-Hugoniot formula:60

1

2
pH~V02VH!5EH2E0 , ~20!
3-9
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D. ALFÈ, G. D. PRICE, AND M. J. GILLAN PHYSICAL REVIEW B64 045123
whereE0 andV0 are the internal energy and volume in th
zero-pressure state before the arrival of the wave. The q
tities directly measured are the shock-wave and material
locities, which allow the values ofpH andVH to be deduced.
From a series of experiments,pH as a function ofVH ~the
so-called Hugoniot! can be derived. The measurement
temperature in shock experiments is attempted
problematic.22

The Hugoniot curvepH(VH) is straightforward to com-
pute from our results: for a givenVH , one seeks the tempera
ture at which the Rankine-Hugoniot relation is satisfie
from this, one obtainspH ~and, if required,EH). In experi-
ments on Fe,V0 andE0 refer to the zero-pressure bcc cryst
and we obtain their values directly from GGA calculation
using exactly the same PAW technique and GGA as in
rest of the calculations. Since bcc Fe is ferromagnetic, s
polarization must be included, and this is treated by s
interpolation of the correlation energy due to Voskoet al.,59

as described in Refs. 32 and 41. The value ofE0 includes the
harmonic vibrational energy at 300 K, calculated fromab
initio phonon dispersion relations for ferromagnetic bcc F

Our ab initio Hugoniot is compared with the measur
ments of Brown and McQueen21 in Fig. 6. The agreement i
good, with discrepancies ranging from 10 GPa atV
57.8 Å3 to 12 GPa atV58.6 Å3. These discrepancies ar
only slightly greater than those found for the room
temperature staticp(V) curve ~see Sec. III!, which can be
regarded as giving an indication of the intrinsic accuracy
the GGA itself. Another way of looking at the accuracy to
expected of the GGA is to recalculate the Hugoniot using
experimental value of the bccV0 ~11.8 Å3, compared with
theab initio value of 11.55 Å3). The Hugoniot calculated in
this way is also plotted in Fig. 6, and we see that this gi
almost perfect agreement with the experimental data in
pressure range 1002240 GPa. We deduce from this that th
ab initio Hugoniot deviates from the experimental data by

FIG. 6. Experimental andab initio Hugoniot pressurep as a
function of atomic volumeV. Symbols show the measurements
Brown and McQueen~Ref. 21!. Solid curve isab initio pressure
obtained when calculated equilibrium volume of bcc Fe is used
the Hugoniot-Rankine equation; dotted curve is the same, but
experimental equilibrium volume of bcc Fe. The comparison
meaningful only up to a pressure of ca. 250 GPa~horizontal dotted
line!, at which point the experiments indicate melting.
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amount which should be expected from the known inaccu
cies of the GGA applied to Fe. A similar comparison wi
the experimental Hugoniot was given in the tight-bindi
total-energy work of Wassermanet al.,36 and their agreemen
was as good as ours. We discuss the significance of this l

Our Hugoniot temperature as function of pressure is co
pared with the experimental results of Yooet al.22 in Fig. 7.
We also include in the figure the estimates for Hugon
temperature due to Brown and McQueen.21 The latter esti-
mates were based on the basic thermodynamic relation:21

dT52T~g/V! dV1@~V02V! dP1~P2P0! dV#/~2Cv!

~21!

between infinitesimal changes ofdT, dV, anddP along the
Hugoniot. This relation contains the constant-volume s
cific heat Cv and the Gru¨neisen parameterg, for which
Brown and McQueen had to make assumptions. Ourab ini-
tio temperatures fall substantially below those of Yooet al.,
and this supports the suggestion of Ref. 36 that the Yooet al.
measurements overestimate the Hugoniot temperature b
1000 K. On the other hand, our temperatures agree ra
closely with the Brown and McQueen estimates. When
examine~Sec. VI B! their assumptions aboutCv andg, we
shall see that they were reasonable, though the agree
between their temperatures and ours is also partly due
cancellation of errors between terms in Eq.~21!.

