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Longitudinal solitons in carbon nanotubes
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We present results on soliton excitations in carbon nanot(®&3’s) using Brenner's many-body potential.

Our numerical simulations demonstrate high soliton stability in (10,10) CNT's. The interactions of solitons
and solitary excitation with CNT defect are found to be inelastic if the excitations and defects length scales are
comparable, resulting in a substantial part of soliton energy being distributed inhomogeneously over the defect
bonds. In these solitary-excitation—cap collisions the local energy of a few bonds in the cap can exceed the
average energy by an order of magnitude and more. This phenomenon, denoted the “Tsunami effect,” can
contribute dynamically to the recently proposed “kinky chemistry.” We also present results of changes in the
local density of states and variations in the atomic partial charges estimated at different time instants of the
solitary-excitation Tsunami at the nanotube cap.
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[. INTRODUCTION tube containing 1000—-11 000 atoms. The simulations were
performed for free, rigid, and capped tube ends. Our inves-
Since the discovery of carbon nanotubes by lijihearich  tigations include soliton stability, reflection from free and

mentally observed. Carbon nanotul@NT's) are very in-  €NCe of thermal fluctuations. We find that the interaction of
triguing objects for both experimental and theoretical inves—?’o“tary excitations with the CNT cap can be either e IaSt'C. or
tigations due to the many unusual properties they exhibit'.nelaSt!C' In the Iatt_er case some part O.f the energy 1 retained
Their potential for practical applications, especially in the8S an.|nt_ernal excitation of the cap with the remaining por-
area of nanotechnology, is very promising. Among theirtion dlstrlbqted very inhomogeneously over the C-C bonds.
many uses envisioned are applications of nanoscale elea—-h's_effeCt is found to be most pronounced for th_e honsym-
tronic devices, field-emission displays, and quantum wiires.Metrical caps. The degree of energy concentration depends
Nanotube doping and structure modification can result in théensmvgly on the cap structure and sohtary-exmtathn energy
formation of heterojunctionddiodes’ quantum dots,field- and profile. In some cases the energy of few bonds in the cap

effect transistosand one-electron conductors exceeds the average solitary-excitation energy by an order of

The dynamical properties of carbon nanotubes are of gre agnr;tudg ?r more.(,:ANﬁ_lymllar phenomenon is also observed
interest due to their potential for useful practical 10" Other defects in S-

application€ The theoretical methods for explaining these The paper 1s o_rganlzed as fOHOW,S: In Seg. Il we der_|ve a
properties range from accura initio methods to approxi- nonlinear expansion of the Brenner’s potential for longitudi-

mate empirical schemes. Few experimental findings, howpal and _radial atomic di.splaceme.nts. section III_cor!tains.the
ever, were analyzed using empirical methods that explicitl)formm"’ltlon of an analytical equation for 'the Iongltudlna}l dis-

take into account harmonic contributions such as effects Opla(_:ements of at_oms 6!'0”9 the CNT axis. In_thls sectl_on we
different vibrational modes. In particular, nonlinear localized4€!ve the one-dimensional Korteweg—de Vries equation as-
excitations can transfer energy and be involved in variou$UMing angular homogeneity and neglecting the radial dis-

processes of interest. There have been some speculations %I cements and obtain the corresponding supersonic soliton

the role played by solitary excitations in heat transfer, pol SO u_tion. Results of th_e numerical simulatiqns of solito'n be-
piay y y poly vior in CNT’s are given in Sec. IV. Section V contains a

mer destruction, and other processes occurring in molecul fled vsis of ol o lisi ith CNT
systems. While in most cases of interest the harmonic ap- ctailed analysis ol so |tz_;\ry-eXC|ta_t|on_ collisions .W't .
defects. The possible soliton contributions to various chemi-

proximation is sufficient to describe molecular processes, | and phvsical . f ONT’ briefly di di
some molecular materials contain atoms interacting throug al and physical properties of CNT's are briefly discussed in
ec. VI with special attention paid to the changes in the local

nonlinear interatomic potentials that can give rise to soliton i of d L . Al = ch
excitations. The investigation of these nonlinear effects isdens'ty of states and variations in partial atomic charges at

therefore interesting and timely. different instances of the soliton-cap interaction. Along with

In this work we investigate the nonlinear effects in carbonSUmmarizing our results, we also propose possible ways of

nanotubes giving rise to solitons using empirical methodsSC!ItON generation in this section.

