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Energy loss of charged particles interacting with simple metal surfaces
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Self-consistent calculations of the energy-loss spectra of charged particles moving near a plane-bounded
free-electron gas are reported. Energy-loss probabilities are obtained, within linear-response theory, from the
knowledge of the density-response function of the inhomogeneous electron system. Self-consistent single-
particle wave functions and energies are obtained by solving the Kohn-Sham equation of density-functional
theory, and the electronic response is then computed either in the random-phase approximation or with the use
of an adiabatic local-density approximation. Special emphasis is placed on the various contributions from
collective and electron-hole excitations to the energy loss of charged particles moving parallel with the surface.
The effect of the electronic selvage at a metal surface on the energy-loss spectra is also discussed, by com-
paring our full self-consistent calculations with those obtained for electron densities that drop abruptly to zero
at the surface.
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[. INTRODUCTION satisfy sum rules for particle-number conservation. Special
emphasis is placed on the various contributions from collec-
Charged particles interacting with metal surfaces creatéve and electron-hole excitations to the energy-loss probabil-
electron-hole pairs and, by virtue of the dynamicallyity. The effect of the electronic selvage at a metal surface on
screened Coulomb interaction, bulk and surface collectivéhe energy-loss spectra is also discussed, by comparing our
excitations, i.e., plasmori€ These excitations play a crucial full self-consistent calculations with those obtained for elec-
role in the interpretation of surface electron spectroscopyron densities that drop abruptly to zero at the surface. In
data, such as x-ray photoelectron spectroscdfPS), Sec. IV our conclusions are presented. Unless otherwise is
Auger-electron spectroscofAES), and reflection-electron  Stated, we use atomic units throughout, ieé=%=mc=1.
energy-loss spectroscopREELS. The interaction of swift

electrons with surfaces has also attracted great interest in the Il. THEORY
field of scanning transmission electron microscopy
(STEM).*~" Equally, the interaction of moving ions with sol- We consider a recoiless particle of chai@emoving in

ids has represented an active field of basic and appliedn arbitrary inhomogeneous electron system at a given im-
physics®® and a great amount of research has recently beepact vectorb with nonrelativistic velocityv, for which retar-
focused on the case of ions that are incident at grazingation effects and radiation losses can be negle€tédthin
angle’®~**Nevertheless, existing calculations of energy-lossfirst-order perturbation theory, the probability for the probe
spectra invoke either the local-dielectric, the hydrodynamicparticle to transfer momentuip to the medium is given by
or the specular-reflection model of the surfa¢&* An ex-  the following expressiof’
ception is a recent self-consistent calculation of the stopping
power of jellium planar surfaces for ions moving parallel A - dq’
with the surfacé? Py=— _sz dwf elb-(a+a’)

In this paper, we present extensive self-consistent calcu- LA "Jo (2m)?
lations of the energy-loss spectra of charged particles mov-
ing near a jellium surface. In the case of charged particles
moving inside a solid, nonlinear effects are known to be

S ; : whereL and A represent the normalization length and area,
crucial in the interpretation of energy-loss measure-

ments?24however, these corrections have been shown to bEESPECtively, andV(a,q’; ) is the screened interaction
less important when the charged particle moves outside the

solid® In Sec. Il we present, within first-order perturbation W(q,q’;w)zf drf dr/e @ a Wir rw), (2)
(or, equivalently, linear-responseheory, general expres-

sions for the energy-loss probability of charged particles

moving along a definite trajectory in inhomogeneous mediayith

and focus on the case of a bounded three-dimensional elec-

X ImW(Qq,9";0)d(w—q-v)d(w+q"-v), (1)

tron gas that is translationally invariant in the plane of the

surface. In Sec. Ill, we report the results of our full self- W(r,r’;w)=v(r,r’)+f dflf dr,

consistent calculations of energy-loss spectra of charged par-

ticles moving parallel with the surface, which are found to Xv(r,ry)x(r{,ro,w)v(rs,r’). 3
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Here,v(r,r") represents the bare Coulomb interaction andnhomogeneous electron system characterized by the
x(rr’,w) is the so-called density-response function of thedensity-response functiop(r,r’;w). In particular, in the case
medium?® of a bounded three-dimensional electron gas that is transla-
Within a self-energy formalism, the decay rate of thetionally invariant in two directions, which we take to be nor-
probe particle is obtained from the knowledge of the imagi-mal to thez axis, the energy loss of Eq10) may be ex-
nary part of the self-energy. In tHeéW approximation, and pressed in terms of the two-dimensional Fourier transform of
replacing the probe-particle Green function by that of a nonthe screened interaction, as follows:
interacting recoiless particle, one fiftls

