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Energy loss of charged particles interacting with simple metal surfaces
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Self-consistent calculations of the energy-loss spectra of charged particles moving near a plane-bounded
free-electron gas are reported. Energy-loss probabilities are obtained, within linear-response theory, from the
knowledge of the density-response function of the inhomogeneous electron system. Self-consistent single-
particle wave functions and energies are obtained by solving the Kohn-Sham equation of density-functional
theory, and the electronic response is then computed either in the random-phase approximation or with the use
of an adiabatic local-density approximation. Special emphasis is placed on the various contributions from
collective and electron-hole excitations to the energy loss of charged particles moving parallel with the surface.
The effect of the electronic selvage at a metal surface on the energy-loss spectra is also discussed, by com-
paring our full self-consistent calculations with those obtained for electron densities that drop abruptly to zero
at the surface.
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I. INTRODUCTION

Charged particles interacting with metal surfaces cre
electron-hole pairs and, by virtue of the dynamica
screened Coulomb interaction, bulk and surface collec
excitations, i.e., plasmons.1,2 These excitations play a crucia
role in the interpretation of surface electron spectrosc
data, such as x-ray photoelectron spectroscopy~XPS!,
Auger-electron spectroscopy~AES!, and reflection-electron
energy-loss spectroscopy~REELS!.3 The interaction of swift
electrons with surfaces has also attracted great interest in
field of scanning transmission electron microsco
~STEM!.4–7 Equally, the interaction of moving ions with so
ids has represented an active field of basic and app
physics,8,9 and a great amount of research has recently b
focused on the case of ions that are incident at graz
angle.10–13Nevertheless, existing calculations of energy-lo
spectra invoke either the local-dielectric, the hydrodynam
or the specular-reflection model of the surface.14–21 An ex-
ception is a recent self-consistent calculation of the stopp
power of jellium planar surfaces for ions moving paral
with the surface.22

In this paper, we present extensive self-consistent ca
lations of the energy-loss spectra of charged particles m
ing near a jellium surface. In the case of charged partic
moving inside a solid, nonlinear effects are known to
crucial in the interpretation of energy-loss measu
ments;23,24however, these corrections have been shown to
less important when the charged particle moves outside
solid.25 In Sec. II we present, within first-order perturbatio
~or, equivalently, linear-response! theory, general expres
sions for the energy-loss probability of charged partic
moving along a definite trajectory in inhomogeneous med
and focus on the case of a bounded three-dimensional e
tron gas that is translationally invariant in the plane of t
surface. In Sec. III, we report the results of our full se
consistent calculations of energy-loss spectra of charged
ticles moving parallel with the surface, which are found
0163-1829/2001/64~3!/035423~11!/$20.00 64 0354
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satisfy sum rules for particle-number conservation. Spe
emphasis is placed on the various contributions from coll
tive and electron-hole excitations to the energy-loss proba
ity. The effect of the electronic selvage at a metal surface
the energy-loss spectra is also discussed, by comparing
full self-consistent calculations with those obtained for ele
tron densities that drop abruptly to zero at the surface.
Sec. IV our conclusions are presented. Unless otherwis
stated, we use atomic units throughout, i.e.,e25\5me51.

II. THEORY

We consider a recoiless particle of chargeZ1 moving in
an arbitrary inhomogeneous electron system at a given
pact vectorb with nonrelativistic velocityv, for which retar-
dation effects and radiation losses can be neglected.26 Within
first-order perturbation theory, the probability for the pro
particle to transfer momentumq to the medium is given by
the following expression:27

Pq52
4p

LA
Z1

2E
0

`

dvE dq8

~2p!3
eib•(q1q8)

3 Im W~q,q8;v!d~v2q•v!d~v1q8•v!, ~1!

whereL andA represent the normalization length and are
respectively, andW(q,q8;v) is the screened interaction

W~q,q8;v!5E drE dr 8e2 i (q•r1q8•r8)W~r ,r 8;v!, ~2!

with

W~r ,r 8;v!5v~r ,r 8!1E dr1E dr2

3v~r ,r1!x~r1 ,r2 ,v!v~r2 ,r 8!. ~3!
©2001 The American Physical Society23-1
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Here, v(r ,r 8) represents the bare Coulomb interaction a
x~r ,r 8,v! is the so-called density-response function of t
medium.28

Within a self-energy formalism, the decay rate of t
probe particle is obtained from the knowledge of the ima
nary part of the self-energy. In theGW approximation, and
replacing the probe-particle Green function by that of a n
interacting recoiless particle, one finds29

t21522 Z1
2(

f
E drE dr 8f i* ~r !f f* ~r 8!

