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Nearly free-photon approximation for two-dimensional photonic crystal slabs
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The nearly free-photon approximation for two-dimensional photonic crystal slabs is investigated. Diffraction
loss and mixing of different polarizations in the photonic crystal slabs are quantitatively estimated. The
selection rules among irreducible representationk gfoups are shown to be essential in these phenomena.
Numerical calculations in terms of the finite-difference time-domain method for a photonic crystal slab with a
weak periodic modulation show good agreement with the results of the nearly free-photon approximation.
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[. INTRODUCTION able features of photonic crystal slabs, occur in this approxi-
mation. In addition, the approximation predicts the band gap
Since Yablonovitch and Johf suggested the possibility width, irreducible representations, and so on. The results of
of controlling the radiation field and the optical properties ofour recent studies on a photonic crystal slab with a strong
matter in photonic crystals, they have been one of the majoperiodic modulatiofi: are quantitatively not far from the re-
subjects of research in physics and optoelectronics. Amongults of this approximation. Thus, this approximation is ex-
the various kinds of photonic crystal, one-dimensional one$ected to be widely applicable.
have a long history realizing fruitful technological applica- ~ The paper is organized as follows. In Sec. Il we briefly
tions. Two-dimensional photonic crystals were experimenSummarize the degenerate perturbation theory for the Max-
tally realized and their properties studied thoroughly in thewell equations. In Sec. Iil the properties of symmetric dielec-
last decade. However, the most promising three-dimensiondfic slabs are given as the zeroth order approximation of pho-
photonic crystals are difficult to fabricate although theirtonic crystal slabs. The nearly free-photon approximation is
properties have been investigated by theoretical studiedlvestigated for photonic crystal slabs in Sec. IV. The real
Their fabrication and experimental studies on their basic@nd imaginary parts of the eigenfrequencies are calculated
properties have recently become major subjects of researcfor high symmetry points in the first Brillouin zone. In Sec.
The properties of these photonic crystals can be understood numerical calculations are performed using both the
by analogy with Bloch electrons in ordinary crystals, takingFDTD method and the nearly free-photon approximation.
account of the vector nature of the Maxwell equations and of he results obtained by the nearly free-photon approximation
the Bose statistics of photons. and by numerical calculations using the FDTD method are
Recently, a combined structure of a thin dielectric slabcompared in the case of a photonic crystal slab with a weak
and a two-dimensional photonic crystal, named a photoni@eriodic modulation. In Sec. VI we summarize our results.
crystal slab, has attracted much attention as an alternative to
the three-dimensional photonic Crys‘fé’r?lnstead of achiev- Il. DEGENERATE PERTURBATION THEORY FOR
ing a complete photonic band gap, the photonic crystal slab THE MAXWELL EQUATIONS
uses index guiding in the vertical direction and a two- o ]
dimensional photonic band gap as a mechanism of three- Maxwell’s wave equation in a spatially modulated me-
dimensional photon confinement. Since electro-magneti€ium can be written as
properties, e.g., the existence of the light line appear strongly
in photonic crystal slabs, the simple analogy to Bloch elec-
trons cannot be applied. This circumstance makes it difficult
to study their properties theoretically. Most theoretical stud-
ies depend on numerical tasks like the finite-difference timefor a magnetic field in a stationary state. Heeg(X) is the
domain (FDTD) method®!'217the plane wave expansion elative permittivity of the medium is the light velocity in
method™®*® and diagonalization in the coupled mode vacuum, and) is the eigenfrequency of the state. The rela-
approximationt® However, it is generally believed that ana- tive permeability was set to unity. We assume that the in-
lytical studies based on some approximations are helpful tyerse of the relative permittivity can be split into two parts as
understand physical properties.
In this paper we apply the nearly free-photon 1 1 1
approximatioA to photonic crystal slabs. This approxima- €(X) - eun(X) + €pdX)’ 2
tion is the photonic counterpart of the nearly free-electron
approximatioR® for Bloch electrons. As we will see, it is where e,((X) describes a weak perturbation from an unper-
possible to understand how the diffraction loss and the mixturbed system whose relative permittivity is given &y(x).
ing of modes with different polarizations, which are remark-The unperturbed system is assumed to be exactly solved. In
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the perturbation treatment for the wave equation the mag- 02 a©@*M M. )
netic field and the square of the eigenfrequefidyare ex- —22= — E Oa 5 (9a) '2(0’3) 06 , (11
panded as ¢ lap wflc’—wglc?
H(X)=Ho(X)+H(X) +Ha(x)+ - - -, (3)  whereH, is normalized agd®xHg - Ho= 1. Thus, the modes
with higher frequency thamw, in the zeroth order equation
QZ=Q§+ Q§+Q§+ cee (4) always give negative corrections to the eigenfrequency.

whereH; anin2 are theith order perturbations of the mag-
netic field and the square of the eigenfrequency, respectivelylll. PROPERTIES OF SYMMETRIC DIELECTRIC SLABS
Then we solve théth order Maxwell equation in turn.