—AE=—Z—iJ A Fmdtrwdt’fw dow
T—1=—2z§2f ferdrqur(r)qs?(r') 2m) (2m)?) e Je Joa

—i(o—q-v))(t—t’ -
MW T Ei— Eq) by (r) (1), 7 Xe em At mw(z(t),z(t');qp, ),  (11)
where ¢;(r) represents the probe-particle initial state of en-
ergyE;, and the sum is extended over a complete set of fin
statese¢¢(r) of energyE;. Describing the probe-particle ini-
tial and final states by plane waves in the direction of motio
and a Diracé function in the transverse direction, i.e.,

whereq andv; are the momentum transfer and the velocity

in the plane of the surface an(t) represents the position of
he projectile relative to the surface. Equatidd) gives the
energy that a charged particle moving with constant velocity
nalong an arbitrary trajectory looses due to electronic excita-
tions in an electron system that is translationally invariant in
two directions, as occurs in the case of a simple metal sur-

()= \/ixeiv-rj/g(ri_b)' (5) face modeled by jellium.

wherer | represents the position vector perpendicular to the A. Parallel trajectory

projectile velocity, one finds In the glancing-incidence geometry ions penetrate into the
material, they skim the outermost layer of the solid, and are
1 2 p ©) then repelled by a repulsive, screened Coulomb potential, as
T @ discussed by Gemmelt. Through use of the appropriate ef-
fective potentials the ion trajector(t) can be calculated
T being the normalization time ari, the probability for the  gnd the energy loss is then obtained from Eq). Here we
probe particle to transfer momentumto the medium, as restrict our attention to the case of charged particles moving
obtained from Eq(1). _ with constant velocity along a definite trajectory at a fixed
Alternatively, one may consider the energy that the probejistancez from a jellium surface, as approximately occurs

particle looses per unit time due to electronic excitations inynder extreme grazing-incidence conditions. Equatibh
the medium. This can be writtends then yields

dE aVINd(r t)
—a=—JdrpeXt(r,t)T, (7) —AE=L<—d—E>, (12)

dx

wherep®{(r,t) represents the probe-particle charge densitywhere (~dE/dx) is the energy loss per unit path length of
the projectile, i.e., the so-called stopping power of the elec-

P& ) =2Z18(r=b—wt), ®  tron system,
and V"Y(r,t) is the induced potential. To first order in
p®Y(r,t), i.e., within linear-response theory, one finds _ d_E: _ E zf dqy fm
! +o0 tedw , dx v (277)2 °
V'nd(m):f dr'ﬁw dt'ﬁ@ﬂef'w(t%) XImW(z,z;q), @) S(w—q- V). (13
X[W(r,r' o) —ov(r,r')]1p®’ t'). (9 Equation (13) can be expressed in terms 8f(q,),

) ) . which represents the probability per unit time, unit wave
Introduction of Eqs(8) and (9) into Eq. (7) yields the total  ymper, and unit frequency for the probe particle to transfer

energy lost by the particle momentumgy and energyw to the medium:
A dE dE 1= ajp
—AE= fﬁ dt( - E) =2 (qVPg, (10 — =2 dg| " dwwP(q.w), (14)
o q dx vJo 0

wherePy is, as in Eq.(6), the probability of Eq(1) for the  \yhere
probe particle to transfer momentugnto the medium, and

g-v represents the corresponding energy transfer. z2 q
The results in Eqs(1), (6), and(10) are general expres- P(q),w)=——ImW(z,2,q),0) 75— (19
sions for the case of a classical trajectory in an arbitrary v VO = (w/v)?
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Alternatively, the stopping power of the system is oftenwhich applies to the case of a bounded three-dimensional
described by means d?(w), the total probability of ex- electron gas whose exact density in the ground statézk.

changing energy» with the medium: For z coordinates that are well inside the solid the electron
density takes a constant value and forz coordinates that
_ _E _ l ” are far from the surface into the vacuum the electron density
= dowP(w) (16 :
vanishes.

