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Interchannel electron transitions in a Luttinger liquid

I. V. Krive,1,2 S. I. Kulinich,1,2 L. Y. Gorelik,1 R. I. Shekhter,1 and M. Jonson1
1Department of Applied Physics, Chalmers University of Technology and Go¨teborg University, SE-412 96 Go¨teborg, Sweden

2B.I. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 310164 Kharkov, Ukraine
~Received 18 October 2000; published 6 July 2001!

Intermode electron transitions in a two-channel Luttinger liquid~LL ! are considered. At first we study chiral
LL and show that for a long-range Coulomb interaction even forward-scattering intermode electron transitions
are strongly renormalized by interaction at low energies. For a short-range interaction the renormalization of
the electron transition rates in a chiral LL do not depend on the energy~temperature, bias voltage! involved in
the tunneling process. We show, however, that the interference effects are sensitive to the strength of electron
interaction, and they are significantly enhanced for strongly correlated electrons. The analyses of the intermode
electron transitions is generalized for a nonchiral two-channel LL. The forward- and the backward-scattering
interchannel electron transition rates are calculated and their connection to the problem of x-ray singularity in
a LL is elucidated.
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I. INTRODUCTION

Tunneling in one-dimensional systems of interacting el
trons is drastically distinct from that for noninteracting pa
ticles. As was shown by Kane and Fisher,1 the bare tunneling
amplitudet0 is strongly renormalized by interaction. At low
temperaturesT!«F and for the large barrierst0 /\vF!1,
the tunneling rate for spinless electrons scales as a po

law function of temperature1 G(T)}ut0u2(T/«F)2(g2121),
whereg is the correlation parameter of the Luttinger liqu
(g51 corresponds to the case of noninteracting electro!.
Physically it means that the charge accumulated near
barrier cannot be redistributed along the one-dimensio
~1D! wire on a time scale shorter than the characteri
‘‘thermal’’ time tT;\/T. As a consequence, atT→0 and
for sufficiently long wires even a weak bare potential
renormalized up to an infinitely high barrier which ‘‘breaks
the Luttinger liquid~LL ! in the case of the charge transpo
into two semi-infinite subsystems.

This result was predicted for a purely 1D system. In r
quantum wires~e.g., in carbon nanotubes2! there are as a rule
several propagating longitudinal modes. Then the ques
arises — How do these extra modes influence the intram
and intermode tunneling of electrons?

The intramode tunneling in a multichannel LL was stu
ied in Ref. 3, where it was shown that the additional mod
effectively increase the ‘‘stiffness’’ of the system by redefi
ing the correlation parametersgj ( j 51, . . . ,N) which de-

termine the tunneling rateG j
(N) in the j th mode of the

N-channel LL. The problem of intermode tunneling and
influence on the Kane-Fisher effect is less well studied.

The interchannel electron transition can be regarded
process of creating a dipole in the region of transition. T
perturbation is less dramatic than the perturbation of cha
densities in the uncoupled channels. For instance, in the
of equal Fermi velocities the two-channel spinless LL
equivalent to a single-channel spin-1

2 LL. Then the inter-
channel electron transition is just the spin-flip process wh
itself could not disturb the charge density. Therefore the f
0163-1829/2001/64~4!/045114~13!/$20.00 64 0451
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ward spin-flip scattering is not affected by interactions. Ho
ever, if the Fermi velocities in the channels are different
could expect the electron-electron interaction to influence
interchannel electron transitions.

In this paper we consider a two-channel LL and stu
intrachannel and interchannel electron transitions induced
a local scattering potential. The most harmless processes
LL are those associated with forward scattering. So, at fi
the problem is treated for a chiral LL, where only forwar
scattering processes are allowed. In a purely 1D system
forward scattering does not lead to a redistribution of
charge density along the wire and the corresponding cha
teristics ~scattering phase! are not renormalized by interac
tions. For a multimode LL~see Ref. 3! one could consider
channels with different Fermi velocitiesvF

( j ) . In this case
even in a chiral LL the transition of electrons from one cha
nel to another results in a redistribution of the charge den
and the tunneling rates do get renormalized. Notice tha
the LL model the electron spectrum is linearized and
velocities of the excitations are energy independent. The
fore the renormalization effects in a single chirality mul
mode LL depend only on the ratio of Fermi velocities of t
channels. Contrary to the Kane-Fisher effect, the renorm
ized electron transition rates in a chiral multichannel LL a
temperature- and voltage-bias independent.

We show, however, that one can introduce local quanti
— densities of states~DOS! for interacting electrons, which
are renormalized by the energy-dependent factor. Th
quantities determine the transitions of electrons ‘‘dresse
by the interchannel interaction to or from the vicinity of th
Fermi energy. They are strongly energy dependent in
complementary manner. When one of the transition am
tudes is enhanced, the other is suppressed. The total ele
transition rateG12(v) at frequencyv can be recast in the
form of the convolution of the two mentioned transition am
plitudes shifted by\v and, therefore, the interaction-induce
energy-dependent renormalization is not manifest inG12(v).
One may expect that the ‘‘local’’~energy-dependent! elec-
tron transition amplitudes could be important in various
terference effects in a two-channel LL. By considering t
©2001 The American Physical Society14-1
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KRIVE, KULINICH, GORELIK, SHEKHTER, AND JONSON PHYSICAL REVIEW B64 045114
interchannel electron transitions at two points spaced by
distanced@a ~where a is the lattice spacing! we demon-
strate that the interference pattern is controlled by the par
eters that determine the energy dependence of the local D

For a short-range electron-electron interaction the ren
malization factor in the expression forG12(v) depends only
on the ratio of the Fermi velocities and the interacti
strength. The suppression of electron transitions by the in
action in this case is pronounced only in the strong-coup
limit when the effective tunneling rate is inversely propo
tional to the square of the interaction constant. The dep
dence of electron tunneling rates on the energy in a chiral
occurs for a long-range electron-electron interaction due
the dispersion of the plasmon velocities. In this case even
a weak interaction the transition rateG12(v) is strongly
renormalized in the low-frequency limitv→0. This is the
closest analog of the interaction-induced renormalization
fects in a chiral LL to the Kane-Fisher effect. Notice, ho
ever, that the effect in the chiral model is much weaker th
that caused by the backscattering of electrons~the Kane-
Fisher effect!. For instance, for an unscreened Coulomb
teractionG12(v) scales with frequencyv only as the power
of a logarithm,G12(v)}1/ln2v.

A multichannel chiral LL@although it was realized in ex
periments as edge states in the fractional quantum Hall e
~FQHE! systems4# is a rather exotic object. In quantum wire
electrons are nonchiral. So, the important question arise
Does the effects predicted for a chiral LL survive when t
interaction between the right and left movers is switched
At first we considered the situation when there is no ba
scattering in the channels~adiabatic transport!. It is shown
that the interchannel forward-scattering transition r
G12

( f )(v) is suppressed by the interaction asv→0 if vF
(1)

ÞvF
(2) . However, the exponents that determine the ene

behavior of the local DOS’s vary with the interactio
strength qualitatively in the same manner as in a chiral
So, our analysis of the interference effects, performed i
simple model of two-channel chiral LL, holds also for th
quantum wires.

If there is a barrier that backscatters electrons in the ch
nels, it ‘‘breaks’’ the LL wire into two semi-infinite parts fo
the charge transport. The tunneling of electrons across
weak link will always be strongly suppressed irrespective
which channel it occurs in. So, we could consider either
interchannel forward-scattering electron transitions indu
independently in the left~right! part of the wire and/or the
interchannel backward scattering at the position of the ‘‘i
purity.’’ The last process seems to be the most interes
one since it is just the backscattering with a change
flavors ~channel indices in our case!. It is shown that this
channel of backscattering is always suppressed by inte
tions. So, the barrier strongly reflect the electrons only
their own modes (1L()↔1R(L) , 2L(R)↔2R(L)).