A further quantity that can be extracted from shock e
periments is the bulk sound velocityvB as a function of
atomic volume on the Hugoniot, which is given byvB
5(KS /r)1/2, with KS[2V(]p/]V)S the adiabatic bulk
modulus andr the mass density. SinceKS can be calculated
from ourab initio pressure and entropy as functions ofV and
T, our calculatedKS can be directly compared with exper
mental values~Fig. 8!. Here, there is a greater discrepan
than one would wish, with the theoretical values falling s
nificantly above theKS values of both Refs. 21 and 20, a

n
th
s

FIG. 7. Experimental andab initio temperature as a function o
pressure on the Hugoniot. Black circles with error bars and wh
diamonds are measurements due to Yooet al. ~Ref. 22! and esti-
mates due to Brown and McQueen~Ref. 21!, respectively. Solid
and dashed curves areab initio results obtained using theoretica
and experimental bcc volumes. The comparison is meaningful o
up to a pressure of ca. 250 GPa~vertical dotted line!, at which point
the experiments indicate melting.
3-10
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though we note that the two sets of experimental results
agree by an amount comparable with the discrepa
between theory and experiment.

For what it is worth, we show in Fig. 9 a compariso
between our calculated thermal expansivity on the Hugo
with values extracted from shock data by Jeanloz.20 The lat-
ter are very scattered, but is clear that the theoretical va
have similar magnitude. However, our values vary lit
along the Hugoniot, whereas the experimental values see
decrease rather rapidly with increasing pressure.

B. Other thermodynamic quantities

We conclude our presentation of results by reporting
ab initio predictions of quantities which characterize hcp
at high pressures and temperatures, and allow some fu
comparisons with the predictions of Refs. 8 and 36. O
results are presented as a function of pressure on isotherm
T52000, 4000, and 6000 K. At each temperature, we g
results only for the pressure range where, according to
preliminaryab initio melting curve,43 the hcp phase is ther

FIG. 8. Experimental andab initio adiabatic bulk modulusKS

on the Hugoniot. Diamonds and pluses are measurements d
Jeanloz~Ref. 20! and Brown and McQueen~Ref. 21!, respectively.
Solid and dashed curves areab initio results obtained using theo
retical and experimental bcc volumes.

FIG. 9. Experimental andab initio thermal expansivity on the
Hugoniot. Diamonds are measurements due to Jeanloz~Ref. 20!.
Solid and dashed curves areab initio results obtained using theo
retical and experimental bcc volumes.
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modynamically stable. In comparing with the predictions
Refs. 8 and 36, we use the explicit numerical results fr
Ref. 36 for thermodynamic quantities on the 2000 K is
therm. For the higher temperatures, we rely on the appr
mate parametrized formulas given in Ref. 8.

The total constant-volume specific heat per atomCv ~Fig.
10! emphasizes again the importance of electronic exc
tions. In a purely harmonic system,Cv would be equal to
3kB , and it is striking thatCv is considerably greater tha
that even at the modest temperature of 2000 K, while at 6
K it is nearly doubled. The decrease ofCv with increasing
pressure evident in Fig. 10 comes from the suppression
electronic excitations by high compression, and to a sma
extent from the suppression of anharmonicity. We note t
our Cv values are significantly higher than those of Refs
and 36; the main reason for this seems to be our inclusio
anharmonic corrections and theT-dependence of harmoni
frequencies.61 Brown and McQueen21 made assumptions
about the high-p/high-T behavior ofCv in order to estimate
the Hugoniot temperature~see above Sec. VI A!. Their as-
sumptions were that the lattice contribution toCv is equal to
3R above the Debye temperature and that the electronic c
tribution can be represented in the formbe(V/Vref)

ge
T,

whereVref is a reference density, andbe andge are constants
whose values were taken from earlier theoreti
calculations.56 Since anharmonic and electronic contributio
are negligible at low temperatures, our calculatedCv agrees
with the Brown-McQueen values on the low-p/low-T part of
the Hugoniot. However, ourCv rises slightly faster, mainly
because of anharmonicity, and becomes ca. 3% higher
theirs at 200 GPa, the difference between the two decrea
again thereafter.