We employ Brenner’s nonlocal many-body potential for car-
bon system&? Its simple analytical form as well as its reli-
ability for carbon systems coupled with its computational
efficiency makes it a natural candidate for such investiga- Carbon nanotube@nly single-walled CNT's are consid-
tions. The nanotube chosen for our simulations is a (10,10¢red in this work are highly anisotropic and ordered objects

IIl. NONLINEAR EXPANSION OF THE BRENNER
POTENTIAL
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with great aspect ratio. The CNT surface is formed by a
graphitic sheet folded into a cylinder with bond lengths and
angles differing slightly from graphite on account of the

strain induced by the folding. The interatomic C-C potential

is highly unharmonic and can be approximated using classi-
cal many-body potentials containing either exponential or
power terms. Generally, these potentials do not provide ar
exactly solvable dynamical equation in the nonlinear con-
tinuum approximation, and therefore some approximations
need to be made in order to yield desired solutions.

The unharmonic solutions in nonlinear one-dimensional
(1D) lattices are frequently approximated by the
Korteweg—de Vries(KdV) equationt? Since CNT’s are ‘
quasi-1D objects, in order to obtain nonlinear excitations in Z,.2,Z,,
CNT's, it is reasonable to approximate a CNT as a 1D lattice o
with a nonlinear effective potential. We then make the con- FIG- 1. A part of (10,10) nanotube. The tube is oriented along
tinuum approximation for this system and derive the correN€Zaxis. Atoms innth, (n=1)th layers are marked by black and
sponding KdV equation. gray circles, respectively.

We obtain the nonlinear effective potential for CNT'’s by . . L : o
expanding Brenner's many-body potential in a Taylor serie&_a\’e |der_1t_|calz aond radl%l dlsplac(?ments from the(|)r equilib-
up to the third-order terms. The corresponding Newtoniar/lUm PositionsZy and R™ Z,=Z,+ ¢, and R,=R"+py,
equations of motion in finite differences are then derived andvhereZ, andR, are the perturbed coordinates afydandpn,
finally, the continuous analognonlinear partial differential @€ the displacements from the equilibrium. The(r)1, theocoor-
equation for the system is obtained. This results in a Kdv dinates ofith atom innth layer are R+p,, @7, Z;
equation that describes longitudinal nonlinear excitations™¢n). If £ andp are much smaller when compared to char-

NV

(solitons in CNT's. acteristic length scaleg{<l, and p,<R?), then the inter-
According to Brenner's many-body potentfdithe bond ~ atomic potentialEq. (1)] can be expanded in a Taylor series
energy between adjacent atoinand] is expressed as and the terms up to the third order retained:
ED —VR_B VA 1 .
ij— Yij— PijVij @ E=Ey+ >, E,, 2
n=1

where Vi and V{; are, respectively, exponential repulsive

and attractive termsv™(r;;) =27.27 exp—3.28(;; — 1.39)] whereE, is the ground state energy of the relaxed CNT and
and VA(rjj)=33.27 exp—2.69(;;— 1.39)]. B;; represents the perturbation energy is the sum over bij layers of
an environment-dependent many-body coupling between aENT's. For every layeE,=2mE? is the sum of perturbation
omsi andj containing geometric information associated with energies of 2n atoms in thenth layer due to atomic displace-
the systent® The total energy of the system is obtained byments, and the energy of an atomB&=4(E,+E,+Ej),

summing Eq.(1) over all bonds. The energy and diStanceswhereEl, E,, andE; are energies of bonds emerging from

areTrr?eaSl[yr%(_jl_in e\f/ gnd anqs;tm respelctri]velyb q any atom in thenth layer (see Fig. 1 It is convenient to
e reliability of Brenner's potential has been demon-qq,ce  poth { and p to dimensionless units:¢,

strated in many numerical calculations of carbon systems in
; ; ; —Lnllo,  pa—pnllo.