3 ImW~r ,r 8,Ei2Ef !f i~r 8!f f~r !, ~4!

wheref i(r ) represents the probe-particle initial state of e
ergyEi , and the sum is extended over a complete set of fi
statesf f(r ) of energyEf . Describing the probe-particle ini
tial and final states by plane waves in the direction of mot
and a Diracd function in the transverse direction, i.e.,

f~r !5
1

AA
eiv•rAd~r'2b!, ~5!

wherer' represents the position vector perpendicular to
projectile velocity, one finds

t215
1

T (
q

Pq , ~6!

T being the normalization time andPq the probability for the
probe particle to transfer momentumq to the medium, as
obtained from Eq.~1!.

Alternatively, one may consider the energy that the pro
particle looses per unit time due to electronic excitations
the medium. This can be written as30

2
dE

dt
52E drrext~r ,t !

]Vind~r ,t !

]t
, ~7!

whererext(r ,t) represents the probe-particle charge dens

rext~r ,t !5Z1d~r2b2vt !, ~8!

and Vind(r ,t) is the induced potential. To first order i
rext(r ,t), i.e., within linear-response theory, one finds

Vind~r ,t !5E dr 8E
2`

1`

dt8E
2`

1`dv

2p
e2 iv(t2t8)

3@W~r ,r 8,v!2v~r ,r 8!#rext~r 8,t8!. ~9!

Introduction of Eqs.~8! and ~9! into Eq. ~7! yields the total
energy lost by the particle

2DE5E
2`

1`

dtS 2
dE

dt D5(
q

~q•v!Pq , ~10!

wherePq is, as in Eq.~6!, the probability of Eq.~1! for the
probe particle to transfer momentumq to the medium, and
q"v represents the corresponding energy transfer.

The results in Eqs.~1!, ~6!, and ~10! are general expres
sions for the case of a classical trajectory in an arbitr
03542
d

-

-

-
al

n

e

e
n

y

inhomogeneous electron system characterized by
density-response functionx~r ,r 8;v!. In particular, in the case
of a bounded three-dimensional electron gas that is tran
tionally invariant in two directions, which we take to be no
mal to thez axis, the energy loss of Eq.~10! may be ex-
pressed in terms of the two-dimensional Fourier transform
the screened interaction, as follows:

2DE52
Z1

2

2pE dqi

~2p!2E2`

1`

dtE
2`

1`

dt8E
2`

`

dvv

3e2 i (v2qi•vi)(t2t8)ImW„z~ t !,z~ t8!;qi ,v…, ~11!

whereqi andvi are the momentum transfer and the veloc
in the plane of the surface andz(t) represents the position o
the projectile relative to the surface. Equation~11! gives the
energy that a charged particle moving with constant veloc
along an arbitrary trajectory looses due to electronic exc
tions in an electron system that is translationally invariant
two directions, as occurs in the case of a simple metal s
face modeled by jellium.

A. Parallel trajectory

In the glancing-incidence geometry ions penetrate into
material, they skim the outermost layer of the solid, and
then repelled by a repulsive, screened Coulomb potentia
discussed by Gemmell.31 Through use of the appropriate e
fective potentials the ion trajectoryz(t) can be calculated
and the energy loss is then obtained from Eq.~11!. Here we
restrict our attention to the case of charged particles mov
with constant velocityv along a definite trajectory at a fixe
distancez from a jellium surface, as approximately occu
under extreme grazing-incidence conditions. Equation~11!
then yields

2DE5LS 2
dE

dxD , ~12!

where (2dE/dx) is the energy loss per unit path length
the projectile, i.e., the so-called stopping power of the el
tron system,

2
dE

dx
52

2

v
Z1

2E dqi

~2p!2E0

`

dvv

3ImW~z,z;qi ,v!d~v2qi•v!. ~13!

Equation ~13! can be expressed in terms ofP(qi ,v),
which represents the probability per unit time, unit wa
number, and unit frequency for the probe particle to trans
momentumqi and energyv to the medium:

2
dE

dx
5

1

vE0

`

dqi E
0

qiv
dvvP~qi ,v!, ~14!

where

P~qi ,v!52
Z1

2

p2v
ImW~z,z;qi ,v!

qi

Aqi
22~v/v !2

. ~15!
3-2
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Alternatively, the stopping power of the system is oft
described by means ofP(v), the total probability of ex-
changing energyv with the medium:

2
dE

dx
5

1

vE0

`

dvvP~v!, ~16!

where

P~v!52
Z1

2

p2vE0

`

dqxImW~z,z;qi ,v!, ~17!

with qi5Aqx
21(v/v)2.

The main ingredient in the evaluation of Eqs.~15! and
~17! is the screened interactionW(z,z8;qi ,v). From Eq.~3!,
one easily finds

W~z,z8;qi ,v!5v~z,z8,qi!1E dz1E dz2

3v~z,z1 ;qi!x~z1 ,z2 ;qi ,v!v~z2 ,z8;qi!,

~18!

where v(z,z8;qi) and x(z,z8;qi ,v) are two-dimensiona
Fourier transforms of the bare Coulomb interaction and
density-response function, respectively.

