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Interchannel electron transitions in a Luttinger liquid
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Intermode electron transitions in a two-channel Luttinger liqiuid) are considered. At first we study chiral
LL and show that for a long-range Coulomb interaction even forward-scattering intermode electron transitions
are strongly renormalized by interaction at low energies. For a short-range interaction the renormalization of
the electron transition rates in a chiral LL do not depend on the ergggyperature, bias voltagavolved in
the tunneling process. We show, however, that the interference effects are sensitive to the strength of electron
interaction, and they are significantly enhanced for strongly correlated electrons. The analyses of the intermode
electron transitions is generalized for a nonchiral two-channel LL. The forward- and the backward-scattering
interchannel electron transition rates are calculated and their connection to the problem of x-ray singularity in
a LL is elucidated.
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[. INTRODUCTION ward spin-flip scattering is not affected by interactions. How-

ever, if the Fermi velocities in the channels are different we

Tunneling in one-dimensional systems of interacting eleccould expect the electron-electron interaction to influence the

trons is drastically distinct from that for noninteracting par- interchannel electron transitions.

ticles. As was shown by Kane and Fisfeéhe bare tunneling In this paper we consider a two-channel LL and study
amplitudet, is strongly renormalized by interaction. At low intrachannel and interchannel electron transitions induced by
temperaturesT<er and for the large barriert,/fivp<1, alocal scattering potential. The most harmless processes in a
the tunneling rate for spinless electrons scales as a powekl are those associated with forward scattering. So, at first

law function of temperatufe F(T)oc|to|2(T/gF)2(971‘1), the pro_blem is treated for zﬁ chwgl :_L, wherelz Olnlljy 1‘orward-h
whereg is the correlation parameter of the Luttinger liquid scattering processes are allowed. In a purely system the

_1 ds to th f interacti | forward scattering does not lead to a redistribution of the
(9=1 corresponds to the case of noninteracting e eclronscharge density along the wire and the corresponding charac-

Physically it means that the charge accumulated near th@jstics (scattering phageare not renormalized by interac-
barrier cannot be redistributed along the one-dimensionajons For a multimode Li(see Ref. 3one could consider
(1D) wire on a time scale shorter than the characteristiG:nannels with different Fermi velocities?) . In this case
“thermal” time 7r~#A/T. As a consequence, &—0 and  gyen in a chiral LL the transition of electrons from one chan-
for sufficiently long wires even a weak bare potential isng| to another results in a redistribution of the charge density
renormalized up to an infinitely high barrier which “breaks” ang the tunneling rates do get renormalized. Notice that in
the Luttinger liquid(LL) in the case of the charge transport the || model the electron spectrum is linearized and the
into two semi-infinite subsystems. velocities of the excitations are energy independent. There-
This result was predicted for a purely 1D system. In reakgre the renormalization effects in a single chirality multi-
quantum wirege.g., in carbon nanotubshere are as arule mode LL depend only on the ratio of Fermi velocities of the
several propagating longitudinal modes. Then the questioghannels. Contrary to the Kane-Fisher effect, the renormal-
arises — How do these extra modes influence the intramodgeq electron transition rates in a chiral multichannel LL are
and intermode tunneling of electrons? temperature- and voltage-bias independent.
~ The intramode tunneling in a multichannel LL was stud-  \ye show, however, that one can introduce local quantities
ied in Ref. 3, where it was shown that the additional modes__ jenpsities of state€DOS) for interacting electrons, which
_effectively incregse the “stiffness’i of the system t_)y redefin- gre renormalized by the energy-dependent factor. These
ing the correlation parametegg (j=1,...N) which de-  guantities determine the transitions of electrons “dressed”
termine the tunneling ratd“](N) in the jth mode of the by the interchannel interaction to or from the vicinity of the
N-channel LL. The problem of intermode tunneling and itsFermi energy. They are strongly energy dependent in a
influence on the Kane-Fisher effect is less well studied.  complementary manner. When one of the transition ampli-
The interchannel electron transition can be regarded astades is enhanced, the other is suppressed. The total electron
process of creating a dipole in the region of transition. Thistransition ratel';,(w) at frequencyw can be recast in the
perturbation is less dramatic than the perturbation of chargéorm of the convolution of the two mentioned transition am-
densities in the uncoupled channels. For instance, in the cagditudes shifted byi w and, therefore, the interaction-induced
of equal Fermi velocities the two-channel spinless LL isenergy-dependent renormalization is not manifedt jj( ).
equivalent to a single-channel spinLL. Then the inter- One may expect that the “local(energy-dependentlec-
channel electron transition is just the spin-flip process whictiron transition amplitudes could be important in various in-
itself could not disturb the charge density. Therefore the forterference effects in a two-channel LL. By considering the
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interchannel electron transitions at two points spaced by th¥ the Hamiltonian of a two-channel LL is diagonalized with
distanced>a (wherea is the lattice spacingwe demon- the help of canonical pseudoorthogonal transformation. The
strate that the interference pattern is controlled by the parantates of the interchannel electron transitions in an infinite LL
eters that determine the energy dependence of the local DO8re evaluated in Sec. VI. Section VII deals with the problem
For a short-range electron-electron interaction the renoref interchannel electron transitions at the end of the semi-
malization factor in the expression for,(w) depends only infinite LL. The importance of the derived results for the
on the ratio of the Fermi velocities and the interactionoptical transitions in a LL is briefly discussed in Sec. VIII.
strength. The suppression of electron transitions by the inter-
action in this case is pronounced only in the strong-coupling ||, TWO-CHANNEL CHIRAL LUTTINGER LIQUID
limit when the effective tunneling rate is inversely propor-
tional to the square of the interaction constant. The depen- Consider a one-dimensional two-channel spinless electron
dence of electron tunneling rates on the energy in a chiral LIliquid interacting via a density-density short-range interac-
occurs for a long-range electron-electron interaction due t&on. The Hamiltonian of the system takes the falfior defi-
the dispersion of the plasmon velocities. In this case even fofiteness we will consider right-moving electrons
a weak interaction the transition ralé;(w) is strongly v
renormalized in the low-frequency limiv—0. This is the _ 2 2 0
closest analog of the interagtion—ir):duced renormalization ef- _Wﬁf dx[ U1p(X )+ Uapz(X )+ 5 pa(XDp2(X 1) |
fects in a chiral LL to the Kane-Fisher effect. Notice, how- 1)
ever, that the effect in the chiral model is much weaker than . :
that caused by the backscattering of electréihe Kane- Wwherep, () are the charge-density operators in the fiseic-
Fisher effect. For instance, for an unscreened Coulomb in-2"9 channel,Vo is the interaction StrenzgthV() is of the
teractionl’ 5(w) scales with frequency only as the power order of the electron charge squardd=~e-),
of a logarithm,I" () = 1/Iw. v
A multichannel chiral LL[although it was realized in ex- ul(z)zv(Fl)y(Z)Jr _0, 2
periments as edge states in the fractional quantum Hall effect wh