different phaseggraphite, diamond, fullerenes, and large

clusters, in both the ground state as well as in nonequilib-

rium states including chemical reactiolsEurthermore, the

simple form of the potential allows us to easily derive ana-

lytical expressions for forces. This also allows efficient

TABLE |. Coefficients(in eV) in the expansion of Brenner's
potential[Eqg. (3)] and the equilibrium distance between laygss
(in A) for CNT’s of different diameters.

large-scale simulations of the system using available com- (5,5) (10,10) (15,15) (20,20)
puter resources.

In the present work we consider only armchaim,m)  a; 102.80 102.76 102.70 102.66
CNT’s. The procedure and results are similar in the case o, 296.46 296.22 295.86 294.39
zigzag M,0) nanotubes. We use the cylindrical coordinateb; 11.80 2.98 1.32 0.76
system R,®,Z) for obvious reasons and align the tube axisb, 0.34 0.10 0.04 0.00
along thez axis (Fig. 1). With this choice there arer@ atoms b, 9.06 4.59 3.09 231
in the CNT layer having the san®ecoordinates. The equi- b, 18.42 2.40 0.72 0.30
librium distance between layers,, has a slight dependence c, 12.24 6.16 4.14 3.10
on the CNT diametefsee Table )l For a(10,10 tube,l, C, 71.34 35.82 24.06 17.94
~1.26 A. Cs 152.40 154.56 154.20 153.66

Let us consider a cylindrically symmetrical disturbance inj 1.2601 1.2573 1.2568 1.2565

the CNT geometry in which all @ atoms in thenth layer
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Then an expansioR} over atomic{ andp displacements This is a nonlinear equation in finite differences. In the next
in the nth layer has the form section we derive its continuum analog and examine the con-
o sequences.
a_ 2 &2 3, -1 2
En=g Unram )™= g ldnsa= L™ 50 lll. KORTEWEG —DE VRIES SOLITONS IN CNT'S
2 , b3 5 Equation(4) presents a true 1D nonlinear problem with
+ 5 (Paratp)™t F (Pnse1=Pn) (Pnsat pn) only one variableZ. The corresponding continuum equation
is obtained by using the work of Toda.Let the relative
_ b, ; C1 _ displacement of all atoms imth and f—1)th layers be
3 Pt 5 (nsa= ) (Pnsat pn) given by xn={,—{,_1. The continuum approximation is
then valid if only excitations with wavelengths much greater
than the lattice constang are allowed. The expression for
the 1D expansion of Brenner's potent[&q. (2)] in Taylor
series can be written as

C C
- §(§n+1_§n)2(pn+1+9n)+ §(§n+l_gn)

X(Pn+1—pn)?. &)
Numerical values for the expansion coefficients in &) are M a; , A 4
iven i E=Eot > | 5 Xo~ = Xnl- ®
given in Table | for (5,%,(10,10,(15,15), and (20,20) 0T & | 2An 3 An

nanotubes. All coefficients in E¢3) are measured in eV and

variables{ andp are chosen to be dimensionless. Here onlyThe corresponding equation of motions for relative displace-
the leading terms in the nearest-neighbor interaction are rementsy is

tained. In this assumption the CNT is treated as a one-

dimensional lattice with &1 carbon atoms at each lattice site xn ) )

interacting through an effective potential given by Eg). M——=2[axxy—aixn]—[@2Xn+1~@1Xn+1]
Terms in Eq.(3) can be categorized in three groups. The Jt