In particular, forz andz8 coordinates that are well insid
the solid, there is translational invariance in the direct
normal to the surface andW(z,z8;qi ,v) can then be easily
obtained as follows:

W~z,z8;qi ,v!5E
0

`

dqze
iqz(z2z8)v~q!e21~q,v!, ~19!

whereq5Aqi
21qz

2 ande21(q,v) represents the inverse d
electric function of a uniform electron gas,

e21~q,v!511v~q!x~q,v!, ~20!

v(q) and x(q,v) being three-dimensional Fourier tran
forms of the bare Coulomb interaction and the dens
response function, respectively.

For z andz8 coordinates that are far from the surface in
the vacuum, where the electron density vanishes, Eq.~18!
yields

W~z,z8;qi ,v!5v~z,z8;qi!2
2p

qi
e2qi(z1z8)g~qi ,v!, ~21!

whereg(qi ,v) is the so-called surface-response function

g~qi ,v!52
2p

qi
E dz1E dz2eqi(z11z2)x~z1 ,z2 ;qi ,v!.

~22!

The energy-loss function Img(qi ,v) satisfies thef sum
rule32

E
0

`

dvv Img~qi ,v!52p2qi E
2`

`

dze2qizn~z!, ~23!
03542
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which applies to the case of a bounded three-dimensio
electron gas whose exact density in the ground state isn(z).
For z coordinates that are well inside the solid the electr
density takes a constant valuen̄, and forz coordinates that
are far from the surface into the vacuum the electron den
vanishes.

In the long-wavelength limit (qi→0),

Img~qi ,v!→ p

2
vsd~v2vs!, ~24!

wherevs5vp /A2 andvp5(4pn̄)1/2 is the classical plasma
frequency of a uniform electron gas of densityn̄. Hence, in
the qi→0 limit the energy loss is dominated by the excit
tion of surface plasmons of energyvs , as predicted by
Ritchie.2

B. The density-response function

We consider a jellium slab of thicknessa normal to thez
axis, consisting of a fixed uniform positive background
density

n1~z!5H n̄, 2a<z<0

0, elsewhere
~25!

plus a neutralizing cloud of interacting electrons of dens
n(z). The positive-background charge densityn̄ is often ex-
pressed in terms of the Wigner radiusr s , as 1/n̄
5(4p/3)r s

3 .
Time-dependent density-functional theory~TDDFT!

shows that theexactdensity-response function of the ele
tron system satisfies the integral equation33

x~z,z8;qi ,v!5x0~z,z8;qi ,v!1E dz1E dz2

3x0~z,z8;qi ,v!@v~z1 ,z2 ;qi!

1 f xc~z1 ,z2 ;qi ,v!#x~z2 ,z8;qi ,v!, ~26!

where x0(z,z8;qi ,v) is the density-response function o
noninteracting Kohn-Sham electrons

x0~z,z8;qi ,v!52(
i , j

f i~z!f j* ~z!f j~z8!f i* ~z8!

3E dki

~2p!2

Q~EF2Ei !2Q~EF2Ej !

Ei2Ej1~v1 ih!
,

~27!

and the kernel f xc(z,z8;qi ,v) accounts for exchange
correlation~xc! effects beyond a time-dependent Hartree a
proximation. In Eq.~27!, Q(x) is the Heaviside step func
tion, h is a positive infinitesimal, the energiesEi andEj are

Ei5« i1
ki

2

2
~28!

and
3-3
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Ej5« j1
~ki1qi!

2

2
, ~29!

and the wave functionsf i(z) and energies« i , which de-
scribe motion normal to the surface, are the eigenfuncti
and eigenvalues of the one-dimensional Kohn-Sham Ha
tonian

H52
1

2

d2

z2 1w~z!1vxc~z!, ~30!

w(z) being the electrostatic potential andvxc(z) representing
the so-called xc potential of density-functional theo
~DFT!.34

Within this scheme, the simplest possible approximat
is to neglect xc altogether and set the xc potentialvxc(z) and
the xc kernelf xc(z,z8;qi ,v) equal to zero. In this case, th
one-dimensional single-particle wave functions and ener
are the self-consistent eigenfunctions and eigenvalues o
one-electron Hartree Hamiltonian. The calculation of t
density-response function is further simplified if the se
consistent electrostatic potential entering Eq.~30! is replaced
by

w~z!5H 0, 2a2z0<z<z0

`, elsewhere
~31!

wherez0 is chosen so as to ensure charge neutrality. Thi
the so-called infinite-barrier model~IBM !.35 Within this
model, the one-electron wave functions are simply sines,
charge neutrality is easily found to yield

z05~3/16!lF@11O~lF /a!#. ~32!

