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Carriers in a two-dimensional lattice under magnetic and electric fields
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We have studied the propagation of carriers in a two-dimensional system under the influence of magnetic
and electric fields. To take into account the magnetic field we have used the Peierls substitution, and have
considered the so-called Landau gauge for the vector potential. The nature of the propagation of the wave
packet under only a magnetic field is controlled by the ratio between the magnetic flux through the unit cell to
the flux quantuma=®/®,. For rational values ot we have obtained ballistic propagation for sufficient long
times. But for irrationale the wave remains localized in a definite region due to incommensurability. The
inclusion of the electric field changes this picture. In fact, when the electric field is included, the degeneracy
between the on-site energies is broken along the field direction, thus inhibiting hopping along it, while in the
perpendiculardirection to the applied field propagation is favored. This behavior is common to both rational
and irrationala. Finally, for certain values of the electric and magnetic fields the wave packet performs an
oscillatory movement; this is the phenomenordghamic localization
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[. INTRODUCTION work we take the Hamiltonian to be the one given by the
Peierls model.

The object of the present work is to analyze the combined Two situations arise as a consequence of the superposition
effect of magnetic and electric fields on propagation of carof the fields. First, the wave presents a tendency to propagate
riers subject to a two-dimensional periodic potential. ThePerpendicularto the applied electric field. Second, for spe-
subject of electrons in a periodic potential under magneti¢ific values of the parameters involved, we obtain a reso-
fields has a long and rich histoty* Recently there was a Nhance condition which makes the packet perform an oscilla-
renewed interest in dealing with carriers in a two-tory movement with a characteristic period, this is the
dimensional system under electric and magnetic fields, duBhenomenon of dynamical localization. In order to gain an
to the fact that it has become recently experimentallyeXplanation for this phenomenon, we have analyzed the den-
accessibl@8 sity of states for different values ef and the electric field.

In dealing with a magnetic field we determine the time Our results show the appearance of a series of gaps in the
evolution of a wave packet in a two-dimensional crystallineSPectrum, whenever the wave packet is localized.
array following the Peierls approximation. We shall limit our ~ The paper is organized as follows. First we present a
study to the case of a single band, i.e., large gaps and/dreierls model that allows us to treat the problem of a carrier
magnetic-field intensities such that no interband mixing ocin & periodic potential subject to a magnetic field which was
curs. It is well known by now through a classical work by treated along the Landau gauge. Finally, we consider the
Hofstadter that the eigenvalues of this model follows a selfinclusion of a dc electric field superimposed on the magnetic
similar pattern. There are bands and gaps at all energy SC&'é@Id This will cause the introduction of an additional term
A crucial parameter that determines the nature of the speddto the Hamiltonian, which will be responsible for, among
trum is the ration of the magnetic flux through a unit cell to Oother things, the phenomenon of dynamical localization.
the flux quantum unitb,=hc/e. We face a problem of com-
mensurability, since the magnetic field requires a quantifica-
tion of areas, while the lattice periodic potential requires the IIl. PEIERLS MODEL
translational symmetry of the crystal. These conditions be- ¢ time-dependent nonrelativistic equation for a two-

come compatible only at specific values of the magneliGymensional particle of chargein a periodic potential with
field. We show different types of propagation according to,p, applied magnetic field is

the nature of the parameter In fact, for rational values we

obtain ballistic propagation for sufficient long times, while

for the case in whiclw is irrational the wave packet remains dw

localizedin a definite region of the lattice as a consequence 7= ﬁ(—iﬁv—eA/c)z‘lerV(x,y)\P, (1)

of incommensurability. To determine the type of propagation

of an injected patrticle in the lattice, we evaluate the mean-

square displacement, the participation function, and thevhereA is the vector potential an¥ is periodic with the
Shannon entropy. In addition, we look at the time evolutionperiodicity of the lattice. The corresponding stationary
of the wave packet in three-dimensiori@D) graphs. In this  Schralinger equation is
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1 _ different sites. The nexN componentsfrom N+1 up to
om (T1RV - eA/c)?e+V(x,y)e=Eg. (2 2N) are formed with the second row of the matrix, and so on
until we obtain theNx N component ofF.}! We have con-
If we call ¢y the eigenfunction of the Hamiltonian without a sidered the initial condition
magnetic field, the associated wave functipnwhen the
field is included, is In,m(t=0)= 6n,06m,0-