The paper is organized as follows. Section II deals w
the detailed analysis of the interchannel electron transiti
in a chiral LL. The interference effects induced by the ele
tron transitions in a two-channel LL are considered in S
III. In Sec. IV the results derived in Sec. II are generalized
the case of long-range electron-electron interaction. In S
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V the Hamiltonian of a two-channel LL is diagonalized wi
the help of canonical pseudoorthogonal transformation. T
rates of the interchannel electron transitions in an infinite
are evaluated in Sec. VI. Section VII deals with the proble
of interchannel electron transitions at the end of the se
infinite LL. The importance of the derived results for th
optical transitions in a LL is briefly discussed in Sec. VIII

II. TWO-CHANNEL CHIRAL LUTTINGER LIQUID

Consider a one-dimensional two-channel spinless elec
liquid interacting via a density-density short-range intera
tion. The Hamiltonian of the system takes the form~for defi-
niteness we will consider right-moving electrons!

H5p\E dxH u1r1
2~x,t !1u2r2

2~x,t !1
V0

p\
r1~x,t !r2~x,t !J ,

~1!

wherer1,(2) are the charge-density operators in the first~sec-
ond! channel,V0 is the interaction strength (V0 is of the
order of the electron charge squared,V0.e2),

u1(2)5vF
(1),(2)1

V0

p\
, ~2!

andvF
(1),(2) are the Fermi velocities. The charge-density o

erators obey the equal time commutation relations~see, e.g.,
Ref. 5! @r j (x),rk(x8)#5(d jk/2p i ) ]x d(x2x8). The Hamil-
tonian ~1! is easily diagonalized by the unitary transform
tion

r15 r̃1cosc1 r̃2sinc; r25 r̃1sinc2 r̃2cosc, ~3!

where

tan 2c5
V0

p\~u12u2!
5

V0

p\~vF
(1)2vF

(2)!
. ~4!

In diagonal form, the HamiltonianH̃ describes two decou
pled boson modes with the velocities

s1,(2)5
1

2
~u11u2!6AS u12u2

2 D 2

1S V0

2p\ D 2

. ~5!

We will describe the transition of an electron from on
channel to another at pointx50 by the tunneling Hamil-
tonian

Ht5tvC2
†~0!C1~0!1H.c., ~6!

whereC (C†) is the electron annihilation~creation! opera-
tor at pointx50; tv is the bare tunneling amplitude@in what
follows we will only consider a harmonic perturbation,tv

5t0exp(ivt)]. We will also assume that the transitions in
duced by the Hamiltonian~6! are weak (t0!\vF

(1),(2)) and
will treat them perturbatively. By using the Fermi golde
rule, the electron transition rateG12(v) can be represented a
the Fourier transform of the four-point correlation functio
4-2
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INTERCHANNEL ELECTRON TRANSITIONS IN A . . . PHYSICAL REVIEW B64 045114
G12~v!5E dteivtG12~ t !,

G12~ t !5Ut0

\U
2

^C1
†~ t,0!C2~ t,0!C2

†~0,0!C1~0,0!&, ~7!

where the average is taken over the ground state of the
teracting electron system described by the Hamiltonian~1!.

Since the Hamiltonian, Eq.~1!, when represented via th
charge-density operators is quadratic, the correlation fu
tion G12(t) can be evaluated exactly by using bosonizat
techniques~see, e.g., Ref. 5!. At first we represent the fer
mion operators in terms of boson fieldsw j (x,t), where
r j (x,t)5(1/Ap)]xw j (x,t)( j 51,2):

C j~x,t !5
U j

A2pa
exp$ ikF

( j )x1 iA4pw j~x,t !%. ~8!

Herea is a cutoff of the order of the lattice spacing andkF
( j )

is the Fermi momentum in the first (j 51) or the second (j
52) channel~recall that for definiteness we consider righ
moving fermions!, andU j is the unitary rising operator tha
provides the correct commutation relations for the Fe
fieldsC j in different channels. We will not specify the form
of this operator since it disappears from the expression
the correlation function, Eq.~7!. The standard procedure a
lows us to express the correlation functionG12(t) as the ex-
ponential of the boson correlation functions

G12~ t !5U t0

2p\aU
2

exp$4p~^^w1~ t !w1&&1^^w2~ t !w2&&

2^^w2~ t !w1&&2^^w1~ t !w2&&!%, ~9!

where^^w i(t)w j&&[^@w i(t,0)2w i(0,0)#w j (0,0)&. The boson
fields w j (x,t) in their turn are linear combinations@see the
Bogoliubov transformation, Eq.~3!# of the ‘‘diagonal’’ fields
w̃ j (x,t) with the well-known property~see, e.g., Ref. 5!

^^w̃ j (t)w̃k&&52(d jk/4p)ln@(a1iskt)/a#. After straightfor-
ward calculations the correlation functionG12(t) takes the
form

G12~ t !5U t0

2p\U
2

~a1 is1t !2l2~a1 is2t !2l1, ~10!

where

l6516sin 2c516
k

A11k2
. ~11!

Herek[tan 2c is determined by Eq.~4!.
In the LL approach to the interacting fermions we a

interested in the low-frequency limitv!vF
(1),(2)/a. The de-

sired result for the tunneling rate is

G12~v!.G12
(0)~v!

vF
(1)vF

(2)

s1s2
S s1

s2
D z

, z[
k

A11k2
. ~12!
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HereG12
(0) is the corresponding tunneling rate for nonintera

ing electrons (V050),

G12
(0)~v!5

ut0u2

2p\2

vu~v!

vF
(1)vF

(2)
, ~13!

whereu(v) is the Heaviside step function. The appearan
of the step function in Eq.~13! reflects the evident fact tha
due to the Fermi statistics the electrons can tunnel only
unoccupied states with the energyv.0(«.«F).

According to Eq.~12! the tunneling rate is renormalize
multiplicatively. Notice that for chiral fermions the reno
malization factor does not depend on the energy\v in-
volved in the transition process. For repulsive forces (V0
.0) the interaction suppresses the tunneling, and the att
tion (V0,0) leads to the enhancement of the tunneling ra
The effect is small in the weak-coupling limitV0 /p\vF

(1,2)

!1 when

G12~v!

G12
(0)~v!

.12
V0

p\ S 1

vF
(1)

1
1

vF
(2)

2
1

vF
(1)2vF

(2)
ln

vF
(1)

vF
(2)D .

~14!

Notice that the expression within the parentheses is p
tively definite. In the strong-coupling limitV0 /p\vF

(1,2)@1
the velocitiess1,2 are totally determined by the interactio
s2.s1/3.uV0u/2p\, and the tunneling rate is strongly sup
pressed. ForvF

(1).vF
(2)5vF!V0/2p\

G12~v!.S 2p\vF

V0
D 2

G12
(0)~v!!G12

(0)~v!. ~15!

We will see in what follows that for a long-range interactio
the renormalization factor in Eq.~15! acquires an additiona
frequency-dependent coefficient and the problem of the
terchannel electron tunneling (v→0) always is a problem of
strong coupling.

One can readily generalize Eq.~12! to finite temperatures
At TÞ0 the correlation function for the noninteracting bos
fields reads

^w̃ j~ t !w̃k&52
d jk

4p
lnF ~a1 iskt !

a

sinh~p\21tT!

p\21tT
G , ~16!

and then

G12~T,v!.U t0

2p\U
2

s1
2l2s2

2l1

3E
2`

`

dt
eivt

~t11 i t !l2~t21 i t !l1

3F p\21tT

sinh~p\21tT!
G 2

, ~17!

wheret1(2)5a/vF
(1),(2) andl6 is defined in Eq.~11!. In the

limit \v,T!\/t1,2 the integral in Eq.~17! is determined by
the long-t asymptotics of the integrand and, sincel11l2

52, it is evident that the temperature contributions toG12 do
4-3
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not depend on the interaction. The integral can be done
lytically by the contour-integral method. The result is

G12~T,v!5
ut0u2

2p\2
s1

z21s2
2z21H vu~v!1

uvu
exp~\uvu/T!21J .

~18!