(FQHE) system§] is a rather exotic object. In quantum wires andv®® are the Fermi velocities. The charge-density op-

electrons are nonchiral. So, the important question arises ~erators obey the equal time commutation relati¢ o
Does the effects predicted for a chiral LL survive when the Y 9 ' €9,

interaction between the right and left movers is switched onﬁi‘}é? ([133 ji(s,X)ég;i(lx 31]|a_ (oigllizzzg (E)X 6t(r)1(e_ l)J(ni)té-rrhfral_rgasrf‘glrlEa-
At first we considered the situation when there is no back;[ion y diag y y

scattering in the channelgdiabatic transport It is shown

that the interchannel forward-scattering transition rate ~ ~ ~ ~

I'{D(w) is suppressed by the interaction as-0 if v{" p1=paCOSYtpoSing;  py=pasing—p,cosy,  (3)
+#v® . However, the exponents that determine the energyyhere

behavior of the local DOS’s vary with the interaction

strength qualitatively in the same manner as in a chiral LL. Vo Vo
So, our analysis of the interference effects, performed in a tan 2= o —ul DENON 4
simple model of two-channel chiral LL, holds also for the mh(Ui—Ua)  mh(vP o)

guantum wires. ) S .
If there is a barrier that backscatters electrons in the chari diagonal form, the Hamiltoniaft{ describes two decou-

nels, it “breaks” the LL wire into two semi-infinite parts for Pled boson modes with the velocities
the charge transport. The tunneling of electrons across the . .
weak link will always be strongly suppressed irrespective to 1 \/( Ul—Uz) +( Vo ) 5

which channel it occurs in. So, we could consider either the 51'(2)—§(u1+u2)i 2 2mh

interchannel forward-scattering electron transitions induced

independently in the leftright) part of the wire and/or the We will describe the transition of an electron from one

interchannel backward scattering at the position of the “im-channel to another at poink=0 by the tunneling Hamil-

purity.” The last process seems to be the most interestingonian

one since it is just the backscattering with a change of

flavors (channel indices in our capelt is shown that this Hy=t,V(0)¥,(0)+H.c., (6)

channel of backscattering is always suppressed by interac-

tions. So, the barrier strongly reflect the electrons only tovhereW (W) is the electron annihilatiofcreation opera-

their own modes (< 1rqy, 21 (ry<> 2R(L))- tor at pointx=0; t,, is the bare tunneling amplitude what
The paper is organized as follows. Section Il deals withfollows we will only consider a harmonic perturbation,

the detailed analysis of the interchannel electron transitions toexp(wt)]. We will also assume that the transitions in-

in a chiral LL. The interference effects induced by the elec-duced by the Hamiltonia6) are weak (p<#v(?) and

tron transitions in a two-channel LL are considered in Secwill treat them perturbatively. By using the Fermi golden

[ll. In Sec. IV the results derived in Sec. Il are generalized torule, the electron transition ratg ,(w) can be represented as

the case of long-range electron-electron interaction. In Se¢he Fourier transform of the four-point correlation function
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ot Herel"(l%) is the corresponding tunneling rate for noninteract-
1ﬂ12(“’):J dte '), ing electrons Y,=0),
to]? ¢ T rQ(w)= ol wdlw) (13)
Pyt =|27 (V1(t,0W5(1,00¥2(0,0W4(0,0),  (7) 2O 2 p @y @’

where the average is taken over the ground state of the if¥here#(«) is the Heaviside step function. The appearance
teracting electron system described by the Hamiltotian of the step functl_on in E_q(.lS) reflects the evident fact that
Since the Hamiltonian, Eq1), when represented via the due to the Fermi statistics the electrons can tunnel only to

charge-density operators is quadratic, the correlation funcinoccupied states with the energy-0(s> o). ,

tion T'1,(t) can be evaluated exactly by using bosonization According to Eq.(12) the tunneling rate is renormalized

techniques(see, e.g., Ref.)5 At first we represent the fer- multiplicatively. Notice that for chiral fermions the renor-

mion operators in terms of boson fields(x,t), where m?llzgtlpnt;acttor dc_>t(_es not depenlc:i on thel gnef]zg,y g‘;(
(x.1) = (UNT) duor (1) (= 1.2): volved in the transition process. For repulsive forc

P =( V) @i (0 ( ) >0) the interaction suppresses the tunneling, and the attrac-

tion (V(<0) leads to the enhancement of the tunneling rates.

W (x,1) = ———explik@x+i\Amg(x,)}. (8 The effectis small in the weak-coupling limty / v 2
2mTa <1 when
Herea is a (_:utoff of the o.rder of_the lattice spacing ak&i) ' ) Vo[ 1 1 1 U(Fl)
is the Fermi momentum in the firsi€ 1) or the secondj( o ol ot e Wln@ .
=2) channel(recall that for definiteness we consider right- I'7(w) Th\ve” vE? vE'TUET UE

moving fermions, andU; is the unitary rising operator that (14
provides the correct commutation relations for the FermiNotice that the expression within the parentheses is posi-
fields W; in different channels. We will not specify the form tively definite. In the strong-coupling limi,/m%v 2> 1

of this operator since it disappears from the expression fofhe velocitiess; , are totally determined by the interaction
the correlation function, Eq7). The standard procedure al- 52231/32|V0|/2'7Tﬁ' and the tunneling rate is strongly sup-
lows us to express the correlation functibpy(t) as the ex-  pressed. Fop M=~y =p<V 27k

ponential of the boson correlation functions

27TﬁU|:
fw)=

2
0 ) I'Y(0)<T (o). (15)

E:
I(t)= ’m expl4m({({1(t) 1)) +{{P2(t) ¥2))

We will see in what follows that for a long-range interaction
—{{ (1) o)) —{{@1(t) )}, (9)  the renormalization factor in Eq15) acquires an additional
frequency-dependent coefficient and the problem of the in-
where((i(t) ¢;))=([ #i(t.0)~ ¢i(0,0)]¢;(0,0)). The boson  terchannel electron tunneling(0) always is a problem of
fields ¢;(x,t) in their turn are linear combinatiorisee the strong coupling.
angoliubov transformation, E@3)] of the “diagonal” fields One can readily generalize EG.2) to finite temperatures.
@j(x,t) with the well-known property(see, e.g., Ref.)5 At T#0 the correlation function for the noninteracting boson
((ej() o) =~ (Sy/Am)In[(a+isd)/al. After straightfor- ~fields reads
ward calculations the correlation functidm,(t) takes the

form ~ o~ Ok (a+isgt) sinh(7f~4T)
(ej(D )= E'”_ a T |’ (16)

2
(a+isit) M (a+isyt) ™+, (100  and then

to
FAt)= >k

t
where | ‘o “N__—A
rlZ(T’w)__ZWﬁ Sl S2 +
No=1+sin2gp=1+ — (11) » et
S T 1+ k2 xf dt : :
Lin e (i) (rp i)

Here k=tan 2y is determined by Eq4).

In the LL approach to the interacting fermions we are
interested in the low-frequency limib<v™® /a. The de-
sired result for the tunneling rate is

2

, 17

ah”UT
>< —
sinh( A ~T)

wherer; =a/v) @ and\ . is defined in Eq(11). In the

1. (2 limit 2w, T<A/ 1, ,the integral in Eq(17) is determined by
o oB® (56 p 2t | _
Ifw)=T9(w) = (= . (120  the longt asymptotics of the integrand and, since + A
$1S2 |\ Sz J1+ k2 =2, itis evident that the temperature contributiond'tg do
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not depend on the interaction. The integral can be done anavhere
lytically by the contour-integral method. The result is

0(—¢)

1 )
2mho®)

0(e)

2
2mho®

to|? w n{ig)= niH(g) = o4

| 0| S§71327£71 w0(w)+ | | . 10 (e) 20 (g) (24)

2mh2 expi|o|/T)—1
(18 are the density of states of noninteracting chiral electrons

So, if T<#|w| we reproduce Eqg12) and(13) up to expo-  (Vo=0).