In the long-wavelength limitq—0),
where

ar
P(w):_ﬂ'_zvfo doyImW(z,z;q), ), (17
wherews=w,/\2 andw,=(4mn)*?is the classical plasma
with qy= V5 + (w/v)?. frequency of a uniform electron gas of densityHence, in
The main ingredient in the evaluation of Eq45) and  the g;—0 limit the energy loss is dominated by the excita-
(17) is the screened interactiohl(z,z’;q),»). From Eq.(3),  tion of surface plasmons of energys, as predicted by

one easily finds Ritchie?
W(z,z’;qH ,w)=v(Z,Z',qH)+J dz1f dz, B. The density-response function
We consider a jellium slab of thickneasnormal to thez
Xv(2,21;9) x(21,22:9), 0)v(Z,,2';9)), axis, consisting of a fixed uniform positive background of

(19) density
where v(z,z';q)) and x(z,z’;q),») are two-dimensional n, —asz<0
Fourier transforms of the bare Coulomb interaction and the n.(z)= 0. elsewhere (29
density-response function, respectively. '
In particular, forzandz’ coordinates that are well inside plus a neutralizing cloud of interacting electrons of density
the solid, there is translational invariance in the directionn(z). The positive-background charge densitys often ex-

normal to the surface and/(z,z';q;,») can then be easily pressed in terms of the Wigner radius,, as 1h
obtained as follows: = (4m/3)re
<.

- Time-dependent density-functional theoryTDDFT)
W(z,z';q ,w)=f dg,e'94% 2y (q)e X(q,w), (19  shows that theexactdensity-response function of the elec-
0 tron system satisfies the integral equation

whereq= \/q|2‘ +qz2 and e (g, w) represents the inverse di-
electric function of a uniform electron gas, x(z,2;q,,0)=x%2z,2";q ,w)+j dzlf dz,
e Hg,0)=1+v(q)x(q,), (20 Xx%z,2';q),0)[v(z1,22;0))
v(q) and x(g,0) being three-dimensional Fourier trans- (21,2259, 0)Ix(22.2"; 0, ), (26)

forms of the bare Coulomb interaction and the density- 0
response function, respectively. where x“(z,2’;q),») is the density-response function of

Forzandz' coordinates that are far from the surface into "Oninteracting Kohn-Sham electrons
the vacuum, where the electron density vanishes, (E8).

yields XO(Z.Z’:qn,w)=2i2j bi(2)$F (2)¢5(2) b7 (2')
2 ,
W(z,z’;qu,w)=v(z,2’;qu)—?He*ql\‘z*z J9(q), ), (21 Xf dkj O(Er—E)—-O(Er—E))

_ _ (2m)? E—Et(otin 7
whereg(q, ) is the so-called surface-response function @7

277 .

__=" ay(z1+22) . . and the kernelf,(zz2';q;,w) accounts for exchange-
9(qy.«) q f dzlf dze X(21:2230) @) correlation(xc) effects beyond a time-dependent Hartree ap-

(220  proximation. In Eq.(27), ©(x) is the Heaviside step func-

The energy loss function lg{q;,w) satisfies thef sum tion, # is a positive infinitesimal, the energi&s andE; are

rule® k\l

E'—S +? (28)

f dwwlmg(q” w)=2T7 qHJ dZequZn(Z) (23 and
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(k;+q)? size effect® (QSB originated in the quantization of the en-
=&t — 5 (29 ergy levels normal to the surface: as the slab thickraess
increases new subbands for thenotion become occupied,
and the wave functiong;(z) and energies;, which de- thereby leading to oscillatory functions af[the amplitude
scribe motion normal to the surface, are the eigenfunctionsf these oscillations decays approximately linearly wath
and eigenvalues of the one-dimensional Kohn-Sham Ham”and their period equa|sF/2,)\F:2fn-/(3ﬂ-2F)1/3 being the

tonian Fermi wavelength For each quantityr under study we con-
5 sidered three different values ef One such value is the

H=— } d_2 +(2)+0,(2), (30) t_hres_holc_i widtha,, f_or which thenth subband for thg mo-

2z tion is first occupied. The other two values aag =a,

—\g/4 and a; =a,+\¢/4, and the infinite-width limit is

z) being the electrostatic potential ang.(z) representin
0(2) d P #(2) rep 9 then extrapolated with the use of the following relatfd#?

the so-called xc potential of density-functional theory

(DFT).34 B
Within this scheme, the simplest possible approximation - a(a,)+a(a,) +a(ay) (34
is to neglect xc altogether and set the xc potentjg{z) and 3

the xc kernelf,(z,z";q;,®) equal to zero. In this case, the ) _

one-dimensional single-particle wave functions and energiesollowing this procedure to calculate the surface-response
are the self-consistent eigenfunctions and eigenvalues of tHenctiong(q,»), we have been able to prove that the sum
one-electron Hartree Hamiltonian. The calculation of therule of Eq.(23) is satisfied for all values ofj under consid-
density-response function is further simplified if the self-eration. The results presented below correspond to slabs with

consistent electrostatic potential entering Bf) is replaced N=12, for whicha~(5—6)\¢.

