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Nearly free-photon approximation for two-dimensional photonic crystal slabs
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The nearly free-photon approximation for two-dimensional photonic crystal slabs is investigated. Diffraction
loss and mixing of different polarizations in the photonic crystal slabs are quantitatively estimated. The
selection rules among irreducible representations ofk groups are shown to be essential in these phenomena.
Numerical calculations in terms of the finite-difference time-domain method for a photonic crystal slab with a
weak periodic modulation show good agreement with the results of the nearly free-photon approximation.
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I. INTRODUCTION

Since Yablonovitch1 and John2 suggested the possibilit
of controlling the radiation field and the optical properties
matter in photonic crystals, they have been one of the m
subjects of research in physics and optoelectronics. Am
the various kinds of photonic crystal, one-dimensional o
have a long history,3 realizing fruitful technological applica
tions. Two-dimensional photonic crystals were experim
tally realized and their properties studied thoroughly in
last decade. However, the most promising three-dimensi
photonic crystals are difficult to fabricate although th
properties have been investigated by theoretical stud
Their fabrication and experimental studies on their ba
properties have recently become major subjects of resea
The properties of these photonic crystals can be unders
by analogy with Bloch electrons in ordinary crystals, taki
account of the vector nature of the Maxwell equations and
the Bose statistics of photons.

Recently, a combined structure of a thin dielectric s
and a two-dimensional photonic crystal, named a photo
crystal slab, has attracted much attention as an alternativ
the three-dimensional photonic crystal.4–18 Instead of achiev-
ing a complete photonic band gap, the photonic crystal s
uses index guiding in the vertical direction and a tw
dimensional photonic band gap as a mechanism of th
dimensional photon confinement. Since electro-magn
properties, e.g., the existence of the light line appear stron
in photonic crystal slabs, the simple analogy to Bloch el
trons cannot be applied. This circumstance makes it diffic
to study their properties theoretically. Most theoretical stu
ies depend on numerical tasks like the finite-difference tim
domain ~FDTD! method,9,11,12,17the plane wave expansio
method,13,18 and diagonalization in the coupled mod
approximation.16 However, it is generally believed that an
lytical studies based on some approximations are helpfu
understand physical properties.

In this paper we apply the nearly free-photo
approximation2,19 to photonic crystal slabs. This approxim
tion is the photonic counterpart of the nearly free-elect
approximation20 for Bloch electrons. As we will see, it is
possible to understand how the diffraction loss and the m
ing of modes with different polarizations, which are rema
0163-1829/2001/64~4!/045108~11!/$20.00 64 0451
f
or
g
s

-
e
al

s.
c
ch.
od

f

b
ic
to

b
-
e-
ic
ly
-
lt
-
-

to

n

-
-

able features of photonic crystal slabs, occur in this appro
mation. In addition, the approximation predicts the band g
width, irreducible representations, and so on. The result
our recent studies on a photonic crystal slab with a stro
periodic modulation21 are quantitatively not far from the re
sults of this approximation. Thus, this approximation is e
pected to be widely applicable.

The paper is organized as follows. In Sec. II we brie
summarize the degenerate perturbation theory for the M
well equations. In Sec. III the properties of symmetric diele
tric slabs are given as the zeroth order approximation of p
tonic crystal slabs. The nearly free-photon approximation
investigated for photonic crystal slabs in Sec. IV. The r
and imaginary parts of the eigenfrequencies are calcula
for high symmetry points in the first Brillouin zone. In Se
V numerical calculations are performed using both t
FDTD method and the nearly free-photon approximatio
The results obtained by the nearly free-photon approxima
and by numerical calculations using the FDTD method
compared in the case of a photonic crystal slab with a w
periodic modulation. In Sec. VI we summarize our result

II. DEGENERATE PERTURBATION THEORY FOR
THE MAXWELL EQUATIONS

Maxwell’s wave equation in a spatially modulated m
dium can be written as

“3S 1

e r~x!
“3H~x! D5

V2

c2 H~x!, ~1!

for a magnetic field in a stationary state. Here,e r(x) is the
relative permittivity of the medium,c is the light velocity in
vacuum, andV is the eigenfrequency of the state. The re
tive permeability was set to unity. We assume that the
verse of the relative permittivity can be split into two parts

1

e r~x!
5

1

eun~x!
1

1

epe~x!
, ~2!

whereepe(x) describes a weak perturbation from an unp
turbed system whose relative permittivity is given byeun(x).
The unperturbed system is assumed to be exactly solved
©2001 The American Physical Society08-1
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T. OCHIAI AND K. SAKODA PHYSICAL REVIEW B 64 045108
the perturbation treatment for the wave equation the m
netic field and the square of the eigenfrequencyV2 are ex-
panded as

H~x!5H0~x!1H1~x!1H2~x!1•••, ~3!

V25V0
21V1

21V2
21•••, ~4!

whereH i andV i
2 are thei th order perturbations of the mag

netic field and the square of the eigenfrequency, respectiv
Then we solve thei th order Maxwell equation in turn.

Since the solutions of the zeroth order equation except
the longitudinal modes form a complete set of the transve
wave,H i(x) ( i 51,2, . . . ,) can beexpanded as a complet
set. We assume that there isn-fold degeneracy in the zerot
order equation,

“3S 1

eun~x!
“3h0a~x! D5

v0
2

c2 h0a~x! ~a51, . . . ,n!,

~5!

