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Photonic bands of metallic systems. II. Features of surface plasmon polaritons

Takunori Ito and Kazuaki Sakoda*
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The photonic band structure of a two-dimensional square lattice composed of metallic cylinders was calcu-
lated for theH polarization by means of the numerical simulation of dipole radiation based on the finite-
difference time-domain method. The presence of radiational eigenmodes that originate from surface plasmon
polaritons was clearly shown by the symmetry and the localized nature of the field distribution.

DOI: 10.1103/PhysRevB.64.045117 PACS number~s!: 78.66.Bz, 41.20.Jb, 02.60.Cb
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I. INTRODUCTION

In the preceding paper,1 which we will refer to as Paper
hereafter, we have demonstrated that the numerical sim
tion of dipole radiation based on the finite-difference tim
domain ~FDTD! method2 gives accurate dispersion curve
lifetimes, and field distributions of the radiational eige
modes of photonic crystals even when their dielectric c
stants depend on frequency. As an example, we applied
method to two-dimensional metallic systems characteri
by the frequency-dependent dielectric constant of the Dr
type in the case of theE polarization. The spatial symmetr
of the eigenmodes was consistent with the group-theore
prediction that was obtained by the reduction proced
starting from the plane-wave representation of unpertur
wave functions. This fact implies that the eigenmodes for
E polarization are essentially modified plane waves.

In this paper~Paper II!, we deal with theH polarization
for the same system, for which a qualitatively different fe
ture appears. That is the excitation of surface plasmons.
same problem was tried to solve previously by the pla
wave expansion method.3 However, the convergence of th
plane-wave expansion method was bad and it did not g
accurate results. The failure essentially came from the lo
ized nature of the eigenmodes of the plasmon polarito
which was difficult to reproduce by a superposition of
small number of plane waves. The difficulty that genera
lies in the treatment of the frequency-dependent dielec
constants by the plane-wave expansion method1 was another
reason. As will be shown in what follows, this problem c
be solved by the numerical simulation of dipole radiati
based on the FDTD method.

Since the electromagnetic field of the surface plasmon
considerably localized in the vicinity of the metallic cylin
ders, the radiational eigenmodes of the metallic system
originate from the surface plasmons can be well represe
by the plasmon excitation on a single cylinder. We used
feature to classify the symmetry of plasmon polaritons by
group theory. We found that the field distribution obtain
by the numerical calculation coincided with this classific
tion. We also found that the dispersion of the surface p
mon polaritons was extremely flat due to their localized
ture. This feature may be used to enhance various op
phenomena.4

In Sec. II, the resonant states due to the excitation
surface plasmons on a single metallic cylinder will be exa
0163-1829/2001/64~4!/045117~8!/$20.00 64 0451
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ined. The symmetry of the surface plasmon polaritons
pected by the group theory will be presented in Sec. III. T
numerical method and the long-wavelength approximat
~LWA ! of the dispersion curve will be described in Sec. I
The numerical results will be presented and compared w
the analytical estimation and the prediction by the gro
theory in Sec. V. In Sec. VI, a brief summary will be give

II. PLASMON RESONANCE

As we did in Paper I, we assume a two-dimension
square array of metallic cylinders. We denote the lattice c
stant and the radius of the cylinders bya and r m , respec-
tively. We also assume a dielectric constant of the Dru
type for the metallic region. In this section, we omit i
imaginary part for simplicity,

«m5«`S 12
vp

2

v2D , ~1!

where«` and vp stand for the dielectric constant at suffi
ciently high frequencies and the plasma frequency, resp
tively.

As will be shown in the following sections, the electro
magnetic field of the eigenmodes of surface plasmon pol
tons are considerably localized around the surface of the
tallic cylinders and the overlapping of the field betwe
adjacent cylinders is small. This situation resembles the e
tronic bands composed of well localized atomic orbitals. F
the latter case, the tight-binding approximation based on
linear combination of atomic orbitals~LCAO! describes the
actual bands well. We thus examined theatomic orbitalsfor
the present problem, that is, the electromagnetic reso
states that originate from the excitation of surface plasm
on a single metallic cylinder that appear forv,vp .