[T, 0)=

nentially small corrections. In the “high’ limit #|w|<T Unlike ordinary DOS's, Eqgs(22) (23), the rotated ones
<fil 7y, the electron transition rate in the main approxima-€Ven in chiral LL depend on energy in a nontrivial way. By
energy asymptotics of Eq21),
t |2
LTS ho)= It St st T, (19 B @ g | ¢
2 n(e)=nl(e) = |—| . e<A, (29
, _ siI'(1+ ) [A4
We showed that the temperature- and interaction-dependent
parts of the electron transition rate are factorized. In what ) ¢
follows we setT=0 and consider only the effects of nSH(e)=ni)(e) UF . e<A,. (26
electron-electron interaction. S2I'(1=0) |A,

HereI'(x) is the gamma function);=%s;/a (j=1,2) are

Ill. ROTATED DENSITY OF STATES the cutoff energies, and is defined in Eq(12).

It is useful to represertt ;5(w) Egs.(7) and(10) in inte- What is the physical meaning of the rotated DOS? Notice
gral form, namely, as an integral over energy of the producthat due to the interchannel interaction the charge created,
of two local density of state€DOS) e.g., in the second channel interacts with the charge deficit

left in the first channel. This dipolelike interaction “dresses”

27 (= ~ (o), = (4) the electrons and strongly renormalizes the bare tunneling
1ﬂlz(“’):7|t0| _wdsnl (e)ny (e t+haw), (20 amplitude. Formally Eq.(21) can be interpreted as the
ordinary tunneling DOS for dressed electrord*

where ~exp(V4m\ . $;), where\ . is determined in Eq(12). For
1 . dt ot dressgd electrons the intgraction is attractivgl;f>1 and
NE(e)= j : ex;{i— repulsive fora.<1. The integral representation, E@O),
' (2m)%h ) —~atisjt f for the tunneling rate allows us to rewrite the interchannel
electron transition probability as the convolution of two
+sin waw%(eak(eiksjt_l) (21) energy-dependent transition amplitudes
0
and the angley is determined by Eq(4). It is easy to check F12(w):J ditg*)(g)tg+)(g+ﬁw), 27
that the introduced quantities possess the exact symmetry ~=2mh
property  n{ [ —&,—sgn@t’—v{?)]=nS" e, sgne "
—v?)]. Notice that the local DOS'’s, EqR0), were defined ti(e)=2mtons(e), t{7(e)=2mtEn{(e).
after the diagonalization of the boson fieldsand therefore (29

they depend on the correlation function of the diagonal fields . O _ _
(<<~pj(t)<~p,—(0)>>- We will call these quantities theotated The amplitudet; ’(e) determines the process of removing

DOS's to distinguish them from the ordinary density of the dressed electron from the vicinity of the Fermi level (
states <Aj) in the first Channelt(;)(s) describes the complemen-

tary process of adding the dressed electron to the region in

(=) 1 (=~ et/ et the vicinity of the Fermi level §<<A,) in the second chan-
ny ’(e)= mf_xdte (F1(H)W4(0)) nel. At zero temperature the limits of integration in Eg7)
are finite due to the presence of the step function in the
v(Fl) s, | sy definition of DOS. If w is of the order of the energy cutoff
=n(lo)(s)s—l<s—2) , (22) A, t§7) will contribute to the integral Eq(27) only in the

lower limit (e~ —%w) andt{™) only in the upper limit ¢
1 (= ~0). One may speculate that at least in the weak coupling
n$t(e)= —f dte?'"(w](t)W,(0)) limit (k<1), when it is possible to use the one-particle con-
2mh ) - cept of scattering datésee, e.g., Ref.)6the electron transi-
tion amplitudes (e e +hw) andteg(—hw+e—¢) (see
, (23) Fig. 1) are renormalized by interactions analogously to the
rotated DOS,

v$:2) ( 52) sinfy

045114-4



INTERCHANNEL ELECTRON TRANSITIONS IN A . .. PHYSICAL REVIEW B54 045114

cally calculated and it does demonstrate the strong depen-
dence on the interaction strength.
The evaluation Of(ldz)(w) results in the expression

i (w)

——_— (k) (2) -1
tegr (€ =€ &+ D) M w) 1+R{exdi(kg’— kg’ —s; “w)d]

X Fi(1-¢2;—iwd(s; =51 1)), (3D
t -ho —
G wherel' () is determined by Eq(12) and ;F;(a,c;z) is

the confluent hypergeometric function. We consider the as-

ymptotics of Eq.(31) whenx=|wd(s,*—s;)|>1, which

is the proper limit for the adiabatic channels{d/\g>1 in

the weak-coupling regime and- e /E.>1 for strong inter-
FIG. 1. “Vertical” intermode electron transition amplitudes. action; here\g is the Fermi wavelength arf.~e?/d is the

The curves 1 and 2 schematically represent electron energy band§&oulomb blockade” energy By making use of the

&;(p) in the first (=1) and secondj(=2) channels. asymptotic behavior of the confluent hypergeometric

function? we get the desired result

Vo lmh(v® v 2]

fw (d) ; :
tefle—ethw)=ti0(—¢e)|— , e<hw 2 () =1+ sin®, w1 Lq)zx,g,1, (32)
& 29 2l (o) I+ -9
where
Vo /Lo —u i) ®;= (kM- kP -5 lw)d+(m2)¢,
tei( —ho+te—e)=t;0(¢) P , e<how, (39
(30) =Vl Wi+ [mh(v®P -2,

wheret;<1 is the bare forward(f) scattering amplitude. Ng[feinﬂ:ﬁg:tgr:o_rcgﬂn'”nr;[er?gt'ir:T?eelg%téogg\rf(’:eg)fr%?: £
The above expressions indeed were derived in Ref. 7 i X 9 piing regime. m £q.
33) that the interference effects in the power absorption do

the weak-coupling approach to the 1D interacting electro ) ; T
systems proposed in Ref. 6. So our analysis supports th(%epend on the interaction and that they are significantly en-

. : . anced for strongly correlated electrons. The interaction-
result and shows that even in chiral (ithout backscatter- dependent parameters controlling the decay of the oscillatin
ing) there are “local” quantitiegrotated DOS, Eqs(25), P P 9 Y g

(26)] which are strongly renormalized by interaction. part Ofr(lg) coincide with those who determing the energy
How could one probe the rotated DOS? It is clear that théjgpepdhence of thebrotate_d DQSr]s, Bﬁ)l._AhdetallleELanaly—.
different dependence of electron transition amplitudes on tha's 0 the power a sorptlon. n t e mu tichanne - wire 1
energy could play an important role in the interference ef_radlated by electromagnetic field will be published else-

fects. Imagine that we induce electron transitions in a chiraYVhere‘

LL by electromagnetic field at two “points’(say,x=0 and

x=d; see Fig. 2 The local transition regions could be real- IV. LONG-RANGE INTERACTION

ized in a laterally confined two-dimension@D) electron The interaction-induced energy dependence of the “lo-

gas by modulating the width of the quantum wire. Then the4» nneling characteristics like effective transmission am-
frequency of the ac field could be adjusted for resonant elecplitudes, Eq.(29), disappears in the “global” properties of

tron transitions only in the local regionsvidenings well electron tunneling in a two-channel chiral LL. Now we show

separated from _each other along the wire. We consider _thfﬁat in a chiral electron liquid with Coulomb interaction the
influence of the interference effects on the power absorptiog|eciron transition raté;w) is renormalized by interaction

- (d) i i i L Len
P(w)=fiwl';7(w). This measurable quantity can be analyti- ynq that the renormalization factor depends on the frequency.
Let us replace the interaction term in the Hamiltonian, Eq.