The thermal expansivitya ~Fig. 11! is one of the few
cases where we can compare with DAC measuremen10

The latter show thata decreases strongly with increasin
pressure and ourab initio results fully confirm this. Our re-
sults also show thata increases significantly with tempera
ture. Both trends are also shown by the calculations of R

to
FIG. 10. Total constant-volume specific heat per atomCv ~units

of kB) of hcp Fe as a function of pressure on isothermsT52000 K
~continuous curves!, 4000 K ~dashed curves!, and 6000 K~dotted
curves!. Heavy and light curves show present results and thos
Refs. 8 and 36, respectively.
3-11
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8 and 36, though the latter differ from ours in showing co
siderably larger values ofa at low pressure and temperatur

The productaKT of expansivity and isothermal bul
modulus, which is equal to (]p/]T)v , is important because
it is sometimes assumed to be independent of pressure
temperature over a wide range of conditions, and this c
stancy is used to extrapolate experimental data. Our
dicted isotherms foraKT ~Fig. 12! indicate that its depen
dence onp is indeed weak, especially at low temperatur
but that its dependence onT certainly cannot be ignored
since it increases by at least 30% asT goes from 2000 to
6000 K at high pressures. Wassermanet al.36 come to quali-
tatively similar conclusions, and they also find values of
10 MPa K21 at T.2000 K. However, we note that the ge
eral tendency in our results foraKT to increase with pressur
at low pressures is not found in the results of Ref. 36 at 2
K. In particular, they found a marked increase ofaKT with
decreasingp, which does not occur in our results.

The thermodynamic Gru¨neisen parameter g
[V(]p/]E)V[aKTV/Cv plays an important role in high

FIG. 11. Thermal expansivitya of hcp Fe as a function o
pressure on isothermsT52000 K ~continuous curves!, 4000 K
~dashed curves!, and 6000 K ~dotted curves!. Heavy and light
curves show present results and those of Refs. 8 and 36, re
tively. Black circle with error bar is experimental value of Duff
and Ahrens~Ref. 62! at T552006500 K. Diamonds are DAC val-
ues due to Boehler10 for temperatures between 1500 and 2000 K

FIG. 12. Product of expansion coefficienta and isothermal bulk
modulus KT as a function of pressure on isothermsT52000 K
~continuous curves!, 4000 K ~dashed curves!, and 6000 K~dotted
curves!. Heavy and light curves show present results and thos
Refs. 8 and 36, respectively.
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pressure physics, because it relates the thermal pressure~i.e.,
the differencepth betweenp at givenV and T and p at the
sameV but T50) and the thermal energy~differenceEth
betweenE at given V and T and E at the sameV but T
50). Assumptions about the value ofg are frequently used
in reducing shock data from Hugoniot to isotherm. If o
assumes thatg depends only onV, then the thermal pressur
and energy are related by

pthV5gEth , ~22!

a relation known as the Mie-Gru¨neisen equation of state. A
low temperatures, where only harmonic phonons contrib
to Eth andpth , g should indeed be temperature independ
above the Debye temperature, becauseEth53kBT per atom,
and pthV523kBTd ln v̄/d ln V53kBTg th , so that g5gph,
which depends only onV. But in high-temperature Fe, th
temperature independence ofg will clearly fail, because of
electronic excitations~and anharmonicity!.

Our results forg ~Fig. 13! indicate that it varies rathe
little with either pressure or temperature in the region
interest. At temperatures below ca. 4000 K, it decreases w
increasing pressure, as expected from the behavior of
phonon Gru¨neisen parametergph ~see Sec. IV B!. This is
also expected from the often-used empirical rule of thum58

g.(V/V0)q, whereV0 is a reference volume andq is a con-
stant exponent usually taken to be roughly unity. SinceV
decreases by a factor of about 0.82 asp goes from 100 to 300
GPa, this empirical relation would makeg decrease by the
same factor over this range, which is roughly what we s
However, the pressure dependence ofg is very much weak-
ened asT increases, until at 6000 Kg is almost constant. Ou
results agree moderately well with those of Refs. 8 and 36
giving a valueg.1.5 at high pressures, but at low pressu
there is a significant disagreement, since they find a str
increase ofg to values of over 2.0 asp→0, whereas our
values never exceed 1.6.