_ie In a previous work? we showed that the solution of E)
QD:¢OEX4% é A-dr

=goexp—2mia). (3) can be castin the form
—_pt i
Taking the circulation along a unit cell, we see the appear- F(t)=R exp(—iDt/%)RF(0), ®

ance of the ratio of the magnetic flux through the cell to thewhere D is the diagonal form of the dynamical matri
quantum flux unit,a=®/®d in the exponent. When this =R!DR. After solving for the Wannier amplitudes we con-
ratio is an integer, we preserve the original translational symstruct the following.
metry of the lattice, the wave function being single valued. (i) The mean-square displacement (Mg(;[?), which in
But whena is a rational number, i.eq=p/q we shall need units of the lattice parameter is
to consider a unit cely times as large. Consequently, the
Brillouin zone is reduced by the same amount, and there
appeaig bands. The original single band is split into as many
bands as the denominator #® This is the origin of the o )
famous butterfly spectrum obtained by Hofstadtefhe un- (i) The participation function
conventional features of such a spectrum arise when the 1
magnetic flux through the unit cell becomes comparable to p(t):|2 |g(n,m;t)|4] , (10)
the flux quantum. n,m

Now we shall consider the time evolution of a wave 4t indicates the site’s participation in the wave function.
packet in a magnetic field following the Peierls motiélc- Since the wave function is normalize®=1 if the wave
cording to this, as the Hamiltonian one takes the dispersioR,tion is completely localized at a single site, et N if

«MU=§Jmmmm%¥+ﬁy 9)

relation the wave is uniformly extended over tHe sites in the
E(k) = 2W(coskya+ cosk,a), 4) lattice!® An interesting feature of this function is that it pre-
sents an abrupt decline once the packet reaches the boundary
and makes the substitution of the lattice. In this way we can note the presence of size
_ effects, and enable us to choose the lattice size in order to
hk=I1=—ihV—eAlc. ®  avoid boundary effects. In addition, since this function keeps
In this work we have adopted the Landau gauge track of the _number of sites that the wave “visits” i'['Wi||
=B(0x). By discretizing the space coordinates, show oscillations due to backward and forward scattering the
wave suffers when reaching a site.
X=na, y=ma, (iii ) The Shannorinformation entropy*

we expand the wave function in the Wannier representation
S(H)=-2, [g(nm:v)[Ang(nmol* (1Y

W(t»_% On,m()[ M), that takes the two limiting valuess=0 for a completely

localized state and IN for a uniformly extended state.

(iv) We analyze the time evolution of the wave packet in
3D graphics, showing in this way more clearly the nature of
propagation(localization).
=W[0ns1mT In1mt € "0n me1 €900 mo1]- This approach to the study of diffusion of an initially
dt ' ’ ' ' localized state follows along the lines presented by

(6) Anderson®® that is, we can conclude that diffusion has oc-

In the Appendix we discuss the properties of the 1D systengurred if att—co the Wannier amplitude at the starting site

so that from Eq.(1) for a square lattice oNXN sites, we
obtain the following set of equations:

d
iz On,m

obtained as a consequence of the Landau gauge. goes to zero. If, on the other hand, the amplitude at the site
Equation(6) can be cast in the matrix form remains finite while decreasing rapidly with distance, we say
we have a localized state.
i% aF MF 7
! dt ' ™ Ill. RATIONAL VS IRRATIONAL MAGNETIC FIELDS
whereM is the dynamical matrix, and the vectB(i;t) is As stated above, whea is rational we have a periodic