@) j———— s (1), by the Coulomb energy
| . p1(X)pa(y)
Vi =e2f f dxdy—————, 34
int (x—y)2+d2 ( )
@ ;-O """"""" )X —d> whered is the width of the wire ¢ is of the order of the UV

cutoff a and in what follows we will sed=a). The calcu-
FIG. 2. Two-point electron “splitter.” The electromagnetic field lations analogous to that performed in Sec. Il for (dhort-
induces electron transitions at points-0,d in a two-channel non-  range interactionresults in the expression for the four-point
homogeneous Luttinger liquid. electron correlation function as follows:
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to |2 ©dk _ Here r,=a/2\u@uv@. With the help of Eq.(40) it is
I =51 ex 2 f ?e_ak(e_'ksj(k)t—l) straightforward to evaluate the Fourier integral. In the low-
=tz Jo frequency limit,w7<1, one gets
=dk Ky ) )
4 _ efak eflksz(k)t_eflksl(k)t , T 262 1 282 1
fo K \/1+—I(i [ ] 102(60) —1_ - In - > In
I'9Y(w) mhod 0T gho@) o1
(35
2e? v®
where t—— O on In%lnw . (41
eV, . oikx mh(vg’—vE’) vE T12
K=, V= dx—=—=—==2Ky(ak).
mh(vP—0v®) —x Yx°+a? Actually, our assumption of weak interaction for Cou-

(36)  lomb forces holds untile’in(wr)|<Av, otherwise the in-

HereKo(x) is the modified Bessel function of the third kind teraction acts effectively as the strong dsee below. Equa-
(see, e.g., Ref.)9 The velocitiess; Ak) are determined by tion (41) is an gwdent _generahzatlon_of E(.4) for the case
Eqg. (5), where the interaction strengtf, is replaced by of long-range interaction. The additional appearance of the
e?V,. The integrals over momentukiin Eq. (35) can be frequency dependence in E@t1) is totally due to the fact

done analytically in the limits of weak and strong interaction.that for Coulomb interaction the plasmon velocities acquire
in the long-wavelength limit the logarithmic corrections. As

in the case of LL{see Eq.14)] the interaction always sup-
_ R N presses the intermode electron tunneling. It is evident from
In the weak interaction limit the plasmon velocities are Eq. (41) that the effect of suppression is pronounced only at

A. Weak interaction

2y small frequencies. liv<w~ 7; 'exp(— mhvl/2e?) the in-
si(k)=vd+ € Yk (37)  fluence of the interaction cannot be treated perturbatively
) ™ and we are in the range of strong interaction.

and we have to take into account the velocity dispersion _
while evaluating the first two integrals in E(B5). The last B. Strong interaction: e%/%v =1

?’VO terms are aIreszy. _smalt(<1?j)andhcan be evaluated  £q simplicity we consider the strong-coupling limit in the
or unperturbed velocities;(k)=vg’. The corresponding model with equal Fermi velocitiee(Fl)=v(F2)EvF. In this

contributions are case the renormalization of the electron tunneling rate is to-

tally determined by the plasmon velocity dispersion. In the
to |2 exgWa(t)+Wy(1)] Y iy y e

I(t)= , (38) low-frequency limit the expression fdi,,(w) can be repre-
2mh| (a+iv®t)(a+iv@t) sented as
2e?  t to |27
W= — —— ——[sinh (1)) +im/2] Flz(w)=‘— f dte'et
J 2 J 2 ﬁa —
mha VE+1 T
>dk .
, e? SR —aki - itwg(k) _
it~ einh (1 Xexr{ZJ e (e @ 1|, (42
+(—1) wﬁ(v(pl)—v(f))smh (1)) oK
X[sinh‘l(lj)+i7r], (39 wherewp(k)=(3e2/7rﬁ)kIn(1/ak) is the energy of the long-

. wavelength plasmon. The appearance of a logarithmic de-
wherel;=v{t/a. In the absence of interactiow;(t)=0  pendence of energy of the elementary excitations on the mo-
andl'1(t) is reduced to the well-known expression for non- mentum is a common feature of the Coulomb effects in 1D.
interacting electrons. For a nonchiral LL we would geb,(k)<ky/In(1/ak) for the

To get the tunneling ratk;, we need to take the Fourier plasmon excitationgsee, e.g., Ref. 20 This results in a
integral equatior(7). In the LL approach we are interested in non-power-law decay of correlation functions and in addi-
the low-frequency behaviopw<v{’, of the tunneling rate  tional strong suppression of electron tunneling through the
I'1(w). So we can approximat®; by its long-time asymp- impurity (see Refs. 11-15For a chiral LL the effect of a

totics t>r,=a/20{’, long-range interaction is not so dramatic. Nevertheless, it
strongly modifies the behavior of electron tunneling rates at
2¢2| 1 it 1 it w—0. Indeed, by doing integrals in E§42) in the limit
j;’Z Wi(t)=-— @'”ZJFE"‘T_Z hw<e.=e’/a one readily gets the desired result
1 oM it Fiw) [3 € [&.)]7?
- In—In—1. (40 = ——In(—) <1, (43
vy @@ Ty Ir'Yw) [mhve (o

045114-6



INTERCHANNEL ELECTRON TRANSITIONS IN A . .. PHYSICAL REVIEW B54 045114

Wherel“tl)z(w) is the tunneling rate for noninteracting elec- Equation(44) is a straightforward generalization of the chiral
trons, Eq.(13). model, Eq.(1). Here pg; and p; are the chiral charge-
We see that in the case of strong interacti@$/fv density operators for the rigiR) and left(L) moving par-
=1) or in the limit o—0 for a weak interactione?/ve ticles in the first {= 1) and the second &2) channel. They
=<1) the long-range forces strongly suppress the electronbey anomalous Kac-Moody commutation relatiosee,
tunneling in a two-channel chiral electron liquid. This resulte.g., Ref. 5. The velocitiesuy () in Eq. (44) are the Fermi
[see Eqs(41) and(43)] could be regarded as the analog of velocities of the channels renormalized by the intrachannel
the Kane-Fisher effettfor a forward scattering in a multi- _interaction ¥{7), u ,=v&?+ V{27, In our model, Eq.

channel chiral system of interacting electrons. Notice that in,4) \ve assumed the electron-electron interaction to be short

the absence of backscattering the renormalization of the 'nr'anged(in a LL sensg and for the moment we distinguish

termode tunneling is much weaker. Namely, the power-law[he intrachannel interaction between electrons moving in the

dependence on frequency is replaced by the logarithmic N, e V(li)) and in the opposite\((zi)) directions and the

V. TWO-CHANNEL LUTTINGER LIQUID. interchannel Y{?, V{?) electron-electron interaction.
DIAGONALIZATION The first problem is to diagonalize the Hamiltonian, Eqg.
(44). It is reasonable to parametrize the canonical transfor-