“3S 1

eun~x!
“3hi~x! D5

v i
2

c2 hi~x! ~ i 51,2, . . .!,

wherev iÞv0 ~for iÞ0). The set$hI% is orthonormalized as

E d3xhI* •hJ5d IJ . ~6!

Let us consider the case where the state concerned in
zeroth order approximation is degenerate. In accordance
the degenerate perturbation theory in quantum mechan
H0(x) is expanded in degenerate states as

H0~x!5 (
a51

n

aa
(0)h0a . ~7!

If the degeneracy is lifted in the first order perturbation, t
coefficientaa

(0) andV1 are determined by solving the follow
ing eigenvalue equation:

(
b51

n

M (0a)(0b)ab
(0)5

V1
2

c2 aa
(0) ~a51, . . . ,n!, ~8!

where

MIJ5E d3xhI* ~x!•“3S 1

epe~x!
“3hJ~x! D

5v IvJe0
2E d3x

1

epe~x!
eun

2 ~x!eI* ~x!•eJ~x!, ~9!

and

“3hI~x!52 iv Ie0eun~x!eI~x!. ~10!

Here, the surface term appearing in the partial integral of
~9! is assumed to vanish. The second order perturbation
the lifted mode gives the following correction to its eige
frequency:
04510
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V2
2

c2 52 (
i ,a,b

a0a
(0)* M (0a) iM i (0b)a0b

(0)

v i
2/c22v0

2/c2
, ~11!

whereH0 is normalized as*d3xH0* •H051. Thus, the modes
with higher frequency thanv0 in the zeroth order equation
always give negative corrections to the eigenfrequency.

III. PROPERTIES OF SYMMETRIC DIELECTRIC SLABS

As is well known, a dielectric slab sandwiched by ma
rials with lower dielectric constants serves as a planar wa
guide for electromagnetic waves. An electromagnetic wa
under certain conditions, given below is guided in the s
owing to total internal reflection. If the slab is thin enough
single guided mode is realized. While the electromagne
properties of the dielectric slab are known well, we pres
them in order to make the paper self-contained.

We assume that the slab with dielectric constante2 and
thicknessd is sandwiched by a material with dielectric co
stante1 and thicknessL. The thicknessL is large compared
with d. We also assume that the slab has infinite extent in
plane. In this case, owing to the translational invariance
the plane, each eigenmode is characterized by an in-p
wave vectorkp . If the frequencyv of the electromagnetic
wave is less thancukpu/Ae1, the wave is guided in the slab
The guided mode has a discrete spectrum and thus the s
trum forms a band structure below the light line, which
defined by v5cukpu/Ae1. On the other hand, ifv
.cukpu/Ae1, the electromagnetic wave is radiated aw
from the slab. The radiation mode has a continuum spect
above the light line.

The guided and radiation modes are classified accord
to their polarizations~TE or TM!. In the TE~TM! polariza-
tion, the polarization vector of the electric~magnetic! field
lies in plane and is perpendicular to the in-plane wave vec
kp . However, there is an exception atkp50. The radiation
modes withkp50 are both TE and TM polarized, so w
must work carefully at this point.

Since there is a mirror symmetry in the direction perpe
dicular to the plane, the eigenmodes are further classi
according to the paritysz of the mirror symmetry. Ifsz
51 (21), the field profile of the in-plane component of th
electric field is symmetric~antisymmetric! with respect to
the plane bisecting the slab vertically. In what follows, w
concentrate on the modes withsz51. The modes withsz
521 can be treated in a similar manner. The discrete sp
trum of the guided modes withsz51 is given by solving the
following equations:

k1 cosS k2d

2 D2k2 sinS k2d

2 D50, ~TE!, ~12!

e2k1 sinS k2d

2 D1e1k2 cosS k2d

2 D50, ~TM!, ~13!

where
8-2
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NEARLY FREE-PHOTON APPROXIMATION FOR TWO- . . . PHYSICAL REVIEW B 64 045108
k15Akp
22e1

v2

c2 ,

k25Ae2

v2

c2 2kp
2. ~14!

We should note that there is an infrared cutoff for the mo
with TM polarization. The cutoff frequency is given by

vc5
pc

dAe22e1

. ~15!

A single mode of TE polarization is realized below the c
off. Even if a weak perturbation of the periodic modulation
added, guided modes below the cutoff are almost TE po
ized.

The field profile of the guided modes is given by

ETE
g 5

~ k̂p3 ẑ!eikp•xp

ANTE
g ~v,kp!

3H cos~k2z! for 0,z,d/2

e2k1(z2d/2)cos~k2d/2! for z.d/2,
~16!

NTE
g ~v,kp!5

2S

m0
2v2Fkp

22k2
2

4k2
sin~k2d!1

d

4
~kp

21k2
2!

1
kp

21k1
2

2k1
cos2S k2d

2 D G ~17!

for TE polarization and

HTM
g 5

~ k̂p3 ẑ!eikp•xp

ANTM
g ~v,kp!

3H sin~k2z! for 0,z,d/2

e2k1(z2d/2) sin~k2d/2! for z.d/2,
~18!