by
C. Simplified models
0, —a—zpsz=z . . . S
o(2)= (31) For comparison, we also consider various simplified mod-
», elsewhere els for the screened interaction(z,z’;qy,w) of a semi-

wherez, is chosen so as to ensure charge neutrality. This idfinite free-electron gas, which are all derived for electron
the so-called infinite-barrier modelBM).3> Within this densities that drop abruptly to zero at the surface. These are

model, the one-electron wave functions are simply sines, an@") a classical model consisting of a semi-infinite medium of
charge neutrality is easily found to yield local dielectric functione(w), (b) semiclassical and quan-

tized hydrodynami¢HD) models**“*and(c) a classical in-
Zo=(3/16)\[1+O(\¢/a)]. (32 finite barrier (CIB) or specular-reflectioSR) model;>*°

which has the virtue of incorporating dispersion effects by

Exchange-correlation effects are usually introducedexpressing the screened interaction in terms of the bulk di-
within the local-density approximatiofLDA) of DFT, by  electric functione(q,w). Within these models and farand
replacing the xc potential @by that of a uniform electron 2z’ coordinates that are outside the surfazez'(>0) the
gas with the local densitn(z). The xc kernel entering Eq. screened interaction is obtained through E2fl), from the

(26) is then set either equal to z€lhis is the random-phase knowledge of approximate expressions for the surface-

approximatiod® (RPA)] or equal to the stati¢w=0) xc ker-  response functiog(qy,®).

nel
1. Classical model
fQC'-DA(Z,z';q” )= dvse(n) 8(z—z'). (33 Within this approach, the screened interaction is derived
dn n=n(z) by imposing the ordinary boundary conditions of continuity

o . . . .. of the potential and the normal component of the displace-
This is the so-called adiabatic local-density apprommaﬂoqnent vector at the surface£0). For z,2'>0, one then

(ALDA).”” easily finds Eq(21) with

To compute the interacting density-response function y d
x(z2,2';q;,w), we follow the method described in Ref. 38.
We first assume than(z) vanishes at a distancg, from g(w)= )
either jellium edg€?® and expand the wave functiors(z) e(w)+1
in a Fourier sine series. We then introduce a double-cosine )
Fourier representation for the density-response function, and For a free-electron gas, the long-wavelength~0) di-
find explicit expressions for the screened interaction and th&lectric function is
surface-response function in terms of the Fourier coefficients
of the density-response functigeee the Appendjx

Great care was exercised to ensure that our slab calcula-
tions are a faithful representation of the screened interaction
and the energy-loss probability in a semi-infinite medium.and introduction of Eq(36) into Eq. (35) yields the long-
This issue is important, in view of the significant quantum-wavelength limit of Eg.(24). Introducing this limit into ei-

_Slw)—1 (35

(w)=1— —P 36)
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ther Eq.(15) or Eq.(17), one easily reproduces the classical 1
expression of Echenique and Pendnfor the stopping (qu“)2=§[w,23+ BPdf + Bayy2wy+ B7f]. (49
power of a jellium surface,
5 As in Eq.(19 gq= \/q|2| +q22, and
dE ws
— = =Z1—5Ko(2w:lv), (37) 1
dx v quﬁ(—ﬁqw V2wi+ B%ap). (45
where K, is the zero-order modified Bessel function. For
large values of (z>v/wg), Eg. (37) reduces to For the separate contributions to the sum rule of 28)
dE coming from bulk and surface plasmons, integration of Egs.
© .
_ &=Z§2—5me_2‘"sy”- (39) (41) and(42) yields
* ™ q 2
dowImg8(q,0)=— —F— 46
2. Hydrodynamic models fo ww Img™(q).«) 4 QH"“ZYqup 40

In a HD model, the collective motion of electrons in an 5nq
arbitrary inhomogeneous system is expressed in terms of the
deviations from the equilibrium density. In a semiclassical o T 27
approach, one writes and linearizes the basic hydrodynamic f dow Imgs(qH Jw)=— —”wz, (47)
equations, i.e., the continuity and the Bernuilli equation, and 0 4 qll+27’qn

for a semi-infinite system finds respectively. It is then straightforward to show that for a

semi-infinite system with a uniform electron densitythat
, (39 drops abruptly to zero at the surface the sum of bulk and
ZﬁquH(Aq”quH)— o} surface contributions to the energy-loss functiorg (ayy , w)
satisfies Eq(23).
where In the limit asq— 0 the bulk contribution to the energy-
1 loss function vanishes, and both the imaginary part of Eq.
N ANy : (39), on the one hand, and E@2), on the other hand, yield
A B\/wp+'g A~ wlwtis) 40 the long-wavelength limit of Eq(24).