Until now we considered the electron tunneling in a to-mation we are looking for by the product of trigonometric
channel chiral LL, where only forward-scattering processes, g hyperbolic functions. Besides, the transformations

are allowed. In this case the interaction could induce renor- .
malization of the bare electron tunneling amplitudes if theShould respect the left-right symmetry of our model. The

velocities of the modes are different and interaction depen(—jeSIred pseudoorthogonal transformation is

dent. They are indeed different and therefore the excitation
of plasmon modes during the intermode electron tunne|ingoR1=coshﬂlcos¢}3m+sinhi}lcowf)u—coshﬂzsin lﬁ;Rz
does result in the appearance of an interaction-dependent
renormalization factor in the electron tunneling rdsse Eq. —sinhd,sinp, 5,
(12)]. We showed also that when the interaction is long
ranged(e.g., an unscreened Coulomb interacfithre disper- _ _ _
sion of plasmon velocities leads to the appearance of am ;= sinhd;c0Sypr;+ coshdicosyp, ;—sinhd,sinpro
energy-dependent renormalization factor. The novel feature -
of the charge-density dynamics in a two-channel chiral LL is —coshd,singp, ,, (45
the appearance of a dimensionless interaction strength which
depends on the difference of the Fermi velocities in the chan-
nels. This quantity disappears from the electron tunneling’R2
rate induced by a local perturbation. But it is this effective
interaction that determines the interference effects produced
by the extended structures. Now we would like to under-
stand: (i) Is there room for this quantity in a two-channel p ,=sinh93sinypg,+coshdssingp, -+ sinh¥,c0SYpgy
nonchiral LL? and(ii) How does interaction between right
and left movers modify our results for a chiral model? +coshd,cosyp, 5.

To be more concrete, in this section we consider how the
intermode forward and backward scatterings in a two- Notice that in the limit9;=0 (j=1-4) Egs.(45) are re-

channel LL are renormalized by the interaction. In Ref. 19duced to the unitary transformation E@). For =0 we

this problem was studied only for the caserdfamodeelec-  reproduce the standard Bogoliubov transformation for the

tron tunneling. It was showirt® that for a repulsively inter-  two uncoupled channels.

acting electron system the “multimodeness” effectively in- |t js easy to check that the pseudoorthogonal transforma-

creases the “rigidity” of the electron liquid. It means that tion Eq. (45) will be canonical if

the effect of suppression of the intramode electron tunneling

could be only enhanced by the presence of extra iisde

Here we are interested in the influence of interaction on the

intermodeelectron transitions. . i ,

The Hamiltonian that governs the quantum dynamics o0 We are left with 16:10=6 equations for the determina-

interacting electrons in a two-channel LL takes the form  tion of four independent “rotation angles.” For our param-

etrization, Eq.(45), these equations are reduced to four dif-

=coshd3sin ¥pr; + Sinhd3sin ¥p 1 + coshd,coSYpr,

+sinhd,singp, 5,

191_193:192_194. (46)

) ) ) ) ferent transcendental equations which, together with Eq.
H= Wﬁf dx) Us(pratpLe) +U2(prot pi2) (46), form the complete set of equations for our diagonaliza-
, tion problem(see the Appendix
v v In the two limiting cases the solution of the set of equa-
+ o (Praprat pL1PL2) T o (PR1PLIT PR2PL2) tions is obvious. When we s&y)=V{?=0 we reproduce

the chiral model tan2=V{®/wh(vH-v®), §;,=0,]
=1,...,4 1fVP=vP=0, then we are dealt with the two
uncoupled channels=0) and

Ve

+ E(PRlPLZ"’ PR2PLL) ( - (44)
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V(Zi) affect the bosonic excitations. The boson operators
tanh 21(}1(4)= — m, 1(}32 1(}1, 1(}22 ’34. (PR(L)j(X!t) [notice thatpR(L)j: (1/\/;)6X@R(L)j] SatiSfy the
2mhvEt”+ Vi n following commutation relatiorfsee, e.g., Ref.)5
. . . . i
For the interacting nonchiral channels the most important [‘PR](X)-‘PRH(O)]:_[‘PLj(X)i@Lk(O)]:5'kZSgr(X)a
case is the limit when all coupling constants are eqt&‘il
=V =V =v{P=V,. In this case the exact solution of the i (54)
set of equations presented in the Appendix takes the form [eri(X),oLk(0)]= 5“(2_
1 o . . _
19125“’191, 192=§|n 92| The calculation of the correlation functidh(t), Eq. (7),
Uk for a two-channel LL is much more lengthy than that for a
(48 chiral model. It is clear that now, can be represented as a
1 vf:z) 1 sum of 16 terms which contain only chiral fields. To simplify
¥3=51In mgl » 94=5Ings, the calculations we make use of theR symmetry of our
F model. It allows us to reduce the number of different terms
712 in I'15(t). As a direct consequence &R symmetry, we
tan 2= 2VoVvg ‘vE (49)  have the following identities:

(v(l)—v(z))[Vo-i-wﬁ(v(l)-i-v(z))]'
e Co (L (O ()W (0P 4(0))
wheregj=vF' Isj (j=1,2) are the correlation parameters of

the two-channel LL and the plasmon velocit®g,, are = (U (VL)W ,(0)¥ry(0)),
(@) ? (W ()W ra(t) W[ 5(0) ¥y (0))
5= (1)[ COSZl//‘I'(UL) sirfy
e e = — (WO (W E(0)F4(0)),
v b@ N\ (W (W () Wy (0) W gy (0)) (59
+ﬁ cosy+ %sinz/;) } , (50 R T TR Rl
whv vl = — (W] () Wra() W] ,(0)¥4(0)),

se=su(y — o ov ). (51) (VL)W (O] ,(0) ¥ 4(0))

. . .. (l): (2): _

Notlce_that in the Ilmnv_F VE'=UF the two channel LL of = — (U] (DW o) P (0) Wy (0)),

the spinless electron is equivalent to a single-channel LL of

spin+ electrons. In this case sip21 and we easily re- and therefore eight terms in the sum cancel each other. The

derive the well-known expressidsee, e.g., Refs. 5 and 19 left eight symmetric terms due to-R symmetry can be rep-
resented by four independent contributiondtg(t),

-1/2
9i=0s=5 e, 92= 040, gc:(” :;;/UOF) : Fit)=2[T()+ D)+ () +T ()], (56)
(52 where
CHﬁ;regchEC;[;\f correlation parameter of spjnil in the Ff(t):<\I’L1(t)\PRz(t)\PEz(O)‘PRl(O)>
VI. INTERCHANNEL ELECTRON TRANSITIONS :<\le(t)\PLZ(t)\PIZ(O)\PLl(O»,
The interchannel electron transitions are described by the L) =(¥ (W ()W 5(0) Wri(0))
tunnel Hamiltonian Eq(6), where electron operatot¥; in :(‘I’Il(t)‘l’Rz(t)‘I’TRz(O)‘I’Ll(OD,

the bosonization technique are represented via ‘“chiral”

bosfog fieldser()(X,t) by the standard formulésee, e.g., I‘+(t)=(\If&l(t)\PLz(t)‘lfaz(O)\P,_l(O))
Ref.

=(V] () Wra() P ,(0)Wry (0)),

(57)

\P](X,t) = \Iij(X,t) +quj(X,t)
I ()=(P L () PR () ¥ ,(0) W 1(0))
=(V] (O ()W (0) TRy (0)).