) ; S X X )

first contains only longitudinal variableg the second con —[asx?_ 1—aixn_1]. 6)

tains only the radial variables, and the third contains cross
terms. The coefficienta, ,a, in the first group have the larg-
est absolute values and are mostly independent on the CNJ, o niant to introduce a shift operatBr 1= exp( d/dn)
diameter(see Table)l The cpefﬂments in other groupd;( for a shift along the discrete chain by one step to the right
andc;) have smaller numerical values but a strong depegeft) such thatP=f(n)=f(n*1), wheref(n) is an arbi-

Equation (6) contains terms withy,+; and Xﬁtl' It is

dence on the CNT diameter: the Iayger the Cl_\lT_d|a}meter, th ary function of discrete coordinate Equation(6) can then
smaller the values of these coefficients. This indicates th ;

o S e written as
the contribution from the longitudinal degree of freedom to

the dynamical properties of CNT is dominant, and the role of 2
other members decreases with the increase in the CNT diam- Xn _ 2 exp{ i) _ exp( _ i (a 2_ 4 )
. . . 2 2Xn 1Xn)»
eters. We therefore consider only the longitudinal degree of ot an an
freedom in the study of nonlinear dynamics. Analytical and 7

numerical results for the case in which both longitudinal and
radial degrees of freedom are considered will follow in a®"
future report. We note that these results differ only in minor

guantitative details, the main features being determined by Mﬁzxn — _|2sin li Z(a 2_a,y0) ®)
the longitudinal degree of freedom. o2 2 9n 2Xn™ d1Xn),
Note that the oscillatory equation for the radial vibrations
resulting in
072Pn _
g2 = ~bpn P?x (192 AN
M—-—a4|2sinf = —|| xtay 2sinf = —|| x“=0.
. “ - . 2 2 dn 2 dn

gives the lowest-frequency “breathing” mode in the har- )

monic radial approximation for CNT’s, and the Raman fre-

quency for this mode for the (10,10) CNT 48165 cni?, _— . . . . :
whereM is the mass of carbon atom. If sinh(3d/n) in the third term in Eq(9) is expanded in

The Newtonian equation of motion for longitudinatlis- ~ Taylor series up to the linear term, then the equation can be

placementgneglecting radial degrees of freedpia rewritten as
¢y X (1 a) ] ? 2
M= =aul(fnes= o)~ (n o] M~ 81| 2SI 3 5| x+a2zGx*=0. (10
—ay[(Lns1—En)?—(En—Eno1)?]. (4) and can be factored into the following products:
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Equations(10) and (11) are equivalent modulo terms of > "¢

third order. Equation(11) has a form of a product of two
operatorsF,F,y. If we make a further assumptior,y

=012 then the wave packet moving to the righeft) is
described by

N 0 : : ; : 0
:TZ X%} x=0. (12) Soliton half-width (w)
a
! FIG. 2. The dependence of soliton velocity, on the soliton

If sinh(3a/an) in Eq. (12) is further expanded in a Taylor half-WidthW. vsaunqis the longitudinal sound velocity.

series up to the third-order terms andis substituted by o ) o )
continuum variable, one gets the corresponding continuum  The soliton in Eq(15) contains both kinetic and potential

19
2n

J
Nﬁiz@smr(

equation: energies and their contribution to the total energy of soliton
(E™) are roughly the same. The dependenceEf' on w
X x Py dx as well as individual contributions from kineti€(™) and
o kg kzg ~kax =0, (13 potential EP*) energies is shown in Fig. 3.
The solution[Eg. (15)] was obtained using rather crude
where ki;=k, k,=k/24, ksz=(a,/a;)k, and k= approximations, neglecting higher-order terms in the expan-
+ya, /M. sion of Eq.(5) and radial displacements. In order to obtain a

Equation(13) can be reduced to the standard KdV equa-more realistic soliton behavior, we next perform detailed nu-
tion (U, +6uU,+ Uy,=0) by the linear substitution of vari- Merical simulations.
ables:

5=ki24, 7=6t, x=z—kt, u=a,ky/65a;. (14) IV. NUMERICAL SIMULATION OF SOLITONS IN CNT'S