Since the solutions of the zeroth order equation except fof;
the longitudinal modes form a complete set of the transvers
wave,H;(x) (i=1,2,...,) can beexpanded as a complete
set. We assume that thererisfold degeneracy in the zeroth
order equation,

As is well known, a dielectric slab sandwiched by mate-
Is with lower dielectric constants serves as a planar wave-
Swde for electromagnetic waves. An electromagnetic wave
under certain conditions, given below is guided in the slab
owing to total internal reflection. If the slab is thin enough, a
single guided mode is realized. While the electromagnetic

2 properties of the dielectric slab are known well, we present
VX ! ——VXhg (x)) w;’ hoo(X) (a=1,...n), them in order to make the paper self-contained.
€un(X) “ “ We assume that the slab with dielectric constantand
(5) thicknessd is sandwiched by a material with dielectric con-
wiz ) stante; and thicknesd.. The thicknesd. is large compared
VX € X) VX hi(x)) - thi(x) (i=12,..), with d. We also assume that the slab has infinite extent in the

plane. In this case, owing to the translational invariance in
wherew; # wq (for i #0). The seth,} is orthonormalized as the plane, each eigenmode is characterized by an in-plane
wave vectork, . If the frequencyw of the electromagnetic
wave is less thae|k,|/ Ve, the wave is guided in the slab.
The guided mode has a discrete spectrum and thus the spec-
trum forms a band structure below the light line, which is
Let us consider the case where the state concerned in thpfined by w= c|k |/\T1 On the other hand, ifw
zeroth order approximation is degenerate. In accordance Wltlj,c|k |1 \e,, the electromagnetlc wave is radiated away
the degenerate perturbation theory in quantum mechaniciom the siab. The radiation mode has a continuum spectrum
Ho(X) is expanded in degenerate states as above the light line.
The guided and radiation modes are classified according
to their polarization§TE or TM). In the TE(TM) polariza-
HO(X):Zl 2o @) tion, the polarization vector of the electrimagneti¢ field
lies in plane and is perpendicular to the in-plane wave vector
If the degeneracy is lifted in the first order perturbation, thek,. However, there is an exception laj=0. The radiation
coeff|C|enta andQ1 are determined by solving the follow- modes withk,=0 are both TE and TM polarized, so we

f d3Xh|*'hJ25|‘]. (6)

n

ing elgenvalue equation: must work carefully at this point.
Since there is a mirror symmetry in the direction perpen-
i Qz dicular to the plane, the eigenmodes are further classified

2 M (00)(05)2%5 = —Za(o) (a=1,...0n), (8  according to the parityr, of the mirror symmetry. Ifc,
=1 (—1), the field profile of the in-plane component of the
where electric field is symmetriqantisymmetri¢ with respect to
the plane bisecting the slab vertically. In what follows, we
concentrate on the modes with,=1. The modes withr,
el X) VX hJ(X)) =—1 can be treated in a similar manner. The discrete spec-
P trum of the guided modes witth,= 1 is given by solving the
following equations:

MIJ:f d3Xh|*(X)V><

1
—w) wﬁ%f dsxépe(X) 65n(x)el’k (X) - €5(x), 9

k,d [ kod
and k1 Co§ ——| —kzsin| —-| =0, (TE), (12
VXh(X)=—iween(X)(x). (10
Here, the surface term appearing in the partial integral of Eq. €2K1 sm( kzd + ek, co{ @) =0, (TM), (13
(9) is assumed to vanish. The second order perturbation for 2 2

the lifted mode gives the following correction to its eigen-
frequency: where
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w
K1= kg_ 61?,
w2
k2: 6232‘ - k,zJ (14)
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(21)

We should note that there is an infrared cutoff for the modeg.Or TE polarization and

with TM polarization. The cutoff frequency is given by

mC

wC:d\/€2_ €1 .

(15

A single mode of TE polarization is realized below the cut-
off. Even if a weak perturbation of the periodic modulation is

added, guided modes below the cutoff are almost TE polar-

ized.
The field profile of the guided modes is given by

(kyxz)e'ko

Ede=
™ INfe(w k)
cogk,2) for 0<z<d/2 5
e 1z d)cogk,df2) for z>d/2, 16
; 2S [k5—K3 s s
NTE((U,kp):W 4k Sln(kzd)+ (k +k)
K2+ k2 kod
p_ "1 227
+ 2 co§( 2) (17
for TE polarization and
; (kpxz)ete
™ UNGy(@.kp)
sin(k,z) for 0<z<d/2
1
e (=9 5ink,d/2) for z>d/2, 8
g d 1
N (@,Kp) =28 7 = 2K, 2 Sinkzd) + >— sm2
(19

for TM polarization. Here,Rp is the unit vector with the
same direction ak, andSis the area of the plane which is
supposed to be infinite. The normalization factbi$ were
determined by requiring the inner produdtd®xH* (x)
-H(x) to be unity. The field profiles at negatiwecan be
obtained by parity transformation &(z) = o,E,(—2), etc.