NTM
g ~v,kp!52SFd

4
2

1

4k2
sin~k2d!1

1

2k1
sin2S k2d

2 D G
~19!

for TM polarization. Here,k̂p is the unit vector with the
same direction askp andS is the area of the plane which i
supposed to be infinite. The normalization factorsNg were
determined by requiring the inner product*d3xH* (x)
•H(x) to be unity. The field profiles at negativez can be
obtained by parity transformation asEx(z)5szEx(2z), etc.
The guided modes are evanescent outside the slab. Thu
Poynting vector of the guided mode does not have a vert
component and is proportional tokp .

The field profile of the radiation mode is given by

ETE
r 5

~ k̂p3 ẑ!eikp•xp

ANTE
r ~v,kp!

H cos~k2z! for 0,z,d/2

Re~ATEeik1z! for z.d/2,
~20!
04510
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ATE5e2 ik1d/2FcosS k2d

2 D1 i
k2

k1
sinS k2d

2 D G ,
NTE

r ~v,kp!5uATEu2SL
e0e1

m0
~21!

for TE polarization and

HTM
r 5

~ k̂p3 ẑ!eikp•xp

ANTM
r ~v,kp!

H sin~k2z! for 0,z,d/2

Re~ATMeik1z! for z.d/2,
~22!

ATM5e2 ik1d/2FsinS k2d

2 D2 i
k2

k1
cosS k2d

2 D G ,
NTM

r ~v,kp!5uATMu2SL ~23!

for TM polarization. Here,k1 is given by

k15Ae1

v2

c2 2kp
2. ~24!

The same normalization prescription as for the guided m
is used. We reserved only the term proportional toL in the
normalization factors. Since we consider the case where
upper and lower material with dielectric constante1 can be
regarded as having infinite thickness, we take the limitL
→` finally. We should note that the radiation modes inz
.d/2 have both incoming and outgoing waves in the verti
direction. This property is not appropriate when the diffra
tion loss in a photonic crystal slab is considered. We w
present a prescription to avoid this problem in the next s
tion.

It is interesting to make clear the state density of the
diation modes. Since the wave vector in plane is conserv
it is natural to define the state density with fixedkp . The
state densityr(v,kp) is defined above the light line and i
given by

r~v,kp!5
1

p

~e1 /c2!v

A~e1 /c2!v22kp
2

5
e1v

pc2k1
~25!

for each polarization. The total number of radiation mod
with kp is L * dvr(v,kp) for each polarization. The stat
density has divergence on the light path. As we will see, t
is one of the crucial points for diffraction loss in a photon
crystal slab.

IV. NEARLY FREE-PHOTON APPROXIMATION

In this section, we investigate the nearly free-photon
proximation for a photonic crystal slab. We regard the pe
odic modulation of the dielectric function in the photon
crystal slab as a perturbation. Then the eigenmodes in
dielectric slab discussed in the previous section are treate
the zeroth order approximation of the eigenmodes in the p
tonic crystal slab. The periodic modulation causes a red
tion of the momentum space in plane in the first Brillou
zone. Thus band folding takes place for the guided mod
8-3
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T. OCHIAI AND K. SAKODA PHYSICAL REVIEW B 64 045108
This causes three kinds of degeneracy in the zeroth o
approximation.

The first kind of degeneracy occurs on the Bragg plan
as in the nearly free-electron approximation for Bloch el
trons. This kind of degeneracy is generally lifted by t
higher order perturbations and the lifting becomes the s
of a photonic band gap. The second kind of degeneracy
curs at an intersection point of TE and TM guided mo
bands. This causes a mixing of TE and TM polarizatio
which is absent in the two-dimensional photonic crystal w
infinite height. The third kind of degeneracy occurs abo
the light line; that is, the degeneracy between the fold
bands of the guided modes and the radiation modes. Ge
ally, degeneracy between a state with a continuum spect
and a state with a discrete spectrum does not occur for

FIG. 1. The reciprocal lattice space for the hexagonal latt
The bold lines between the high symmetry pointsG, M, andK are
on the Bragg planes.
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eigenstates in quantum mechanics. In fact a state with a
crete spectrum in a band becomes a resonance state. T
the case for photonic crystal slabs. However, in the zer
order approximation of photonic crystal slabs the degener
occurs in a distinct manner. This causes a singular pertu
tion of the guided modes and they become leaky. The la
two kinds of degeneracy are remarkable features of photo
crystal slabs.

In what follows, we restrict ourselves to the lifting of th
degeneracies of the guided modes in the photonic cry
slab. The photonic crystal slab is supposed to have the p
odicity of the hexagonal lattice and to be symmetric und
mirror reflection with respect to the vertical direction. Th
reciprocal lattice space is shown in Fig. 1. The high symm
try pointsG,M , andK are denoted with a subscript classif
ing the symmetry points according to the distance from
origin (G0). The bold lines are on the Bragg planes. Amo
points with the same character, higher order degenera
occur.

The band structure of guided modes in a photonic cry
slab with infinitely small periodic modulation~the empty lat-
tice! is shown in Fig. 2. Here we assume that the thicknesd
of the slab is half of the lattice constanta and that the di-
electric constante2 of the slab is (3.4)2. The slab is sand-
wiched by air (e151.0). In Fig. 2 only the dispersion curve
of the guided modes withsz51 are shown. In this case
intersections of the dispersion curves with different polari
tions occurs both above and below the light line. As soon
the periodic modulation is added, the guided modes ab
the light line begin to mix with the radiation modes and th
become leaky.