Exchange-correlation effects are usually introduc
within the local-density approximation~LDA ! of DFT, by
replacing the xc potential atz by that of a uniform electron
gas with the local densityn(z). The xc kernel entering Eq
~26! is then set either equal to zero@this is the random-phas
approximation36 ~RPA!# or equal to the static~v50! xc ker-
nel

f xc
ALDA ~z,z8;qi ,v!5Fdvxc~n!

dn G
n5n(z)

d~z2z8!. ~33!

This is the so-called adiabatic local-density approximat
~ALDA !.37

To compute the interacting density-response funct
x(z,z8;qi ,v), we follow the method described in Ref. 3
We first assume thatn(z) vanishes at a distancez0 from
either jellium edge,39 and expand the wave functionsf i(z)
in a Fourier sine series. We then introduce a double-co
Fourier representation for the density-response function,
find explicit expressions for the screened interaction and
surface-response function in terms of the Fourier coefficie
of the density-response function~see the Appendix!.

Great care was exercised to ensure that our slab calc
tions are a faithful representation of the screened interac
and the energy-loss probability in a semi-infinite mediu
This issue is important, in view of the significant quantu
03542
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size effects40 ~QSE! originated in the quantization of the en
ergy levels normal to the surface: as the slab thicknesa
increases new subbands for thez motion become occupied
thereby leading to oscillatory functions ofa @the amplitude
of these oscillations decays approximately linearly witha,
and their period equalslF/2,lF52p/(3p2n̄)1/3 being the
Fermi wavelength#. For each quantitya under study we con-
sidered three different values ofa. One such value is the
threshold widthan for which thenth subband for thez mo-
tion is first occupied. The other two values arean

25an

2lF/4 and an
15an1lF/4, and the infinite-width limit is

then extrapolated with the use of the following relation:41,42

a5
a~an

2!1a~an!1a~an
1!

3
. ~34!

Following this procedure to calculate the surface-respo
function g(qi ,v), we have been able to prove that the su
rule of Eq.~23! is satisfied for all values ofqi under consid-
eration. The results presented below correspond to slabs
n512, for whicha'(526)lF .

C. Simplified models

For comparison, we also consider various simplified mo
els for the screened interactionW(z,z8;qi ,v) of a semi-
infinite free-electron gas, which are all derived for electr
densities that drop abruptly to zero at the surface. These
~a! a classical model consisting of a semi-infinite medium
local dielectric functione(v), ~b! semiclassical and quan
tized hydrodynamic~HD! models,43,44 and~c! a classical in-
finite barrier ~CIB! or specular-reflection~SR! model,45,46

which has the virtue of incorporating dispersion effects
expressing the screened interaction in terms of the bulk
electric functione(q,v). Within these models and forz and
z8 coordinates that are outside the surface (z,z8.0) the
screened interaction is obtained through Eq.~21!, from the
knowledge of approximate expressions for the surfa
response functiong(qi ,v).

1. Classical model

Within this approach, the screened interaction is deriv
by imposing the ordinary boundary conditions of continu
of the potential and the normal component of the displa
ment vector at the surface (z50). For z,z8.0, one then
easily finds Eq.~21! with

g~v!5
e~v!21

e~v!11
. ~35!

For a free-electron gas, the long-wavelength (q→0) di-
electric function is

e~v!512
vp

2

v~v1 ih!
, ~36!

and introduction of Eq.~36! into Eq. ~35! yields the long-
wavelength limit of Eq.~24!. Introducing this limit into ei-
3-4
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ther Eq.~15! or Eq. ~17!, one easily reproduces the classic
expression of Echenique and Pendry14 for the stopping
power of a jellium surface,

2
dE

dx
5Z1

2
vs

2

v2K0~2vsz/v !, ~37!

where K0 is the zero-order modified Bessel function. F
large values ofz (z@v/vs), Eq. ~37! reduces to

2
dE

dx
5Z1

2 vs

2v
Apvs /zve22vsz/v. ~38!

2. Hydrodynamic models

In a HD model, the collective motion of electrons in a
arbitrary inhomogeneous system is expressed in terms o
deviations from the equilibrium density. In a semiclassi
approach, one writes and linearizes the basic hydrodyna
equations, i.e., the continuity and the Bernuilli equation, a
for a semi-infinite system finds

g~qi ,v!5
vp

2

2b2Lqi
~Lqi

1qi!2vp
2

, ~39!

where

Lqi
5

1

b
Avp

21b2qi
22v~v1 ih! ~40!

andb represents the speed of propagation of hydrodyna
disturbances in the electron system.47

Within a quantized hydrodynamic model, one first linea
izes the Hamiltonian of the hydrodynamic system with
spect to the induced electron density, and then quantizes
Hamiltonian on the basis of the normal modes of oscillati
which are referred after quantization as bulk and surf
plasmons. Hence, within this approach one can distingu
the separate contributions to the energy-loss func
Img(qi ,v) coming from the excitation of either bulk or su
face plasmons:48

ImgB~qi ,v!5
1

2
qi E

0

`

dqzd~v2vq
B!

