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Photonic bands of metallic systems. Il. Features of surface plasmon polaritons
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The photonic band structure of a two-dimensional square lattice composed of metallic cylinders was calcu-
lated for theH polarization by means of the numerical simulation of dipole radiation based on the finite-
difference time-domain method. The presence of radiational eigenmodes that originate from surface plasmon
polaritons was clearly shown by the symmetry and the localized nature of the field distribution.
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[. INTRODUCTION ined. The symmetry of the surface plasmon polaritons ex-
pected by the group theory will be presented in Sec. Ill. The
In the preceding papérwhich we will refer to as Paper | numerical method and the long-wavelength approximation
hereafter, we have demonstrated that the numerical simuldLWA) of the dispersion curve will be described in Sec. IV.
tion of dipole radiation based on the finite-difference time-The numerical results will be presented and compared with
domain (FDTD) method gives accurate dispersion curves, the analytical estimation and the prediction by the group
lifetimes, and field distributions of the radiational eigen-theory in Sec. V. In Sec. VI, a brief summary will be given.
modes of photonic crystals even when their dielectric con-
stants depend on frequency. As an example, we applied the
method to two-dimensional metallic systems characterized Il. PLASMON RESONANCE
by the frequency-dependent dielectric constant of the Drude
type in the case of thE polarization. The spatial symmetry ~ As we did in Paper |, we assume a two-dimensional
of the eigenmodes was consistent with the group-theoreticaiquare array of metallic cylinders. We denote the lattice con-
prediction that was obtained by the reduction procedurestant and the radius of the cylinders byandr,,, respec-
starting from the plane-wave representation of unperturbetlvely. We also assume a dielectric constant of the Drude
wave functions. This fact implies that the eigenmodes for theype for the metallic region. In this section, we omit its
E polarization are essentially modified plane waves. imaginary part for simplicity,
In this paper(Paper 1), we deal with theH polarization
for the same system, for which a qualitatively different fea-
ture appears. That is the excitation of surface plasmons. The w2
same problem was tried to solve previously by the plane- smzsm( 1— _P) (1)
wave expansion methcdHowever, the convergence of the 2
plane-wave expansion method was bad and it did not give
accurate results. The failure essentially came from the local-
ized nature of the eigenmodes of the plasmon polaritongvheree.. and w,, stand for the dielectric constant at suffi-
which was difficult to reproduce by a superposition of aciently high frequencies and the plasma frequency, respec-
small number of plane waves. The difficulty that generallytively.
lies in the treatment of the frequency-dependent dielectric As will be shown in the following sections, the electro-
constants by the plane-wave expansion metheaks another magnetic field of the eigenmodes of surface plasmon polari-
reason. As will be shown in what follows, this problem cantons are considerably localized around the surface of the me-
be solved by the numerical simulation of dipole radiationtallic cylinders and the overlapping of the field between
based on the FDTD method. adjacent cylinders is small. This situation resembles the elec-
Since the electromagnetic field of the surface plasmons ionic bands composed of well localized atomic orbitals. For
considerably localized in the vicinity of the metallic cylin- the latter case, the tight-binding approximation based on the
ders, the radiational eigenmodes of the metallic system thdinear combination of atomic orbitald CAO) describes the
originate from the surface plasmons can be well representeactual bands well. We thus examined #temic orbitalsfor
by the plasmon excitation on a single cylinder. We used thighe present problem, that is, the electromagnetic resonant
feature to classify the symmetry of plasmon polaritons by thestates that originate from the excitation of surface plasmons
group theory. We found that the field distribution obtainedon a single metallic cylinder that appear oK w, .
by the numerical calculation coincided with this classifica- For this purpose, we assumed a plane wave incident on a
tion. We also found that the dispersion of the surface plassingle cylinder with the magnetic field parallel to the cylin-
mon polaritons was extremely flat due to their localized na-der(2) axis, and studied the amplitude of the scattered wave.
ture. This feature may be used to enhance various opticdfirst we express the magnetic field of the incident plane
phenomenaA. wave with partial waves using polar coordinates,f). We
In Sec. Il, the resonant states due to the excitation ofake the direction of/=0 as the direction of the wave vector
surface plasmons on a single metallic cylinder will be examk of the incident plane wave. We thus have
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1= 2 This is the modified Bessel equation and its solution is given