The guided modes are evanescent outside the slab. Thus, the
Jproximation for a photonic crystal slab. We regard the peri-

Poynting vector of the guided mode does not have a vertic
component and is proportional g, .
The field profile of the radiation mode is given by

) (k % Z)e'p*p [ cog ky2) for 0<z<d/2

E _— .
T Ni(wk,) |Re(Aree"s?) for z>d72, (20)

o (kpx2)e™e o [ sin(ky2) for 0<z<d/2
™ Ny (0.k,) |Re(Aye™s?)  for z>d2,
(22)
: k,d ko kod
_ A—ikqdr2 _n2
Amy=e ™ sm( > ) |k1c s( > ”
Ny (@,kp) =|Amy|?SL (23
for TM polarization. Herek; is given by
=\ ek
1=\ &1z K (24)

The same normalization prescription as for the guided mode
is used. We reserved only the term proportionaltm the
normalization factors. Since we consider the case where the
upper and lower material with dielectric constantcan be
regarded as having infinite thickness, we take the limit
—oo finally. We should note that the radiation modeszin
>d/2 have both incoming and outgoing waves in the vertical
direction. This property is not appropriate when the diffrac-
tion loss in a photonic crystal slab is considered. We will
present a prescription to avoid this problem in the next sec-
tion.

It is interesting to make clear the state density of the ra-
diation modes. Since the wave vector in plane is conserved,
it is natural to define the state density with fixed. The
state densityp(w,k;) is defined above the light line and is
given by

(e1/c®)w

(k)= - (25
PRt ™ \/(ellcz)wz—kzp ek,

for each polarization. The total number of radiation modes
with Ky is L [ dwp(w,kp) for each polarization. The state
density has divergence on the light path. As we will see, this
is one of the crucial points for diffraction loss in a photonic
crystal slab.

IV. NEARLY FREE-PHOTON APPROXIMATION

In this section, we investigate the nearly free-photon ap-

odic modulation of the dielectric function in the photonic

crystal slab as a perturbation. Then the eigenmodes in the
dielectric slab discussed in the previous section are treated as
the zeroth order approximation of the eigenmodes in the pho-
tonic crystal slab. The periodic modulation causes a reduc-
tion of the momentum space in plane in the first Brillouin

zone. Thus band folding takes place for the guided modes.
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eigenstates in quantum mechanics. In fact a state with a dis-
crete spectrum in a band becomes a resonance state. This is
the case for photonic crystal slabs. However, in the zeroth
order approximation of photonic crystal slabs the degeneracy
occurs in a distinct manner. This causes a singular perturba-
tion of the guided modes and they become leaky. The latter
two kinds of degeneracy are remarkable features of photonic
crystal slabs.

In what follows, we restrict ourselves to the lifting of the
degeneracies of the guided modes in the photonic crystal
slab. The photonic crystal slab is supposed to have the peri-
odicity of the hexagonal lattice and to be symmetric under
mirror reflection with respect to the vertical direction. The
reciprocal lattice space is shown in Fig. 1. The high symme-
try pointsI",M, andK are denoted with a subscript classify-
ing the symmetry points according to the distance from the
origin (I'p). The bold lines are on the Bragg planes. Among
points with the same character, higher order degeneracies
occur.

The band structure of guided modes in a photonic crystal
slab with infinitely small periodic modulatiofthe empty lat-

FIG. 1. The reciprocal lattice space for the hexagonal latticefice) is shown in Fig. 2. Here we assume that the thickmess
The bold lines between the high symmetry poifitsM, andK are  of the slab is half of the lattice constaatand that the di-
on the Bragg planes. electric constant, of the slab is (3.4). The slab is sand-

wiched by air €;=1.0). In Fig. 2 only the dispersion curves
This causes three kinds of degeneracy in the zeroth ordexf the guided modes witlr,=1 are shown. In this case
approximation. intersections of the dispersion curves with different polariza-

The first kind of degeneracy occurs on the Bragg planesiions occurs both above and below the light line. As soon as
as in the nearly free-electron approximation for Bloch electhe periodic modulation is added, the guided modes above
trons. This kind of degeneracy is generally lifted by thethe light line begin to mix with the radiation modes and thus
higher order perturbations and the lifting becomes the seedecome leaky.
of a photonic band gap. The second kind of degeneracy oc- Since we are concerned with the nearly free-photon ap-
curs at an intersection point of TE and TM guided modeproximation, the periodic modulation should be weak. As a
bands. This causes a mixing of TE and TM polarizationsweak perturbation, we consider a hexagonal array of dielec-
which is absent in the two-dimensional photonic crystal withtric cylinders with dielectric constant,.q fabricated in the
infinite height. The third kind of degeneracy occurs abovedielectric slab as depicted in Fig. 3. In this case the pertur-
the light line; that is, the degeneracy between the foldedative part of the inverse dielectric function is given by
bands of the guided modes and the radiation modes. Gener-
ally, degeneracy between a state with a continuum spectrum 1 _ 0(__2) P
and a state with a discrete spectrum does not occur for real €pd X) 2

L d
T3

% UgexpiG-x,), (26)

0.6

0.5 FIG. 2. The photonic band structure of guided

modes in a dielectric slab withe;=1.0, €,
=(3.4)%. The band structure is shown in terms of
the reduced zone scheme of the hexagonal lattice,
where the thicknesd of the slab is assumed to be
half of the lattice constard. The solid lines cor-
respond to the TE guided modes and the bold
dashed lines correspond to TM guided modes.
The numbers attached below the bands indicate
the degrees of degeneracy of the bands.