3
~vp

2/vq
B!qz

2

qz
41qz

2~qi
21vp

2/b2!1vp
4/~4b4!

~41!

and

ImgS~qi ,v!5
p

2

gqi

qi12gqi

vp
2

vqi

S
d~v2vqi

S !, ~42!

respectively. Here,vq
B and vqi

S represent the dispersion o

bulk and surface plasmons,

~vq
B!25vp

21b2q2 ~43!

and
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~vqi

S !25
1

2
@vp

21b2qi
21bqiA2vp

21b2qi
2#. ~44!

As in Eq. ~19! q5Aqi
21qz

2, and

gqi
5

1

2b
~2bqi1A2vp

21b2qi
2!. ~45!

For the separate contributions to the sum rule of Eq.~23!
coming from bulk and surface plasmons, integration of E
~41! and ~42! yields

E
0

`

dvv ImgB~qi ,v!5
p

4

qi

qi12gqi

vp
2 ~46!

and

E
0

`

dvv ImgS~qi ,v!5
p

4

2gqi

qi12gqi

vp
2 , ~47!

respectively. It is then straightforward to show that for
semi-infinite system with a uniform electron densityn̄ that
drops abruptly to zero at the surface the sum of bulk a
surface contributions to the energy-loss function Img(qi ,v)
satisfies Eq.~23!.

In the limit asqi→0 the bulk contribution to the energy
loss function vanishes, and both the imaginary part of
~39!, on the one hand, and Eq.~42!, on the other hand, yield
the long-wavelength limit of Eq.~24!.

3. Specular reflection model

Either by neglecting, within the IBM, the interference b
tween incident and scattered electrons~CIBM!,45 or by sim-
ply assuming that electrons are specularly reflected at
surface~SRM!,46 one finds

g~qi ,v!5
12es~qi ,v!

11e_s~qi ,v!
, ~48!

where

es~qi ,v!5
qi

p E
2`

` dqz

q2
e21~q,v!, ~49!

with q5Aqi
21qz

2 and e21(q,v) being the inverse bulk di-
electric function of Eq.~20!.

If dispersion effects are neglected altogether, thereby
placing the momentum-dependent dielectric functione(q,v)
entering Eq.~49! by a local dielectric functione(v), Eq.
~48! yields the classical prediction@Eq. ~35!#. Alternatively,
if dispersion effects are incorporated in an approxima
manner through the hydrodynamic dielectric function of
uniform electron gas,

e~q,v!511
vp

2

b2q22v~v1 ih!
, ~50!

Equation ~48! is easily found to yield the hydrodynami
surface-response function@Eq. ~39!#.
3-5
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III. RESULTS AND DISCUSSION

We choose the bulk charge densityn̄ to be equal to
the average electron density of valence electrons in alu
num metal (r s52.07), for which the Fermi momentum@qF

5(3p2n̄)1/3# and bulk plasma frequency (vp) are qF

50.927a0
21 (a0 is the Bohr radius,a050.529 Å) and

vp515.8 eV, respectively. We setZ1561 and our results
can then be used for arbitrary values ofZ1, as the energy-
loss probability is, within linear-response theory, prop
tional to Z1

2.
In this section, we first show results for the energy-lo

function ImW(z,z;qi ,v) entering Eqs.~15! and~17!. Figure
1 shows ImW(z,z;qi ,v), as a function ofv, with qi
50.4qF ~for this small value ofqi both bulk and surface
plasmons are well-defined excitations! andz coordinates that

FIG. 1. The energy-loss function, ImW(z,z;qi ,v), as a function
of v with qi50.4qF andz coordinates that are either well inside th
solid (z<2lF) or far from the surface into the vacuum (z>lF).
~a! The solid line represents the total RPA energy-loss function
obtained from Eq.~19! with z<2lF ; dashed and dotted lines rep
resent the corresponding bulk-plasmon and electron-hole-pair
tributions, respectively.~b! The solid line represents the SRM
energy-loss function, as obtained forz5lF with the use of Eq.~48!
and the RPA dielectric functione(q,v); the dotted line represent
the bulk-plasmon contribution, as obtained by introducing Eq.~41!
into Eq. ~21!.
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are either well inside the solid (z<2lF) @Fig. 1~a!# or far
from the surface into the vacuum (z>lF) @Fig. 1~b!#. We
have carried out self-consistent RPA and ALDA slab calc
lations for this quantity, as described in Sec. II B, and ha
found the expected result that for these values ofz they co-
incide with those obtained from Eqs.~19! (z<2lF) and
~21! (z>lF). Hence, the energy-loss functio
ImW(z,z;qi ,v) represented in Fig. 1 either does not depe
on z @Fig. 1~a!# or depends onz through an overall factor of
e22qiz @Fig. 1~b!#.