by the modified Bessel function of the first kind,

[’
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I=1

) R(r)ecl (&), (13

2 since the modified Bessel function of the second kind is not
analytic atr =0. When we take into account that the geom-
whereH, is the amplitude of the incident wavie= k|, and  etry is symmetric with respect t, the total field is given by
J, is the Bessel function of thigh order. The wave equation

in the polar coordinate system that describes the magnetic ”
field H, is given by H,= ngo Anln(kT)COSNE  (r<rp), (14)
1/ 19 1 & w? .
E(EJ“FEﬂ_zﬁ)HZ:_?HZ’ @ He= 3, [Bpdn(kr)+CoNy(kn)Jcosng (11,
wheree stands for the position-dependent dielectric constant (15
andc denotes the light velocity in free space. whereA,, B,, andC, are constants that should be deter-

As usual, we expresd, by the product of two functions 1 ined by the boundary conditions.
R(r) and®(#6). We then obtain a couple of equations tRat The independent boundary conditionsratr,, are the

and® obey, continuity ofH, ande ~9H,/dr. The latter is equivalent to
20 the continuity of the tangential component of the electric
9 — )0 (4) field. From these conditions, we obtain
96? '
A, kep[NA(KR) I (KR) =N, (kR)JA(KR)]
2 2 5= , (16)
9o 1d ew” e Bn ke N/ (KR)I,(kR)— kepN,(KR) I (kR)
St —— —|R=0, (5) n n
gr2 rar 2 g2
where \ is the parameter for decoupling. Becau®¢6) Cn__ KemIn(KR)Tn(kR) ~ xepdn(KR)In(«R) ,
should be a single-valued functiogig A is an integer, which Bn  kenNp(KR)In(kR) = kepNp(KR)I(kR)
we denote byn. The solutions of Eq(4) are thus given by 17
@(0)xen?, g ind. ©6) where e, denotes the dielectric constant in the background

region. Finally, by comparing E¢2) and Eq.(15), we obtain

Forr>r,,, we define a new variableby B.=H. and B.=2i"H (18)
o—"'lo n— 0-

s=kr. ™ When we calculateé,/B,, andC, /B, as functions ofv,
Then Eq.(5) is modified to we observed sharp resonances, which imply the excitation of
surface plasmons by the incident plane wave. As an example,
#? 19 Fig. 1 shows thew dependence oA,/B, for n=1-5 in
92 tsast 1- 2 R=0. ®  whicha sharp resonance peak is observed for each curve. No
resonance peak was observed with 0. The resonance fre-
This is the Bessel equation and its solution is given by theyuencies are listed in Table I. The resonance frequency con-
Bessel and Neumann functions, both of which are analytigzerges tow,/\1+ ¢}, with increasingn irrespective of the
forr>r,:

n2

TABLE I. Comparison between the resonance frequencies in the
R(r)ecdn(kr),  Np(kr). (9)  spectra ofA,/B,, and the eigenfrequencies on theoint in the unit
of 27c/a. The same parameters as Fig. 1 were used for the numeri-

On the other hand, far<r,,, the dielectric constani,,(w) cal calculation

is negative foro<w,. In this case, we have to take

S=«r, (10) n Resonance frequency Eigenfrequency
where 1 0.8194 0.7183
2 0.6149 0.5963,0.6712
1) 3 0.6627 0.6431
k=N=em(@). (11 4 0.6849 0.6876,0.7037
5 0.6937 -

We thus obtain for <r
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FIG. 1. w dependence oA,/B, for small n. The following
parameters were assumed,= 1.0, wpa/2mc=1.0,r,=0.3a, and
ep,=1.0(air). A sharp resonance that originates from the excitation
of the surface plasmon is observed in each curve.

FIG. 2. n dependence of the resonance frequency.