We present our results of the molecular dynamid4D)
simulation using Brenner’s many-body potential for the soli-
y=+AsecR(Bz+Ct). (15) ton evolu_ti_on in the _(10,10) CNT s_ubject to different bound-
ary conditions that include free, rigid, or capped ends. The

Here A=12(k,/ks)B? ~C=B(k,+4k,B?. Solution of findings for the (6,6) CNT are essentially the same.
Eq. (15) is a soliton with amplitude\ of either compression

(A<0) or elongation A>0) propagating in the positive or 40
negative direction along theaxis with velocityv .= C/B.
It describes a continuum set of one-parametric solitons, i.e.
coefficientsA and C can be expressed through the single
parameter, e.g., soliton half-width~ 1.76B. 30
Soliton velocity can be expressed ag,=k;+4k,B?
=0 sound(1+0.52M%), wherev g n= ki =a; /M is the lon-
gitudinal sound velocity £20 km/sec). This value is in 3 2
good agreement with the value 20.35 km/sec obtained ir® |
Ref. 14. The solutiodEqg. (15)] is thus the supersonic soli-
ton. For the solitons used extensively in our numerical simu-
lations(Sec. IV), the valuew=2 was usually employed, and 1}
Vsor~ 1.1 50ung- NOte that the solutiofEq. (15)] has a form ‘
of solitary wave forrelative zdisplacements. Faabsolute z
coordinates it transforms into a kink solutiortanhBz

Then the soliton solution of Eq13) has a form

+Ct). In the limit w—oo the soliton velocity tends to the > . 5 6
; ) S Soliton half-width (w)

sound velocity. The dependencewqf, onw is shown in Fig.

2. Solitons withw=1 (less than the lattice constaky) are FIG. 3. The dependence of total soliton energy’{ on soliton

highly unstable in discrete systems, and therefore this depeialf-width w and individual contributions from kineticE™") and

dence is shown only fow=1.5. potential EP®) energies.
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FIG. 4. Soliton evolution in the (10,10) nanotube with 3000 X 4w 20 O
atoms(150 layer$ with free ends. The soliton half-width ig=2 0 140 120 100 80 60
and|A|2= x2 is the square of relative longitudinal displacements of Layer pumber
the nth and f—1)th layers. The modulation of the soliton ampli- ) . . .
tude in this figure is explained by the lattice discreteness and soliton FIG. 5. Temporary evolution of two soll_to_n_s with, =2 (right
narrowness. Actugy values are shown in insertion at two different at t=0) an’d wp=3 (Ieft att=0) moving |n|t.|allyl toward each
time instants(labeled by the full circle and empty stars, respec- other. CNT's and notations are the same as in Fig. 4.
tively). Only maximal values ofA|? reflect the soliton stability.

and velocities, demonstrating their characteristic soliton
. feature.

Our CNT consisted of 1000-11000 carbon atoftie Our numerical simulations performed af=300 K
number of layersN;=50-550), with a nanotube length in showed no evidence of the influence of thermal fluctuations
the range 63—700 A. The integration MD step was 0.35 fson the soliton stability. Also, there were no detectable soliton
and the Verlet-Beemann algorithm was used to integrate thdistortions in the presence of defedfoint mass defects,
equations of motion. Initial conditions were chosen in thevibrationally excited bonds, elcin the CNT structure. Fur-
form given by Eq.(15 with typical range of parameters thermore, no significant interaction with low-intensity
valuessw=2-5, A=0.2-0.03 A. Raman-active tangential mode~(585 cm?) was ob-