0.4

5

0.2

0.1
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dielectric cylinder in the state density of the radiation modes cancels the sup-
pression factor 1/ appearing in|M,;|? of Eq. (9). As we

will see, this adds an imaginary part to the eigenfrequency of
the leaky modes.

The matrix elementM,; has much more information
about the coupling among the eigenmodes, that is, the selec-
tion rule. Suppose that the sei(a= 1,...,dimR) forms
the basis of an irreducible representati®rof the k group,

that is,
y
3 dimR
N BN J 2, (GG ™= 2 DIGIIE0]- (29
0 O X Here, G, is an element of th& group andD®(Gy) is its
" representation. Since, has all symmetries of thk group,
. . there is the selection rule

1 r
f o|3xE 0 (x)- & (x)=0 for R#R’. (30
FIG. 3. Schematic illustration of the two-dimensional photonic P
crystal slab. It is composed of a regular hexagonal array of dielecThus, the matrix elemer ; between modes with different
tric cylinders with dielectric constand, 4 fabricated in a dielectric  irreducible representations is zero. As we will see, this
slab with dielectric constard,. The slab is sandwiched by a mate- causes interesting phenomena like stability at Eh@oint.
rial with dielectric constant; in the z direction. The selection rule is a key to understanding the physical
properties of the photonic crystal slab.
1 1
el 2 L

€rod €2

4qr J1(|Glr)
? |T|’ (27 A. The photonic band gap in the guided modes

As is well known, the TE-like modegthe modes with
where G is the reciprocal lattice vector of the hexagonal o,=1) in photonic crystal slabs with a hexagonal array of
lattice, that isG,, = (n,(2m—n)//3) in units of 2/a, and  cylindrical air holes tend to have a photonic band gap below
J1(2) is the Bessel function of the first order. In order to the light line. The gap usually appears between the first and
justify the perturbative treatment,.q is assumed to be close second bands of the guided modes. The upper and lower
to €,. The radiug of the dielectric cylinder is also assumed band edges are at tié point of the second band and tKe
to be much less than the lattice constardf the hexagonal point of the first band, respectively. Since we consider the
lattice. nearly free-photon approximation, strong periodic modula-

In the first order perturbation, the eigenfrequency of everytions which open a wide photonic band gap are beyond our
mode is shifted owing tJ,. SinceUy is given by the filling  scope. However, it is instructive to estimate the phase bound-

factor of the cylinders as ary between the gapless and gapfull phases in the first order
perturbation of the nearly free-photon approximation. In or-
1 1\27r? der to do this we have to evaluate the eigenfrequencies at
Uo= €od € @' (28 these points.

At the M point there is a twofold degeneracy between
it reduces or increases the spatially averaged dielectric conhe guided modes witk,= +(1/2,1/(2/3)) in unit of 27/a.
stant of the slab depending on whetlagy; is smaller thare,  These two vectors are separated®jy;. This degeneracy is
or not. However, the shifts in the eigenfrequencies are ndifted in the first order perturbation owing tdg, . The ei-

straightforward. That is, in the first order approximation Fhe%envalue equation in the first order perturbation is given by
shifted eigenfrequencies cannot be expressed as those in the

dielectric slab with a spatially averaged dielectric constant. Uy -—U;\[a®) 02/a®
This is because the guided and radiation modes are not con- f(Mo)( U U ( (0)) = ?—( (0)), (3D
fined in the slab. This is also a remarkable feature of the 1 o /18 a
photonic crystal slab. where
Mixing of the guided modes and radiation modes does not
occur in the first order perturbation. This is because the ma- 2(wo€p€z)?S(d  sin(kyd)
trix elementsM,; between the guided and radiation modes fw,kp)= Nre(w,kp) 5"' ak, ) (32)

are suppressed on the order of the factgfL1toming from ) o

the normalization of the radiation modes. Thus, as far as thendU1=Ug_ ,. Since thek group at theM point isC,, , the
lifting of the degeneracy of the guided modes are concernednodes are classified by the irreducible representations of
we can neglect the contribution of the radiation modes. How<C,, . The lifted modes have thA, and B, representation
ever, in the second order perturbation, the fattappearing  with
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Qi modes intersect. As a representative example, we study the
E2—=f(MO)(UO—U1), for A,, TE-TM mixing in theT'-K; interval. In this interval thek

group consists of two element$,o,}, whereo, is the parity
2 (33 transformation with respect to the coordinate. Thus, the
71: f(Mg)(Uog+Uy), for B;. modes inl"{-K are classified according to the eigenvalue of
c oy, . Since there is a twofold degeneracy in the TE guided
Since we consider a weak perturbation of the uniform slabmodes alond’;-Ko, we must diagonalize a83 matrix at
the radius should be small compared with the lattice conthe intersection point:
stant. In this regiof ;>0, so that theB; mode is higher in