First, let us examine thA point in the two-dimensional

ratio r,:a as is shown in Fig. 2. This value is the same asBrillouin zone, i.e.k=(k,0) where O<k</a. Thek group
that of the surface plasmon on a flat interface between & given byC;={E, o} whereE is the identity operation and
metal and a dielectric. These resonant states have a f'”"@y is the mirror reflection about theaxis. The eigenfunction
radiative lifetime and they are not eigenmodes of the syste

"bn the A point is thus either symmetric or antisymmetric

However, when the metallic cylinders are arrayed in the phoébout thex axis. On the other hand, the angula) (depen-

tonic crystal, the resonant states can be propagated from Once of the resonant state, whose radial variation is de-
cylinder to another to become a Bloch eigenstate and obtain_ . '
the infinite lifetime. Because the resonant states are Ioc:alize%cnbe‘.j bYI“(Kr) fgirngr<rm and Jy(kr) andNy(kr) for r

at each cylinder, they may be regarded as atomic orbitals i "m> 1S given _bye— for eachn?l, where we_measur@ .
the theory of LCAO. This feature can be used to classify angounterclockwise from the axis. The symmetric and anti-

predict the symmetry of the eigenmodes that originate fronPyMmetric combinations of these two functions, i.e., s
the surface plasmons. and sim¢, possess the appropriate symmetry that the exact

eigenfunctions should have. We can thus conclude that the
resonant states characterized by indegive one symmetric
and one antisymmetric modes for thepoint.

Next, let us examine thE point, which has the symmetry

In Paper |, we investigated the photonic bands of the twoof the C,4, point group. The spatial variation of the resonant
dimensional metallic lattice for thE polarization in detail.  states is illustrated schematically in Fig. 3. When we com-
For that case, each dispersion curve in the photonic crystglare them with the symmetry of the irreducible representa-
had its replica in free space. This feature was demonstrateibns ofC,, , which are shown in Fig. 4, the symmetry of the
by the comparison of the symmetry of the eigenmodes beformer is easily assigned. The results are also shown in Fig.
tween the photonic crystal and free space. As forthpo- 3. Similar assignments can be made for ¥@oint, which
larization, the situation is different. We have modes thathas the symmetry of th€,, point group. All the results are
originate from the surface plasmons as well, which do nosummarized in Table Il. Symmetry assignments are pre-
have their replicas in free space. We can classify the symsented forn=1-4 in this table. Those fon'>4 can be
metry of those eigenmodes by examining the symmetry obbtained by a simple relation such that the same irreducible
the resonant states found in the last section. representations appear if

. SYMMETRY OF PLASMON POLARITONS

n=0 n=1 n=2 n=3 n=4

an
kj /N

FIG. 3. The angular variation
of the magnetic field and the sym-
metry assignment of the resonant
states according to the irreducible
representations of th€,, point

group.

sin n0

A
S
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n'=n+4j,

wherej is an integer.

IV. PHOTONIC BAND CALCULATION

(19

PHYSICAL REVIEW B 64 045117

the other handH?* Y2 implies thez component of the mag-
netic field att=(p+ 1/2)At, and so on. HereAt, Ax, and

Ay stand for the interval of the representative points in the
temporal and spatial meshes. The last term on the right-hand
side represents an oscillating magnetic dipole moment lo-

In Paper I, we derived Maxwell's equations that describecFated al(lo+1/2)Ax,(mo+1/2)Ay), where its amplitude is
the temporal evolution of the electromagnetic field in thedenoted byu,. We found that the use of a magnetic dipole
presence of metallic components and the oscillating poin{ather than an electric dipole resulted in somewhat better
dipole. When we calculated the dispersion relation of thefOnvergence for the present problem. The FDTD equation

simple cubic lattice composed of dielectric spheres as a spdor Ex in the metallic cylinder is given by

cial case, we treated all six components of the field. On the
other hand, when we calculated the dispersion relation of the
square lattice composed of the metallic cylinders for Ehe
polarization, we only dealt with thecomponent of the elec-
tric field, since the wave equation f&, was not very sin-
gular due to the fact thaE, and its derivatives of the first
order are continuous. In the present case, i.e., foiHhmo-
larization of the metallic square lattice,, is continuous, but

its derivatives with respect to the spatial coordinates are gen-
erally discontinuous. We thus cannot expect a good conver-

ERTY(I+ 5 ,m)

=ER(I+ 3,m)+

_Hngl/Z(I +

£0E,AY

5 m- %ﬁ

p

p+1/2
Hz

| 1 1
+§,m+§

gence when we just deal witH, .

