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Carriers in a two-dimensional lattice under magnetic and electric fields
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We have studied the propagation of carriers in a two-dimensional system under the influence of magnetic
and electric fields. To take into account the magnetic field we have used the Peierls substitution, and have
considered the so-called Landau gauge for the vector potential. The nature of the propagation of the wave
packet under only a magnetic field is controlled by the ratio between the magnetic flux through the unit cell to
the flux quantum:a5F/F0 . For rational values ofa we have obtained ballistic propagation for sufficient long
times. But for irrationala the wave remains localized in a definite region due to incommensurability. The
inclusion of the electric field changes this picture. In fact, when the electric field is included, the degeneracy
between the on-site energies is broken along the field direction, thus inhibiting hopping along it, while in the
perpendiculardirection to the applied field propagation is favored. This behavior is common to both rational
and irrationala. Finally, for certain values of the electric and magnetic fields the wave packet performs an
oscillatory movement; this is the phenomenon ofdynamic localization.
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I. INTRODUCTION

The object of the present work is to analyze the combin
effect of magnetic and electric fields on propagation of c
riers subject to a two-dimensional periodic potential. T
subject of electrons in a periodic potential under magn
fields has a long and rich history.1–4 Recently there was a
renewed interest in dealing with carriers in a tw
dimensional system under electric and magnetic fields,
to the fact that it has become recently experimenta
accessible.5–8

In dealing with a magnetic field we determine the tim
evolution of a wave packet in a two-dimensional crystalli
array following the Peierls approximation. We shall limit o
study to the case of a single band, i.e., large gaps an
magnetic-field intensities such that no interband mixing
curs. It is well known by now through a classical work b
Hofstadter that the eigenvalues of this model follows a s
similar pattern. There are bands and gaps at all energy sc
A crucial parameter that determines the nature of the sp
trum is the ratioa of the magnetic flux through a unit cell t
the flux quantum unitF05hc/e. We face a problem of com
mensurability, since the magnetic field requires a quantifi
tion of areas, while the lattice periodic potential requires
translational symmetry of the crystal. These conditions
come compatible only at specific values of the magne
field. We show different types of propagation according
the nature of the parametera. In fact, for rational values we
obtain ballistic propagation for sufficient long times, whil
for the case in whicha is irrational the wave packet remain
localizedin a definite region of the lattice as a consequen
of incommensurability. To determine the type of propagat
of an injected particle in the lattice, we evaluate the me
square displacement, the participation function, and
Shannon entropy. In addition, we look at the time evolut
of the wave packet in three-dimensional~3D! graphs. In this
0163-1829/2001/64~4!/045112~6!/$20.00 64 0451
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work we take the Hamiltonian to be the one given by t
Peierls model.

Two situations arise as a consequence of the superpos
of the fields. First, the wave presents a tendency to propa
perpendicularto the applied electric field. Second, for sp
cific values of the parameters involved, we obtain a re
nance condition which makes the packet perform an osc
tory movement with a characteristic period, this is t
phenomenon of dynamical localization. In order to gain
explanation for this phenomenon, we have analyzed the d
sity of states for different values ofa and the electric field.
Our results show the appearance of a series of gaps in
spectrum, whenever the wave packet is localized.

The paper is organized as follows. First we presen
Peierls model that allows us to treat the problem of a car
in a periodic potential subject to a magnetic field which w
treated along the Landau gauge. Finally, we consider
inclusion of a dc electric field superimposed on the magn
field. This will cause the introduction of an additional ter
into the Hamiltonian, which will be responsible for, amon
other things, the phenomenon of dynamical localization.

II. PEIERLS MODEL

The time-dependent nonrelativistic equation for a tw
dimensional particle of chargee in a periodic potential with
an applied magnetic field is

i\
dC

dt
5

1

2m
~2 i\“2eA/c!2C1V~x,y!C, ~1!

whereA is the vector potential andV is periodic with the
periodicity of the lattice. The corresponding stationa
Schrödinger equation is
©2001 The American Physical Society12-1
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1

2m
~2 i\“2eA/c!2w1V~x,y!w5Ew. ~2!