In making their estimates of the Hugoniot temperatu
Brown and McQueen21 assumed that (]E/]p)v5V/g is a
constant equal to 2.8531026 m3 mol21. This implies that
g is ca. 2.2 on the low-p/low-T part of the Hugoniot,

ec-

of

FIG. 13. Grüneisen parameterg as a function of pressure o
isotherms atT52000 K ~continuous curves!, 4000 K ~dashed
curves!, and 6000 K~dotted curves!. Solid and light curves show
present results and those of Refs. 8 and 36, respectively.
3-12
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whereas our calculations give ca. 1.5. However, with incre
ing pressure, the Brown-McQueen value ofg approaches
ours, being only ca. 8% higher at 200 GPa. Given the diff
ences between theirCv and g values and ours, one migh
expect a larger disagreement between their Hugoniot t
peratures and ours~Sec. VI A!. However, it turns out tha
there is some cancellation between the differences in
various terms of Eq.~21! which brings the temperatur
curves into the quite close agreement that we have s
~Fig. 7!.

VII. DISCUSSION AND CONCLUSIONS

Our primary interest in this work is in the properties
hcp iron at high pressures and temperatures, but in orde
investigate them usingab initio methods we have needed
make technical developments, which have a wider sign
cance. The major technical achievement is that we have b
able to calculate theab initio free energy and other thermo
dynamic properties with completely controlled statistic
mechanical errors, i.e., errors that can be reduced to
required extent. Anharmonicity and thermal electronic ex
tations are fully included. The attainment of high precisi
for the electronic and harmonic parts of the free energy
required no particular technical innovations, though care
attention to sources of error is essential. The main innova
is in the development of well optimized reference syste
for use with thermodynamic integration in the calculation
the anharmonic part, without which adequate precis
would be impossible. With the methods we have develop
it becomes unnecessary to approximate the electronic s
ture with semiempirical representations, or to resort to
statistical-mechanical approximations that have been use
the past.

We have assessed in detail the precision achieved in
various parts of the free energy. There are two kinds of
rors: those incurred in the calculation of the free energ
themselves, and those produced by fitting the results to p
nomials. We have seen that the errors in calculating
perfect-lattice free energyFperf are completely negligible
though there may be small fitting errors of perhaps 1 m
atom. In the harmonic partFharm, the calculational errors ar
ca. 3 meV/atom, most of which comes from spatial trun
tion of the force-constant matrix; the fitting error forFharm
are of about the same size. The most serious errors are i
anharmonic partFanharm, and these are ca. 5 meV/atom
the calculation and ca. 4 meV/atom in the fitting. The ove
technical errors therefore amount to ca. 15 meV/atom, wh
is slightly larger than our target of 10 meV/atom.

We stress that the precision just quoted does not take
account errors incurred in the particular implementation
DFT ~PAW in the present work!, for example the error as
sociated with the chosen split between valence and c
states. Such errors can in principle be systematically redu
but we have not attempted this here. Nor does it accoun
the inaccuracy of the chosenExc , or for the neglect of the
temperature dependence ofExc .

The most direct way to test the reliability of our metho
is comparison with shock data forp(V) on the Hugoniot,21
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so it is gratifying to find close agreement over the press
range of interest. The closeness of this agreement is in
ently limited by the known inaccuracies of the GGA em
ployed, and we have shown that the discrepancies are o
expected size. An important prediction of the calculations
the temperatureT(p) on the Hugoniot, since temperature
notoriously difficult to obtain in shock experiments. Our r
sults support the reliability of the shock temperatures e
mated by Brown and McQueen,21 and, in agreement with
Wassermanet al.,36 we find that the temperatures of Yo
et al.22 are too high by as much as 1000 K. This incidenta
lends support to the reliability of the Brown and McQue
estimate of ca. 5500 K for the melting temperature of Fe
243 GPa. The situation is not so satisfactory for the adiab
bulk modulusKS on the Hugoniot, since ourab initio values
seem to be ca. 8% above the shock values. But it should
remembered that even at ambient conditionsab initio and
experimental bulk moduli frequently differ by this amoun
The difficulties may be partly on the experimental side, sin
even for bcc Fe at ambient conditions, experimentalKS val-
ues span a range of 8%.