So, if T!\uvu we reproduce Eqs.~12! and~13! up to expo-
nentially small corrections. In the ‘‘high-T’’ limit \uvu!T
!\/t1,2 the electron transition rate in the main approxim
tion is determined by temperature

G12~T@\v!.
ut0u2

2p\3
s1

z21s2
2z21T. ~19!

We showed that the temperature- and interaction-depen
parts of the electron transition rate are factorized. In w
follows we set T50 and consider only the effects o
electron-electron interaction.

III. ROTATED DENSITY OF STATES

It is useful to representG12(v) Eqs.~7! and ~10! in inte-
gral form, namely, as an integral over energy of the prod
of two local density of states~DOS!

G12~v!5
2p

\
ut0u2E

2`

`

d«ñ1
(2)~«!ñ2

(1)~«1\v!, ~20!

where

ñ j
6~«!5

1

~2p!2\
E

2`

` dt

a1 isj t
expF6

i«t

\

6sin 2cE
0

`dk

k
e2ak~e2 iksj t21!G ~21!

and the anglec is determined by Eq.~4!. It is easy to check
that the introduced quantities possess the exact symm
property ñ1

(2)@2«,2sgn(vF
(1)2vF

(2))#5ñ2
(1)@«,sgn(vF

(1)

2vF
(2))#. Notice that the local DOS’s, Eq.~20!, were defined

after the diagonalization of the boson fieldsw j and therefore
they depend on the correlation function of the diagonal fie

^^w̃ j (t)w̃ j (0)&&. We will call these quantities therotated
DOS’s to distinguish them from the ordinary density
states

n1
(2)~«!5

1

2p\E2`

`

dte2 i«t/\^C1
†~ t !C1~0!&

5n10
(2)~«!

vF
(1)

s1
S s1

s2
D sin2c

, ~22!

n2
(1)~«!5

1

2p\E2`

`

dtei«t/\^C2
†~ t !C2~0!&

5n20
(1)~«!

vF
(2)

s2
S s2

s1
D sin2c

, ~23!
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where

n10
(2)~«!5

u~2«!

2p\vF
(1)

, n20
(1)~«!5

u~«!

2p\vF
(2)

~24!

are the density of states of noninteracting chiral electr
(V050).

Unlike ordinary DOS’s, Eqs.~22! ~23!, the rotated ones
even in chiral LL depend on energy in a nontrivial way. B
doing the integrals in Eq.~21! one readily gets the low-
energy asymptotics of Eq.~21!,

ñ1
(2)~«!.n10

(2)~«!
vF

(1)

s1G~11z!
U «

L1
U2z

, «!L1 ~25!

ñ2
(1)~«!.n20

(1)~«!
vF

(2)

s2G~12z!
U «

L2
U z

, «!L2 . ~26!

HereG(x) is the gamma function,L j[\sj /a ( j 51,2) are
the cutoff energies, andz is defined in Eq.~12!.

What is the physical meaning of the rotated DOS? Not
that due to the interchannel interaction the charge crea
e.g., in the second channel interacts with the charge de
left in the first channel. This dipolelike interaction ‘‘dresses
the electrons and strongly renormalizes the bare tunne
amplitude. Formally Eq.~21! can be interpreted as th
ordinary tunneling DOS for dressed electronsC̃6

;exp(iA4pl6f̃ j ), wherel6 is determined in Eq.~12!. For
dressed electrons the interaction is attractive ifl6.1 and
repulsive forl6,1. The integral representation, Eq.~20!,
for the tunneling rate allows us to rewrite the interchan
electron transition probability as the convolution of tw
energy-dependent transition amplitudes

G12~v!5E
2`

` d«

2p\
t1
(2)~«!t2

(1)~«1\v!, ~27!

t2
(1)~«!52pt0ñ2

(1)~«!, t1
(2)~«!52pt0* ñ1

(2)~«!.
~28!

The amplitudet1
(2)(«) determines the process of removin

the dressed electron from the vicinity of the Fermi level«
!L1) in the first channel;t2

(1)(«) describes the complemen
tary process of adding the dressed electron to the regio
the vicinity of the Fermi level («!L2) in the second chan
nel. At zero temperature the limits of integration in Eq.~27!
are finite due to the presence of the step function in
definition of DOS. If\v is of the order of the energy cutof
L, t2

(1) will contribute to the integral Eq.~27! only in the
lower limit («;2\v) and t1

(2) only in the upper limit («
;0). One may speculate that at least in the weak coup
limit ( k!1), when it is possible to use the one-particle co
cept of scattering data~see, e.g., Ref. 6! the electron transi-
tion amplitudesteff(«→«1\v) and teff(2\v1«→«) ~see
Fig. 1! are renormalized by interactions analogously to
rotated DOS,
4-4
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INTERCHANNEL ELECTRON TRANSITIONS IN A . . . PHYSICAL REVIEW B64 045114
teff~«→«1\v!.t fu~2«!U\v

« UV0 /[p\(vF
(1)

2vF
(2))]

, «!\v

~29!

teff~2\v1«→«!.t fu~«!U «

\vUV0 /[p\(vF
(1)

2vF
(2))]

, «!\v,

~30!

wheret f!1 is the bare forward-~f ! scattering amplitude.
The above expressions indeed were derived in Ref. 7

the weak-coupling approach to the 1D interacting elect
systems proposed in Ref. 6. So our analysis supports
result and shows that even in chiral LL~without backscatter-
ing! there are ‘‘local’’ quantities@rotated DOS, Eqs.~25!,
~26!# which are strongly renormalized by interaction.

How could one probe the rotated DOS? It is clear that
different dependence of electron transition amplitudes on
energy could play an important role in the interference
fects. Imagine that we induce electron transitions in a ch
LL by electromagnetic field at two ‘‘points’’~say,x50 and
x5d; see Fig. 2!. The local transition regions could be rea
ized in a laterally confined two-dimensional~2D! electron
gas by modulating the width of the quantum wire. Then
frequency of the ac field could be adjusted for resonant e
tron transitions only in the local regions~widenings! well
separated from each other along the wire. We consider
influence of the interference effects on the power absorp
P(v)5\vG12

(d)(v). This measurable quantity can be analy

FIG. 1. ‘‘Vertical’’ intermode electron transition amplitudes
The curves 1 and 2 schematically represent electron energy b
« j (p) in the first (j 51) and second (j 52) channels.

FIG. 2. Two-point electron ‘‘splitter.’’ The electromagnetic fiel
induces electron transitions at pointsx50,d in a two-channel non-
homogeneous Luttinger liquid.
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cally calculated and it does demonstrate the strong dep
dence on the interaction strength.

The evaluation ofG12
(d)(v) results in the expression

G12
(d)~v!

2G12~v!
511R$exp@ i ~kF

(1)2kF
(2)2s1

21v!d#

31F1„12z,2;2 ivd~s2
212s1

21!…%, ~31!

whereG12(v) is determined by Eq.~12! and 1F1(a,c;z) is
the confluent hypergeometric function. We consider the
ymptotics of Eq.~31! when x[uvd(s2

212s1
21)u@1, which

is the proper limit for the adiabatic channels (x;d/lF@1 in
the weak-coupling regime andx;«F /Ec@1 for strong inter-
action; herelF is the Fermi wavelength andEc.e2/d is the
‘‘Coulomb blockade’’ energy!. By making use of the
asymptotic behavior of the confluent hypergeomet
function,8 we get the desired result

G12
(d)~v!

2G12~v!
.11

sinF1

G~11z!
xz212

sinF2

G~12z!
x2z21, ~32!

where

F j5~kF
(1)2kF

(2)2sj
21v!d1~p/2!z,

~33!
z5V0 /AV0

21@p\~vF
(1)2vF

(2)!#2.

Notice thatz50 for noninteracting electrons (V050) and
z→1 in the strong-coupling regime. One can see from E
~33! that the interference effects in the power absorption
depend on the interaction and that they are significantly
hanced for strongly correlated electrons. The interacti
dependent parameters controlling the decay of the oscilla
part of G12

(d) coincide with those who determine the ener
dependence of the rotated DOS’s, Eq.~25!. A detailed analy-
sis of the power absorption in the multichannel LL wire
radiated by electromagnetic field will be published els
where.