wZ
P

g9(q),w)=

and B represents the speed of propagation of hydrodynamic

disturbances in the electron syst&m. ) ) o ]
Within a quantized hydrodynamic model, one first linear- Either by neglecting, within the IBM, the interference be-

izes the Hamiltonian of the hydrodynamic system with re-tween incident and scattered electr¢@$BM),™ or by sim-

spect to the induced electron density, and then quantizes thidy assuming that electrons are specularly reflected at the

Hamiltonian on the basis of the normal modes of oscillationSUrface(SRM),™ one finds

which are referred after quantization as bulk and surface

plasmons. Hence, within this approach one can distinguish 9(q),0)= 1-&(9),0) (48)

3. Specular reflection model

the separate contributions to the energy-loss function 1+ e_s(qy, @)’
Img(q) , @) coming from the excitation of either bulk or sur- where
face plasmon#®
1 (= :%Jm 4%
Img®(q,w)= EQHL do,8(w—wg) &s(q),@) P € (qw), (49)

(0 wB)q? with q= \/qf‘ +q22 and e 1(qg,w) being the inverse bulk di-
X———g—— gy —5———— (41)  electric function of Eq(20).

9, +9;(qf + 0/ B) + wp/ (487 If dispersion effects are neglected altogether, thereby re-

and placing the momentum-dependent dielectric funck6q, »)

entering Eq.(49) by a local dielectric functiore(w), Eq.

T Y w2 (48) yields the classical predictiorEq. (35)]. Alternatively,
ImgS(qH,w)z——”—pﬁ(w—qu), (42) if dispersion effects are incorporated in an approximated
| manner through the hydrodynamic dielectric function of a

. _ uniform electron gas,
represent the dispersion of

Ee)

S

respectively. Herewg’ and g,

2

bulk and surface plasmons, w
P €(Q,0)=1+ g2, (50)
o B9’ w(otin)
(wg)*=wp+ B%q° (43 . . . . .
Equation (48) is easily found to yield the hydrodynamic
and surface-response functigiq. (39)].
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40

are either well inside the solidz& —\g) [Fig. 1(a@)] or far
from the surface into the vacuunz£\g) [Fig. 1(b)]. We
have carried out self-consistent RPA and ALDA slab calcu-
lations for this quantity, as described in Sec. Il B, and have
found the expected result that for these valueg thfey co-
incide with those obtained from Eq$l9) (z<—\g) and
(21) (z=\g). Hence, the energy-loss function
ImW(z,z;q;,w) represented in Fig. 1 either does not depend
on z [Fig. 1(a)] or depends om through an overall factor of

e 29 [Fig. 1(b)].

In Fig. 1(a), bulk-plasmon(dashed ling and electron-
hole-pair(dotted ling contributions to the RPA energy-loss
function Im\/(z,z;q,») are shown separately, as obtained
from Eq. (19), together with the total energy-loss function
represented by a solid line. One sees that inside the solid the
energy-loss spectrum is dominated, for small values)of
by a continuum of bulk-plasmon excitations occurring at en-

ergies w‘?\|< w< wg , Whereq. represents the critical mo-
— C

mentum for which the bulk-plasmon dispersi@ﬁ enters the
electron-hole-pair excitation spectrum. For=2.07 andg

i =0.49¢, one findSw(?H=l7.6 eV andwgc=23.6 eV, and

bulk plasmons can be excited by charged particles moving
parallel with the surface with spead>1.13% (v, is the
Bohr velocity,v=2.19x10° ms1).

For z coordinates that are outside the surface it had been
generally believed that the energy loss originates entirely in
the excitation of surface plasmons and electron-hole firs.
Nevertheless, the continuum of bulk-plasmon excitations
o (au.) dominating the energy loss of charged particles moving in-
side the solidsee Fig. 18)] is still present forz coordinates
outside the surface, as shown in Figb)l although the main

a)

0 0.25 0.5

02
b)

0.05—

! | L | 2 1 .
0 0.25 0.5 0.75 1

FIG. 1. The energy-loss function, W(z,z;q; ,w), as a function

of w with q;=0.49¢ andz coordinates that are either well inside the -
. . ntribution he energy | now clearl mes from th
solid (z<—\g) or far from the surface into the vacuum=\g). contribution to the energy loss now clearly comes from the