Since we are concerned with the nearly free-photon
proximation, the periodic modulation should be weak. As
weak perturbation, we consider a hexagonal array of die
tric cylinders with dielectric constante rod fabricated in the
dielectric slab as depicted in Fig. 3. In this case the per
bative part of the inverse dielectric function is given by

1

epe~x!
5uS d

2
2zD uS z1

d

2D(
G

UG exp~ iG•xp!, ~26!

.

d

of
ice,
e

ld
s.

ate
FIG. 2. The photonic band structure of guide
modes in a dielectric slab withe151.0, e2

5(3.4)2. The band structure is shown in terms
the reduced zone scheme of the hexagonal latt
where the thicknessd of the slab is assumed to b
half of the lattice constanta. The solid lines cor-
respond to the TE guided modes and the bo
dashed lines correspond to TM guided mode
The numbers attached below the bands indic
the degrees of degeneracy of the bands.
8-4
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UG5S 1

e rod
2

1

e2
D 4pr

A3a2

J1~ uGur !

uGu
, ~27!

where G is the reciprocal lattice vector of the hexagon
lattice, that is,Gn,m5„n,(2m2n)/A3… in units of 2p/a, and
J1(z) is the Bessel function of the first order. In order
justify the perturbative treatment,e rod is assumed to be clos
to e2. The radiusr of the dielectric cylinder is also assume
to be much less than the lattice constanta of the hexagonal
lattice.

In the first order perturbation, the eigenfrequency of ev
mode is shifted owing toU0 . SinceU0 is given by the filling
factor of the cylinders as

U05S 1

e rod
2

1

e2
D 2pr 2

A3a2
, ~28!

it reduces or increases the spatially averaged dielectric
stant of the slab depending on whethere rod is smaller thane2
or not. However, the shifts in the eigenfrequencies are
straightforward. That is, in the first order approximation t
shifted eigenfrequencies cannot be expressed as those i
dielectric slab with a spatially averaged dielectric consta
This is because the guided and radiation modes are not
fined in the slab. This is also a remarkable feature of
photonic crystal slab.

Mixing of the guided modes and radiation modes does
occur in the first order perturbation. This is because the
trix elementsMIJ between the guided and radiation mod
are suppressed on the order of the factor 1/AL coming from
the normalization of the radiation modes. Thus, as far as
lifting of the degeneracy of the guided modes are concern
we can neglect the contribution of the radiation modes. Ho
ever, in the second order perturbation, the factorL appearing

FIG. 3. Schematic illustration of the two-dimensional photon
crystal slab. It is composed of a regular hexagonal array of die
tric cylinders with dielectric constante rod fabricated in a dielectric
slab with dielectric constante2. The slab is sandwiched by a mat
rial with dielectric constante1 in the z direction.
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in the state density of the radiation modes cancels the s
pression factor 1/L appearing inuMIJu2 of Eq. ~9!. As we
will see, this adds an imaginary part to the eigenfrequency
the leaky modes.

The matrix elementMIJ has much more information
about the coupling among the eigenmodes, that is, the se
tion rule. Suppose that the setea

R(a51, . . . ,dimR) forms
the basis of an irreducible representationR of the k group,
that is,

(
j 51

3

~Gk! i j @ea
R~Gk

21x!# j5 (
b51

dim R

Dab
R ~Gk!@eb

R~x!# i . ~29!

Here, Gk , is an element of thek group andDR(Gk) is its
representation. Sinceepe has all symmetries of thek group,
there is the selection rule

E d3x
1

epe~x!
ea

R~x!•eb
R8~x!50 for RÞR8. ~30!

Thus, the matrix elementMIJ between modes with differen
irreducible representations is zero. As we will see, t
causes interesting phenomena like stability at theG point.
The selection rule is a key to understanding the phys
properties of the photonic crystal slab.

A. The photonic band gap in the guided modes

As is well known, the TE-like modes~the modes with
sz51) in photonic crystal slabs with a hexagonal array
cylindrical air holes tend to have a photonic band gap be
the light line. The gap usually appears between the first
second bands of the guided modes. The upper and lo
band edges are at theM point of the second band and theK
point of the first band, respectively. Since we consider
nearly free-photon approximation, strong periodic modu
tions which open a wide photonic band gap are beyond
scope. However, it is instructive to estimate the phase bou
ary between the gapless and gapfull phases in the first o
perturbation of the nearly free-photon approximation. In
der to do this we have to evaluate the eigenfrequencie
these points.

At the M0 point there is a twofold degeneracy betwe
the guided modes withkp56„1/2,1/(2A3)… in unit of 2p/a.
These two vectors are separated byG1,1. This degeneracy is
lifted in the first order perturbation owing toUG1,1

. The ei-
genvalue equation in the first order perturbation is given

f ~M0!S U0 2U1

2U1 U0
D S a1

(0)

a2
(0)D 5

V1
2

c2 S a1
(0)

a2
(0)D , ~31!

where

f ~v,kp!5
2~v0e0e2!2S

NTE~v,kp! S d

2
1

sin~k2d!

4k2
D ~32!

andU1[UG1,1
. Since thek group at theM point isC2v , the

modes are classified by the irreducible representations
C2v . The lifted modes have theA2 and B1 representation
with

c-
8-5
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V1
2

c2 5 f ~M0!~U02U1!, for A2 ,

~33!
V1

2

c2 5 f ~M0!~U01U1!, for B1 .