YU, exd —ikOx—ivVamo, (X, (53 It is easy to show by direct evaluation bBf. (t) that both of

Liexd F mey(Olk (59 these correlation functions contain the overall facRy

whereUg(, ; is the unitary rising operator that increases the= exp{—27m([ ¢ri(0)+ ¢.1(0)* era(0)+ @ 2(0)]A)). By using
number of electrons on tHe(L) branch by one and does not the canonical transformation, E@5), to represent the inter-

1 e s
= ﬁ{UR,jeXF{Ik,@)X-F iNdToRr(X,1)]
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FIG. 3. The forward- ['f,) and the backward-I{%,) scattering
interchannel electron transition rates.

x=0

acting fields<p(,_j()R) via the “diagonal” fields gof_‘()R) and by
remembering that for noninteracting boson fie{dsa,(0))
= (9£1(0)) = (PRa(0)) = ({2(0)) = (L/4m)In(l/a) (I is the
length of the systeinit is easy to prove thdf . (t) vanishes
in the thermodynamic limit I(—®) T".(t)o(a/l)"*—0.
Here the exponents.. are always the positive quantities

() 2
_a29 UF
v, =e“"l| cosy=* ﬁsmlﬂ
UF
(1) 2
29 _ Vg’ .
+ev4| cosy+ Wsmz// >0
Uk

So, we are left with two correlation functions which rep-
resent the forwardf) interchannel scatteringl’¢) and the
backward(b) interchannel scatterin@ee Fig. 3. The corre-
sponding transition rateE(lg)(w) (a=1,b) take the form

(58)

2 o0
a*la”hfzf dteé“i(a+is t) Ma

ri(w)= ’

X (a+is,t) M2a
0 1
g
(Mot N2g)

Na U§:2) Nog

S S,

X (@M wrp)h2at (59)

Here rgg>(w) is the tunneling rate for noninteracting elec-
trons, T'(x) is the gamma functionr; )=a/ve) @, s 5y
are the plasmon velocitigsee Eqs(50) and(51)], and

N 1= COSH ¥+ ¥3)(coshs— sin 2¢)

+sinh§ cos 24 sinh( 34+ 93),

N\ 1p=COSH ¥+ ¥3)coshd+ sinh( §4+ ¥3)sin 2¢

+sinhéd cos 2¢ sinh( 91+ J3),
(60)
No¢=COSH ¥, + ¥,)(coshs+ sin 2¢)

—sinhé§ cos 2 sinh(9,+ 9,),

Nop=COSH 95+ ¥,)coshd— sinh( §,+ 9 ,)sin 24
—sinhé§ cos 2 sinh(9,+ 9,),

PHYSICAL REVIEW B54 045114

where 25=In(®/v®). The total electron tunneling rate is
I'1(w)=2I"{)(w)+2I'{Y(w). Equations (59), (60), and
(48)—(51) are the solution to our problem in the most general
case. The expressions for the exponevjisare too cumber-
some and therefore in what follows we will analyze the rates
of electron interchannel transitions in different limits.

At first we consider the limit};=0 (j= .,4)which
is realized whenv{)=v{®=0, i. e the |nteract|0n potential
has no components WhICh couple “left” to “right” densi-
ties. Physically this case corresponds to the situation when
left- and right-moving electrons are separated in the space. It
could be the edge states on the opposite edges of the wide
channel in 2D electron gas under the conditions of FQHE. In
the studied limitl'{") coincides with the tunneling rate for a
chiral model(as it should bg Eq. (12), andT'{Y(w) is re-
duced to a simple expression

v(Fl)U(Z)
I (@) =T (w)

r'Y(w), (61)

wheres, ,y are determined by Eq¢50) and(51). So, in the
absence of coupling between the “left” and “right” movers
the dependence of the tunneling rates on the frequency
disappears. The tunneling rates of interacting electrons are
suppressed due to the different values of the plasmon veloci-
ties (s;#S,) in the channeldfor repulsive interactiors;
>p® 5,>0 ),

The opposite limity=0 is realized when/{¥=Vv{=0.

It describes the uncoupled channels. This situation pertains,
for instance, to two 1D wires situated far apart from each
other. Now both electron transitions are strongly renormal-
ized by interaction forw—0

() =T{H(w)~TQ () (wrn) K (wr)'E. (62
Here \{(x?=cosh 29, ,— 1=(1/2)(g1,+ 915~ 2)=0. This
is nothlng but the manifestation of the Kane Fisher eftect.
The transitions are strongly suppress@of“(> 1) for a
strong repulsive interactio[r\/(zi)zv(li)>ﬁup, see Eq(47)].

Let us introduce two exponents,=\;,tN,,—2 («a
=f,b), which determine the low-frequency behavior of elec-
tron tunneling rates. They can be represented in the follow-
ing form:

2N p=[01+097 "+ 02+ 07 ' —4]+siry{ (r 2-1)(g;
+05 H+(r?=1)(ga+97 H]Fsin 2¢{r (g,

79,1279, ], (63)
where the upper sign in E¢63) corresponds ta; and the
lower sign to\y. Hererz\/v(FI)/ug) and the correlation
parameterg; are determined by Eq$50) and (51).

The last formula, Eq(63), is the main result of this sec-
tion. It shows how the electron transition rafd5® (w)
~ !t b scales with frequency. What is the physical mean-
ing of the terms in Eq(63)? It is easy to get from the set of
equations presented in the Appendix that if the intrachannel
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(V?=vP=V)) and the interchanneM{®=V{®=V,) in-  charge in the channels and therefore the spinibigvard
teraction strengths are differentV,&V,), the “rotation  electron scattering is not affected by the electron-electron

angle” ¢ takes the form interactionl“(lfz)(w) :F(lg)(w)-
As for the backward interchannel transitions, one could
2V, vFl vY expect, according to the ordinary picture of the charge trans-
tan 2= (64 portin the LL, thatl'{9 (w) will be enhanced at low frequen-

1 2 1 2 :
(U(F )—vf: ))[V‘+Wﬁ(U(F )+v$: ))] cies, at least in the case when the Fermi velocities in the
So, in the limit of uncoupled channel,—0 the last two channels are of the same order. From &) one easily gets
terms in Eq.(63) (they are proportional to si#) vanish and  that in the limitv =0 the backward-scattering interchan-
the suppression of electron transitions is totally due to the LLnel electron transitions are strongly enhanced by interaction

effects in the wiresy, | =(g,+9; +d,+0, 1 —4)/2. atw—0: \y(v&P=0P)=g,~1<0
To understand the physical meaning of the terms arising
from the interchannel interaction it is useful to consider the Ye
limit v@>v® | In this case our problem can be reduced to F(lg)(w)=F(1%’(w)r(1—fm(wr)*(lfgc), (67)
Cc

the problem of the x-ray response of the LL in the model

considered in Ref. 16, where the core level was representqghereg is determined by Eq47). Recall that Eq(67) was
. . . C g .

by a forward-scattering short-range potential. To get thi§yerjyed in a perturbation theory and it is valid until the renor-
mapping one has to disregard the effects associated with thgyjizeq backward-scattering electron rate is small. So, this
band structure of o0 of the two Luttinger liquidsie first oy hression indicates that at—0 the perturbation approach
f:rz;?rifléf tf(1663l)|r;;ltzrzgdl;é)dlioconSIdere)i Then, the second for the evaluation of(lg)(w) does not work. One can speak

a only on the tendency of the enhancement of the backscatter-
ing processes at low frequencies.