- S

(a) The solid line represents the total RPA energy-loss function, agxutatlon of surface plasmons at= qu (for rs=2.07 and
obtained from Eq(19) with z< —\¢; dashed and dotted lines rep- ¢j=0.4qe, one finds w§|‘~16.0 e\). The bulk-plasmon
resent the corresponding bulk-plasmon and electron-hole-pair co=gntribution to IMW(z,2,q), ), as obtained forz=N\g
tributions, respectively(b) The solid line represents the SRM ithin a quantized hydrodynamic model by introducing Eq.
energy-loss function, as obtained for A with the use of Eq(48) (41) into Eq. (21) (see also Ref. 48is represented in Fig.
and the RPA dielectric functioa(q,w); the dotted line represents 1(b) by a dotted line. The total SRM energy-loss function, as
Fhe bulk-plasmon contribution, as obtained by introducing Ed) obtained with the use of Eq48) and the RPA dielectric
into Eq. (21). function e(q,w), is represented in Fig.()) by a solid line.
This curve shows that at low frequencies the energy-loss
spectrum is dominated by the creation of electron-hole pairs,

We choose the bulk charge dens@to be equal to losses centered arourmﬁH are due to the excitation of sur-

the average electron density of valence electrons in alumiface plasmons exhibiting a finite linewidth, and bulk-
num metal ¢(;=2.07), for which the Fermi momentufiy= ~ Plasmon excitations yield energy losses at w(?” that
=(37?n)Y? and bulk plasma frequencyw() are gz  nearly coincide with the result one obtains within the quan-
:0-927361 (ag is the Bohr radius,aq=0.529 A) and tized hydrodynamic model. We have also carried out self-
w,=15.8 eV, respectively. We s@; =+1 and our results consistent slab calculations of the energy-loss function
can then be used for arbitrary values@f, as the energy- Img(q,»), which for small values ofj (q;<qg) has been
loss probability is, within linear-response theory, propor-fOUﬂd to be close to that obtained within the SRM. Never-
tional to Z2. theless, differences have been found in the surface-plasmon
In this section, we first show results for the energy-loss€Nergy qu‘ , which shifts to lower frequencies as demon-
function Im\W(z,z;q; ,») entering Eqs(15) and(17). Figure  strated earlier™*" also, the thickness of the slab is required
1 shows InW(z,z;q,»), as a function ofw, with q to be very large for the self-consistent calculations to prop-
=0.4q¢ (for this small value ofq; both bulk and surface erly account for the high-energy spectrum originated in the
plasmons are well-defined excitatigrandz coordinates that excitation of bulk plasmons and electron-hole pairs.

Ill. RESULTS AND DISCUSSION
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025 - - i - - peak dominates the spectrum, showing that a proper treat-
L2 _f' i . ment of the surface density profile is crucial for the energy
' dependence of the energy-loss probability. These results are
in qualitative agreement with the calculations reported in

Ref. 21, where the selvage structure is introduced in an ap-

0.2

52‘“5 proximate manner within the HD and the SR models.

= Bulk-plasmon losses occurring in the vacuum side of the
S surface[see Fig. )] are not visible in the total energy-loss
x o