Since we consider a weak perturbation of the uniform sl
the radius should be small compared with the lattice c
stant. In this regionU1.0, so that theB1 mode is higher in
frequency than theA2 mode.

On the other hand, at theK0 point there is the three
fold degeneracy among the guided modes withkp

5(2/3,0),(1/3,61/A3) in units of 2p/a. This degeneracy is
partially lifted in the first order perturbation. The eigenval
equation in the first order perturbation is given by

f ~K0!S U0 2
U1

2
2

U1

2

2
U1

2
U0 2

U1

2

2
U1

2
2

U1

2
U0

D S a1
(0)

a2
(0)

a3
(0)
D 5

V1
2

c2 S a1
(0)

a2
(0)

a3
(0)
D .

~34!

Since thek group at theK point is C3v , the modes are
classified by the irreducible representations ofC3v . The ei-
genvalue equation has a double root corresponding to thE
representation and a single root with theA2 representation.
The eigenvalues are given by

V1
2

c2 5 f ~K0!~U02U1!, for A2 ,

~35!
V1

2

c2 5 f ~K0!S U01
U1

2 D , for E.

TheE mode is higher in frequency thanA2. Thus, a photonic
band gap below the light path is possible if the frequency
theB1 mode atM0 is higher than that of theA2 mode atK0.
We will see the phase diagram regarding the gap in Sec

B. TE-TM mixing

In Fig. 2 we can see that extra degeneracies occur a
points where the folded bands of the TE and TM guid
,
h
.

04510
,
-

f

V.

he
d

modes intersect. As a representative example, we study
TE-TM mixing in the G1-K0 interval. In this interval thek
group consists of two elements$1,sy%, wheresy is the parity
transformation with respect to they coordinate. Thus, the
modes inG1-K0 are classified according to the eigenvalue
sy . Since there is a twofold degeneracy in the TE guid
modes alongG1-K0, we must diagonalize a 333 matrix at
the intersection point:

S Me Mee Mem

Mee Me 2Mem

Mem* 2Mem* Mm

D S a1
(0)

a2
(0)

a3
(0)
D 5

V1
2

c2 S a1
(0)

a2
(0)

a3
(0)
D ,

~36!

where

Me5 f ~kp* 2G1,0!U0 ,
~37!

Mee5 f ~kp* 2G1,0!~k p* 2Ĝ1,0•k p* 2Ĝ1,1!U1 ,

Mm5
2S

NTM~v,kp* !
S d

4
@~kp* !21~k2

TM!2#

2
~kp* !22~k2

TM!2

4k2
TM

sin~k2
TMd!D U0 ,

~38!

Mem5 i
2Sv0e0e2~k p* 2Ĝ1,0yk2

TM

ANTE~v,kp* 2G1,0!NTM~v,kp* !

3S sin@~k2
TM1k2

TE!d/2#

2~k2
TM1k2

TE!
1

sin@~k2
TM2k2

TE!d/2#

2~k2
TM2k2

TE!
D U1 .

Here,kp* is the wave vector at the intersection point reduc
in the first Brillouin zone and

k2
TE5Ae2

v0
2

c2 2~kp* 2G1,0!
2,

k2
TM5Ae2

v0
2

c2 2~kp* !2. ~39!

The eigenvalues and parities are given by
V1
2

c2 5H 1
2 ~Mm1Me2Mee6A~Mm1Me2Mee!

218uMemu2!, sy51

Me1Mee, sy521.
~40!
en
The eigenvector withsy521 is purely TE polarized, that is
the TM component does not enter in the eigenvector. T
other solutions withsy51 are mixed states of TE and TM
We should note that on general points in theG1-K0 interval
e
the degeneracy is lifted according to Eq.~36! in which the
third row and column are neglected andkp* is replaced by a
general point in this interval. In this case the shifts are giv
by
8-6
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V1
2

c2 5H Me2Mee, sy51

Me1Mee sy521.
~41!

Thus, the intersection of the dispersion curves with TE a
TM polarizations does not affect the mode withsy521.
This is caused by symmetry mismatch between the lif
mode withsy521 and the TM guided mode. Since the T
guided mode hassy51 in the G-K interval for low fre-
quency, it does not couple with the modes withsy521.
This phenomenon can be viewed as a consequence o
selection rule. The two degenerate guided modes withkp*
2G1,0 and kp* 2G1,1 of TE polarization can be regarded a
linear combinations of two modes withsy561. Then the
matrix element between the mode withsy521 and the TM
guided mode withkp* is zero owing to the selection rule
a
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Thus, the mode withsy521 does not couple with the TM
guided mode in the first order perturbation. The same p
nomenon occurs at the intersection points in theG1-K1 in-
terval. That is, the lifted modes withsy521 do not couple
with the TM guided mode. Thus, this band is also almost
polarized.