IV. LONG-RANGE INTERACTION

The interaction-induced energy dependence of the ‘
cal’’ tunneling characteristics like effective transmission a
plitudes, Eq.~29!, disappears in the ‘‘global’’ properties o
electron tunneling in a two-channel chiral LL. Now we sho
that in a chiral electron liquid with Coulomb interaction th
electron transition rateG12(v) is renormalized by interaction
and that the renormalization factor depends on the freque

Let us replace the interaction term in the Hamiltonian, E
~1!, by the Coulomb energy

V̂int5e2E E dxdy
r1~x!r2~y!

A~x2y!21d2
, ~34!

whered is the width of the wire (d is of the order of the UV
cutoff a and in what follows we will setd.a). The calcu-
lations analogous to that performed in Sec. II for LL~short-
range interaction! results in the expression for the four-poi
electron correlation function as follows:

ds
4-5
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G12~ t !5U t0

2p\U
2

expS (
j 51,2

E
0

`dk

k
e2ak~e2 iksj (k)t21!

1E
0

`dk

k

kk

A11kk
2

e2ak@e2 iks2(k)t2e2 iks1(k)t# D ,

~35!

where

kk5
e2Vk

p\~vF
(1)2vF

(2)!
, Vk5E

2`

`

dx
eikx

Ax21a2
52K0~ak!.

~36!

HereK0(x) is the modified Bessel function of the third kin
~see, e.g., Ref. 9!. The velocitiess1,2(k) are determined by
Eq. ~5!, where the interaction strengthV0 is replaced by
e2Vk . The integrals over momentumk in Eq. ~35! can be
done analytically in the limits of weak and strong interactio

A. Weak interaction

In the weak interaction limit the plasmon velocities are

sj~k!5vF
( j )1

e2Vk

p\
~37!

and we have to take into account the velocity dispers
while evaluating the first two integrals in Eq.~35!. The last
two terms are already small (kk!1) and can be evaluate
for unperturbed velocitiessj (k).vF

( j ) . The corresponding
contributions are

G12~ t !5U t0

2p\U
2 exp@W1~ t !1W2~ t !#

~a1 ivF
(1)t !~a1 ivF

(2)t !
, ~38!

Wj.2
2e2

p\a

t

Al j
211

@sinh21~ l j !1 ip/2#

1~21! j 11
e2

p\~vF
(1)2vF

(2)!
sinh21~ l j !

3@sinh21~ l j !1 ip#, ~39!

where l j5vF
( j )t/a. In the absence of interactionWj (t)50

andG12(t) is reduced to the well-known expression for no
interacting electrons.

To get the tunneling rateG12 we need to take the Fourie
integral equation~7!. In the LL approach we are interested
the low-frequency behavior,av!vF

( j ) , of the tunneling rate
G12(v). So we can approximateWj by its long-time asymp-
totics t@t j[a/2vF

( j ) ,

(
j 51,2

Wj~ t !.2
2e2

p\ F 1

vF
(1)

ln
i t

t1
1

1

vF
(2)

ln
i t

t2

2
1

vF
(1)2vF

(2)
ln

vF
(1)

vF
(2)

ln
i t

t12
G . ~40!
04511
.

n

Here t125a/2AvF
(1)vF

(2). With the help of Eq.~40! it is
straightforward to evaluate the Fourier integral. In the lo
frequency limit,vt!1, one gets

G12~v!

G12
(0)~v!

.12
2e2

p\vF
(1)

ln
1

vt1
2

2e2

p\vF
(2)

ln
1

vt2

1
2e2

p\~vF
(1)2vF

(2)!
ln

vF
(1)

vF
(2)

ln
1

vt12
. ~41!

Actually, our assumption of weak interaction for Co
lomb forces holds untilue2ln(vtj)u!\vF

(j) , otherwise the in-
teraction acts effectively as the strong one~see below!. Equa-
tion ~41! is an evident generalization of Eq.~14! for the case
of long-range interaction. The additional appearance of
frequency dependence in Eq.~41! is totally due to the fact
that for Coulomb interaction the plasmon velocities acqu
in the long-wavelength limit the logarithmic corrections. A
in the case of LL@see Eq.~14!# the interaction always sup
presses the intermode electron tunneling. It is evident fr
Eq. ~41! that the effect of suppression is pronounced only
small frequencies. Ifv!vc;t j

21exp(2p\vF
(j)/2e2) the in-

fluence of the interaction cannot be treated perturbativ
and we are in the range of strong interaction.

B. Strong interaction: e2Õ\vF
„ j …Ð1

For simplicity we consider the strong-coupling limit in th
model with equal Fermi velocitiesvF

(1)5vF
(2)[vF . In this

case the renormalization of the electron tunneling rate is
tally determined by the plasmon velocity dispersion. In t
low-frequency limit the expression forG12(v) can be repre-
sented as

G12~v!5U t0

2p\aU
2E

2`

`

dteivt

3expF2E
0

`dk

k
e2ak~e2 i tvp(k)21!G , ~42!

wherevp(k)5(3e2/p\)k ln(1/ak) is the energy of the long-
wavelength plasmon. The appearance of a logarithmic
pendence of energy of the elementary excitations on the
mentum is a common feature of the Coulomb effects in 1
For a nonchiral LL we would getvp(k)}kAln(1/ak) for the
plasmon excitations~see, e.g., Ref. 10!. This results in a
non-power-law decay of correlation functions and in ad
tional strong suppression of electron tunneling through
impurity ~see Refs. 11–15!. For a chiral LL the effect of a
long-range interaction is not so dramatic. Nevertheless
strongly modifies the behavior of electron tunneling rates
v→0. Indeed, by doing integrals in Eq.~42! in the limit
\v!«c[e2/a one readily gets the desired result

G12~v!

G12
(0)~v!

.F 3

p

e2

\vF
lnS «c

\v D G22

!1, ~43!
4-6
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whereG12
0 (v) is the tunneling rate for noninteracting ele

trons, Eq.~13!.
We see that in the case of strong interaction (e2/\vF

>1) or in the limit v→0 for a weak interaction (e2/\vF
<1) the long-range forces strongly suppress the elec
tunneling in a two-channel chiral electron liquid. This res
@see Eqs.~41! and ~43!# could be regarded as the analog
the Kane-Fisher effect1 for a forward scattering in a multi
channel chiral system of interacting electrons. Notice tha
the absence of backscattering the renormalization of the
termode tunneling is much weaker. Namely, the power-
dependence on frequency is replaced by the logarithmic

V. TWO-CHANNEL LUTTINGER LIQUID.
DIAGONALIZATION

Until now we considered the electron tunneling in a tw
channel chiral LL, where only forward-scattering proces
are allowed. In this case the interaction could induce ren
malization of the bare electron tunneling amplitudes if t
velocities of the modes are different and interaction dep
dent. They are indeed different and therefore the excita
of plasmon modes during the intermode electron tunne
does result in the appearance of an interaction-depen
renormalization factor in the electron tunneling rates@see Eq.
~12!#. We showed also that when the interaction is lo
ranged~e.g., an unscreened Coulomb interaction! the disper-
sion of plasmon velocities leads to the appearance of
energy-dependent renormalization factor. The novel fea
of the charge-density dynamics in a two-channel chiral LL
the appearance of a dimensionless interaction strength w
depends on the difference of the Fermi velocities in the ch
nels. This quantity disappears from the electron tunne
rate induced by a local perturbation. But it is this effecti
interaction that determines the interference effects produ
by the extended structures. Now we would like to und
stand: ~i! Is there room for this quantity in a two-chann
nonchiral LL? and~ii ! How does interaction between righ
and left movers modify our results for a chiral model?

To be more concrete, in this section we consider how
intermode forward and backward scatterings in a tw
channel LL are renormalized by the interaction. In Ref.
this problem was studied only for the case ofintramodeelec-
tron tunneling. It was shown3,19 that for a repulsively inter-
acting electron system the ‘‘multimodeness’’ effectively i
creases the ‘‘rigidity’’ of the electron liquid. It means th
the effect of suppression of the intramode electron tunne
could be only enhanced by the presence of extra mode~s!.
Here we are interested in the influence of interaction on
intermodeelectron transitions.