constructed from the Wannier amplitudgs,(t) by taking,  on-site potential with @ periodicity. But if « is irrational we
as the firstN components of the vectdér the first row of the  have an incommensurate potential. Let us discuss first the
NXN matrix formed with the Wannier amplitudes of the rational case.
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FIG. 1. Rational casex=1/2, without electric field(a) Mean- FIG. 3. Irrational case:a=o the (golden mean is[+/(5)
square displacemexit?). (b) Participation.(c) Entropy.(d) Prob-  —1]/2), without electric field.(a) Mean-square displacemefit?).
ability propagation at the origin|{o(t)|?). Time is in units of  (b) Participation.(c) Entropy. (d) Probability propagation at the
1l W. origin (|fo,(t)|%). Time is in units offi/W.

(i) Rational casea=1/2. In Fig. 1 we show the time «a=o, representatives of the rational and irrational cases.
evolution of the MSD, participation, entropy, and probability Moreover, we have done the calculation for othevalues,
propagation at the origiri(o,o(t)|2). We note that the propa- obtaining similar behaviors. This is a consequence of the
gation takes place ballistically, i.g(t2)=t?. The participa- commensurability problem cited above.
tion grows linearly in time on the average. The propagator at
the origin decays rapidly in time, making the propagation of
the wave evident.

In Fig. 2 we show the structure of the wave packet as time
goes by. Note that the structure of the picks shows a close
resemblance to the circular orbits obtained in the classical Finally, we introduce a dc electric field=(E,,E,) in
description of a charged particle in a magnetic fféld. the calculations. The units of the electric field &#ea. In

(ii) Irrational casew= o (golden meari (5)—1]/2). In  a previous work! we showed the effect of its inclusion on
Fig. 3 we show the time evolution of the MSD, participation, the nature of carrier propagation on both 2D and 3D struc-
entropy, and probability propagation at the origin. The MSDtures. Now we treat the combined effect produced by the
shows smaller values than in the rational case. It grows iimmagnetic and electric fields. In doing this we add to the
time because of the “escape” of the wave packet tail. Thergight-hand side of the Schdinger equation(6) the term
also appear strong oscillations in the participation and th¢eEan+eE,am)g(n,m).
entropy because of the tendency of the wave packet to return The inclusion of the electric field removes the degeneracy
to the origin, as we can see in Fig. 4. In this figure we camf the on-site levels along its direction. This way the packet
very clearly note a breathing mode: the packet expands arftes a tendency to propagate in a directpEipendicularto
contracts. the applied field. This behavior can easily be seen in the next

We have shown results for two typical cases; 1/2 and 3D figures. We will discuss four typical situations.

IV. EFFECT OF THE INCLUSION
OF AN ELECTRIC FIELD

FIG. 2. The structure of the wave packet far=1/2 andE FIG. 4. The structure of the wave packet fer o and E=0.
=0. Time is in units ofi/W. Time is in units off/W.
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FIG. 5. a=0 andE=0.3x+ 0.3 (a) Mean-square displacement FIG. 7. a=1/2 and E=0.5% () Mean-square displacement
(r?). (b) Probability propagation at the originfe«t)|%). Time is  (r?). (b) Probability propagation at the originfe «t)|?). Time is
in units of A/W. in units of A/W.