For this purpose, we assumed a plane wave incident o
single cylinder with the magnetic field parallel to the cyli
der ~z! axis, and studied the amplitude of the scattered wa
First we express the magnetic field of the incident pla
wave with partial waves using polar coordinates, (r ,u). We
take the direction ofu50 as the direction of the wave vecto
k of the incident plane wave. We thus have
©2001 The American Physical Society17-1
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H0ei (k•r2vt)5H0ei (kr cosu2vt)

5H0e2 ivt (
l 52`

`

Jl~kr !expH i l S u1
p

2 D J
5H0e2 ivtFJ0~kr !12(

l 51

`

i lJl~kr !cosluG ,

~2!

whereH0 is the amplitude of the incident wave,k5uku, and
Jl is the Bessel function of thel th order. The wave equatio
in the polar coordinate system that describes the magn
field Hz is given by

1

« S ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]u2D Hz52
v2

c2
Hz , ~3!

where« stands for the position-dependent dielectric const
andc denotes the light velocity in free space.

As usual, we expressHz by the product of two functions
R(r ) andQ(u). We then obtain a couple of equations thatR
andQ obey,

]2Q

]u2
52«lQ, ~4!

S ]2

]r 2
1

1

r

]

]r
1

«v2

c2
2

«l

r 2 D R50, ~5!

where l is the parameter for decoupling. BecauseQ(u)
should be a single-valued function,A«l is an integer, which
we denote byn. The solutions of Eq.~4! are thus given by

Q~u!}einu, e2 inu. ~6!

For r .r m , we define a new variables by

s5kr. ~7!

Then Eq.~5! is modified to

S ]2

]s2
1

1

s

]

]s
112

n2

s2 D R50. ~8!

This is the Bessel equation and its solution is given by
Bessel and Neumann functions, both of which are anal
for r .r m :

R~r !}Jn~kr !, Nn~kr !. ~9!

On the other hand, forr ,r m , the dielectric constant«m(v)
is negative forv,vp . In this case, we have to take

s5kr , ~10!

where

k5A2«m~v!
v

c
. ~11!

We thus obtain forr ,r m
04511
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s

]

]s
2S 11

n2

s2 D GR50. ~12!

This is the modified Bessel equation and its solution is giv
by the modified Bessel function of the first kind,

R~r !}I n~kr !, ~13!

since the modified Bessel function of the second kind is
analytic atr 50. When we take into account that the geom
etry is symmetric with respect tou, the total field is given by

Hz5 (
n50

`

AnI n~kr !cosnu ~r ,r m!, ~14!

Hz5 (
n50

`

@BnJn~kr !1CnNn~kr !#cosnu ~r .r m!,

~15!

whereAn , Bn , and Cn are constants that should be dete
mined by the boundary conditions.

The independent boundary conditions atr 5r m are the
continuity of Hz and«21]Hz /]r . The latter is equivalent to
the continuity of the tangential component of the elect
field. From these conditions, we obtain

An

Bn
5

k«m@Nn8~kR!Jn~kR!2Nn~kR!Jn8~kR!#

k«mNn8~kR!I n~kR!2k«bNn~kR!I n8~kR!
, ~16!

Cn

Bn
52

k«mJn8~kR!I n~kR!2k«bJn~kR!I n8~kR!

k«mNn8~kR!I n~kR!2k«bNn~kR!I n8~kR!
,

~17!

where«b denotes the dielectric constant in the backgrou
region. Finally, by comparing Eq.~2! and Eq.~15!, we obtain

B05H0 and Bn52i nH0 . ~18!

When we calculatedAn /Bn andCn /Bn as functions ofv,
we observed sharp resonances, which imply the excitatio
surface plasmons by the incident plane wave. As an exam
Fig. 1 shows thev dependence ofAn /Bn for n51 –5 in
which a sharp resonance peak is observed for each curve
resonance peak was observed withn50. The resonance fre
quencies are listed in Table I. The resonance frequency c
verges tovp /A11«b with increasingn irrespective of the

TABLE I. Comparison between the resonance frequencies in
spectra ofAn /Bn and the eigenfrequencies on theG point in the unit
of 2pc/a. The same parameters as Fig. 1 were used for the num
cal calculation.