(0) (0)
frequency than thé, mode. Me  Mee  Men |\ [ & ozl &

On the other hand, at thK, point there is the three- Mee Me —Mep|| a®| == a? |,
fold degeneracy among the guided modes wikhy M —M* M 2® c 20
=(2/30),(1/3,+1/y/3) in units of 2/a. This degeneracy is em em m 3 3 (36)
partially lifted in the first order perturbation. The eigenvalue
equation in the first order perturbation is given by where

Uo U U Me=1(k; —G10Uo,
2.2 0 a(® (37)
U, U, ) Qf ) ee—f(k —Gyo(k GlO k G11)U1a
fKo)| =% Yo -5 || |=2|2 |
(0) 0)
a a 2S d
Ui Y i ; M= | 7 L(k3)2+ (K")2]
- - - _= U *
2 2 0 Nrw(w,Kg)
34
. L (34 (k;)z_(k;M)z ™
Since thek group at theK point is C,, the modes are —Tsm(kz d) | Uo,
classified by the irreducible representationsCaf, . The ei- 2
genvalue equation has a double root corresponding t&the o (39)
representation and a single root with tAg representation. ) 2Swoéofz(k Gl ok2
The eigenvalues are given by =1 ” ”
) UNre( @,k =Gy o Npy(w,k%)
Q
Z=1(Ko)(Up=Uy), for Ay, si (KM + KIH)d/2]  sirf (kIM— k3E)d/2]
X + 1.
2 (39 2(k3"+k35) 2(k3"—k3")
1 l
—2—f(Ko) BNk for E. Here,kg is the wave vector at the intersection point reduced
o ) _in the first Brillouin zone and
The E mode is higher in frequency thaky. Thus, a photonic
band gap below the light path is possible if the frequency of w3
the B, mode atM, is higher than that of thé, mode atK,. kyF= 62?—(k§ —G10)?,
We will see the phase diagram regarding the gap in Sec. V.
2
.. w
B. TE-TM mixing KoM= 62?29_“(;)2' (39)
In Fig. 2 we can see that extra degeneracies occur at the
points where the folded bands of the TE and TM guidedThe eigenvalues and parities are given by
|
Qi_ %('vlm"'lvle_lvleei \/(Mm+Me_Mee)2+8|Mem|2)v 0'y=1 (40)
—=

¢® | Mg+ Mg, oy=—1.

The eigenvector witlr,= — 1 is purely TE polarized, that is, the degeneracy is lifted according to E6) in which the
the TM component does not enter in the eigenvector. Thehird row and column are neglected aklp is replaced by a
other solutions withory=1 are mixed states of TE and TM. general point in this interval. In this case the shifts are given
We should note that on general points in TheK, interval by
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Q2 [Mg—Mee, oy=1 Thus, the mode witlry=—1 does not couple with the TM

Z7 MM -1 (41)  guided mode in the first order perturbation. The same phe-
€ ee 7y ' nomenon occurs at the intersection points in IheK; in-

Thus, the intersection of the dispersion curves with TE anderval. That is, the lifted modes witin,= —1 do not couple

TM polarizations does not affect the mode with=—1.  with the TM guided mode. Thus, this band is also almost TE

This is caused by symmetry mismatch between the liftegolarized.

mode witho,= —1 and the TM guided mode. Since the TM B _

guided mode hagr,=1 in the I'-K interval for low fre- C. Stability at the I" point

quency, it does not couple with the modes with=—1. As we can see in Fig. 2, at tHé; point six dispersion
This phenomenon can be viewed as a consequence of thgyves of the guided modes intersect each other in the band
selection rule. The two degenerate guided modes With  structure of the empty lattice. This is due to the degeneracy
— G andky — Gy ; of TE polarization can be regarded as among the guided modes with in-plane wave vectogs
linear combinations of two modes witty,==*1. Then the =G;,,Gy1,G_109,G_1-1,G0-1,G10. The degeneracy is
matrix element between the mode with=—1 and the TM  partially lifted in the first order perturbation. To make certain
guided mode withk’,; is zero owing to the selection rule. of that, we must diagonalize the following<@ matrix:

Uo U2 —Uy2 —Uz —Uy2 U2
U2 —Uy2 —Us —Uy2 U2 U
(') —Uu2 22 —~ quz ULilzé2 Uul :2 quz —ULﬁz ’ 42
~U,l2 U2 Ug U2 —Unl2 —U;
U2 Ug U2 —Un2 —Uz —Uy2

whereU,=Ug, , U3=Ug . With the aid of group theory ~matched representation, the decay into the radiation modes is
we can solve the eigenvalue equation immediately. As wa#rbidden. The radiation modes at tRepoint have only the
noted in our previous papétthe A,, B, E;, andE, rep-  E; representation fowm<2/\/3 in units of 2rc/a.?* Thus,
resentations o€g, , which is thek group at the™ point, are  the matrix elementd; between the lifted modes with the
possible. We can construct these representations by lined,,B;,E, representations and the radiation modes are zero.
combinations of the guided modes whose wave vectors arghus, theA,,B;, andE, modes are stable against decay into
given above. It is easy to prove that these representationrthe radiation modes.
form the eigenvectors of the above matrix. As a result, the
eigenfrequencies are given by