probability P(w) which is dominated by the excitation of
surface plasmons and electron-hole pairs, as shown in Fig.
2(b). Also, this figure shows substantial changes in the
energy-loss probability as a realistic description of the sur-
face response is considered, with an important shift of the
surface-plasmon peak towards smaller energies, in agree-
ment with the experimentally determined surface-plasmon
0.04 —— ——— - energies of simple meta?$:>!
b) Figure 3 shows a surface plot of our full IBNFig. 3(@)],
I | RPA [Fig. 3(b)], and ALDA [Fig. 3(c)] calculations of the
probability P(w) for a charged particle moving with speed
v =_2v, parallel to the surface. The plot is shown as a func-
tion of the energy los® and the distance from the particle
trajectory to the surface. Although the energy-loss probabil-
ity is found to be divided into losses centered around the
bulk-plasmon energyin the interior of the solifd and the
surface-plasmon energputside the solig this separation is
not as clear as predicted with the use of simplified models for
the surface responsgee, e.g., Ref. 31 As z— —« the
. energy-loss probability?(w) reaches a constant shape cen-
ope L L mel == tered around the bulk-plasmon energy, which does not de-
pend on the details of the electronic selvage at the surface
and only depends on whether the xc kerhig(z,z’;q) , ) is
FIG. 2. The energy-loss probabili(w), as obtained from Eq. set equal to zer¢lBM and RPA or not (ALDA). Outside
(17) with v=2v, and two differentz coordinates(a) z=—Ag/2  the solid, the energy-loss probability, which is centered
and(b) z=\g/2. Dashed-dotted, dashed, thick solid, and thin solidaround the surface-plasmon energy, decreases with the dis-
lines represent SRM, IBM, RPA, and ALDA calculations. The tancez from the surface to the particle trajectory.
SRM probabilities have been obtained with the use of the RPA Figure 4a) depicts our full IBM(dashed ling RPA (thick
dielectric functione(q,w). The damping parameter is taken to be sglid line) and ALDA (thin solid line calculations of the
y=wy/10. stopping power, as obtained from either Et¥) or (16) as a
function of z and withv=2v,. In the interior of the solid,
Figure 2 shows self-consistent calculations of the probwhere the electron density is taken to be constant, both IBM
ability P(w) for a charged particle to exchange energy and RPA stopping powers coincide with the well-known
with the medium, as obtained from E@L7). The particle = RPA stopping power of a uniform electron gas. Short-range
is assumed to move parallel to the surface withk2v,  xc effects, included in the ALDA, provoke a reduction in the
and two differentz coordinates for which the electronic screening of electron-electron interactions, thereby increas-
selvage at the surface is expected to play an important roléng the energy loss. Outside the solid the electronic selvage
z=—\g/2 [Fig. 28] andz= \¢/2 [Fig. 2(b)]. Dashed, thick at the surface plays a crucial role in the actual behavior of the
solid, and thin solid lines give the result of IBM, RPA, and stopping power: a slow decrease of the electron density at the
ALDA calculations, and dashed-dotted lines represent thenetal surface leads to a larger energy-loss probakisige
SRM probability obtained with the RPA dielectric function also Fig. 2 and Eq(23)], and the IBM stopping power is,
e(q,w). therefore, found to be too small. In the SRM the electron
In the interior of the solidFig. 2(@)], the bulk-plasmon density is assumed to drop abruptly to zero at the surface,
energy-loss spectrum is known to be inhibited by the preswhich provokes a reduction in the electron-hole excitation
ence of surface-plasmon losses through the so-called bregeprobability, and the stopping power outside the s¢bée
zung or boundary effect predicted by RitcRighose exis-  Fig. 4(b)] is found to be even smaller than in the IBM. Low-
tence is due to the orthogonality of the surface-plasmon andnergy excitations involve transitions from occupied elec-
bulk-plasmon modes. Nevertheless, as the electronic selvagenic states near the Fermi level, which are sensitive to the
is changed from zer(SRM) to its actual structuré€RPA and  actual density profile at the surface, and are found to play an
ALDA),*? the creation of electron-hole pairs increases, thémportant role in the energy-loss mechanism of charged par-
surface-plasmon peak diminishes, and a broad bulk-plasmdities moving withv <2v,. Also plotted in Fig. 4b) is the
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FIG. 3. The energy-loss probability(w) vs the energy loss
il o and thez coordinate, as obtained for=2v within the (a) IBM,
i (b) RPA, and (c) ALDA. The solid is in the regionz<O0.
I e = w,/10

7= wp/10.

(b)

result of assuming that the stopping power for a chargedponse of the solid. In this limit and with the aid of EgJ)
particle that moves at a distanee€from the surface can be one easily finds the classical stopping power of &7).
approximated by that of a uniform electron gas with the local The velocity dependence of the stopping power is shown
densityn(z).%® This often-used local-density approximation in Fig. 5@a) for a particle moving outside the surface &t
also yields an inaccurate description of the position-=\g. Our full IBM, RPA, and ALDA calculations are rep-
dependent stopping power, due to the intrinsic nature ofesented, as in Fig(d), by dashed, thick solid, and thin solid
surface-induced excitations not present within this approacHines, respectively, and the SRM stopping power is repre-
and the results presented in Fig. 4 show the need for a seléented by a dashed-dotted line, as obtained with the RPA
consistent description of the surface response if one is tdielectric functione(q,w). At low velocities the energy-loss
look at the energy loss of charged particles moving outside g8pectrum is dominated by intermediate- and short-
solid surface. wavelength excitations, even far from the surface into the
As the velocity increases the energy-loss spectrum ofacuum, and a combination of the actual electronic selvage
charged particles moving far from the surface into theat the surface with the intrinsic nature of surface-induced
vacuum is dominated by long-wavelength excitations and thexcitations play an important role in increasing the energy
stopping power is dictated by the integration ofloss. At high velocities the energy-loss spectrum is domi-
o Img(q, ), which as a result of particle conservati@ee nated by the surface-plasmon excitatisee Eq(24)] and all
Eqg. (23)] does not depend on the details of the actual recalculations converge with the classical limit of E§7), as
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FIG. 4. Stopping power, as obtained from either Ed) or (16) FIG. 5. Stopping power, as obtained from either &) or (16)