If we call w0 the eigenfunction of the Hamiltonian without
magnetic field, the associated wave functionw, when the
field is included, is

w5w0 expS 2 ie

\c R A•dr D5w0 exp~22p ia!. ~3!

Taking the circulation along a unit cell, we see the appe
ance of the ratio of the magnetic flux through the cell to
quantum flux unit,a5F/F0 in the exponent. When this
ratio is an integer, we preserve the original translational sy
metry of the lattice, the wave function being single value
But whena is a rational number, i.e.,a5p/q we shall need
to consider a unit cellq times as large. Consequently, th
Brillouin zone is reduced by the same amount, and th
appearq bands. The original single band is split into as ma
bands as the denominator ina.9 This is the origin of the
famous butterfly spectrum obtained by Hofstadter.10 The un-
conventional features of such a spectrum arise when
magnetic flux through the unit cell becomes comparable
the flux quantum.

Now we shall consider the time evolution of a wa
packet in a magnetic field following the Peierls model.1 Ac-
cording to this, as the Hamiltonian one takes the dispers
relation

E~k!52W~coskxa1coskya!, ~4!

and makes the substitution

\k⇒P52 i\“2eA/c. ~5!

In this work we have adopted the Landau gaugeA
5B(0,x). By discretizing the space coordinates,

x5na, y5ma,

we expand the wave function in the Wannier representa

uC~ t !&5(
n,m

gn,m~ t !un,m&,

so that from Eq.~1! for a square lattice ofN3N sites, we
obtain the following set of equations:

i\
dgn,m

dt
5W@gn11,m1gn21,m1e2 iangn,m111eiangn,m21#.

~6!

In the Appendix we discuss the properties of the 1D sys
obtained as a consequence of the Landau gauge.

Equation~6! can be cast in the matrix form

i\
dF

dt
5MF, ~7!

whereM is the dynamical matrix, and the vectorF( i ;t) is
constructed from the Wannier amplitudesgn,m(t) by taking,
as the firstN components of the vectorF the first row of the
N3N matrix formed with the Wannier amplitudes of th
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different sites. The nextN components~from N11 up to
2N! are formed with the second row of the matrix, and so
until we obtain theN3N component ofF.11 We have con-
sidered the initial condition

gn,m~ t50!5dn,0dm,0 .

In a previous work,12 we showed that the solution of Eq.~7!
can be cast in the form

F~ t !5Rt exp~2 iDt/\!RF~0!, ~8!

where D is the diagonal form of the dynamical matrixM
5RtDR. After solving for the Wannier amplitudes we con
struct the following.

~i! The mean-square displacement (MSD)^r 2&, which in
units of the lattice parameter is

^r 2&~ t !5(
n,m

ug~n,m;t !u2~n21m2!. ~9!

~ii ! The participation function

P~ t !5H(
n,m

ug~n,m;t !u4J 21

, ~10!

that indicates the site’s participation in the wave functio
Since the wave function is normalized,P51 if the wave
function is completely localized at a single site, andP5N if
the wave is uniformly extended over theN sites in the
lattice.13 An interesting feature of this function is that it pre
sents an abrupt decline once the packet reaches the boun
of the lattice. In this way we can note the presence of s
effects, and enable us to choose the lattice size in orde
avoid boundary effects. In addition, since this function kee
track of the number of sites that the wave ‘‘visits’’ it wil
show oscillations due to backward and forward scattering
wave suffers when reaching a site.

~iii ! The Shannon~information! entropy14

S~ t !52(
n,m

ug~n,m;t !u2lnug~n,m;t !u2, ~11!

that takes the two limiting values:S50 for a completely
localized state and lnN for a uniformly extended state.

~iv! We analyze the time evolution of the wave packet
3D graphics, showing in this way more clearly the nature
propagation~localization!.

This approach to the study of diffusion of an initiall
localized state follows along the lines presented
Anderson;15 that is, we can conclude that diffusion has o
curred if att→` the Wannier amplitude at the starting si
goes to zero. If, on the other hand, the amplitude at the
remains finite while decreasing rapidly with distance, we s
we have a localized state.