n Resonance frequency Eigenfrequency

1 0.8194 0.7183
2 0.6149 0.5963,0.6712
3 0.6627 0.6431
4 0.6849 0.6876,0.7037
5 0.6937 -
7-2
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PHOTONIC BANDS OF METALLIC SYSTEMS. II. . . . PHYSICAL REVIEW B64 045117
ratio r m :a as is shown in Fig. 2. This value is the same
that of the surface plasmon on a flat interface betwee
metal and a dielectric. These resonant states have a fi
radiative lifetime and they are not eigenmodes of the syst
However, when the metallic cylinders are arrayed in the p
tonic crystal, the resonant states can be propagated from
cylinder to another to become a Bloch eigenstate and ob
the infinite lifetime. Because the resonant states are local
at each cylinder, they may be regarded as atomic orbital
the theory of LCAO. This feature can be used to classify a
predict the symmetry of the eigenmodes that originate fr
the surface plasmons.

III. SYMMETRY OF PLASMON POLARITONS

In Paper I, we investigated the photonic bands of the tw
dimensional metallic lattice for theE polarization in detail.
For that case, each dispersion curve in the photonic cry
had its replica in free space. This feature was demonstr
by the comparison of the symmetry of the eigenmodes
tween the photonic crystal and free space. As for theH po-
larization, the situation is different. We have modes t
originate from the surface plasmons as well, which do
have their replicas in free space. We can classify the s
metry of those eigenmodes by examining the symmetry
the resonant states found in the last section.

FIG. 1. v dependence ofAn /Bn for small n. The following
parameters were assumed:«`51.0, vpa/2pc51.0, r m50.3a, and
«b51.0 ~air!. A sharp resonance that originates from the excitat
of the surface plasmon is observed in each curve.
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First, let us examine theD point in the two-dimensiona
Brillouin zone, i.e.,k5(k,0) where 0,k,p/a. Thek group

is given byCi5$Ê,ŝy% whereÊ is the identity operation and

ŝy is the mirror reflection about thex axis. The eigenfunction
on the D point is thus either symmetric or antisymmetr
about thex axis. On the other hand, the angular (u) depen-
dence of the resonant state, whose radial variation is
scribed byI n(kr ) for r ,r m and Jn(kr) and Nn(kr) for r
.r m , is given bye6 inu for eachn>1, where we measureu
counterclockwise from thex axis. The symmetric and anti
symmetric combinations of these two functions, i.e., cosnu
and sinnu, possess the appropriate symmetry that the ex
eigenfunctions should have. We can thus conclude that
resonant states characterized by indexn give one symmetric
and one antisymmetric modes for theD point.

Next, let us examine theG point, which has the symmetry
of the C4v point group. The spatial variation of the resona
states is illustrated schematically in Fig. 3. When we co
pare them with the symmetry of the irreducible represen
tions ofC4v , which are shown in Fig. 4, the symmetry of th
former is easily assigned. The results are also shown in
3. Similar assignments can be made for theX point, which
has the symmetry of theC2v point group. All the results are
summarized in Table II. Symmetry assignments are p
sented forn51 –4 in this table. Those forn8.4 can be
obtained by a simple relation such that the same irreduc
representations appear if

FIG. 2. n dependence of the resonance frequency.
n

-
nt
e

FIG. 3. The angular variation
of the magnetic field and the sym
metry assignment of the resona
states according to the irreducibl
representations of theC4v point
group.
7-3
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n85n14 j , ~19!

wherej is an integer.

IV. PHOTONIC BAND CALCULATION

In Paper I, we derived Maxwell’s equations that describ
the temporal evolution of the electromagnetic field in t
presence of metallic components and the oscillating p
dipole. When we calculated the dispersion relation of
simple cubic lattice composed of dielectric spheres as a
cial case, we treated all six components of the field. On
other hand, when we calculated the dispersion relation of
square lattice composed of the metallic cylinders for theE
polarization, we only dealt with thez component of the elec
tric field, since the wave equation forEz was not very sin-
gular due to the fact thatEz and its derivatives of the firs
order are continuous. In the present case, i.e., for theH po-
larization of the metallic square lattice,Hz is continuous, but
its derivatives with respect to the spatial coordinates are g
erally discontinuous. We thus cannot expect a good con
gence when we just deal withHz .

For theH polarization, the electromagnetic field has thr
components, that is,Hz , Ex , andEy , which do not depend
on thez coordinate. In this case, the FDTD equation forHz is
given by5

Hz
p11/2~ l 1 1

2 ,m1 1
2 !