C. Stability at the G point

As we can see in Fig. 2, at theG1 point six dispersion
curves of the guided modes intersect each other in the b
structure of the empty lattice. This is due to the degener
among the guided modes with in-plane wave vectorskp
5G1,1,G0,1,G21,0,G21,21 ,G0,21 ,G1,0. The degeneracy is
partially lifted in the first order perturbation. To make certa
of that, we must diagonalize the following 636 matrix:
f ~G1!S U0 U1/2 2U2/2 2U3 2U2/2 U1/2

U1/2 2U2/2 2U3 2U2/2 U1/2 U0

2U2/2 2U3 2U2/2 U1/2 U0 U1/2

2U3 2U2/2 U1/2 U0 U1/2 2U2/2

2U2/2 U1/2 U0 U1/2 2U2/2 2U3

U1/2 U0 U1/2 2U2/2 2U3 2U2/2

D , ~42!
es is
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q.
whereU25UG2,1
, U35UG0,2

. With the aid of group theory
we can solve the eigenvalue equation immediately. As w
noted in our previous paper,21 the A2 , B1 , E1, andE2 rep-
resentations ofC6v , which is thek group at theG point, are
possible. We can construct these representations by li
combinations of the guided modes whose wave vectors
given above. It is easy to prove that these representat
form the eigenvectors of the above matrix. As a result,
eigenfrequencies are given by

V1
2

c2 5 f ~G1!~U01U12U22U3!, for A2 ,

V1
2

c2 5 f ~G1!~U02U12U21U3!, for B1 ,

V1
2

c2 5 f ~G1!S U01
U1

2
1

U2

2
1U3D , for E1 ,

V1
2

c2 5 f ~G1!S U02
U1

2
1

U2

2
2U3D , for E2 . ~43!

The G points are above the light line except forG0. This
seems to imply that the leaky modes readily decay into
radiation modes at these points. However, the selection
forbids such a decay for the leaky modes with specific sy
metries. That is, if there is no radiation mode with t
s

ar
re
ns
e

e
le
-

matched representation, the decay into the radiation mod
forbidden. The radiation modes at theG point have only the
E1 representation forv,2/A3 in units of 2pc/a.21 Thus,
the matrix elementsMIJ between the lifted modes with th
A2 ,B1 ,E2 representations and the radiation modes are z
Thus, theA2 ,B1, andE2 modes are stable against decay in
the radiation modes.

D. Diffraction loss above the light line

Folding the bands of the guided modes into the first B
louin zone inevitably causes a coupling with the radiati
modes. As was mentioned, the coupling is suppressed on
order of 1/AL in the first order perturbation. The diffractio
loss appears from the second order perturbation. In Sec
we saw that the radiation modes have both incoming
outgoing waves with respect to the vertical direction. Ho
ever, they do not satisfy the appropriate boundary condit
that is, they should have only the outgoing wave from t
slab atz56`. In order to satisfy this boundary conditio
we add a negative infinitesimal imaginary part tov2 of the
radiation mode asv2→v22 i e. Since thez component of
the wave vector in the upper and lower layers is defined
Eq. ~24!, k1 is modified ask1→k12 i e. This drops the in-
coming wave of the radiation mode atz56`. Using this
prescription the contribution of the radiation modes in E
~11! can be written as
8-7
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2
L

p (
p5TE,TM

E
ckp /Ae1

dv r~v!c2

3S P

v22v0
2 1 ipd~v22v0

2! D
3U E d3x

1

epe~x!
eun

2 ~z!Ep
r* ~x!•E0~x!U2

, ~44!

whereP denotes Cauchy’s principal value.
As was mentioned, the factorL coming from the state

density of the radiation modes cancels with the factor 1/L of
the normalization factor of the radiation modes. Thus,
radiation modes give a finite correction to the eigenf
quency in the second order perturbation. In the above exp
sion the term including the principal value gives the real p
in V2

2. On the other hand, the term including thed function
gives the imaginary part inV2

2 and causes the appearance
an imaginary part in the eigenfrequency. In contrast to
former term, in the latter term it is sufficient to consider t
radiation modes with the same frequency as that of
guided mode in the zeroth order approximation. In fact
latter term has the form of Fermi’s golden rule for scatter
problems. From this term we can extract properties of
diffraction loss. Strictly speaking, we should treat the d
fraction loss as a consequence of the out-of-plane Br
scattering. In this case a framework that describes scatte
processes is needed. However, in such a treatment we ca
appropriately describe the property that the real part of
eigenfrequency forms a band structure. In order to treat b
the real and imaginary parts of the eigenfrequency in a u
fied manner, the authors believe that time-independent
turbation theory with the above prescription is best.

Since the imaginary term vanishes ifv0,cukpu/Ae1, it
affects only the modes above the light line. This is the ori
of the stability of the guided modes, which are defined bel
the light line. The diffraction loss is quantitatively repr
sented by a quality factor. The quality factorQ is defined by
the ratio between the real and imaginary parts of the eig
frequencyV. In second order perturbation the quality fact
is given by

Q522
V0

2

Im V2
2

. ~45!

Let us discuss the consequences of the leaky mode
transmission measurement. For simplicity, we assume t
is only one leaky mode that can be coupled at the bound
with incident light at a given frequency and a given directi
of propagation. In this case the attenuation of the opt
transmittance is qualitatively estimated by the damping f
tor

expS 2
Re~v!D

Qv D , ~46!

wherev andD are the group velocity of the leaky mode an
the thickness of the slab along the propagation direct
Here we emphasize that the quality factorQ comes from the
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imaginary part of the eigenfrequency of the leaky mode a
that the wave number vector is real in our treatment. On
other hand the attenuation of the transmittance is also e
mated by a particular eigenvalue of the transfer matrix,22–25

which describes the scattering processes of a monolayer
the relevant periodicity. An eigenvalue problem of the tran
fer matrix T is generally written as

Tun5eik'dun , ~47!

with the Bloch wave numberk' along the propagating direc
tion and the distanced between two adjacent layers. W
should note that the frequency and wave number vector
allel to the boundary surface are real quantities in the tran
matrix method. Thus, the Bloch wave numberk' becomes
complex, because we assume there is no real eigenstatev.
The so-called complex band structure obtained by Eq.~47! is
closely related to our method. In both methods infinite s
tial extent is assumed, whereas a kind of energy loss is
taken into account. Since the transmission forl layers is
given by a diagonal element ofTl , the attenuation of the
transmittance is estimated by

exp~2uIm k'
0 uD !, D5 ld, ~48!

where k'
0 is the Bloch wave number that has the small

absolute value of the imaginary part ink'
0 . Thus, the quality

factor Q is related to the imaginary part by

1

Q
5uIm k'

0 u
v

Re~v!
. ~49!