For theH polarization, the electromagnetic field has three
components, that idi,, E,, andE,, which do not depend
on thez coordinate. In this case, the FDTD equation byris

given by

HP Y Y21+ L m+ &)

whereu denotes the magnetic permeability of free space.

—HE Y14 3 me )

At|EY(I+1m+ 3)—EJ(l,m+ 3)

1
_wg(At)Zqz eV(pQH/Z)EQ(I—FE,m), (21)

whereg is the permittivity of free space. Here we used the
response function given by E) of Paper |. On the other
hand, the FDTD equation fdg, in the background region

with the dielectric constandy, is given by

EP* Y1+ §,m)

Mo Ax
Pl 4 L Pl 1 =Epl+—m+—Hp+1’2I+Em+l
_Ex(|+§am+1)_Ex(|+§'m) X 2’ eoepAy| ? 2’ 2
Ay
. _HP+1/2(|+ I m-1 (22)
iou,At 5 5 opat - z 2 2)|-
oAxAy o mm,€ , (20)

[, andm are integers that specify the discretizec, andy

coordiates, respectively. For example; 1/2 impliesx= (I

+1/2)Ax, m+1/2 impliesy=(m+1/2)Ay, and so on. On

Ei(r+at)=explik-a)Ey(r,t), (23
F\ P .
kj S E,(r+at)=expik-a)E,(r,t), (24
E Al B] .
TABLE II. Symmetry of the eigenmodes expected from the
LCAO approximation and the group theory.
ﬁ\ FH X n I'(Cyy) A(C) X(Cz,)
-]/ I 1 E A+B B,+B,
E A B, 2 B.+B, A+B A+A,
3 E A+B B, +B,
FIG. 4. Symmetry of irreducible representations of iGg, 4 A+A, A+B A+A,

point group.

Similar FDTD equations can be obtained easily Egy.
We solved these equations numerically with initial condi-
tionsE=0 andH=0, and boundary conditions
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TABLE Ill. Comparison between the slope of the dispersion 2
. ! . ar
curve at the low frequency region obtained by the band calculation f=_Mm (26)
(band and by the long-wavelength approximatidiwvA ). a’
fola wlck (band wlck (LWA) is_ the ﬁI_Iing factor for the metallic cylinders. In this case, the
dielectric constant of the Drude type can be approximated by
0.1 0.960 0.984
0.2 0.872 0.935 £t
0.3 0.773 0.847 em(@)~=—5" (27)
0.4 0.625 0.705
The spatial average of the inverse dielectric function is thus
given by
H,(r+at)=exp(ik-a)H,(r,t), (25

wherek is the wave vector in the two-dimensional first Bril-

louin zone anda is the elementary lattice vector. The latter sxwg €p

condition extracts the contribution to the radiated electro- , i , )

magnetic field from particular eigenmodes with the specified' € €igenfrequency in the LWA is obtained as

wave vector. We can thus calculate the dipole radiation spec- =

trum for eachk, and its resonance peaks give the eigenfre- 1 1-f / fc3k®

guencies. The eigenfunctions can be obtained from the field W= —|ck~ \ ck— .k (29

distribution after sufficient cycles of the oscillation of the € &b 28 0p

dipole. Usually, 50 cycles were enough. We calculated therhe dispersion curve should thus start from theoint and

dispersion curves from the point to theX point in the first  jncrease approximately linearly witk. The slope of the

Brillouin zone assuming the following parameters in B8).  curve is determined by the filling factor and the dielectric

of Paper I: e,=1.0 (ain), &.=1.0, wpal2mc=1.0, ¥  constant of the background region alone and does not depend

=0.01w,, andr,=0.3a. B _ on other parameters, i.e,. or w,. The reason is that the
Because of the boundary condition, EG&3)—(25), itwas  electromagnetic field is excluded from the metallic region at

enough to deal with only one unit cell, and therefore, thesufﬁcienﬂy small frequencies irrespectivesof andw,,, and

CPU time necessary for the numerical calculation was smalkhe volume where the field can exist is determined by the