Our calculations fully confirm the strong influence
electronic thermal excitations.36,56 At the temperaturesT
;6000 K of interest for the Earth’s core, their contributio
to the specific heat is almost as large as that due to la
vibrations, in line with previous estimates. They also hav
significant effect on the Gru¨neisen parameterg, which plays
a key role in the thermodynamics of the core, and is poo
constrained by experiment. Our finding thatg decreases with
increasing pressure forT,4000 K accords with an often
used rule of thumb,58 but electronic excitations completel
change this behavior at core temperaturesT;6000 K, where
g has almost constant values of ca. 1.45, in accord w
experimental estimates in the range 1.1 to 1.6.21,63 Compari-
son with the earlier tight-binding calculations of Wasserm
et al.36 both for g and for the quantityaKT is not fully
satisfactory. We find two kinds of disagreement at low te
peratures. First, they find an increase ofaKT as p→0,
whereas we find the opposite. Even more seriously, th
strong increase ofg as p→0 is completely absent in ou
results. The source of these disagreements requires fu
investigation.

In summary, we have presented extensiveab initio calcu-
lations of the free energy and a range of other thermo
namic properties of iron at high pressures and temperatu
in which all statistical-mechanical errors are fully under co
trol, and a high~and quantified! precision has been achieve
We find close agreement with the most reliable shock d
Ab initio values are provided for important, but experime
tally poorly determined quantities, such as the Gru¨neisen pa-
rameter.
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APPENDIX REFERENCE MODELS FOR
ANHARMONIC FREE ENERGY

Our calculation of the anharmonic partFanharmof the ab
initio free energy makes use of a reference system wh
total energy is a linear combination of theab initio harmonic
energy and the energy of a model based on a purely repu
pair potential~see Sec. II D 3!. We have shown that this
reference system gives an efficient way of comput
Fanharm. However, we recognize that our choice of referen
system may seem surprising, since it is well known t
models based only on pair potentials cannot give a comp
account of the energetics of transition metals. The kno
inadequacies of such models led many years ago to impro
schemes such as the embedded-atom model~EAM!64,65

and other closely related models.66,67 This appendix has sev
eral aims: first, we clarify the sense in which our chos
reference system gives a computational scheme that is
only correct but also efficient; second, we recall the ways
which pair-potential descriptions of transition metals are
adequate, but we note that these ways are not necess
relevant to the calculation of anharmonic free energies; th
we present numerical results that allow us to study how
calculation ofFanharmworks if the EAM is used as the refer
ence model for the anharmonic free energy, and we conc
that little is gained by doing this; finally, we explain th
latter conclusion by showing that the EAM reduces alm
exactly to a repulsive pair-potential model for the pres
anharmonic calculations. A more general analysis of
ideas that follow will be reported elsewhere.

We start by emphasizing that the final results forFanharm
cannot depend on the choice of reference model. Thi
simply because the free energy is a function of state, and
reversible work performed in going from the harmonic to t
anharmonic system cannot depend on the path followed.
the path is specified by the choice of reference mode
follows that this choice cannot affect the numerical value
Fanharm. The choice of reference model is nevertheless c
cial, because it determines the computational effort neede
obtainFanharm. There are three separate reasons for this.
first reason is that thermodynamic integration requires
evaluation of̂ U12U0&l @see Eq.~14!#, where in the presen
caseU0 is the reference system andU1 is the full ab initio
system. SincêU12U0&l can only be evaluated by statistic
sampling and involves costlyab initio calculations, it is im-
portant to minimize the amount of sampling, i.e., the len
of the simulation run needed to bring the statistical unc
tainty below the specified tolerance on the precision~recall
that the target tolerance in the present work is 10 meV/ato!.
But this uncertainty is governed by the fluctuation of t
quantity U12U0 being averaged, so the criterion for
‘‘good’’ U0 is that the strength of the fluctuations of th
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differenceDU5U12U0 betweenab initio and reference to-
tal energies, i.e., the quantity^dDU2&l , be minimal, where
dDU5DU2^DU&l .