In the case that there are several leaky modes at a g
frequency and a given direction of propagation, the coupl
between the bulk eigenmodes and incident light is anot
important factor in the transmittance. However, it does
depend on the thicknessD. Thus, the transmittance is sti
estimated by Eq.~48!, wherek'

0 is regarded as the comple
Bloch wave number of the dominant leaky mode.

As a representative example, we consider the quality f
tors of the leaky modes in theG1-K0 interval. As we saw in
Sec. IV, the first order perturbation lifts the degeneracy in
modes with different parities ofsy . The TE~TM! radiation
mode hassy521 ~1! in this interval. Owing to the selection
rule, the lifted mode withsy51 (21) does not couple to the
TE ~TM! radiation mode. Since the imaginary part inV2

2 is
caused by the radiation mode, it is sufficient to calculate
effects of the radiation modes. The imaginary parts inV2

2 of
the lifted modes are given by

Im
V2

2

c2 52Lr~v0 ,kp!
4v0@ce0e2k2

r S~k p2Ĝ1,0!yU1#2

NTM
r ~v0 ,kp!NTE

g ~v0 ,kp2G1,0!

3S sin@~k2
g1k2

r !d/2#

2~k2
g1k2

r !
1

sin@~k2
g2k2

r !d/2#

2~k2
g2k2

r !
D 2

~50!

for sy51 and
8-8
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FIG. 4. The band structure of a photonic cry
tal slab in terms of the FDTD method. The pho
tonic crystal slab consists of a hexagonal array
dielectric cylinders with radiusr 50.253a and
dielectric constante rod5(2.5)2 fabricated on a di-
electric slab with thicknessd50.53a and dielec-
tric constante25(3.4)2. The slab is sandwiched
by air (e151.0).
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Im
V2

2

c2 52Lr~v0 ,kp!
4v0

3@ce0
2e2

2S~k p2Ĝ1,0!xU1#2

NTE
r ~v0 ,kp!NTE

g ~v0 ,kp2G1,0!

3S sin@~k2
g1k2

r !d/2#

2~k2
g1k2

r !
1

sin@~k2
g2k2

r !d/2#

2~k2
g2k2

r !
D 2

~51!

for sy521. Here,k2
g andk2

r are defined as

k2
g5Ae2

v0
2

c2 2~kp2G1,0!
2,

k2
r 5Ae2

v0
2

c2 2kp
2. ~52!

In the above expressions the singularity inr(v0 ,kp) on the
light line is canceled by the term proportional to 1/k1

2 in the
normalization factor of the radiation modes. As a con
quence, ImV2

2 scales asAe1v0
2/c22kp

2 near the light line.
This implies a rapid increase of the decay rate near the l
line as the dispersion curve crosses it. Since the leaky mo
other thanE1 are stable at theG1 point, the decay rate or th
inverse of the quality factor has a peak in this interval a
function of kp .

In the G1-K1 interval Im(V2
2/c2) of the leaky modes can

be obtained by replacing the reciprocal lattice vectorG1,0 in
Eq. ~50! and Eq.~51! by G0,21. As we can see in Fig. 1

@(k p2Ĝ0,21)x#
2 is smaller than@(k p2Ĝ0,1)x#

2 and the dif-
ference becomes large ifkp approaches the origin. Thus
compared with the band inG1-K0 with sy521 stability is
expected for the band inG1-K1 with sy521.

V. NUMERICAL CALCULATIONS

Taking account of the analytical results obtained in
previous section, we performed numerical calculations of
band structure for the guided and leaky modes in a photo
04510
-

ht
es

a

e
e
ic

crystal slab. We deal with a two-dimensional photonic cry
tal slab composed of a hexagonal array of dielectric cylind
fabricated in a dielectric slab. The slab is sandwiched by
in the vertical direction. The following parameters were a
sumed:d50.53a, e151.0, e25(3.4)2, e rod5(2.5)2, andr
50.253a. Photonic crystal slabs of this kind have been e
perimentally fabricated by several groups5,7 and have been
one of the main subjects of recent investigations. Usually
dielectric cylinders are air. However, in this case the perio
modulation is so strong that agreement with the nearly fr
photon approximation cannot be expected. Thus, we
sumed a rather artificial value fore rod.