The Hamiltonian that governs the quantum dynamics
interacting electrons in a two-channel LL takes the form

H5p\E dxH u1~rR1
2 1rL1

2 !1u2~rR2
2 1rL2

2 !

1
V1

(e)

p\
~rR1rR21rL1rL2!1

V2
( i )

p\
~rR1rL11rR2rL2!

1
V2

(e)

p\
~rR1rL21rR2rL1!J . ~44!
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Equation~44! is a straightforward generalization of the chir
model, Eq. ~1!. Here rR j and rL j are the chiral charge
density operators for the right~R! and left ~L! moving par-
ticles in the first (j 51) and the second (j 52) channel. They
obey anomalous Kac-Moody commutation relations~see,
e.g., Ref. 5!. The velocitiesu1(2) in Eq. ~44! are the Fermi
velocities of the channels renormalized by the intrachan
interaction (V1

( i )), u1,25vF
(1,2)1V1

( i )/2p\. In our model, Eq.
~44!, we assumed the electron-electron interaction to be s
ranged~in a LL sense! and for the moment we distinguis
the intrachannel interaction between electrons moving in
same (V1

( i )) and in the opposite (V2
( i )) directions and the

interchannel (V1
(e) , V2

(e)) electron-electron interaction.
The first problem is to diagonalize the Hamiltonian, E

~44!. It is reasonable to parametrize the canonical trans
mation we are looking for by the product of trigonometr
and hyperbolic functions. Besides, the transformatio
should respect the left-right symmetry of our model. T
desired pseudoorthogonal transformation is

rR15coshq1coscr̃R11sinhq1coscr̃L12coshq2sincr̃R2

2sinhq2sincr̃L2 ,

rL15sinhq1coscr̃R11coshq1coscr̃L12sinhq2sincr̃R2

2coshq2sincr̃L2 , ~45!

rR25coshq3sincr̃R11sinhq3sincr̃L11coshq4coscr̃R2

1sinhq4sincr̃L2 ,

rL25sinhq3sincr̃R11coshq3sincr̃L11sinhq4coscr̃R2

1coshq4coscr̃L2 .

Notice that in the limitq j50 ( j 5124) Eqs.~45! are re-
duced to the unitary transformation Eq.~3!. For c50 we
reproduce the standard Bogoliubov transformation for
two uncoupled channels.

It is easy to check that the pseudoorthogonal transfor
tion Eq. ~45! will be canonical if

q12q35q22q4 . ~46!

So we are left with 1621056 equations for the determina
tion of four independent ‘‘rotation angles.’’ For our param
etrization, Eq.~45!, these equations are reduced to four d
ferent transcendental equations which, together with
~46!, form the complete set of equations for our diagonaliz
tion problem~see the Appendix!.

In the two limiting cases the solution of the set of equ
tions is obvious. When we setV2

( i )5V2
(e)50 we reproduce

the chiral model tan 2c5V1
(e)/p\(vF

(1)2vF
(2)), q j50, j

51, . . . ,4. If V1
(e)5V2

(e)50, then we are dealt with the two
uncoupled channels (c50) and
4-7
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tanh 2q1(4)52
V2

( i )

2p\vF
1,(2)1V1

( i )
, q35q1 , q25q4 .

~47!

For the interacting nonchiral channels the most import
case is the limit when all coupling constants are equalV1

( i )

5V2
( i )5V1

(e)5V2
(e)[V0. In this case the exact solution of th

set of equations presented in the Appendix takes the for

q15
1

2
lng1 , q25

1

2
lnS vF

(1)

vF
(2)

g2D ,

~48!

q35
1

2
lnS vF

(2)

vF
(1)

g1D , q45
1

2
ln g2 ,

tan 2c5
2V0AvF

(1)vF
(2)

~vF
(1)2vF

(2)!@V01p\~vF
(1)1vF

(2)!#
, ~49!

wheregj5vF
( j )/sj ( j 51,2) are the correlation parameters

the two-channel LL and the plasmon velocitiess1(2) are

s15vF
(1)H cos2c1S vF

(2)

vF
(1)D 2

sin2c

1
V0

p\vF
(1) S cosc1AvF

(2)

vF
(1)

sinc D 2J 1/2

, ~50!

s25s1~c↔2c,vF
(1)↔vF

(2)!. ~51!

Notice that in the limitvF
(1)5vF

(2)5vF the two-channel LL of
the spinless electron is equivalent to a single-channel LL
spin-12 electrons. In this case sin 2c51 and we easily re-
derive the well-known expression~see, e.g., Refs. 5 and 19!

q15q35
1

2
ln gc , q25q450, gc5S 11

2V0

p\vF
D 21/2

.

~52!

Here gc is the correlation parameter of spin-1
2 LL in the

charge sector.

VI. INTERCHANNEL ELECTRON TRANSITIONS

The interchannel electron transitions are described by
tunnel Hamiltonian Eq.~6!, where electron operatorsC j in
the bosonization technique are represented via ‘‘chir
boson fieldswR(L)(x,t) by the standard formula~see, e.g.,
Ref. 5!

C j~x,t !5CR j~x,t !1CL j~x,t !

5
1

A2pa
$UR, jexp@ ikF

( j )x1 iA4pwR j~x,t !#

1UL, jexp@2 ikF
( j )x2 iA4pwL j~x,t !#%, ~53!

whereUR(L), j is the unitary rising operator that increases t
number of electrons on theR(L) branch by one and does no
04511
t

f

e

’’

affect the bosonic excitations. The boson operat
wR(L) j (x,t) @notice thatrR(L) j5(1/Ap)]xwR(L) j ] satisfy the
following commutation relation~see, e.g., Ref. 5!:

@wR j~x!,wRk~0!#52@wL j~x!,wLk~0!#5d jk

i

4
sgn~x!,

~54!

@wR j~x!,wLk~0!#5d jk

i

4
.

The calculation of the correlation functionG12(t), Eq.~7!,
for a two-channel LL is much more lengthy than that for
chiral model. It is clear that nowG12 can be represented as
sum of 16 terms which contain only chiral fields. To simpli
the calculations we make use of theL-R symmetry of our
model. It allows us to reduce the number of different ter
in G12(t). As a direct consequence ofL-R symmetry, we
have the following identities:

^CR1
† ~ t !CR2~ t !CR2

† ~0!CL1~0!&

52^CL1
† ~ t !CL2~ t !CL2

† ~0!CR1~0!&,

^CR1
† ~ t !CR2~ t !CL2

† ~0!CR1~0!&

52^CL1
† ~ t !CL2~ t !CR2

† ~0!CL1~0!&,
~55!

^CR1
† ~ t !CL2~ t !CR2

† ~0!CR1~0!&

52^CL1
† ~ t !CR2~ t !CL2

† ~0!CL1~0!&,

^CR1
† ~ t !CL2~ t !CL2

† ~0!CL1~0!&

52^CL1
† ~ t !CR2~ t !CR2

† ~0!CR1~0!&,

and therefore eight terms in the sum cancel each other.
left eight symmetric terms due toL-R symmetry can be rep
resented by four independent contributions toG12(t),

G12~ t !52@G f~ t !1Gb~ t !1G1~ t !1G2~ t !#, ~56!

where

G f~ t !5^CR1
† ~ t !CR2~ t !CR2

† ~0!CR1~0!&

5^CL1
† ~ t !CL2~ t !CL2

† ~0!CL1~0!&,

Gb~ t !5^CR1
† ~ t !CL2~ t !CL2

† ~0!CR1~0!&

5^CL1
† ~ t !CR2~ t !CR2

† ~0!CL1~0!&,
~57!

G1~ t !5^CR1
† ~ t !CL2~ t !CR2

† ~0!CL1~0!&

5^CL1
† ~ t !CR2~ t !CL2

† ~0!CR1~0!&,

G2~ t !5^CR1
† ~ t !CR2~ t !CL2

† ~0!CL1~0!&

5^CL1
† ~ t !CL2~ t !CR2

† ~0!CR1~0!&.