5Hz
p21/2~ l 1 1

2 ,m1 1
2 !

2
Dt

m0
FEy

p~ l 11,m1 1
2 !2Ey

p~ l ,m1 1
2 !

Dx

2
Ex

p~ l 1 1
2 ,m11!2Ex

p~ l 1 1
2 ,m!

Dy
G

1
ivmzDt

m0DxDy
d l l 0

dmm0
e2 ivpDt, ~20!

wherem0 denotes the magnetic permeability of free spacep,
l, andm are integers that specify the discretizedt, x, andy
coordiates, respectively. For example,l 11/2 impliesx5( l
11/2)Dx, m11/2 impliesy5(m11/2)Dy, and so on. On

FIG. 4. Symmetry of irreducible representations of theC4v
point group.
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the other hand,Hz
p11/2 implies thez component of the mag

netic field att5(p11/2)Dt, and so on. Here,Dt, Dx, and
Dy stand for the interval of the representative points in
temporal and spatial meshes. The last term on the right-h
side represents an oscillating magnetic dipole moment
cated at„( l 011/2)Dx,(m011/2)Dy…, where its amplitude is
denoted bymz . We found that the use of a magnetic dipo
rather than an electric dipole resulted in somewhat be
convergence for the present problem. The FDTD equa
for Ex in the metallic cylinder is given by

Ex
p11~ l 1 1

2 ,m!

5Ex
p~ l 1 1

2 ,m!1
Dt

«0«`Dy FHz
p11/2S l 1

1

2
,m1

1

2D
2Hz

p11/2~ l 1 1
2 ,m2 1

2 !G
2vp

2~Dt !2 (
q52`

p

e2g(p2q11/2)Ex
qS l 1

1

2
,mD , ~21!

where«0 is the permittivity of free space. Here we used t
response function given by Eq.~8! of Paper I. On the other
hand, the FDTD equation forEx in the background region
with the dielectric constant«b is given by

Ex
p11~ l 1 1

2 ,m!

5Ex
pS l 1

1

2
,mD1

Dt

«0«bDy FHz
p11/2S l 1

1

2
,m1

1

2D
2Hz

p11/2~ l 1 1
2 ,m2 1

2 !G . ~22!

Similar FDTD equations can be obtained easily forEy .
We solved these equations numerically with initial con

tions E50 andH50, and boundary conditions

Ex~r1a,t !5exp~ ik•a!Ex~r ,t !, ~23!

Ey~r1a,t !5exp~ ik•a!Ey~r ,t !, ~24!

TABLE II. Symmetry of the eigenmodes expected from t
LCAO approximation and the group theory.

n G(C4v) D(Ci) X(C2v)

1 E A1B B11B2

2 B11B2 A1B A11A2

3 E A1B B11B2

4 A11A2 A1B A11A2
7-4
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PHOTONIC BANDS OF METALLIC SYSTEMS. II. . . . PHYSICAL REVIEW B64 045117
Hz~r1a,t !5exp~ ik•a!Hz~r ,t !, ~25!

wherek is the wave vector in the two-dimensional first Br
louin zone anda is the elementary lattice vector. The latt
condition extracts the contribution to the radiated elect
magnetic field from particular eigenmodes with the specifi
wave vector. We can thus calculate the dipole radiation sp
trum for eachk, and its resonance peaks give the eigenf
quencies. The eigenfunctions can be obtained from the fi
distribution after sufficient cycles of the oscillation of th
dipole. Usually, 50 cycles were enough. We calculated
dispersion curves from theG point to theX point in the first
Brillouin zone assuming the following parameters in Eq.~8!
of Paper I: «b51.0 ~air!, «`51.0, vpa/2pc51.0, g
50.01vp , andr m50.3a.

Because of the boundary condition, Eqs.~23!–~25!, it was
enough to deal with only one unit cell, and therefore,
CPU time necessary for the numerical calculation was sm
In the actual calculation, the two-dimensional unit cell w
divided into 40340 parts to discretize the Maxwell equ
tions. The further decrease in the size of the spatial and t
poral meshes did not bring about an apparent change in
eigenfrequencies.

Let us derive the LWA estimation for the dispersion cur
here. We assume thatg50, v!vp , and f c2k2!«`vp

2 ,
where

TABLE III. Comparison between the slope of the dispersi
curve at the low frequency region obtained by the band calcula
~band! and by the long-wavelength approximation~LWA !.

r m /a v/ck ~band! v/ck ~LWA !