D. Diffraction loss above the light line

2
9_21: f(I'))(Up+U;—U,—Uj), for A,, Folding the bands of the guided modes into the first Bril-
¢ louin zone inevitably causes a coupling with the radiation
) modes. As was mentioned, the coupling is suppressed on the
%= f(F'))(Up—U;—U,+Ujy), for By, order of 14/L in the first order perturbation. Thg diffraction
loss appears from the second order perturbation. In Sec. llI
we saw that the radiation modes have both incoming and
outgoing waves with respect to the vertical direction. How-
ever, they do not satisfy the appropriate boundary condition,
that is, they should have only the outgoing wave from the
2 1 Uy slab atz=*+c. In order to satisfy this boundary condition
?zzf(rl)< Uo— 7+7—U3), for E;. (43 we add a negative infinitesimal imaginary partd of the
radiation mode as»’— w?—ie. Since thez component of
TheT points are above the light line except . This  the wave vector in the upper and lower layers is defined by
seems to imply that the leaky modes readily decay into thé&q. (24), k; is modified ask;—k;—ie. This drops the in-
radiation modes at these points. However, the selection ruleoming wave of the radiation mode at *. Using this
forbids such a decay for the leaky modes with specific symprescription the contribution of the radiation modes in Eq.
metries. That is, if there is no radiation mode with the(11) can be written as

(05 U, U,
?=f(F1)(UO+ —+—=

5 5 +Uj3

, for Eq,
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L imaginary part of the eigenfrequency of the leaky mode and
T 72 f _do p(w)c? that the wave number vector is real in our treatment. On the
P=TETM Jekp/yer other hand the attenuation of the transmittance is also esti-
P mated by a particular eigenvalue of the transfer mafig®>
Xzt i7o(w?— wé)) which describes the scattering processes of a monolayer with
0 the relevant periodicity. An eigenvalue problem of the trans-
1 2 fer matrix T is generally written as
X f d3x €o(DEN (%) Eg(x)| , (49) _
€pd X) Tu,=e'*,, (47)

whereP denotes Cauchy’s principal value.
As was mentioned, the factdr coming from the state
density of the radiation modes cancels with the factardff

with the Bloch wave numbék, along the propagating direc-
tion and the distance between two adjacent layers. We

the normalization factor of the radiation modes. Thus, theShould note that the frequency and wave n.u_mb.er vector par-
radiation modes give a finite correction to the eigenfre_aIIeI to the boundary surface are real quantities in the transfer

guency in the second order perturbation. In the above expreg'jatrix method. Thus, the Bloch wave number becomes

sion the term including the principal value gives the real pan_cr?]mplex, llalecc:jause V‘I’e abssug"ne there is nbo rgaldeé)genst@te at
in Q2. On the other hand, the term including thgunction e so-called complex band structure obtained by(Eg.is

ives the imaginary part if2 and causes the appearance c)fclosely related to our method. In both methods infinite spa-
gIve . ginary p 2 pp tial extent is assumed, whereas a kind of energy loss is also
an imaginary part in the eigenfrequency. In contrast to th

former term, in the latter term it is sufficient to consider the‘%aken into account. Since the transmission foayers is
’ iven by a diagonal element aF, the attenuation of the

radiation modes with the same frequency as that of th : . :
guided mode in the zeroth order approximation. In fact theransmlttance 's estimated by
latter term has the form of Fermi’s golden rule for scattering 0 _

. ; exp(—|Imky|D), D=ld, 48
problems. From this term we can extract properties of the (=] 11D) 48

diffraction loss. Strictly speaking, we should treat the dif-wherek? is the Bloch wave number that has the smallest

fraction loss as a consequence of the out-of-plane Braggpsolute value of the imaginary partkfl . Thus, the quality
scattering. In this case a framework that describes scattenqgctorQ is related to the imaginary part by

processes is needed. However, in such a treatment we cannot

appropriately describe the property that the real part of the 1 v

eigenfrequency forms a band structure. In order to treat both —=|Ilm kf Ra o) (49
the real and imaginary parts of the eigenfrequency in a uni- Q &ow)

fied manner, the authors believe that time-independent per- In the case that there are several leaky modes at a given

turbation theory with the above prescription is best. frequency and a given direction of propagation, the coupling

Since the imaginary term vani;hesfji0<c|lfp|./\/e—, it .. between the bulk eigenmodes and incident light is another
affects only the modes above the light line. This is the origin

- . . . important factor in the transmittance. However, it does not
of the stability of the guided modes, which are defined belowdeloend on the thicknedd. Thus. the transmittance is still
the light line. The diffraction loss is quantitatively repre ' ’