III. RATIONAL VS IRRATIONAL MAGNETIC FIELDS

As stated above, whena is rational we have a periodic
on-site potential with aq periodicity. But ifa is irrational we
have an incommensurate potential. Let us discuss first
rational case.
2-2
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~i! Rational case:a51/2. In Fig. 1 we show the time
evolution of the MSD, participation, entropy, and probabil
propagation at the origin (u f 0,0(t)u2). We note that the propa
gation takes place ballistically, i.e.,^r 2&}t2. The participa-
tion grows linearly in time on the average. The propagato
the origin decays rapidly in time, making the propagation
the wave evident.

In Fig. 2 we show the structure of the wave packet as ti
goes by. Note that the structure of the picks shows a c
resemblance to the circular orbits obtained in the class
description of a charged particle in a magnetic field.16

~ii ! Irrational case:a5s ~golden mean@A(5)21#/2). In
Fig. 3 we show the time evolution of the MSD, participatio
entropy, and probability propagation at the origin. The MS
shows smaller values than in the rational case. It grows
time because of the ‘‘escape’’ of the wave packet tail. Th
also appear strong oscillations in the participation and
entropy because of the tendency of the wave packet to re
to the origin, as we can see in Fig. 4. In this figure we c
very clearly note a breathing mode: the packet expands
contracts.

We have shown results for two typical cases,a51/2 and

FIG. 1. Rational case:a51/2, without electric field.~a! Mean-
square displacement^r 2&. ~b! Participation.~c! Entropy. ~d! Prob-
ability propagation at the origin (u f 0,0(t)u2). Time is in units of
\/W.

FIG. 2. The structure of the wave packet fora51/2 and EW

50. Time is in units of\/W.
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a5s, representatives of the rational and irrational cas
Moreover, we have done the calculation for othera values,
obtaining similar behaviors. This is a consequence of
commensurability problem cited above.

IV. EFFECT OF THE INCLUSION
OF AN ELECTRIC FIELD

Finally, we introduce a dc electric fieldE5(Ex ,Ey) in
the calculations. The units of the electric field areW/ea. In
a previous work,11 we showed the effect of its inclusion o
the nature of carrier propagation on both 2D and 3D str
tures. Now we treat the combined effect produced by
magnetic and electric fields. In doing this we add to t
right-hand side of the Schro¨dinger equation~6! the term
(eExan1eEyam)g(n,m).

The inclusion of the electric field removes the degener
of the on-site levels along its direction. This way the pac
has a tendency to propagate in a directionperpendicularto
the applied field. This behavior can easily be seen in the n
3D figures. We will discuss four typical situations.

FIG. 3. Irrational case:a5s the „golden mean is@A(5)
21#/2…, without electric field.~a! Mean-square displacement^r 2&.
~b! Participation.~c! Entropy. ~d! Probability propagation at the
origin (u f 0,0(t)u2). Time is in units of\/W.

FIG. 4. The structure of the wave packet fora5s and EW 50.
Time is in units of\/W.
2-3
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~i! EW 50.3x̂10.3ŷ anda5s. In Fig. 5 we show the MSD
and probability propagator at the origin, which show that
packet leaves the starting position propagating through
lattice. This behavior is different from the one obtained wi
out the electric field, where the packet remains in a defin
region. However, in the present case it is interesting to n
that a small portion of the wave packet propagates in dir
tion perpendicular to the applied electric field. See Fig. 6

~ii ! EW 50.5x̂ anda51/2. As in the previous situation th
wave propagates, as shown in Fig. 7, where one can note
the MSD values are larger than in case~i!, where a was
irrational. In Fig. 8 we show the wave-packet structure, a
it is clearly seen that it goes in they direction, i.e., perpen-
dicular to the applied field.

Now we will discuss a very interesting situation obtain
for rationala, namely, the phenomenon of dynamical loc
ization that occurs for specific values of the electric and m
netic fields. For this we present two situations that illustr
the point.