It is easy to show by direct evaluation ofG6(t) that both of
these correlation functions contain the overall factorR6

5exp$22p^@wR1(0)1wL1(0)6wR2(0)1wL2(0)#2&%. By using
the canonical transformation, Eq.~45!, to represent the inter
4-8
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acting fieldswL(R)
( j ) via the ‘‘diagonal’’ fields w̃L(R)

( j ) and by

remembering that for noninteracting boson fields^w̃R1
2 (0)&

5^w̃L1
2 (0)&5^w̃R2

2 (0)&5^w̃L2
2 (0)&5(1/4p)ln(l/a) ( l is the

length of the system!, it is easy to prove thatG6(t) vanishes
in the thermodynamic limit (l→`) G6(t)}(a/ l )n6→0.
Here the exponentsn6 are always the positive quantities

n65e2q1S cosc6AvF
(2)

vF
(1)

sinc D 2

1e2q4S cosc7AvF
(1)

vF
(2)

sinc D 2

.0. ~58!

So, we are left with two correlation functions which re
resent the forward~f ! interchannel scattering (G f) and the
backward~b! interchannel scattering~see Fig. 3!. The corre-
sponding transition ratesG12

(a)(v) (a5 f ,b) take the form

G12
(a)~v!5U t0

2p\U
2

al1a1l2a22E
2`

`

dteivt~a1 is1t !2l1a

3~a1 is2t !2l2a

.
G12

(0)

G~l1a1l2a!
FvF

(1)

s1
Gl1aFvF

(2)

s2
Gl2a

3~vt1!l1a21~vt2!l2a21. ~59!

Here G12
(0)(v) is the tunneling rate for noninteracting ele

trons, G(x) is the gamma function,t1(2)5a/vF
(1),(2) , s1,(2)

are the plasmon velocities@see Eqs.~50! and ~51!#, and

l1 f5cosh~q11q3!~coshd2sin 2c!

1sinhd cos 2c sinh~q11q3!,

l1b5cosh~q11q3!coshd1sinh~q11q3!sin 2c

1sinhd cos 2c sinh~q11q3!,
~60!

l2 f5cosh~q21q4!~coshd1sin 2c!

2sinhd cos 2c sinh~q21q4!,

l2b5cosh~q21q4!coshd2sinh~q21q4!sin 2c

2sinhd cos 2c sinh~q21q4!,

FIG. 3. The forward- (G12
f ) and the backward- (G12

b ) scattering
interchannel electron transition rates.
04511
where 2d5 ln(vF
(1)/vF

(2)). The total electron tunneling rate i
G12(v)52G12

( f )(v)12G12
(b)(v). Equations ~59!, ~60!, and

~48!–~51! are the solution to our problem in the most gene
case. The expressions for the exponentsl j a are too cumber-
some and therefore in what follows we will analyze the ra
of electron interchannel transitions in different limits.

At first we consider the limitq j50 ( j 51, . . . ,4) which
is realized whenV2

( i )5V2
(e)50, i.e., the interaction potentia

has no components which couple ‘‘left’’ to ‘‘right’’ densi
ties. Physically this case corresponds to the situation w
left- and right-moving electrons are separated in the spac
could be the edge states on the opposite edges of the
channel in 2D electron gas under the conditions of FQHE
the studied limitG12

( f ) coincides with the tunneling rate for
chiral model~as it should be!, Eq. ~12!, andG12

(b)(v) is re-
duced to a simple expression

G12
(b)~v!5G12

(0)~v!
vF

(1)vF
(2)

s1s2
,G12

(0)~v!, ~61!

wheres1(2) are determined by Eqs.~50! and~51!. So, in the
absence of coupling between the ‘‘left’’ and ‘‘right’’ mover
the dependence of the tunneling rates on the frequencv
disappears. The tunneling rates of interacting electrons
suppressed due to the different values of the plasmon ve
ties (s1Þs2) in the channels~for repulsive interactions1

.vF
(1) , s2.vF

(2)).
The opposite limitc50 is realized whenV1

(e)5V2
(e)50.

It describes the uncoupled channels. This situation perta
for instance, to two 1D wires situated far apart from ea
other. Now both electron transitions are strongly renorm
ized by interaction forv→0

G12
(b)~v!5G12

( f )~v!;G12
(0)~v!~vt1!lKF

(1)
~vt2!lKF

(2)
. ~62!

Here lKF
(1,2)5cosh 2q1,4215(1/2)(g1,21g1,2

2122)>0. This
is nothing but the manifestation of the Kane-Fisher effec1

The transitions are strongly suppressed (lKF
( j ) @1) for a

strong repulsive interaction@V2
( i ).V1

( i )@\vF , see Eq.~47!#.
Let us introduce two exponentsla5l1a1l2a22 (a

5 f ,b), which determine the low-frequency behavior of ele
tron tunneling rates. They can be represented in the follo
ing form:

2l f ,b5@g11g1
211g21g2

2124#1sin2c@~r 2221!~g1

1g2
21!1~r 221!~g21g1

21!#7sin 2c@r 21~g1

7g2
21!2r ~g27g1

21!#, ~63!

where the upper sign in Eq.~63! corresponds tol f and the
lower sign to lb . Here r 5AvF

(1)/vF
(2) and the correlation

parametersgj are determined by Eqs.~50! and ~51!.
The last formula, Eq.~63!, is the main result of this sec

tion. It shows how the electron transition rateG12
( f ,b)(v)

;v11l f ,b scales with frequency. What is the physical mea
ing of the terms in Eq.~63!? It is easy to get from the set o
equations presented in the Appendix that if the intrachan
4-9
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(V1
( i )5V2

( i )[Vi) and the interchannel (V1
(e)5V2

(e)[Ve) in-
teraction strengths are different, (ViÞVe), the ‘‘rotation
angle’’ c takes the form

tan 2c5
2VeAvF

(1)vF
(2)

~vF
(1)2vF

(2)!@Vi1p\~vF
(1)1vF

(2)!#
. ~64!

So, in the limit of uncoupled channelsVe→0 the last two
terms in Eq.~63! ~they are proportional to sinc) vanish and
the suppression of electron transitions is totally due to the
effects in the wiresgLL5(g11g1

211g21g2
2124)/2.

To understand the physical meaning of the terms aris
from the interchannel interaction it is useful to consider
limit vF

(2)@vF
(1) . In this case our problem can be reduced

the problem of the x-ray response of the LL in the mod
considered in Ref. 16, where the core level was represe
by a forward-scattering short-range potential. To get t
mapping one has to disregard the effects associated with
band structure of one of the two Luttinger liquids~the first
channel if the limitvF

(1)→0 is considered!. Then, the second
term in Eq.~63! is reduced to

a f ,b5
sin2c

2
@~r 2221!g2

211~r 221!g2#

⇒
vF

(1)→0
1

2 S Ve

p\vF
(2)D 2

g3, ~65!

whereg215A11Vi /p\vF
(2) is the correlation parameter o

the spinless LL. The exponenta f ,b represents the so-calle
‘‘orthogonality catastrophe.’’17 The last term in Eq.~63! can
be attributed to the ‘‘exitonic’’ effect.17 In its truncated form
it looks like

b f ,b5
sin 2c

2
@~rg2!216rg2# ⇒

vF
(1)→0

2
Ve

p\vF
(2)

g. ~66!

So, the relation between the exponentsa f ,b and b f ,b is ex-
actly that found in Ref. 16, namelya f ,b5(g/2) b f ,b

2 . Notice
that for the noninteracting band (g51) this formula repro-
duces the correct expression for the exponents in the cas
spinless electrons.18,17 When Vi;Ve and vF

(1);vF
(2) the

simple classification adopted from the problem of the x-
response loses its precise meaning since the effects of i
channel and intrachannel interactions have to be treate
the same footing. Anyway, one can see from Eq.~63! that
the low-v behavior of the interchannel electron transiti
rates strongly differs from the naive expectation that the c
responding exponent in the frequency dependence
G12

( f ,b)(v) is a mere sum of the Kane-Fisher’s exponentslKF
( j )

@see Eq.~62!# of the channels.
In particular, for a two-channel LL with equal Fermi ve

locities one easily gets, by using Eq.~52!, that the forward-
scattering electron transitions are not at all renormalized
interactionl f(vF

(1)5vF
(2))50. In the terms of spin-12 LL this

statement looks physically evident. Indeed, the spin-flip p
cess itself does not lead to the redistribution of elec
04511
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charge in the channels and therefore the spin-flipforward
electron scattering is not affected by the electron-elect
interactionG12

( f )(v)5G12
(0)(v).