. . : - " estimated by Eq(48), wherek® is regarded as the complex
sented_ by a quality factor. The quallt_y fac@Qris defined by Bloch wave number of the dominant leaky mode.
the ratio between the real and imaginary parts of the eigen- . . .
As a representative example, we consider the quality fac-

if;eqitjlzr;]cgﬂ. In second order perturbation the quality factor tors of the leaky modes in the,-K,, interval. As we saw in
9 y Sec. IV, the first order perturbation lifts the degeneracy in the

02 modes with different parities af,. The TE(TM) radiation
—_p 0 (45 ~ mode hasry=—1 (1) in this interval. Owing to the selection
Im Q% rule, the lifted mode withry=1 (— 1) does not couple to the

) ~ TE (TM) radiation mode. Since the imaginary partmﬁ is
Let us discuss the consequences of the leaky mode in @&ysed by the radiation mode, it is sufficient to calculate the

Fransmission measurement. For simplicity, we assume thelgiacts of the radiation modes. The imaginary partslﬁwf
is only one leaky mode that can be coupled at the boundary, ., |ited modes are given by

with incident light at a given frequency and a given direction

of propagation. In this case the attenuation of the optical 2 Fe — = 2
transmittance is qualitatively estimated by the damping fac- Im—22= —Lp(wg,k )4“’0[06052k25(kp_Gl,(ﬁyul]
tor c P Ny (@0, kp)NSe(wo,kp— G0
exp( B Re(w)D) o L[Sk d2] sinf (kE—KS)dr2] 2
Qv 2(Kg+K5) 2(k§—K))
wherev andD are the group velocity of the leaky mode and (50)

the thickness of the slab along the propagation direction.
Here we emphasize that the quality fac@@comes from the for oy=1 and
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3

FIG. 4. The band structure of a photonic crys-
tal slab in terms of the FDTD method. The pho-
tonic crystal slab consists of a hexagonal array of
dielectric cylinders with radiug =0.25<a and
dielectric constané,,q= (2.5)? fabricated on a di-

. electric slab with thickness=0.5x a and dielec-
tric constante,=(3.4)%. The slab is sandwiched
by air (;=1.0).

light line
even —&—
odd ---e---
0
M r K
02 4w8[ce§e§8(kp—leo)XU 2 crystal slab. We deal with a two-dimensional photonic crys-

Im—2 = Lp(wg,k
2 - 0
c P NI (w0, Kp) NI g, kp— Gy.0)

L[S KdI2] sinf (kE—Kj)d/2] 2
2(k3+k3) 2(k3—kp)

(51)
for o,=—1. Here kj andk; are defined as
2
@o
kg: \/62?_(kp_Gl,0)21
g
ko= "\ €25z —kp- (52)

In the above expressions the singularitypifw,,k,) on the
light line is canceled by the term proportional td(ﬁln the

tal slab composed of a hexagonal array of dielectric cylinders
fabricated in a dielectric slab. The slab is sandwiched by air
in the vertical direction. The following parameters were as-
sumed:d=0.5xa, €;=1.0, €,=(3.4)%, €,,4=(2.5)%, andr
=0.25% a. Photonic crystal slabs of this kind have been ex-
perimentally fabricated by several grodpsand have been
one of the main subjects of recent investigations. Usually the
dielectric cylinders are air. However, in this case the periodic
modulation is so strong that agreement with the nearly free-
photon approximation cannot be expected. Thus, we as-
sumed a rather artificial value fat,.

We use the FDTD scheme as ah initio method to cal-
culate the band structure. Then, we compare the results ob-
tained by the FDTD method with those of the nearly free-
photon approximation. In the FDTD scheme we can treat
both real and imaginary parts of the eigenfrequencies. De-
tails of the methodology used in this section are given in our
previous papef! In order to calculate the band structure in

normalization factor of the radiation modes. As a consethe FDTD method, the unit cell was divided into 1152

guence, Inﬁ)% scales aS\/EleZ/CZ—kzp near the light line.

X 24?) meshes. Further decrease in the size of the spatial

This implies a rapid increase of the decay rate near the light _ _ _
line as the dispersion curve crosses it. Since the leaky modes TABLE |. Comparison of the eigenfrequencies at theK, and

other tharE, are stable at th€; point, the decay rate or the

M points. The second, third, and fourth columns show the irreduc-

|nverse Of the qua“ty factor has a peak |n th|S |nterval as dble I’epresentations of Correspondihgroups, the real parts of the

function ofk, .

In theT';-K, interval Im(Q3/c?) of the leaky modes can
be obtained by replacing the reciprocal lattice ve&gl, in
Eq. (50) and Eq.(51) by Gog_;. As we can see in Fig. 1,

eigenfrequencies in terms of FDTD, and the real parts of the eigen-
frequencies in terms of the nearly free-photon approximation
(NFPA).