In the actual calculation, the two-dimensional unit cell Wwasfjling factor. The slope of the lowest dispersion curve in

divided into 40<40 parts to discretize the Maxwell equa- | WA is listed in Table 11l for four filling factors that will be

tions. The further decrease in the size of the spatial and temsyxamined numerically in the next section.

poral meshes did not bring about an apparent change in the

+

(1) fw? 1—f
() (29)

&

eigenfrequencies. V. NUMERICAL RESULTS AND DISCUSSION
Let us derive the LWA estimation for the dispersion curve '
here. We assume that=0, w<w,, and fc?k’<e, 02, Figure 5 shows the calculated dispersion relation from the
where I' point, (0,0), to theX point, (w/a,0), forr,=0.3a where
EG
1.2 _.(f_._---- e 0.75
B,(3) A4
e _ B() L eret 8 e e e B3
) B,(3) A — —o o343
070 :-A-.(T)-.-----.--.--.--.---.--.--: 82(2)
y . ——9 42 FIG. 5. The dispersion relation
A2) o--8-- - ®-0-- from thel" point to theX point for
e B,(1)

the radiational eigenmodes in the

e B 50| two-dimensional square lattice

3|5 0.651 - 1 composed of metallic cylinders
(1) IRl ST SEPURPRP, calculated for theH polarization.

A1) The following parameters were

assumed: r,/a=0.3, wpa/2wc
0.60§ J =1.0, y=0.0lw,, £.=1.0, and
B\(1) 8b:1.0.

0.2f B(1)

A1)

0.0 0.55
0 0.1 02 03 04 05 0 0.1 02 03 04 05

(b) 1

=~
Q

(a)

[}
el
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amples of extended eigenmodes that originate mainly from
the radiation field in free space. It is evident that they show
their peculiar spatial symmetries. The large bandwidths of
the lowest and the seventh lowest symmetric bands reflect
the extended nature of their wave functions.

On the other hand, Fig. 7 shows the first example of the
localized wave functions of the surface plasmon polaritons.
05l 5 = It shows the distribution off, of the second lowedE mode,

05 0 0.5 : 0 : E(2), on thel’ point. Since one mode is the replica of the
xla xla other given by the 90° rotation, these two modes are degen-
(@) X:B,(1) (b) I:4,(3) erate and are attributed to tierepresentation of th€,,
point group. The fields are localized in the vicinity of the
surface of the metallic cylinder, and they have the character

0.54

(1).8 of the surface plasmon polaritons. Their angular dependence
0.6 is approximately given by casand sind. When we compare
8-‘21 these field distributions with those given in Fig. 3, we see
0 that the former originate from the surface plasmon with
0.2 =1. Next, let us examine the field distribution of tBg(1)
:8-‘6‘ andB,(1) modes on thd" point that are shown in Fig. 8.
08 They are also localized around the cylinder surface and their
-1 angular dependence is approximately given by @bafd
xla sin 20, which implies that these two modes originate from
(©) X:B,(3) the surface plasmon polaritons with=2. Their symmetries

are consistent with the group-theoretical prediction presented

FIG. 6. The distribution oH, of the () B;(1) mode on thex  in Fig. 3 that is based on the LCAO description of the Bloch
point, (b) A;(3) mode on thd™ point, and(c) B,(3) mode on theX ~ wave function with singlen. However, the symmetries of
point. The maximum of each magnetic field is normalized to unity.modes on theX points are inconsistent with this picture. We

should thus take into consideration the mixing of the surface
symmetric(antisymmetri¢ modes about thg axis are drawn plasmons with different. Actually theE(2) mode on thd’
with solid (broken lines. The symmetries of the eigenmodespoint connects with theé\;(4) andB,(3) modes on theX
on thel” andX points that were obtained from the calculated point whose field distributions are presented in Fig. 9. The
field distribution are also shown. The number in parenthesefeld distribution of theB,(3) mode is similar to that of the
distinguishes the eigenmodes when more than one eigesurface plasmon witm=1, whereas thé\;(4) mode does
mode with the same symmetry exists in the analyzed frenot correspond to any pattern in Fig. 3. As for 8g1) and
quency range, €wal2wc=<1.2. The spectral region, B,(1) modes on thd" point, they connect with thé(1)
wal2wc=0.55-0.75, is magnified in Fig(). Those bands andB,(1) modes on th& point whose field distributions are
with extremely flat dispersion that originate from the surfaceshown in Fig. 10. Figure 18) somewhat resembles the field
plasmon polaritons are located in this frequency range. Apattern of the surface plasmon with=2, whereas Fig. 1®)
was predicted by LWA, the lowest dispersion curve startsloes not. Since the bandwidth of the second lowest symmet-
linearly from w=0 at thel" point. Its slope, which is given ric band is fairly large, the mixing with extended modes in
in Table lll, coincides fairly well with the LWA estimation. the background region may take place.