The second reason for choosingU0 carefully is that we
want to reduce the number ofl points needed to perform th
integration overl. But this number is determined by th
variation of the averagêU12U0&l asl goes from 0 to 1. It
is readily shown that ifU0 is close toU1 then this variation
is also completely determined by the fluctuation stren
^dDU2&l , so one arrives at the same criterion as before
choosingU0. The third reason is that one wishes to suppr
system-size errors. Since the evaluation of the free energF0
associated withU0 is extremely rapid, it can be performe
for very large systems, and size errors can be eliminate
F0. All the errors are therefore concentrated inF12F0, and
hence in ^U12U0&l . By minimizing the fluctuation
strength, one also helps to make^U12U0&l as small as pos-
sible, so that size errors have the least possible influenc

For all these three reasons, the key criterion in the cho
of reference system is that the fluctuation strength be m
mal; provided one is concerned only with computational
ficiency and the correct calculation ofFanharmto a specified
precision, then nothing else matters.

In the light of this criterion, we now ask whether th
choice of a reference system based on pair potentials ra
than on some more sophisticated model like EAM makes
task more difficult. The main problem with using pair pote
tials for metals is that they give a fundamentally wrong d
scription of the changes of electronic bonding associa
with changes of coordination. A real-space analysis show68

that the bonding energy of an atom in a metal should
roughly proportional toz1/2, with z its coordination number,
whereas a pair potential model will give an erroneous p
portionality toz. The consequence is that the formation e
ergies of coordination defects such as vacancies or surf
will be wrongly given by a pair model. However, in calcu
lating the anharmonic free energy, no significant change
coordination are involved, so that the reference model is
being asked to do anything where a pair model would sh
its inadequacy. All the reference model has to do is to
scribe correctly the energy fluctuations of the anharmonic
vibrating crystal, i.e., to give a small value of the fluctuati
strength^dDU2&l , and the fact that it cannot describe su
faces or vacancies is irrelevant.~The concentration of rea
vacancies in a high temperature crystal might or might not
negligible, but this is not the point at issue here. In fact,
reasons discussed elsewhere,3 the effect of vacancies on th
free energy of the real crystal is almost certainly negligibl!

The practical effectiveness of a reference system base
a combination of harmonicab initio and a pair-potential
model was demonstrated in Secs. V A and V B. Given
very small size of the fluctuation strength quoted there,
specified tolerance of 10 meV is already obtained with v
little statistical sampling and with a singlel point, and size
errors also fall within the tolerance. Nevertheless, the rec
use of the EAM by other research groups44,45 to study high-
p/high-T Fe makes it interesting to consider the cons
quences of using the EAM as a reference system in
present work.
3-14
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To study this, we have made trial calculations based
the EAM recently used by Belonoshkoet al.45 to calculate
the high-pressure melting curve of Fe. This EAM has
standard form65 in which the total energyEtot5( iEi is a sum
of energiesEi of atomsi, and eachEi consists of two parts
first, a purely repulsive energyEi

rep represented as a sum o
inverse-power pair potentialsEi

rep5( j8e(a/r i j )
n, wherer i j is

the interatomic separation and the sum excludesi 5 j ; sec-
ond, an ‘‘embedding’’ partF(r i) which accounts for the
metallic bonding mainly due to partial filling of thed-bands.
The embedding functionF(r) is represented as2eCr1/2,
and the densityr i for atomi is given by the sum over neigh
borsr i5( j8(a/r i j )

m. The parameters in this EAM were de
termined in Ref. 45 by fitting to first-principles energies
hcp and liquid Fe calculated using the full-potential line
ized muffin-tin orbital~FPLMTO! technique. To check the
quality of this EAM as a reference model, we have stud
the energies it produces for a thermal sample of configu
tions generated by direct molecular dynamics simulation o
64-atom cell of hcp Fe performed using our PAW techniq
at the stateT56700 K andV57.186 Å3/atom, which is
close to our preliminary calculated melting curve.43 We find
that the EAM and PAW energies are fairly close, but that
agreement can be further improved by adjusting the stren
and exponent of the EAM inverse-power potential inEi