k group IRR FDTD NFPA

[(kp—Go-1)x]? is smaller tharf (k ,—Gg 1),]* and the dif-
ference becomes large K, approaches the origin. Thus, T Cey By 0.375 0.399
compared with the band ifi;-K, with o= —1 stability is E. 0.407 0.417
expected for the band ifi;-K; with oy=—1. Az 0.418 0.440
E; 0.434 0.441
V. NUMERICAL CALCULATIONS K Ca Az 0.256 0.261
E 0.275 0.282
Taking account of the analytical results obtained in the m Co, A, 0.232 0.234
previous section, we performed numerical calculations of the B, 0.253 0.259

band structure for the guided and leaky modes in a photonie
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- - - - 12 the efficiency of the nearly free-photon approximation.
Next, we consider the photonic band gap below the light
line. As was mentioned, a photonic band gap between the

L gapless 1s lowest and second bands below the light line tends to open in
photonic crystal slabs composed of a hexagonal array of cy-

i T 18 €wa lindrical air holes. However, if the air holes are replaced by

| gapful 14 other dielectric materials, it is not well known whether the

x gap opens or not. In order to solve this problem, we esti-
- YoAe mated the phase boundary between the gapless and gapfull
- f f ' — phases in the nearly free-photon approximation. The phase
diagram is shown in Fig. 5. Here; ,e,, andd are same as
those given above and the phase space is spannecabg

FIG. 5. The phase diagram of the photonic crystal slab showingfrod- Below the dashed line a photonic band gap appears in
the photonic band gap between the lowest and second bands in tHaiS approximation. Around the lower right corner of the fig-
nearly free-photon approximation. The parametgre,, darethe ure the phase boundary is expected to be modified, because
same as those given above. The dashed line is the phase boundénythis region the periodic modulation is strong. From this
between the gapless and gapfull phases. figure we can see that the gap closes,if>6 orr<0.0éa

in this approximatiorf®
mesh did not give an apparent change in the eigenfrequen- The nearly free-photon approximation predicts that the
cies. second and third odd bands in theK interval are almost

The photonic band structure in terms of the FDTDTE polarized. We checked them by calculating the ratio
method is shown in Fig. 4. The irreducible representationE2)/((EZ+EZ)) in terms of the FDTD method. Here,
were assigned from numerical results. The band structure hds- -) denotes the spatial average. For the second and third
a close resemblance to that of the empty lattice given in Figbands the ratios are less than 0.014 and 0.01, respectively,
2. However, the connectivity among the bands is modifiedwhile their magnetic counterpartéH2)/((H;+H?)) are
For example, the second even bang €1) in thel’-K in-  greater than 2.8 and 3.3, respectively. These small values
terval meets two anticrossings in accordance with the nonindicate that these band are almost TE polarized.
crossing rule between bands with the same symmetry. A The decay rates of the second and third odd bands in the
photonic band gap of the guided modes does not open in this-K interval were calculated both by the FDTD method and
case. This is due to the small periodic modulation. by Eg. (51) of the nearly free-photon approximation. The

First, we compare the eigenfrequencies atlth&, andM results are shown in Fig. 6. As we can see, the nearly free-
points. The eigenfrequencies of the modes that correspond fhoton approximation well describes the FDTD results re-
thel';, Ky, andM,, points in the zeroth order approximation garding the order of magnitude and the difference between
are listed in Table I. The third and fourth columns are thethe two bands. Since these bands haveBhandA, repre-
eigenfrequencies in units of7&/a obtained by the FDTD sentations at thE point, the decay rates should become zero
method and by the nearly free-photon approximation. Thet theI" point. The results of FDTD calculations show the
discrepancy between the FDTD and the nearly free-photonorrect behaviof! In terms of Eq.(51) of the nearly free-
results is within 5% at these points. These results indicatphoton approximation, such behavior cannot be expected.

Ql~

o002 2nd, FDTD ——
3rd, FDTD -
2nd, NFPA -+
3rd' NFPA —
0.002 -
0.0015 - i
FIG. 6. The decay rates (@) of the second
- and third odd bands in thE-K interval by the
FDTD method and by the nearly free-photon ap-
0.001 - T proximation.
0.0005  x ; ]
\X\
N
r K
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Near thel' point, six dispersion curves gather. In H§1)  parity in the vertical direction. However, it is easy to gener-
only two degenerate bands in tlig-K, interval are taken alize the analytical results to asymmetric photonic crystal
into account. In order to get correct behavior we must takeslabs and to the odd modes in symmetric photonic crystal
into account the other four bands near theoint. If we do  slabs. Usually, photonic crystal slabs are fabricated on semi-

so, we will get well-approximated behavior. conductor substrates. The air-bridge type, which is consid-
ered in the previous section, is not necessarily realistic from
VI. CONCLUSION this point of view. A photonic crystal slab on a substrate is

inevitably asymmetric. If the dielectric constant of the sub-
In summary, we have studied the nearly free-photon apstrate is close to that of the dielectric slab, the region of
proximation for photonic crystal slabs. The first order pertur-guided modes becomes narrow in frequency. Thus, the TE
bation pl’ediCtS the dominant Sh|ft Of the real partS Of thEand TM modes are almost degenerate in the em'mpace_
eigenfrequencies and the irreducible representations of theg clarify the band structure of such asymmetric photonic

eigenmodes. The second order perturbation incorporates th@ystal slabs is an important issue for material design.
imaginary parts of the eigenfrequencies of the leaky modes.
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