In Fig. 1~a!, bulk-plasmon~dashed line! and electron-
hole-pair~dotted line! contributions to the RPA energy-los
function ImW(z,z;qi ,v) are shown separately, as obtain
from Eq. ~19!, together with the total energy-loss functio
represented by a solid line. One sees that inside the solid
energy-loss spectrum is dominated, for small values ofqi ,
by a continuum of bulk-plasmon excitations occurring at e
ergiesvqi

B ,v,vqc

B , where qc represents the critical mo

mentum for which the bulk-plasmon dispersionvq
B enters the

electron-hole-pair excitation spectrum. Forr s52.07 andqi
50.4qF , one findsvqi

B 517.6 eV andvqc

B 523.6 eV, and

bulk plasmons can be excited by charged particles mov
parallel with the surface with speedv.1.13v0 (v0 is the
Bohr velocity,v052.193106 m s21).

For z coordinates that are outside the surface it had b
generally believed that the energy loss originates entirely
the excitation of surface plasmons and electron-hole pair49

Nevertheless, the continuum of bulk-plasmon excitatio
dominating the energy loss of charged particles moving
side the solid@see Fig. 1~a!# is still present forz coordinates
outside the surface, as shown in Fig. 1~b!, although the main
contribution to the energy loss now clearly comes from
excitation of surface plasmons atv5vqi

S ~for r s52.07 and

qi50.4qF , one finds vqi

S ;16.0 eV!. The bulk-plasmon

contribution to ImW(z,z,qi ,v), as obtained forz5lF
within a quantized hydrodynamic model by introducing E
~41! into Eq. ~21! ~see also Ref. 48!, is represented in Fig
1~b! by a dotted line. The total SRM energy-loss function,
obtained with the use of Eq.~48! and the RPA dielectric
function e(q,v), is represented in Fig. 1~b! by a solid line.
This curve shows that at low frequencies the energy-l
spectrum is dominated by the creation of electron-hole pa
losses centered aroundvqi

S are due to the excitation of sur

face plasmons exhibiting a finite linewidth, and bul
plasmon excitations yield energy losses atv>vqi

B that

nearly coincide with the result one obtains within the qua
tized hydrodynamic model. We have also carried out s
consistent slab calculations of the energy-loss funct
Im g(qi ,v), which for small values ofqi (qi,qF) has been
found to be close to that obtained within the SRM. Nev
theless, differences have been found in the surface-plas
energy vqi

S , which shifts to lower frequencies as demo

strated earlier;50,51 also, the thickness of the slab is require
to be very large for the self-consistent calculations to pr
erly account for the high-energy spectrum originated in
excitation of bulk plasmons and electron-hole pairs.
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Figure 2 shows self-consistent calculations of the pr
ability P(v) for a charged particle to exchange energyv
with the medium, as obtained from Eq.~17!. The particle
is assumed to move parallel to the surface withv52v0
and two differentz coordinates for which the electroni
selvage at the surface is expected to play an important r
z52lF/2 @Fig. 2~a!# andz5lF/2 @Fig. 2~b!#. Dashed, thick
solid, and thin solid lines give the result of IBM, RPA, an
ALDA calculations, and dashed-dotted lines represent
SRM probability obtained with the RPA dielectric functio
e(q,v).

In the interior of the solid@Fig. 2~a!#, the bulk-plasmon
energy-loss spectrum is known to be inhibited by the pr
ence of surface-plasmon losses through the so-called bre
zung or boundary effect predicted by Ritchie,2 whose exis-
tence is due to the orthogonality of the surface-plasmon
bulk-plasmon modes. Nevertheless, as the electronic sel
is changed from zero~SRM! to its actual structure~RPA and
ALDA !,52 the creation of electron-hole pairs increases,
surface-plasmon peak diminishes, and a broad bulk-plas

FIG. 2. The energy-loss probabilityP(v), as obtained from Eq
~17! with v52v0 and two differentz coordinates:~a! z52lF/2
and ~b! z5lF/2. Dashed-dotted, dashed, thick solid, and thin so
lines represent SRM, IBM, RPA, and ALDA calculations. Th
SRM probabilities have been obtained with the use of the R
dielectric functione(q,v). The damping parameter is taken to b
g5vp/10.
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peak dominates the spectrum, showing that a proper tr
ment of the surface density profile is crucial for the ener
dependence of the energy-loss probability. These results
in qualitative agreement with the calculations reported
Ref. 21, where the selvage structure is introduced in an
proximate manner within the HD and the SR models.