We use the FDTD scheme as anab initio method to cal-
culate the band structure. Then, we compare the results
tained by the FDTD method with those of the nearly fre
photon approximation. In the FDTD scheme we can tr
both real and imaginary parts of the eigenfrequencies.
tails of the methodology used in this section are given in
previous paper.21 In order to calculate the band structure
the FDTD method, the unit cell was divided into 1152(52
3242) meshes. Further decrease in the size of the spa

TABLE I. Comparison of the eigenfrequencies at theG, K, and
M points. The second, third, and fourth columns show the irred
ible representations of correspondingk groups, the real parts of the
eigenfrequencies in terms of FDTD, and the real parts of the eig
frequencies in terms of the nearly free-photon approximat
~NFPA!.

k group IRR FDTD NFPA

G C6v B1 0.375 0.399
E2 0.407 0.417
A2 0.418 0.440
E1 0.434 0.441

K C3v A2 0.256 0.261
E 0.275 0.282

M C2v A2 0.232 0.234
B1 0.253 0.259
8-9
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mesh did not give an apparent change in the eigenfreq
cies.

The photonic band structure in terms of the FDT
method is shown in Fig. 4. The irreducible representati
were assigned from numerical results. The band structure
a close resemblance to that of the empty lattice given in F
2. However, the connectivity among the bands is modifi
For example, the second even band (sy51) in theG-K in-
terval meets two anticrossings in accordance with the n
crossing rule between bands with the same symmetry
photonic band gap of the guided modes does not open in
case. This is due to the small periodic modulation.

First, we compare the eigenfrequencies at theG, K, andM
points. The eigenfrequencies of the modes that correspon
theG1 , K0, andM0 points in the zeroth order approximatio
are listed in Table I. The third and fourth columns are t
eigenfrequencies in units of 2pc/a obtained by the FDTD
method and by the nearly free-photon approximation. T
discrepancy between the FDTD and the nearly free-pho
results is within 5% at these points. These results indic

FIG. 5. The phase diagram of the photonic crystal slab show
the photonic band gap between the lowest and second bands i
nearly free-photon approximation. The parameterse1 ,e2 , d are the
same as those given above. The dashed line is the phase bou
between the gapless and gapfull phases.
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the efficiency of the nearly free-photon approximation.
Next, we consider the photonic band gap below the lig

line. As was mentioned, a photonic band gap between
lowest and second bands below the light line tends to ope
photonic crystal slabs composed of a hexagonal array of
lindrical air holes. However, if the air holes are replaced
other dielectric materials, it is not well known whether th
gap opens or not. In order to solve this problem, we e
mated the phase boundary between the gapless and ga
phases in the nearly free-photon approximation. The ph
diagram is shown in Fig. 5. Here,e1 ,e2, andd are same as
those given above and the phase space is spanned byr and
e rod. Below the dashed line a photonic band gap appear
this approximation. Around the lower right corner of the fi
ure the phase boundary is expected to be modified, bec
in this region the periodic modulation is strong. From th
figure we can see that the gap closes ife rod.6 or r ,0.06a
in this approximation.26

The nearly free-photon approximation predicts that
second and third odd bands in theG-K interval are almost
TE polarized. We checked them by calculating the ra
^Ez

2&/(^Ex
21Ey

2&) in terms of the FDTD method. Here
^•••& denotes the spatial average. For the second and t
bands the ratios are less than 0.014 and 0.01, respecti
while their magnetic counterpartŝHz

2&/(^Hx
21Hy

2&) are
greater than 2.8 and 3.3, respectively. These small va
indicate that these band are almost TE polarized.

The decay rates of the second and third odd bands in
G-K interval were calculated both by the FDTD method a
by Eq. ~51! of the nearly free-photon approximation. Th
results are shown in Fig. 6. As we can see, the nearly fr
photon approximation well describes the FDTD results
garding the order of magnitude and the difference betw
the two bands. Since these bands have theE2 andA2 repre-
sentations at theG point, the decay rates should become ze
at theG point. The results of FDTD calculations show th
correct behavior.27 In terms of Eq.~51! of the nearly free-
photon approximation, such behavior cannot be expec

g
the

ary
p-
FIG. 6. The decay rates (1/Q) of the second
and third odd bands in theG-K interval by the
FDTD method and by the nearly free-photon a
proximation.
8-10
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Near theG point, six dispersion curves gather. In Eq.~51!
only two degenerate bands in theG1-K0 interval are taken
into account. In order to get correct behavior we must ta
into account the other four bands near theG point. If we do
so, we will get well-approximated behavior.

VI. CONCLUSION

In summary, we have studied the nearly free-photon
proximation for photonic crystal slabs. The first order pert
bation predicts the dominant shift of the real parts of
eigenfrequencies and the irreducible representations of
eigenmodes. The second order perturbation incorporates
imaginary parts of the eigenfrequencies of the leaky mod
The analytical expressions for the eigenfrequencies and
irreducible representations agree quite well with numer
results obtained by the FDTD method.

In this paper we restricted ourselves to symmetric pho
nic crystal slabs and their even modes with respect to
.E

.F
y

a
d

.

s,

be

ulo

a
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parity in the vertical direction. However, it is easy to gene
alize the analytical results to asymmetric photonic crys
slabs and to the odd modes in symmetric photonic cry
slabs. Usually, photonic crystal slabs are fabricated on se
conductor substrates. The air-bridge type, which is con
ered in the previous section, is not necessarily realistic fr
this point of view. A photonic crystal slab on a substrate
inevitably asymmetric. If the dielectric constant of the su
strate is close to that of the dielectric slab, the region
guided modes becomes narrow in frequency. Thus, the
and TM modes are almost degenerate in the entirek space.
To clarify the band structure of such asymmetric photo
crystal slabs is an important issue for material design.
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