The solution Eq(15), describes the compression or elon- served. Results of the MD simulations, therefore, support the
gation soliton with variable amplitudes and velocities de-fact that the KdV equation is a good approximation for the
pending on the half-widthv, propagating on the CNT sur- description of longitudinal nonlinear excitations—solitons in
face. This solitary excitation is homogeneous with respect t&NT's—if radial displacements are frozen. _
the azimuthal anglé. As a first step in the numerical simu- ~ We have also performed MD simulations of soliton evo-
lation we investigate the soliton evolution in CNT’s with !ution (propagation, reflection and collision between two
frozen radial displacements, i.e., by allowing only thdis-  SOlitons in a 1D lattice(a true 1D analog of CNjTconsisting

of atoms interacting through the potential described by Eq.
placements of the atoms. - . s
The time evolution of a single soliton propagating along(s)' (?ur results arein full agreement W|th_ the findings forth_e
. - L CNT'’s, suggesting that the neglect of higher-order terms in
the (10,10) nanotube is shown in Fig. 4. The soliton is rathe{he ex . B ) “bod .
. . pansion of Brenner's many-body potenfi&d. (1)] is
St‘_”‘t?'e as it traverse_s the CN_T length 150 A) W|th_only a justified. The situation changes, however, if the radial de-
minimal decrease in amplitude. For CNT's with cyclic

o X rees of freedom are allowed. The folding of the graphite
boundary conditions the soliton can travel much longer path ¥ g grapn

) . : . . heet to form CNT’s results in the mixing of longitudinal and
without suffering any noticeable decrease in amplitude. Th?adial modes. As a result, equations of motion for these two

2 . . . .
Al valge, sparomma;ely propqrtlor)al tq th? ela(jst!c IS‘:C.)I'tOA?mOdeS now contain cross terms that can influence the behav-
energy in the harmonic approximation, is plotted in Fig. 4.;0." ;¢ o longitudinal soliton.

The wider the soliton, the greater its stability. In the limit of The numerical simulation of the initial state evolution

?nfinite CNT diameter, Eq(15) describe_s a_so_liton propag_at-_ chosen in the form of longitudinal soliton in CNEq. (15)]

ing on the grz_iph|t_e surfz_ice. Its_ behavior is I|kely to b_e SIMwith all allowed degrees of freedom shows the soliton to be
lar to the solltor_1 In an isotropic h_exagonal Iatt_|ce with the,oqq stable, with a slow dissipation of the initial energy
Lennard-Jones interatomic potential, propagating along th‘fhrough the harmonic radial oscillations. Results of analyti-

[110] direction:® cal analysis and detailed numerical investigations of the
While the soliton with half-widthw<2 interacts with |ongitudinal-radial solitons are planned to be presented in a
open CNT ends inelastically, a wider soliton reflects fromforthcoming paper.
the open ends without any appreciable changes. Rigid CNT
ends, on the other hand, are found to preserve the soliton , INTERACTION OF SOLITARY EXCITATIONS
stability for anyw. WITH NANOTUBE CAPS
The collision of two solitons with different parameters is
illustrated in Fig. 5. As seen in the figure, the solitons collide We next investigate the interaction of the solitons with
and pass through each other without changing their profileeanotube caps. Our results for the interaction of narrew (
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=2-4) solitons with nonlocal defectdree tube ends and
caps show it to be inelastic with the excitation energy being
distributed approximately evenly over all the bonds in this
region. Interesting effects can be expected in the case when
the length scales of both the excitations and defects are com-
parable. Towards this end, we perform a detailed numerical
investigation of interaction of excitations with the CNT caps.

Solitons withw= 10 carry too small an energy to induce
any noticeable effects in the cap. So we used solitary exci-
tations with other profiles. When a solitary excitation has a
characteristic length scale much greater than the lattice con-
stant the nonlinear effects can be ignored and can be treated
within the harmonic approximation. Furthermore, for long-
wavelength excitations, the dispersion effects in harmonic
approximation are not significant. In this case, an arbitrary
excitation propagates along the harmonic chain with speeds
close to the sound velocity with only a minimal change in its
profile. We have examined the propagation of a longitudinal
solitary excitation using the parametejs=A secR[B(z
—Vsound)] With w=10 andA=0.1 A. This excitation was
found to be highly stable even when all degrees of freedom
were allowed and survived the reflection from free ends.