0.1 0.960 0.984
0.2 0.872 0.935
0.3 0.773 0.847
0.4 0.625 0.705
04511
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2

a2
~26!

is the filling factor for the metallic cylinders. In this case, th
dielectric constant of the Drude type can be approximated

«m~v!'2
«`vp

2

v2
. ~27!

The spatial average of the inverse dielectric function is th
given by

S 1

« D'2
f v2

«`vp
2

1
12 f

«b
. ~28!

The eigenfrequency in the LWA is obtained as

v'AS 1

«
D ck'A12 f

«b
S ck2

f c3k3

2«`vp
2D . ~29!

The dispersion curve should thus start from theG point and
increase approximately linearly withk. The slope of the
curve is determined by the filling factor and the dielect
constant of the background region alone and does not dep
on other parameters, i.e.,«` or vp . The reason is that the
electromagnetic field is excluded from the metallic region
sufficiently small frequencies irrespective of«` andvp , and
the volume where the field can exist is determined by
filling factor. The slope of the lowest dispersion curve
LWA is listed in Table III for four filling factors that will be
examined numerically in the next section.

V. NUMERICAL RESULTS AND DISCUSSION

Figure 5 shows the calculated dispersion relation from
G point, (0,0), to theX point, (p/a,0), for r m50.3a where

n

e

FIG. 5. The dispersion relation
from theG point to theX point for
the radiational eigenmodes in th
two-dimensional square lattice
composed of metallic cylinders
calculated for theH polarization.
The following parameters were
assumed: r m /a50.3, vpa/2pc
51.0, g50.01vp , «`51.0, and
«b51.0.
7-5
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TAKUNORI ITO AND KAZUAKI SAKODA PHYSICAL REVIEW B 64 045117
symmetric~antisymmetric! modes about thex axis are drawn
with solid ~broken! lines. The symmetries of the eigenmod
on theG andX points that were obtained from the calculat
field distribution are also shown. The number in parenthe
distinguishes the eigenmodes when more than one ei
mode with the same symmetry exists in the analyzed
quency range, 0<va/2pc<1.2. The spectral region
va/2pc50.55–0.75, is magnified in Fig. 5~b!. Those bands
with extremely flat dispersion that originate from the surfa
plasmon polaritons are located in this frequency range.
was predicted by LWA, the lowest dispersion curve sta
linearly from v50 at theG point. Its slope, which is given
in Table III, coincides fairly well with the LWA estimation

In order to see the nature of the flat bands and confirm
symmetry assignments, let us examine their field distri
tion. In the following figures, the maximum of the magne
field is normalized to unity. First, Fig. 6 shows three e

  

 

FIG. 6. The distribution ofHz of the ~a! B1(1) mode on theX
point, ~b! A1(3) mode on theG point, and~c! B1(3) mode on theX
point. The maximum of each magnetic field is normalized to un
04511
es
n-
-

e
s
s

e
-

-

amples of extended eigenmodes that originate mainly fr
the radiation field in free space. It is evident that they sh
their peculiar spatial symmetries. The large bandwidths
the lowest and the seventh lowest symmetric bands re
the extended nature of their wave functions.

On the other hand, Fig. 7 shows the first example of
localized wave functions of the surface plasmon polarito
It shows the distribution ofHz of the second lowestE mode,
E(2), on theG point. Since one mode is the replica of th
other given by the 90° rotation, these two modes are deg
erate and are attributed to theE representation of theC4v
point group. The fields are localized in the vicinity of th
surface of the metallic cylinder, and they have the chara
of the surface plasmon polaritons. Their angular depende
is approximately given by cosu and sinu. When we compare
these field distributions with those given in Fig. 3, we s
that the former originate from the surface plasmon withn
51. Next, let us examine the field distribution of theB1(1)
and B2(1) modes on theG point that are shown in Fig. 8
They are also localized around the cylinder surface and t
angular dependence is approximately given by cos 2u and
sin 2u, which implies that these two modes originate fro
the surface plasmon polaritons withn52. Their symmetries
are consistent with the group-theoretical prediction presen
in Fig. 3 that is based on the LCAO description of the Blo
wave function with singlen. However, the symmetries o
modes on theX points are inconsistent with this picture. W
should thus take into consideration the mixing of the surfa
plasmons with differentn. Actually theE(2) mode on theG
point connects with theA1(4) andB2(3) modes on theX
point whose field distributions are presented in Fig. 9. T
field distribution of theB2(3) mode is similar to that of the
surface plasmon withn51, whereas theA1(4) mode does
not correspond to any pattern in Fig. 3. As for theB1(1) and
B2(1) modes on theG point, they connect with theA1(1)
andB2(1) modes on theX point whose field distributions are
shown in Fig. 10. Figure 10~a! somewhat resembles the fie
pattern of the surface plasmon withn52, whereas Fig. 10~b!
does not. Since the bandwidth of the second lowest symm
ric band is fairly large, the mixing with extended modes
the background region may take place.