~iii ! EW 50.8x̂10.8ŷ anda51/3. In Fig. 9 we present the
MSD, the probability at the origin, and the density of sta
~DOS!. In Figs. 9~a! and 9~b! we note that the MSD clearly
shows a ballistic behavior, while the probability at the orig
decays rapidly in time. In Fig. 9~c! the DOS shows a serie
of peaks without the presence of gaps. This is consistent
the obtained picture of wave propagation. In Fig. 10 we c
see the wave leaving the starting position, again in a dir
tion perpendicular to the applied electric field.

FIG. 5. a5s andEW 50.3x̂10.3ŷ ~a! Mean-square displacemen
^r 2&. ~b! Probability propagation at the origin (u f 0,0(t)u2). Time is
in units of \/W.

FIG. 6. The structure of the wave packet forEW 50.3x̂10.3ŷ and
a5s. Time is in units of\/W.
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~iv! EW 50.8x̂10.8ŷ and a51/2. In this case we realize
that a completely different behavior is obtained for this p
ticular set of values of the parameters involved. In Fig. 11~a!
we clearly note an oscillatory behavior, while in Fig. 11~b!
we see that the particle returns to the origin periodically.
Fig. 11~c! the density of states shows very narrow ban
separated by gaps of the same magnitude, while the cen
of the minibands are equidistant, the separation beingeEa.
This is the signature of the Stark ladder structure. It is
presence of these gaps that inhibits hopping from tak
place, and as a consequence we end up with a dynamic
localized wave packet. Figure 12 shows the packet struc
at different times.

The physics behind the very interesting phenomenon
dynamic localization can be stated as follows. Here we d
cuss the casea51/2, which means that the translation
symmetry is preserved as long as we have another unit
twice as large while in the presence of only a magnetic fie
In this case the wave packet propagates through the lat
as shown in Fig. 2. The spread of the wave shows acircular
symmetry resembling a classical orbit. The inclusion of t
dc electric field, on the other hand, breaks such a symm
favoring propagation along the directionperpendicularto the
applied electric field. Thus we are in the presence of t
competing effects. The stronger the field, the more p
nounced this asymmetric effect is. Thus if we start with
weak electric field the wave has a tendency to show a cir
lar symmetry, since the Stark ladder that inhibits hopp

FIG. 7. a51/2 and EW 50.5x̂ ~a! Mean-square displacemen
^r 2&. ~b! Probability propagation at the origin (u f 0,0(t)u2). Time is
in units of \/W.

FIG. 8. The structure of the wave packet forEW 50.5x̂ and a
51/2. Time is in units of\/W.
2-4
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along the field direction produces small barriers. For stro
electric fields, on the other hand, the Stark ladder introdu
large barriers, severely inhibiting propagation along the
plied field. As a result the wave spreads easily along
perpendicular direction, the ‘‘escape route’’ for the carrier
the perpendicular direction pushed by the magnetic field.
some intermediate electric-field intensity, the wave can
‘‘decide’’ which behavior to follow, and stays confined to
definite region in the lattice, performing a perfect oscillato
movement. This dynamic localization phenomenon occur
a result of the balance of two competing effects. Moreov
for the case we illustrate in Figs. 11 and 12, which sho
this effect fora51/2 andEx5Ey50.8, we have obtained
density of states which shows the presence of very nar
minibands separated by gaps of magnitudeeEa~see Fig. 11!.
Thus the presence of these gaps is another manifestatio
the fact that the wave packet cannot propagate through
structure. In conclusion, the present calculation seems to
dicate that for every rationala a specific electric-field inten
sity produces dynamical localization as a result of the sup
position of both fields acting on Bloch electrons.

We have considered lattices large enough so that the

FIG. 9. a51/3 andEW 50.8x̂10.8ŷ. ~a! Mean-square displace
ment^r 2&. ~b! Probability propagation at the origin (u f 0,0(t)u2). ~c!
DOS—density of states. Time is in units of\/W.