(i) E=0.3x+ 0.3y anda=¢. In Fig. 5 we show the MSD (iv) E=0.8x+0.8) and @=1/2. In this case we realize
and probability propagator at the origin, which show that theghat a completely different behavior is obtained for this par-
packet leaves the starting position propagating through thgcyar set of values of the parameters involved. In Figall
lattice. This behavior is different from the one obtained with-yye clearly note an oscillatory behavior, while in Fig.(G)L
out the electric field, where the packet remains in a definitgye see that the particle returns to the origin periodically. In
region. However, in the present case it is mterestlng to .notcf.ig. 11(c) the density of states shows very narrow bands
that a small portion of the wave packet propagates in direcseparated by gaps of the same magnitude, while the centers
tion perpendicular to the applied electric field. See Fig. 6. of the minibands are equidistant, the separation beifig

(i) E=0.5 anda=1/2. As in the previous situation the This is the signature of the Stark ladder structure. It is the
wave propagates, as shown in Fig. 7, where one can note thptesence of these gaps that inhibits hopping from taking
the MSD values are larger than in ca@g wherea was place, and as a consequence we end up with a dynamically
irrational. In Fig. 8 we show the wave-packet structure, andocalized wave packet. Figure 12 shows the packet structure
it is clearly seen that it goes in thedirection, i.e., perpen- at different times.
dicular to the applied field. The physics behind the very interesting phenomenon of

Now we will discuss a very interesting situation obtaineddynamic localization can be stated as follows. Here we dis-
for rational @, namely, the phenomenon of dynamical local- cuss the casexr=1/2, which means that the translational
ization that occurs for specific values of the electric and magsymmetry is preserved as long as we have another unit cell
netic fields. For this we present two situations that illustratewice as large while in the presence of only a magnetic field.
the point. In this case the wave packet propagates through the lattice,

(i) E=0.8k+ 0.8y anda=1/3. In Fig. 9 we present the as shown in Fig. 2. The spread of the wave showsaular
MSD, the probability at the origin, and the density of statesSymmetry resembling a classical orbit. The inclusion of the
(DOS). In Figs. 9a) and 9b) we note that the MSD clearly dc electric field, on the other hand, breaks such a symmetry
shows a ballistic behavior, while the probability at the origin favoring propagation along the directiperpendicularto the
decays rapidly in time. In Fig.(®) the DOS shows a series applied electric field. Thus we are in the presence of two
of peaks without the presence of gaps. This is consistent withompeting effects. The stronger the field, the more pro-
the obtained picture of wave propagation. In Fig. 10 we cariounced this asymmetric effect is. Thus if we start with a
see the wave |eaving the Starting position, again in a direcweak electric field the wave has a tendency to show a circu-
tion perpendicular to the applied electric field. lar symmetry, since the Stark ladder that inhibits hopping

FIG. 6. The structure of the wave packetﬁ)FO.I§(+ 0.3y and FIG. 8. The structure of the wave packet fér=0.5¢ and
a=oc. Time is in units ofA/W. =1/2. Time is in units ofi/W.
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FIG. 9. @=1/3 andE=0.8%+0.8). (3) Mean-square displace- F|G-211- a=1/2 aﬁdﬁzo-&w;fﬂ? (@) Mean-square dzisplace-
ment(r2). (b) Probability propagation at the origiff «(t)|2). (¢ Ment(r). (b) Probability propagation at the originfe {t)|%). (c)
DOS—density of states. Time is in units BfW. ' DOS—density of states. Time is in units ®fW and 6=eEaW.

) N . lutions of the Schrdinger equation are size independent. The
along the field direction produces small barriers. For StronQime limit taken in our calculations was 18sec. much

electric fields, on the other hand, the Stark ladder intrOduceFé)nger than any reasonable collision time in a sample
large barriers, severely inhibiting propagation along the ap- '
plied field. As a result the wave spreads easily along the

perpendicular direction, the “escape route” for the carrier is V. CONCLUSIONS

the perpendicular direction pushed by the magnetic field. For We have analyzed the influence on propagation of a
some intermediate electric-field intensity, the wave Canntharged particle injected at a particular site in a two-