As for the backward interchannel transitions, one co
expect, according to the ordinary picture of the charge tra
port in the LL, thatG12

(b)(v) will be enhanced at low frequen
cies, at least in the case when the Fermi velocities in
channels are of the same order. From Eq.~63! one easily gets
that in the limitvF

(1)5vF
(2) the backward-scattering interchan

nel electron transitions are strongly enhanced by interac
at v→0: lb(vF

(1)5vF
(2))5gc21,0

G12
(b)~v!5G12

(0)~v!
gc

gc

G~11gc!
~vt!2(12gc), ~67!

wheregc is determined by Eq.~47!. Recall that Eq.~67! was
derived in a perturbation theory and it is valid until the reno
malized backward-scattering electron rate is small. So,
expression indicates that atv→0 the perturbation approac
for the evaluation ofG12

(b)(v) does not work. One can spea
only on the tendency of the enhancement of the backsca
ing processes at low frequencies.

If vF
(1)ÞvF

(2) the exponentl f is positive and hence the
forward-scattering transitions are always suppressed by in
action. In the weak-coupling limitV0/2p\vF

(1,2)!1

l f.
1

2 S 12
vF

(1)

vF
(2)D 2F11S vF

(2)

vF
(1)D 2GF V0

2p\~vF
(1)1vF

(2)!
G 2

,

~68!

lb.2
2V0

p\~vF
(1)1vF

(2)!
.

We see thatulbu@l f and hence for repulsive interaction th
backward-scattering interchannel electron transitions will
dominant atv→0(G12

(b)@G12
( f )) provided they are allowed fo

the noninteracting electrons.
In the regime of strong coupling we have

l f.
~AvF

(1)2AvF
(2)!4

2AvF
(1)vF

(2)~vF
(1)1vF

(2)!

1
1

2 S vF
(1)2vF

(2)

vF
(1)1vF

(2)D 2F V0

p\~vF
(1)1vF

(2)!
G21/2

, ~69!

lb.
1

2

vF
(1)1vF

(2)

AvF
(1)vF

(2)
221

1

2 F V0

p\~vF
(1)1vF

(2)!
G21/2

. ~70!

Notice that lb Eq. ~70! changes its sign (lb.0) if vF
(1)

@vF
(2) ~or vice versa!. It means that in the strong-couplin

limit and for the channels with strongly different Fermi v
locities ~numericallyvF

(2)/vF
(1),0.07) both interchannel elec

tron transitions~forward and backward! are suppressed b
interaction. However, these conditions are unlikely to be s
isfied in the real systems.
4-10
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By making use of Eq.~20! it is easy to evaluate the ro
tated DOS for a two-channel nonchiral LL model. They a
represented by the expression analogous to Eq.~25!,

ña
( j )~«!5n0

( j )
vF

( j )

sj

1

G~12l j a!
U «

L j
Ul j a21

, ~71!

where j 51,2; a5 f , b, and l j a are determined by Eq
~60!. As was shown in Sec. III, the exponent, which contr
the low-energy behavior of the rotated DOS, determines a
in the weak-coupling limituq1,2u!1, ucu!1 the energy be-
havior of interchannel ‘‘vertical’’~see Fig. 2! electron tran-
sitions. For a chiral model the only possible transition w
the forward-scattering process described by the transmis
amplitudet12. Now we could consider both the interchann
transmission (t12) and reflection (r 12) amplitudes. According
to Eqs.~71!, ~60!, and~48!–~51!, they can be represented a
follows:

t12~«→«1\v!5t12
(0)S 2

«

\v D lF
(2)

,

r 12~«→«1\v!5r 12
(0)S 2

«

\v D lB
(2)

, «,0

~72!

t12~2\v1«→«!5t12
(0)S «

\v D lF
(1)

,

r 12~2\v1«→«!5r 12
(0)S «

\v D lB
(1)

, «.0.

Here t12
(0)!1,r 12

(0)!1 are the interchannel transmission a
reflection amplitudes for noninteracting electrons and the
ponentslF,B

(6) in the weak-coupling limit are

lF
(2).2

V0

p\~vF
(1)2vF

(2)!
1

1

2 S vF
(1)2vF

(2)

vF
(1)1vF

(2)D 2S V0

2p\vF
(1)D 2

,

~73!

lB
(2).2

V0

p\~vF
(1)1vF

(2)!

1
1

2 F11S 2vF
(1)

vF
(1)1vF

(2)D 2

2
4vF

(1)

vF
(1)2vF

(2)G S V0

2p\vF
(1)D 2

,

lF,B
(1)5lF,B

(2)~vF
(1)↔vF

(2)!.

So, we showed that at least for a weak electron-electron
teraction V0 /p\vF

(1,2)!1 the coupling between left- an
right-moving electrons does not change the prediction of
chiral model~Sec. III! for the transmission amplitudes, E
~29!. One can see also from Eq.~73! that the exponentlB in
the energy dependence of the reflection amplitude in the
order on the interaction strength depends on the sum of
velocities~like the exponent in the Kane-Fisher effect1! and
it satisfies the physically evident propertylB

(7).lF
(7)(vF

(2)

→2vF
(2)).
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As was demonstrated in Sec. III, the energy depende
of the rotated DOS determines the frequency dependenc
the quantum interference effects in the absorption of phot
by a two-channel chiral LL. The evaluation of the pow
absorption performed in Sec. III can be easily generalized
a nonchiral LL. Since the optical electron transitions rep
sent the forward-scattering events one could expect that
parametersl1 f and l2 f will control the frequency depen
dence of the oscillating partdG12

(d)(v) of the interchannel
electron transitions induced by the extended structure sh
on Fig. 3. The expression fordG12

(d)(v) is analogous to Eq.
~31!, where now the exponents, who control the decay of
oscillating terms sin(Fj)/x

l, are indeedl j f , Eq. ~60!. In the
regime of strong couplingl1 f→0 and l2 f takes the finite
positive value

l2 f.
vF

(1)1vF
(2)

2AvF
(1)vF

(2)
1

2AvF
(1)vF

(2)

vF
(1)1vF

(2)
>2. ~74!

It means that~i! only one of the two oscillating contribution
in Eq. ~31! survives in the case of strongly interacting ele
trons, and~ii ! the interaction significantly enhances the inte
ference effects.

VII. LUTTINGER LIQUID WITH OPEN BOUNDARIES

So far, we studied the interchannel electron transition i
LL assuming that theintrachannelbackscattering of elec
trons is absent or weak. However, it is well known that ba
scattering is a relevant perturbation in a LL and weak b
potential is renormalized up. At temperatureT→0 it
‘‘splits’’ the LL wire for the charge transport into two sem
infinite systems. Now we consider how strong electron ba
scattering modifies our results for the interchannel elect
transitions.

At first we assume that the ‘‘impurity’’ affects the elec
tron dynamics in both the channels. The Luttinger liquids
the left and to the right of the impurity (x50) are weakly
connected and the electron transitions between them ca
described by the tunnel Hamiltonian analogous to Eq.~6!. It
is clear that any kind of electron transitionacrossthe weak
link leads to the redistribution of the charge density a
hence the forward-scattering electron transitions w
be strongly suppressed atv→0. In particular, for equal
Fermi velocities one can readily get from the symmetry
guments thatl11

( f )5l12
( f ) . For the different velocities the two

exponents under study are of the same order~they are ap-
proximately equal in the strong-coupling limit.! As a conse-
quence, the backscattering into the same channel (1R(L)
↔1L(R) , 2R(L)↔2L(R)) is strongly enhanced at low
frequencies.1,5 Here we ask the question—is the electr
backscattering with the change of flavor~channel index!,
1R(L)↔2L(R) , enhanced or suppressed?