a b:SInzw[(r_z—1)g£1+(r2—1)92] If v&#0@ the exponeni; is positive and hence the
' 2 forward-scattering transitions are always suppressed by inter-
o action. In the weak-coupling limi/o/27hvHP<1
vg '—0 2
L ARV
2\ 7ho® ’

3
g%, (65 1 o®\? v®
M=ol e [T e
whereg™'=\1+V,/whv@ is the correlation parameter of UF UF
the spinless LL. The exponenf , represents the so-called

“orthogonality catastrophe The last term in Eq(63) can 2V,

be attributed to the “exitonic” effect’ In its truncated form Ap=— @+ @)
it looks like FoF

2
Vo
2rh (0P +0vP '
(68)

We see thai\,|>\; and hence for repulsive interaction the
sin 2y . e backward-scattering interchannel electron transitions will be

Bip=—7—[(rg2) "£rg,] = — @ 66 gominant aw—0("'®>T)) provided they are allowed for

F the noninteracting electrons.

vM-0

So, the relation between the exponeats, and s ,, is ex- In the regime of strong coupling we have
actly that found in Ref. 16, namelzyf,bz(g/2),8f2’b. Notice
that for the noninteracting bandy€ 1) this formula repro- (‘/UF(lj_ ‘/U(F25)4

duces the correct expression for the exponents in the case of A=

@,,@),, 1) (2)
spinless electrons®’ When V,~V, and v!'~v® the 2\v (o) o)

simple classification adopted from the problem of the x-ray 1{p®_,@)\2 v -1/2
response loses its precise meaning since the effects of inter- S ZE_CF 0 . (69
channel and intrachannel interactions have to be treated on 2\ vB+0@) | 7P +0®)

the same footing. Anyway, one can see from Ef) that

the low-w behavior of the interchannel electron transition 100+ @ 1 Vo -1/2

rates strongly differs from the naive expectation that the cor- p=m e — 24 —
responding exponent in the frequency dependence of 2 u@® 2
I'{%P(w) is a mere sum of the Kane-Fisher’s exponexf{
[see Eq(62)] of the channels. Notice that\, Eq. (70) changes its sign\,>0) if v

In particular, for a two-channel LL with equal Fermi ve- >v,(:2) (or vice versa It means that in the strong-coupling
locities one easily gets, by using E&2), that the forward-  limit and for the channels with strongly different Fermi ve-
scattering electron transitions are not at all renormalized byocities (numericallyv2)/vY<0.07) both interchannel elec-
interaction¢(v"=0®)=0. In the terms of spid-LL this  tron transitions(forward and backwaidare suppressed by
statement looks physically evident. Indeed, the spin-flip prointeraction. However, these conditions are unlikely to be sat-
cess itself does not lead to the redistribution of electricisfied in the real systems.

(70

mh(vP+0v®)
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By making use of Eq(20) it is easy to evaluate the ro- As was demonstrated in Sec. lll, the energy dependence
tated DOS for a two-channel nonchiral LL model. They areof the rotated DOS determines the frequency dependence of
represented by the expression analogous to(25), the quantum interference effects in the absorption of photons
by a two-channel chiral LL. The evaluation of the power
absorption performed in Sec. lll can be easily generalized to
a nonchiral LL. Since the optical electron transitions repre-
sent the forward-scattering events one could expect that the
parametersk;; and N\, will control the frequency depen-
dence of the oscillating pal'{?(w) of the interchannel
Blectron transitions induced by the extended structure shown
on Fig. 3. The expression fafl'{9(w) is analogous to Eq.

sitions. For a chiral model the only possible transition was(31).’ where now th.e expgnent;, who control the decay of the
the forward-scattering process described by the transmissio cillating terms sir;)/x", are indeed\¢, Eq. (60). In the
amplitudet,,. Now we could consider both the interchannel '¢9'M€ of strong coupling.;;—0 andA; takes the finite
transmissiont(;,) and reflection ;,) amplitudes. According positive value

to Egs.(71), (60), and(48)—(51), they can be represented as
follows:

Nig—1

: (71)

()
L0 YR Ll S
M (8) =00 TN, |4,
where j=1,2; a=f, b, and \;, are determined by Eq.
(60). As was shown in Sec. lll, the exponent, which controls
the low-energy behavior of the rotated DOS, determines als
in the weak-coupling limif 9, J<1,|¢|<1 the energy be-
havior of interchannel “vertical”’(see Fig. 2 electron tran-

ja

&

(1) (2) 1) (2
(2= +U|: 2 Vg Vg
Nop= 2T D 0 =2. (74)
NS
€ F . . . . .
t12(8_>8+hw):t(lg)( - —) , It means thati) only one of the two oscillating contributions

ho in Eq. (31) survives in the case of strongly interacting elec-
trons, andii) the interaction significantly enhances the inter-

NS
€ |8 feren ffects.
r12(8H8+hw)=r(1%)(—%) , &<0 erence effects
+) (72 VII. LUTTINGER LIQUID WITH OPEN BOUNDARIES
)‘F
ti—fw+ s—>s):t(l%)(1> , So far, we studied the interchannel electron transition in a
ho LL assuming that theéntrachannelbackscattering of elec-

) trons is absent or weak. However, it is well known that back-
A . . . .
g |"B scattering is a relevant perturbation in a LL and weak bare
%) , €>0 potential is renormalized up. At temperaturB—0 it
©) ©) . o “splits” the LL wire for the charge transport into two semi-
Heretj;’'<1,ri7’<1 are the interchannel transmission andinfinite systems. Now we consider how strong electron back-
reflection amplitudes for noninteracting electrons and the exscattering modifies our results for the interchannel electron
ponents)\(ng in the weak-coupling limit are transitions.
) At first we assume that the “impurity” affects the elec-
Vo 1 v(Fl)—vf:Z) tron dynamics in both the channels. The Luttinger liquids to
i (oM — v @) +§ NEENE the left and to the right of the im_p_urityx(: 0) are weakly
73 conne;cted and the electron transitions between them can be
described by the tunnel Hamiltonian analogous to @&y. It
v is clear that any kind of electron transiti@erossthe weak
S link leads to the redistribution of the charge density and
7Tﬁ(v(pl)ﬂLv(Fz)) hence the forward-scattering electron transitions will
5 be strongly suppressed at—0. In particular, for equal
Fermi velocities one can readily get from the symmetry ar-
guments thah{?=\{) . For the different velocities the two
exponents under study are of the same oftleey are ap-
AR=ARD =0 ®). proximately equal in the strong-coupling limitAs a conse-
’ ’ _quence, the backscattering into the same channg| (1
So, we showed thlazt at least for a vyeak electron-electron in-, 1Ry 2R(5L)<—>2L(R)) is strongly enhanced at low
teraction Vo/mhv?<1 the coupling between left- and frequencied:® Here we ask the question—is the electron
right-moving electrons does not change the prediction of th@ackscattering with the change of flavarhannel indek
chiral model(Sec. Ill) for the transmission amplitudes, Eq. 1r)<>2L(r)» €nhanced or suppressed?
(29). One can see also from E(.3) that the exponent in Since in the absence of perturbation the electrons cannot
the energy dependence of the reflection amplitude in the firgfass through the impurity, we have to treat LL with open
order on the interaction strength depends on the sum of thigoundary conditions, which can be accounted for by the re-
velocities(like the exponent in the Kane-Fisher etfbcmnd quirement that the displacement figfd(t,x) = ¢;. + ¢jr is
it satisfies the physically evident properks =\ (v pinned at the origink=0 (see, e.g., Refs. 20-22 and 5
— = vf:z)). @jL(t,x=0)+ ¢jr(t,x=0)=0, j=1,2. This requirement is

rlz(—hw+s—>s):r<lg><

Vo
2mho®

)\'(:—)2_

)\é*)z _
20,(:1) 2

NORme

4v,(:l)
vf:l)—v(FZ)