Bulk-plasmon losses occurring in the vacuum side of
surface@see Fig. 1~b!# are not visible in the total energy-los
probability P(v) which is dominated by the excitation o
surface plasmons and electron-hole pairs, as shown in
2~b!. Also, this figure shows substantial changes in
energy-loss probability as a realistic description of the s
face response is considered, with an important shift of
surface-plasmon peak towards smaller energies, in ag
ment with the experimentally determined surface-plasm
energies of simple metals.50,51

Figure 3 shows a surface plot of our full IBM@Fig. 3~a!#,
RPA @Fig. 3~b!#, and ALDA @Fig. 3~c!# calculations of the
probability P(v) for a charged particle moving with spee
v52v0 parallel to the surface. The plot is shown as a fun
tion of the energy lossv and the distancez from the particle
trajectory to the surface. Although the energy-loss proba
ity is found to be divided into losses centered around
bulk-plasmon energy~in the interior of the solid! and the
surface-plasmon energy~outside the solid!, this separation is
not as clear as predicted with the use of simplified models
the surface response~see, e.g., Ref. 21!. As z→2` the
energy-loss probabilityP(v) reaches a constant shape ce
tered around the bulk-plasmon energy, which does not
pend on the details of the electronic selvage at the sur
and only depends on whether the xc kernelf xc(z,z8;qi ,v) is
set equal to zero~IBM and RPA! or not ~ALDA !. Outside
the solid, the energy-loss probability, which is center
around the surface-plasmon energy, decreases with the
tancez from the surface to the particle trajectory.

Figure 4~a! depicts our full IBM~dashed line!, RPA ~thick
solid line! and ALDA ~thin solid line! calculations of the
stopping power, as obtained from either Eq.~14! or ~16! as a
function of z and with v52v0. In the interior of the solid,
where the electron density is taken to be constant, both I
and RPA stopping powers coincide with the well-know
RPA stopping power of a uniform electron gas. Short-ran
xc effects, included in the ALDA, provoke a reduction in th
screening of electron-electron interactions, thereby incre
ing the energy loss. Outside the solid the electronic selv
at the surface plays a crucial role in the actual behavior of
stopping power: a slow decrease of the electron density a
metal surface leads to a larger energy-loss probability@see
also Fig. 2 and Eq.~23!#, and the IBM stopping power is
therefore, found to be too small. In the SRM the electr
density is assumed to drop abruptly to zero at the surfa
which provokes a reduction in the electron-hole excitat
probability, and the stopping power outside the solid@see
Fig. 4~b!# is found to be even smaller than in the IBM. Low
energy excitations involve transitions from occupied ele
tronic states near the Fermi level, which are sensitive to
actual density profile at the surface, and are found to play
important role in the energy-loss mechanism of charged p
ticles moving withv<2v0. Also plotted in Fig. 4~b! is the

A
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A. GARCÍA-LEKUE AND J. M. PITARKE PHYSICAL REVIEW B 64 035423
FIG. 3. The energy-loss probabilityP(v) vs the energy loss
v and thez coordinate, as obtained forv52v0 within the ~a! IBM,
~b! RPA, and ~c! ALDA. The solid is in the regionz,0.
g5vp/10.
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result of assuming that the stopping power for a char
particle that moves at a distancez from the surface can be
approximated by that of a uniform electron gas with the lo
densityn(z).53 This often-used local-density approximatio
also yields an inaccurate description of the positio
dependent stopping power, due to the intrinsic nature
surface-induced excitations not present within this approa
and the results presented in Fig. 4 show the need for a
consistent description of the surface response if one is
look at the energy loss of charged particles moving outsid
solid surface.

As the velocity increases the energy-loss spectrum
charged particles moving far from the surface into t
vacuum is dominated by long-wavelength excitations and
stopping power is dictated by the integration
v Img(qi ,v), which as a result of particle conservation@see
Eq. ~23!# does not depend on the details of the actual
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sponse of the solid. In this limit and with the aid of Eq.~23!
one easily finds the classical stopping power of Eq.~37!.

The velocity dependence of the stopping power is sho
in Fig. 5~a! for a particle moving outside the surface atz
5lF . Our full IBM, RPA, and ALDA calculations are rep
resented, as in Fig. 4~a!, by dashed, thick solid, and thin soli
lines, respectively, and the SRM stopping power is rep
sented by a dashed-dotted line, as obtained with the R
dielectric functione(q,v). At low velocities the energy-loss
spectrum is dominated by intermediate- and sho
wavelength excitations, even far from the surface into
vacuum, and a combination of the actual electronic selv
at the surface with the intrinsic nature of surface-induc
excitations play an important role in increasing the ene
loss. At high velocities the energy-loss spectrum is dom
nated by the surface-plasmon excitation@see Eq.~24!# and all
calculations converge with the classical limit of Eq.~37!, as
3-8
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ENERGY LOSS OF CHARGED PARTICLES . . . PHYSICAL REVIEW B 64 035423
shown in Fig. 5~b!. As in Fig. 4~b!, the local-density approxi-
mation is also represented in this figure, showing that
often-used approximation cannot account for the energy
originated in surface-induced excitations, not even at l
velocities where the energy loss is entirely due to the e
tation of electron-hole pairs.