rep,
leaving the embedding energyF(r i) untouched. On doing
this, we find the exponentn55.93, which is very close to the
value we obtained when we used the inverse power pote
alone~see Sec. V A!. The quality of fit of the EAM to our
PAW energies can be characterized by the quantityQ
5@^dDU2&/N#1/2, where the fluctuation strength is calc
lated here as a time average in the m.d. run. We find
valueQ50.09 eV. If we do exactly the same thing using t
pure inverse-power reference model described in the text
also find the valueQ50.09 eV, so that the quality of th
EAM as a reference model is not significantly different fro
that of the inverse-power model. We also note that the p
non frequencies obtained from the EAM are almost the sa
as those of the pure inverse-power reference system~see Sec.
IV B !.

We have used the EAM by itself as a reference mod
without further changes of parameters, to calculate the
harmonic free energy of our PAW system at three therm
dynamic states:T56000 K,V56.97 Å3/atom;T54500 K,
V58.67 Å3/atom; andT54000 K, V58.67 Å3/atom. The
calculations are done in three stages: first, we calculate
harmonic phonon frequencies of the EAM, and hence
harmonic free energy; next, we use thermodynamic integ
n-
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tion to go from the harmonic EAM to the full EAM; finally,
we use the second-order formula given in Eq.~17! to deter-
mine the difference between full EAM and PAW free ene
gies. From this, we subtract the harmonic free energyFharm
of the PAW system to obtain the anharmonic free ene
Fanharm. The resulting values ofFanharm at the three states
mentioned above are20.044, 20.042, and20.039 eV, re-
spectively, which should be compared with the value
20.057,20.048, and20.038 eV given by the fitting func-
tion discussed in the text~see Sec. V B!. The agreement is
satisfactory bearing in mind the statistical errors of typica
10 meV on all values. The important fact here is not th
Fanharm comes out essentially the same as before, which
expected, but that the quality of the EAM as a referen
system, though good, is no better than that of the refere
model described in the text.

The conclusion from these numerical tests is that re
ence systems based either on the EAM or on purely repul
pair potentials can be made to reproduce almost perfectly
ab initio total energy of the high-T anharmonic Fe system
But clearly this implies that these two types of referen
system must be almost identical to each other for the ato
configurations sampled in thermal equilibrium. This implic
tion may at first be surprising, but becomes less so if o
considers what the EAM does. All the metallic bonding
the EAM is in the embedding densityr i for each atom. Even
at high T, we find that this fluctuates only weakly. Writin
r i5 r̄1dr i , wherer̄ is the thermal average ofr i , we can
then writeF(r i).F( r̄)1F8( r̄)dr i . With this approxima-
tion, the EAM reduces to a pair-potential model, sincedr i
consists of a sum over atom pairs. The pair potential in t
‘‘reduced’’ form of the EAM consists of a strongly varyin
repulsive termEi

rep and a weakly varying bonding term
F8dr i . To quantify this, we have examined the numeric
size of the fluctuations of these two terms. We find that
mean square values ofEi

rep fluctuations are typically betwee
30 and 50 times those ofF(r i) fluctuations. Closer analysi
shows that this large factor comes from three sources: fi
the square-root dependence ofF(r) on r; second, the lower
inverse-power exponent inr i compared with that inEi

rep;
third, the fact thatEi

rep is numerically about twiceF(r i) at
the pressures of interest. Since the fluctuations ofEi

rep are so
dominant, the crucial requirement in using the EAM as
reference model is that the repulsive potential be optimiz
one loses little by ignoring the fluctuations of the embedd
energy and treating the latter simply as a volume-depend
constant. In this sense, the EAM reduces almost exactl
our reference model based on pair potentials.
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28P. Söderlind, J. A. Moriarty, and J. M. Willis, Phys. Rev. B53, 14
063 ~1996!.
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