as a function oz and withv =2v,,. (a) Dashed, thick solid, and thin . L :
solid lines represent IBM, RPA, and ALDA calculatiorib) RPA "ﬁf i fu?gtlondofzé_ andl_gllt_h z=h¢/2. (@) Dsasp/led doéte(_j, c(ijashﬁd,h
(thick solid ling, SRM, as obtained with the use of the RPA dielec-t Ic ?OA ,sgAtdlnlsm ]lcnes reap(rese)ntlBM F?F?AO talg('e%v[\)/z the
. . ! : : . : use of the ielectric functioa(q, w), , ,an
3;?31232‘32 iﬂ’e“gogi‘(’fgei‘:] 't't':g'r:“i‘éfga"dfzs'%(‘)mhed N alculations.(b) 1BM (solid line), SRM (dashed-dotted line and
' 9 CYT @Y local-density(dashed ling The classical prediction of Eq37) is

- A . . ted by a dotted ling= w,/100.
shown in Fig. 8b). As in Fig. 4b), the local-density approxi- represented by a dotied ing=wp

mation is also represented in this figure, showing that this
often-used approximation cannot account for the energy losgroadened, and the surface-plasmon peak is considerably
originated in surface-induced excitations, not even at lowshifted towards smaller energies. The electronic selvage at
velocities where the energy loss is entirely due to the excithe surface has also been found to increase both the energy-
tation of electron-hole pairs. loss probability and the stopping power for charged particles
moving in the vacuum side of the surface.

In the high-velocity limit and for charged particles mov-
ing far from the surface into the vacuum the actual stopping

We have reported self-consistent calculations of the enpower is found to converge with the classical limit dictated
ergy loss spectra of charged particles moving parallel to &y Eg. (37). However, at low and intermediate velocities
plane-bounded free-electron gas, in the framework of linearsubstantial changes in the stopping power have been ob-
response theory. We have found that the continuum of bulkserved as a realistic description of the surface response is
plasmon excitations dominating the energy loss of chargedonsidered, and we have concluded that a self-consistent de-
particles moving inside the solid is still present for particle scription of the surface response is necessary if one is to look
trajectories outside the surface. Nevertheless, these bullat the energy loss of charged particles moving outside a solid
plasmon excitations are found not to be visible in the totalsurface. Accurate measurements of the energy loss of pro-
energy-loss probabilityP(w), which outside the solid is tons being reflected from a variety of solid surfaces at graz-
clearly dominated by the excitation of surface plasmons anéhg incidence have been report¥d® A theoretical descrip-
electron-hole pairs. tion of these experiments requires that the ion trajectéty

As for the effect of the electronic selvage at the surfacepe calculated and energy losses from the excitation of inner
we have found that the so-called bregenzung or boundarghells be taken into account. Also, in real experiments band-
effect inside the solid is diminished, plasmon peaks arestructure effects might be important and the surface rough-

IV. SUMMARY
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ness might lead to additional energy loss due to the so-calledhere
Smith-Purcell effect! Work in this direction is now in

Hmk
progress. Win( 0, @) =0 me( )+~
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APPENDIX _[1+(_1)m+n]qn[ 2( ) i ]
Here we give explicit expressions for the screened inter- (qj +(nm/d)
action and the surface-response function in terms of the Fou- (A4)
rier coefficients of the density-response function. We firstand
introduce the following double-cosine Fourier representation
for the density-response function: 1, for m=0
© _ ~ Fm=1 2 for m=1. (AS)
(2,25 ,w)=mE:O ngo Xmn(0) @) cOgmmz)cognmz’), Similarly, introduction of Eq(A1) into Eq. (22) yields
(A1) , e -
~ 2md 1
whered=a+ 2z, andz=(z+z,+a)/d. 9(q),@)=— a2 2 AmnXmn(d), @),
Introducing Eq.(A1) into Eq.(18), we obtain the follow- I m=0n=0 fmfn (A6)
ing expression for the screened interaction:
where
W(z,2';q),0)= 2, 2, Wiq(g),©)cogmaz)cognaz’), pmd) 1—e%%ogmm)
m=0 n=0 ap=— d 5 T (A7)
(A2) qj+(mmw/d)
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