FIG. 10. The structure of the wave packet fora51/3 andEW

50.8x̂10.8ŷ. Time is in units of\/W.
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lutions of the Schro¨dinger equation are size independent. T
time limit taken in our calculations was 1029 sec, much
longer than any reasonable collision time in a sample.

V. CONCLUSIONS

We have analyzed the influence on propagation o
charged particle injected at a particular site in a tw
dimensional lattice under the effect of constant magnetic
electric fields and a crystal potential. We assumed a Pe
model, and considered a Landau gauge for the vector po
tial. In the absence of an electric field we showed that
parameter which determines the kind of propagation~local-
ization! is the ratio between the magnetic flux through t
unit cell to the quantum flux,a5F/F0 . Whena is a ratio-
nal number the propagation isballistic for sufficient long
times. This can be explained by noting that in this case i
recovered commensurability. Because of this we have a
riodic situation though with a different periodicity, and th
presence of the hopping term is responsible for this behav
In the case whena is irrational, we face incommensurability
and the wave packet remainslocalizedin a definite region of
the lattice. When an electric field is included, this picture

FIG. 11. a51/2 andEW 50.8x̂10.8ŷ ~a! Mean-square displace
ment^r 2&. ~b! Probability propagation at the origin (u f 0,0(t)u2). ~c!
DOS—density of states. Time is in units of\/W andd5eEa/W.

FIG. 12. The structure of the wave packet fora51/2 andEW

50.8x̂10.8ŷ. Time is in units of\/W.
2-5



o
ed

an
it

ed
ne
tr
fo
or

th

s
d

q

n

the

m-
lf-
y
te

ent

us

.

H. N. NAZARENO AND P. E. dE BRITO PHYSICAL REVIEW B64 045112
dramatically changed. In fact, since degeneracy between
site levels along the direction of the applied field is remov
it favors propagation in aperpendiculardirection. This be-
havior is common to both rational and irrationala. Our re-
sults are in agreement with those obtained by Kunold
Torres,5 that showed a change in the energy spectrum w
the inclusion of the electric field. Their calculation show
the appearance of a ladder structure, which in turn explai
why the wave propagates perpendicularly to the elec
field. Note that in the absence of an electric field and
irrational a, the wave remains localized. Moreover, only f
specific values ofa and E is a localization of the wave
packet obtained, where the mean-square displacement^r 2&
shows a perfect oscillatory behavior: the wave visits
starting position periodically; this is the phenomenon ofdy-
namical localization. For this case the density of state
shows the appearance of very narrow minibands separate
gaps of magnitudeeEa.
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APPENDIX: EQUIVALENT 1D PROBLEM

Since in this gauge the vector potential depends only ox,
we can assume a plane wave alongy. This leads us to the
following set of equations for the Wannier amplitudes
ys

.
-

.

ev

04511
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e

by

i\
d fn

n

dt
5W~ f n11

n 1 f n21
n !12W cos~2pna2n! f n

n ,

~A1!

where the phasen5kya is associated with the momentum
along they direction.

The corresponding eigenvalue equation is

W~ f n11
n 1 f n21

n !12W cos~2pna2n! f n
n5E fn

n , ~A2!

which gives rise to the Hofstadter spectrum when taking
union of the energy spectra for everyn. This equation is
identical to the Aubry model equation,17–20but with a phase
on the diagonal term. In addition, since the modulation a
plitude is twice the hopping term, the criterion for se
duality is satisfied.21 The crucial parameter in the Aubr
model is the ratioh between the amplitude of the on-si
energies and twice the hopping term. Whenh is less than 1,
a wave packet propagates in the lattice while whenh is
greater than 1 is in the localization regime. In the pres
case we are at exactly the critical valueh51. Propagation of
a particle in the Aubry model was analyzed in a previo
work under the presence of a dc electric field.22 In order to
incorporate the initial conditionu C~0! & we need to solve Eq
~6! for different n values in the Brillouin zone, and perform
the linear combination.

gn,m~ t !5
1

N (
n

exp~ inm! f n
n~ t !.
. B
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