1
2

Vo

+
2mho®

1+
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met if the “diagonalized” fielld.sZojuR(L) satisfy the same cosye?1(pir+ @11) +singe?2(pp+ @, )=0. (79
boundary condition. The restriction imposed modifies the ex- L i
pression for the two-point correlation  function With the help of Eq(79) it is straightforward to recalculate

. . iti (b)
{(@irL (1) ¢jr1)(0))). The straightforward calculations the transition ratel'y; for tr_\e case when electrons are
result in Eq.(59), where now the exponents;, take the strongly backscattered only in the first channel. The corre-
form ) sponding expressions for the exponkp are determined by

Eq. (75) while \,, takes a rather cumbersome form

xlb:gl—l( cosy— i:sinzp) 2' Nop=e"2%1ysir?y cosh 2 9, — 9,) — sin 2y cosi{ &, — I,)
vF - X (e¥1sinh &, + tarfye’2coshd ;) — sinh( &, — 9,)
L \/@ _ 2 X (e?1coshd,+ tarf ye?2coshd;) |
hav=0; ( cosy ¥ @sm lﬂ) ' + cogy (e¥1sinh 9, + tarf ye2coshd ;)2
The low-energy behavior of the backscattering transition rate +(e”1coshd, +tarf ye"2coshit;) ]} (80)

is governed by the exponeRb=Aip+Az,—2 However, it is easy to verify that,(v=v®)=0 (recall

that N, ,=\N.,tAy,—2) irrespective to the interaction
strength. Fov P+ 0v?) Eq. (80) is simplified in the limit of
\/U(Flijm strong interaction when it is reduced to a simple expression

Mg1_,@)g1
- - Ve'Q V'Y
Np=07 T+ gy 24 e 2

@_ (2 1) (2)\?
Vg Vg™ .| . 1 v [
X | —====SirPy— Sin 2¢ | (76) M=ol 14+ 2| —2. 81
{\/vp(ljvpm b= 2 v® o (8D

The asymptotics of Eq(76) in the weak- and strong- Since the different boundary conditions for the electron field

coupling regimes are in the “open” and in the “blocked” channels break the
flavor symmetry, the result, E¢B1), is not symmetric under
w2 Vo (v —p@)? the interchange of the channel indexes>2. The suppres-
Ap(Vo<tiv )= D 2, WL @ sion of I'{Y(w) will be maximum when the Fermi velocity
27TﬁU|: UVE (UF +U|: ) . . .
77 of the blocked channel is much bigger than that in the open
2 channel. In this cask,=(1/2) (v @/vP)3¥2>1.

U(l) 1/4 U(Z) 1/4
)\b(Vo>ﬁU|(:1’2))'—“ L I Bl =0.

NE) @

F F

So, for the repulsive electron-electron interaction the back- In the last decade of increasing interest in the LL effects
scattering with the change of the channel will be suppresseith low-dimensional systems of strongly correlated electrons
at w— 0 if the Fermi velocities of the channels are different. small attention had been paid to the problem of interchannel
The suppression is pronounced in the strong-coupling regimelectron transitions in a multimode Luttinger liquid. The
and for the strong difference in the Fermi velocitgs?  main interest of theoreticians was concentrated around the

VIIl. CONCLUSION

>v@D _In this case problem of charge transport through the impurity in LL. This
is the process that determines the current-voltage character-
(b) Neomes istics in the long quantum wires and it is known to be
Flz(“’): 1 wa <1 strongly affected by interaction. Indeed, impurity induces
I'Yw) THoEED) @@ ' electron backscattering that results in a strong redistribution

(78) of charge density around the scattering region. On the con-

. ) trary, the forward interchannel electron scattering in adia-
wherel'(x) is the gamma function. (1) Dbatic channelginduced, for instance, by an electromagnetic
At equal velocities one gets from Ed76) Ay(vg field) does not lead to the redistribution of charge density
=v{®)=0. It means that the spif-electron backscattering along the 1D wires and thus it has no influence on the lon-
with the spin-flip is not affected by the interaction. In the gitudinal conductivity of the system. We would like to note
language of the spig-LL this statement looks evident since that the forward interchannel electron transitions, having
the spin-flip process does not lead to the redistribution of th@othing to do with the resistivity of the LL wire, are impor-

electric charge density in the channels. tant processes when investigating the optical properties of a
Now we consider the situation when impurity blocks the multimode Luttinger liquid.
charge transport only in one of the channdét it be for We showed that these transitions are controlled by the

definiteness the first channelThen, only thee; field is  dimensionless interaction strength which depends onlifhe
pinned at the position of impuritk=0 and the boundary ference of the Fermi velocities in the channels
condition for the “diagonalized” fieldsp; gy looks as fol- =Vo/mh (v —vP). This effective coupling could be ei-
lows: ther positive or negative, depending on the [sgmv(é)
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—vf:z))] and therefore the interchannel electron-electron in-
teraction could either enhance or suppress the effects of the
intrachannel interaction. We have studied the interchannel
electron transitions in a two-channel chiral LL and demon-
strated that although the total electron transition faig o)

for a short-range interaction is not renormalized in an
energy-dependent way, the couplirgdoes control the in-
terference effects in a multichannel wire. From a general
point of view the interchannel electron transitions, by creat-
ing a dipolelike charge-density perturbation that can freely
move along the wire, could be crucial for understanding the
optical properties of a multimode LL.
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APPENDIX

The set of equations for the “rotation angle®; (j
=1,...,4) andy that diagonalize the Hamiltonian for a
two-mode Luttinger liquid take the form

PHYSICAL REVIEW B54 045114

271 (v Psinh 29, cogy+ v Psinh 20 5sirf )
= —cogy(V{)sinh 29, + V¥ cosh 29,)
—sirfy(V{sinh 293+ VY cosh 295)
—sin 2y V{Fsinh 9, + 93) + V¥ cosi 94 + 93) ],
27h(vPsinh 29,sirt g+ v Psinh 29 ,co )
= —cogy(V{)sinh 29,+ VY cosh 29,)
—sirfy(V{sinh 29, + V{cosh 29,)
+sin 2y[ V{Osinh 9, + 9,4) + VP cosh 9, + 94) ],
wh sin 2y v Dsinh( 9+ 9,) —vBsin I3+ 94) ]
= —sin 2ysinh(9;— I3)[ V) cosh 9, + 93)
+VPsinh(9,+ 93)]+ cos 2 V{Osinh 9, + )
+V¥cosh 9,+ 93)],
wh sin 2y[ v Pcosi 91+ 9,) — v Pcosi I3+ 94) ]
= —sin 2¢sinh( 9, — 93)[V{sinh 9, + 93)
+ V¥ cosh 9,+ 93)]+cos 2 V{Pcosi 9, + 95)
+VEsinh(9,+ 93)],

191_193:192_194.
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