Since in the absence of perturbation the electrons can
pass through the impurity, we have to treat LL with op
boundary conditions, which can be accounted for by the
quirement that the displacement fieldw j (t,x)5w jL1w jR is
pinned at the originx50 ~see, e.g., Refs. 20–22 and 5!
w jL(t,x50)1w jR(t,x50)50, j 51,2. This requirement is
4-11
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met if the ‘‘diagonalized’’ fieldsw̃ j ,R(L) satisfy the same
boundary condition. The restriction imposed modifies the
pression for the two-point correlation functio
^^w i ,R(L)(t) w j ,R(L)(0)&&. The straightforward calculation
result in Eq. ~59!, where now the exponentsl jb take the
form

l1b5g1
21S cosc2AvF

(1)

vF
(2)

sinc D 2

,

~75!

l2b5g2
21S cosc1AvF

(2)

vF
(1)

sinc D 2

.

The low-energy behavior of the backscattering transition r
is governed by the exponentlb5l1b1l2b22

lb5g1
211g2

21221
vF

(1)g1
212vF

(2)g2
21

AvF
(1)vF

(2)

3F vF
(1)2vF

(2)

AvF
(1)vF

(2)
sin2c2sin 2cG . ~76!

The asymptotics of Eq.~76! in the weak- and strong
coupling regimes are

lb~V0!\vF
(1,2)!.

V0

2p\vF
(1)

~vF
(1)2vF

(2)!2

vF
(2)~vF

(1)1vF
(2)!

,

~77!

lb~V0@\vF
(1,2)!.F S vF

(1)

vF
(2)D 1/4

2S vF
(2)

vF
(1)D 1/4G 2

>0.

So, for the repulsive electron-electron interaction the ba
scattering with the change of the channel will be suppres
at v→0 if the Fermi velocities of the channels are differe
The suppression is pronounced in the strong-coupling reg
and for the strong difference in the Fermi velocitiesvF

(1,2)

@vF
(2,1) . In this case

G12
(b)~v!

G12
(0)~v!

.
1

G~AvF
(1,2)/vF

(2,1)!
S va

AvF
(1)vF

(2)DAvF
(1,2)/vF

(2,1)

!1,

~78!

whereG(x) is the gamma function.
At equal velocities one gets from Eq.~76! lb(vF

(1)

5vF
(2))50. It means that the spin-1

2 electron backscattering
with the spin-flip is not affected by the interaction. In th
language of the spin-1

2 LL this statement looks evident sinc
the spin-flip process does not lead to the redistribution of
electric charge density in the channels.

Now we consider the situation when impurity blocks t
charge transport only in one of the channels~let it be for
definiteness the first channel!. Then, only thew1 field is
pinned at the position of impurityx50 and the boundary
condition for the ‘‘diagonalized’’ fieldsw̃ j ,R(L) looks as fol-
lows:
04511
-

te

-
d

.
e

e

cosceq1~ w̃1R1w̃1L!1sinceq2~ w̃2R1w̃2L!50. ~79!

With the help of Eq.~79! it is straightforward to recalculate
the transition rateG12

(b) for the case when electrons a
strongly backscattered only in the first channel. The cor
sponding expressions for the exponentl1b are determined by
Eq. ~75! while l2b takes a rather cumbersome form

l2b5e22q1$sin2c cosh 2~q12q2!2sin 2c@cosh~q12q2!

3~eq1sinhq41tan2ceq2coshq3!2sinh~q12q2!

3~eq1coshq41tan2ceq2coshq3!#

1cos2c@~eq1sinhq41tan2ceq2coshq3!2

1~eq1coshq41tan2ceq2coshq3!2#%. ~80!

However, it is easy to verify thatlb(vF
(1)5vF

(2))50 ~recall
that la5l1a1l2a22) irrespective to the interaction
strength. ForvF

(1)ÞvF
(2) Eq. ~80! is simplified in the limit of

strong interaction when it is reduced to a simple express

lb.
1

2
AvF

(1)

vF
(2)S 11

vF
(2)

vF
(1)D 2

22. ~81!

Since the different boundary conditions for the electron fi
in the ‘‘open’’ and in the ‘‘blocked’’ channels break th
flavor symmetry, the result, Eq.~81!, is not symmetric under
the interchange of the channel indexes 1↔2. The suppres-
sion of G12

(b)(v) will be maximum when the Fermi velocity
of the blocked channel is much bigger than that in the op
channel. In this caselb.(1/2)(vF

(2)/vF
(1))3/2@1.

VIII. CONCLUSION

In the last decade of increasing interest in the LL effe
in low-dimensional systems of strongly correlated electro
small attention had been paid to the problem of interchan
electron transitions in a multimode Luttinger liquid. Th
main interest of theoreticians was concentrated around
problem of charge transport through the impurity in LL. Th
is the process that determines the current-voltage chara
istics in the long quantum wires and it is known to b
strongly affected by interaction. Indeed, impurity induc
electron backscattering that results in a strong redistribu
of charge density around the scattering region. On the c
trary, the forward interchannel electron scattering in ad
batic channels~induced, for instance, by an electromagne
field! does not lead to the redistribution of charge dens
along the 1D wires and thus it has no influence on the l
gitudinal conductivity of the system. We would like to no
that the forward interchannel electron transitions, hav
nothing to do with the resistivity of the LL wire, are impor
tant processes when investigating the optical properties
multimode Luttinger liquid.

We showed that these transitions are controlled by
dimensionless interaction strength which depends on thedif-
ference of the Fermi velocities in the channelsk
5V0 /p\(vF

(1)2vF
(2)). This effective coupling could be ei

ther positive or negative, depending on the sgn@V0(vF
(1)
4-12
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2vF
(2))# and therefore the interchannel electron-electron

teraction could either enhance or suppress the effects o
intrachannel interaction. We have studied the interchan
electron transitions in a two-channel chiral LL and demo
strated that although the total electron transition rateG12(v)
for a short-range interaction is not renormalized in
energy-dependent way, the couplingk does control the in-
terference effects in a multichannel wire. From a gene
point of view the interchannel electron transitions, by cre
ing a dipolelike charge-density perturbation that can fre
move along the wire, could be crucial for understanding
optical properties of a multimode LL.
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APPENDIX

The set of equations for the ‘‘rotation angles’’Q j ( j
51, . . . ,4) andc that diagonalize the Hamiltonian for
two-mode Luttinger liquid take the form
,

.

s

d
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-

2p\~vF
(1)sinh 2q1cos2c1vF

(2)sinh 2q3sin2c!

52cos2c~V1
( i )sinh 2q11V2

( i )cosh 2q1!

2sin2c~V1
( i )sinh 2q31V2

( i )cosh 2q3!

2sin 2c@V1
(e)sinh~q11q3!1V2

(e)cosh~q11q3!#,

2p\~vF
(1)sinh 2q2sin2c1vF

(2)sinh 2q4cos2c!

52cos2c~V1
( i )sinh 2q41V2

( i )cosh 2q4!

2sin2c~V1
( i )sinh 2q21V2

( i )cosh 2q2!

1sin 2c@V1
(e)sinh~q21q4!1V2

(e)cosh~q21q4!#,

p\ sin 2c@vF
(1)sinh~q11q2!2vF

(2)sinh~q31q4!#

52sin 2csinh~q12q3!@V1
( i )cosh~q21q3!

1V2
( i )sinh~q21q3!#1cos 2c@V1

(e)sinh~q21q3!

1V2
(e)cosh~q21q3!#,

p\ sin 2c@vF
(1)cosh~q11q2!2vF

(2)cosh~q31q4!#

52sin 2csinh~q12q3!@V1
( i )sinh~q21q3!

1V2
( i )cosh~q21q3!#1cos 2c@V1

(e)cosh~q21q3!

1V2
(e)sinh~q21q3!#,

q12q35q22q4 .
.
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