“de.C'.de” Wh'Ch. behawor_ to follow, a_nd stays confme_d 10 @ gimensional lattice under the effect of constant magnetic and
definite region in the lattice, performing a perfect oscillatory g o yric fields and a crystal potential. We assumed a Peierls
movement. This dynamic localization phenomenon OCCUTS 8%,qdel, and considered a Landau gauge for the vector poten-
? re.;ult of the bq:?nce of two _compet|ngdeﬁgctshMr?reﬁvertial_ In the absence of an electric field we showed that the

or the case we lllustrate in Figs. 11 and 12, which shows,,ameter which determines the kind of propagatiocal-

this effect fora=1/2 andE,=E,=0.8, we have obtained a j,atop) s the ratio between the magnetic flux through the
density of states which shows the presence of very narroW it cell to the quantum fluxg=®/®,. Whena is a ratio-

minibands separated by gaps of magnite@a(see Fig. 11 o humper the propagation Isallistic for sufficient long

es. This can be explained by noting that in this case it is
overed commensurability. Because of this we have a pe-
Hodic situation though with a different periodicity, and the
Ipresence of the hopping term is responsible for this behavior.
[n the case whew is irrational, we face incommensurability,
and the wave packet remaitealizedin a definite region of
®he lattice. When an electric field is included, this picture is

Thus the presence of these gaps is another manifestation g
the fact that the wave packet cannot propagate through the,.
structure. In conclusion, the present calculation seems to i
dicate that for every rationat a specific electric-field inten-
sity produces dynamical localization as a result of the supe
position of both fields acting on Bloch electrons.

We have considered lattices large enough so that the s

FIG. 10. The structure of the wave packet i®r 1/3 andE FIG. 12. The structure of the wave packet for 1/2 andE
=0.8x+0.8y. Time is in units ofaA/W. =0.8x+0.8y. Time is in units ofa/W.

045112-5



H. N. NAZARENO AND P. E. dE BRITO PHYSICAL REVIEW B54 045112

dramatically changed. In fact, since degeneracy between on- df’
site levels along the direction of the applied field is removed, ih H=W(f,ﬁ+1+ fr_1)+2Wcoq2mna—v)f;,

it favors propagation in @erpendiculardirection. This be- (A1)
havior is common to both rational and irrational Our re-

sults are in agreement with those obtained by Kunold andvhere the phase=k,a is associated with the momentum
Torres? that showed a change in the energy spectrum wittalong they direction.

the inclusion of the electric field. Their calculation showed The corresponding eigenvalue equation is

the appearance of a ladder structure, which in turn explained ) ) ) )

why the wave propagates perpendicularly to the electric W(fhi1+fno1) +2Weos2mna—v)f =Efy, (A2)
field. Note that in the absence of an electric field and foryhich gives rise to the Hofstadter spectrum when taking the
irrational «, the wave remains localized. Moreover, only for ;nion of the energy spectra for evepy This equation is
specific values ofe and E is a localization of the wave jgentical to the Aubry model equati&ﬁjzobut with a phase
packet obtained, where the mean-square displaceént on the diagonal term. In addition, since the modulation am-
shows a perfect oscillatory behavior: the wave visits theplitude is twice the hopping term, the criterion for self-
starting position periodically; this is the phenomenordgf  quality is satisfied! The crucial parameter in the Aubry
namical localization For this case the density of states noge| is the ration between the amplitude of the on-site
shows the appearance of very narrow minibands separated @ﬁergies and twice the hopping term. Wheis less than 1,

gaps of magnitudeEa a wave packet propagates in the lattice while wheiis
greater than 1 is in the localization regime. In the present
ACKNOWLEDGMENT case we are at exactly the critical valye- 1. Propagation of

a particle in the Aubry model was analyzed in a previous
work under the presence of a dc electric figddn order to
incorporate the initial condition¥(0) ) we need to solve Eq.
(6) for different v values in the Brillouin zone, and perform
the linear combination.
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APPENDIX: EQUIVALENT 1D PROBLEM

Since in this gauge the vector potential depends only, on

we can assume a plane wave alogngdrhis leads us to the O m(t) = iz exp(i vm)fX(t).
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