In order to see the nature of the flat bands and confirm the Among the rest of the eigenmodes found on Eheoint,
symmetry assignments, let us examine their field distribuE(1) andA;(2),A,(1) are attributed to the surface plasmon
tion. In the following figures, the maximum of the magnetic polaritons withn=3 and 4, respectively. Their eigenfrequen-
field is normalized to unity. First, Fig. 6 shows three ex-cies are close to the corresponding resonance frequencies as

0.5
1
08 FIG. 7. The distribution oH,
0.6 of the E(2) mode on thd” point.
0.4 This mode is doubly degenerate
s 0.2 and one eigenmode is a replica of
= 0 the other given by the 90° rota-
02 tion. The comparison of these dis-
04 tributions with those given in Fig.

3 shows that thé€E(2) mode has

-0.6
05 08 the character of the surface plas-
05 0 0.5 N mon withn=1.

xla
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FIG. 8. The distribution oH,
of the (a) B;(1) and (b) B,(1)
modes on thd™ point.

FIG. 9. The distribution oH,
of the (a) A;(4) and (b) B,(3)
modes on theX point.

FIG. 10. The distribution of
H, of the(a) A;(1) and(b) B,(1)
modes on theX point.

FIG. 11. The distribution of
H, of the E(1) mode on thel’
point.
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0.5

0 FIG. 12. The distribution of
0.2 H, of the (a) A.(2) and(b) A,(1)
0.4 modes on thd” point.

-0.5
-0.5 0 05 -0.5 0 0.5 A

x/a x/a

(@I A2) (b) I' Ay(1)

listed in Table I. Their field distributions are shown in Figs. is not known. As for the spatial dispersion of the dielectric
11 and 12. The angular dependence of apadd sin4 can  constant, we can treat it by carrying out the convolution in-
be observed in Fig. 12, whereas the angular dependence iegral in Eq.(4) of Paper | over as well ast, although the
Fig. 11 deviates from that shown in Fig. 3, which implies thecomputational task may increase considerably. Thus we can
mixing of eigenfunctions with othefE modes. deal with more realistic systems within the scope of the
In addition to the bands with inder=1 to 4 that we present study.
reported so far, several unresolved peaks were observed in
the dipole radiation spectrum in the vicinity of the converged
frequency,w,/ 2, which may be attributed to surface plas-
mon polaritons withn=5. These modes are not shown in  The photonic band structure of the two-dimensional
Fig. 5. As we examined in Sec. Il, an infinite number of square lattice composed of metallic cylinders characterized
plasmon resonance states are expected to exist for the preséytthe frequency-dependent dielectric constant of the Drude
model with the metallic dielectric constant of the Drude type.type was calculated for thiel polarization by means of the
Since the wave functions of these higher modes are morsumerical simulation of dipole radiation based on the FDTD
localized around the surface of the metallic rod, the LCAOmethod. The presence of the radiational eigenmodes with
description of the eigenmodes with singlebecomes more extremely small bandwidths that originate from surface plas-
accurate. We may thus expect that there exist an infinitenons on a single cylinder was clearly seen by the symmetry
number of bands with extremely small bandwidths aroundand the localized nature of the field distribution. We also
this frequency. This feature of the two-dimensional metallicshowed that the LCAO description of the radiational band
system is, of course, brought about by the particular choicavith a single plasmon resonance state is a fairly accurate
of the frequency-dependent dielectric constant. If we adopt approximation for this system.
more realistic model by taking into account the interband
transmor_1 and the spa’qal dispersion, this infinite degenera_cy ACKNOWLEDGMENTS
of the eigenmodes will be removed. As we mentioned in
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