IV. SUMMARY

We have reported self-consistent calculations of the
ergy loss spectra of charged particles moving parallel t
plane-bounded free-electron gas, in the framework of line
response theory. We have found that the continuum of b
plasmon excitations dominating the energy loss of char
particles moving inside the solid is still present for partic
trajectories outside the surface. Nevertheless, these b
plasmon excitations are found not to be visible in the to
energy-loss probabilityP(v), which outside the solid is
clearly dominated by the excitation of surface plasmons
electron-hole pairs.

As for the effect of the electronic selvage at the surfa
we have found that the so-called bregenzung or bound
effect inside the solid is diminished, plasmon peaks

FIG. 4. Stopping power, as obtained from either Eq.~14! or ~16!
as a function ofz and withv52v0. ~a! Dashed, thick solid, and thin
solid lines represent IBM, RPA, and ALDA calculations.~b! RPA
~thick solid line!, SRM, as obtained with the use of the RPA diele
tric function e(q,v) ~dotted line!, and local-density~dashed line!
calculations. The solid is in the regionz,0. g5vp/10.
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broadened, and the surface-plasmon peak is consider
shifted towards smaller energies. The electronic selvag
the surface has also been found to increase both the ene
loss probability and the stopping power for charged partic
moving in the vacuum side of the surface.

In the high-velocity limit and for charged particles mo
ing far from the surface into the vacuum the actual stopp
power is found to converge with the classical limit dictat
by Eq. ~37!. However, at low and intermediate velocitie
substantial changes in the stopping power have been
served as a realistic description of the surface respons
considered, and we have concluded that a self-consisten
scription of the surface response is necessary if one is to
at the energy loss of charged particles moving outside a s
surface. Accurate measurements of the energy loss of
tons being reflected from a variety of solid surfaces at gr
ing incidence have been reported.54–56A theoretical descrip-
tion of these experiments requires that the ion trajectoryz(t)
be calculated and energy losses from the excitation of in
shells be taken into account. Also, in real experiments ba
structure effects might be important and the surface rou

FIG. 5. Stopping power, as obtained from either Eq.~14! or ~16!
as a function ofv and with z5lF/2. ~a! Dashed-dotted, dashed
thick solid, and thin solid lines represent SRM as obtained with
use of the RPA dielectric functione(q,v), IBM, RPA, and ALDA
calculations.~b! IBM ~solid line!, SRM ~dashed-dotted line!, and
local-density~dashed line!. The classical prediction of Eq.~37! is
represented by a dotted line.g5vp/100.
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ness might lead to additional energy loss due to the so-ca
Smith-Purcell effect.57 Work in this direction is now in
progress.
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APPENDIX

Here we give explicit expressions for the screened in
action and the surface-response function in terms of the F
rier coefficients of the density-response function. We fi
introduce the following double-cosine Fourier representat
for the density-response function:

x~z,z8;qi ,v!5 (
m50

`

(
n50

`

xmn~qi ,v!cos~mp z̃!cos~np z̃8!,

~A1!

whered5a12z0 and z̃5(z1z01a)/d.
Introducing Eq.~A1! into Eq. ~18!, we obtain the follow-

ing expression for the screened interaction:

W~z,z8;qi ,v!5 (
m50

`

(
n50

`

Wmn~qi ,v!cos~mp z̃!cos~np z̃8!,

~A2!
ns

s.

s

F.

.

w-
nd
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where

Wmn~qi ,v!5vmn~qi!1
mmmn

d2

3 (
m850

`

(
n850

`

vmm8~qi!xm8n8~qi ,v!vn8n~qi!,

~A3!

vmn~qi!5
2pe2

qi
21~mp/d!2F 2d

Ammmn

dmn

2@11~21!m1n#
qi@12~21!me2qid#

~qi
21~np/d!2 G ,

~A4!

and

mm5H 1, for m50

2, for m>1.
~A5!

Similarly, introduction of Eq.~A1! into Eq. ~22! yields

g~qi ,v!52
2pd2

qi
(

m50

`

(
n50

`
1

mmmn
amanxmn~qi ,v!,

~A6!

where

am52
mmqi

d

12eqidcos~mp!

qi
21~mp/d!2

. ~A7!
s.
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