Among the rest of the eigenmodes found on theG point,
E(1) andA1(2),A2(1) are attributed to the surface plasmo
polaritons withn53 and 4, respectively. Their eigenfreque
cies are close to the corresponding resonance frequenci

.

e
f

-
-

s-
  

FIG. 7. The distribution ofHz

of the E(2) mode on theG point.
This mode is doubly degenerat
and one eigenmode is a replica o
the other given by the 90° rota
tion. The comparison of these dis
tributions with those given in Fig.
3 shows that theE(2) mode has
the character of the surface pla
mon with n51.
7-6



PHOTONIC BANDS OF METALLIC SYSTEMS. II. . . . PHYSICAL REVIEW B64 045117
  

FIG. 8. The distribution ofHz

of the ~a! B1(1) and ~b! B2(1)
modes on theG point.

  

FIG. 9. The distribution ofHz

of the ~a! A1(4) and ~b! B2(3)
modes on theX point.

  

FIG. 10. The distribution of
Hz of the ~a! A1(1) and~b! B2(1)
modes on theX point.

  

FIG. 11. The distribution of
Hz of the E(1) mode on theG
point.
045117-7
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FIG. 12. The distribution of
Hz of the ~a! A1(2) and~b! A2(1)
modes on theG point.
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listed in Table I. Their field distributions are shown in Fig
11 and 12. The angular dependence of cos 4u and sin 4u can
be observed in Fig. 12, whereas the angular dependenc
Fig. 11 deviates from that shown in Fig. 3, which implies t
mixing of eigenfunctions with otherE modes.

In addition to the bands with indexn51 to 4 that we
reported so far, several unresolved peaks were observe
the dipole radiation spectrum in the vicinity of the converg
frequency,vp /A2, which may be attributed to surface pla
mon polaritons withn>5. These modes are not shown
Fig. 5. As we examined in Sec. II, an infinite number
plasmon resonance states are expected to exist for the pr
model with the metallic dielectric constant of the Drude typ
Since the wave functions of these higher modes are m
localized around the surface of the metallic rod, the LCA
description of the eigenmodes with singlen becomes more
accurate. We may thus expect that there exist an infi
number of bands with extremely small bandwidths arou
this frequency. This feature of the two-dimensional meta
system is, of course, brought about by the particular cho
of the frequency-dependent dielectric constant. If we ado
more realistic model by taking into account the interba
transition and the spatial dispersion, this infinite degener
of the eigenmodes will be removed. As we mentioned
Paper I, the present method for the numerical analysis of
radiaton field in photonic crystals can be extended
frequency-dependent dielectric constants of other types
to the case that the analytical form of the dielectric const
,
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is not known. As for the spatial dispersion of the dielectric
constant, we can treat it by carrying out the convolution in
tegral in Eq.~4! of Paper I overr as well ast, although the
computational task may increase considerably. Thus we ca
deal with more realistic systems within the scope of the
present study.

VI. CONCLUSION

The photonic band structure of the two-dimensiona
square lattice composed of metallic cylinders characterize
by the frequency-dependent dielectric constant of the Drud
type was calculated for theH polarization by means of the
numerical simulation of dipole radiation based on the FDTD
method. The presence of the radiational eigenmodes wi
extremely small bandwidths that originate from surface plas
mons on a single cylinder was clearly seen by the symmetr
and the localized nature of the field distribution. We also
showed that the LCAO description of the radiational band
with a single plasmon resonance state is a fairly accura
approximation for this system.
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