The same results were obtained for solitary waves with
other analytical profiles and similar widths and amplitudes.
The other types of excitations studied included an excitation
of the Gaussian profile

A F{ (Z_Usouné)zl
X= eXg ————5 |

2TW 2w

(a)

(b

also withw=10 andA=0.1 A.

Although the soliton propagation is accompanied by a
highly coherent and predominantly longitudinal displace-
ments of the atoms on the cylindrical surface of the CNT, the

atoms on the cap behave quite differently after the solitary- g g (a) Schlegel diagram and atomic numbering of the non-
wave—cap collision. When the solitary excitation reaches th@ymmetrical(10,10 CNT cap; (b) temporary evolution of the ki-
cap, there is an accumulation of energy at the cap. Part of thestic energy distribution over atoms in the cap. Initial condition:
total energy of the solitary wave is likely to be dissipatedsolitary excitation withw=10 moves from the tube to the cap and
and/or accumulated on structural defects. We consider ag thet~600 MD step reaches the cap. The maximum energy con-

example in which solitary wave interacts with nonsymmetri-centration is attained at=800 MD steps.
cal caps.

Our simulation of soliton interaction with the nanotube in the opposite direction toward the equilibrium state and a
cap consisted of the following sequencés) The incoming  second, but less intense, maximum in the kinetic energy is
excitation causes the cap to “inflate” with the cap attainingobserved.
nearly a spherical shape. At this instant the potential energy The nanotube cap continues to oscillate with rapidly de-
of the cap attains a maximum value, although the energgreasing amplitude, the energy being dissipated in heating
distribution in the bonds are unequal due to the asymmetry ithe cap and the CNT “body.” Note the large total amplitude
the cap. Atoms in the tip of the cap are displacedy.3 A of the tip displacementsX1.0 A). A striking feature of this
in the positivez direction. (B) The recoil of the elastic en- preliminary result observed in MD simulations is the inho-
ergy of the cap causes atoms to move in the opposite direcnogeneity of the energy distribution in the cap after the
tion and at some instant the kinetic energy attains a maxisolitary-wave—cap collision. We next investigate the cap dy-
mum value. The velocities of atoms are all predominantlynamics and energy distribution over atoms in more details.
directed along the axis although they differ significantly A typical time dependence of the kinetic energy distribu-
from each other in their magnitude&C) Atoms at the cap tion over atoms in the (10,10) cap is shown in Figo)Gas a
continue to be propelled by inertia and the elastic potentiahistogram. The Schlegel diagram of this cap is shown in Fig.
energy attains a maximum again. At this instant, the cag(a). This cap was chosen from a full list of 9342 topologi-
acquires regions with negative curvature, and the displacezally different caps with isolated pentagons generated
ment of the tip of the cap from its equilibrium position is previously'® Atom numbering is common to both Figs(a
~—0.8 A. (D) After this the atoms in the cap start to move and Gb), and atoms with numbers less than @@ the cap
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Energy (eV)

FIG. 7. Variation of the partial Mulliken charges at the cap at o B
different time instants. Atomic numbering is the same as in Fig. 6. FIG. 8. Variation of the densities of states averaged over the cap

(A) largest “positive” expansion of the cdstage(A)]; (C) “nega- atoms at different instances. Legends are the same as in Fig. 7.
tive” shrinkage[stage(C)].
the generalized tight-binding Hamiltonia, the overlap:’

basé are not shown as they have lower0.02 V) excita- and85=0.05 eV. Note the rather large variations in the

tion levels. Two “waves” of excitations are visible in this
figure: one att=750-800 MD steps|[stage(B)] and the

other with a lower excitation level—at 1360600 MD VI. CONCLUSION
steps[stage (D)]. The atoms with energy=0.1 eV are

drawn in large circles in Fig. (8 atoms with energy We have thus demonstrated analytically, using numerical

~0.05 eVi di cles. A itati is locali dsimulations, that the KdV solitons are reasonably good ap-
=U.U> EViin medium circles. An excitation area IS localized, yimations for the description of nonlinear excitations in

and bears a larger portion of total cap energy. One can S&8\T's. The soliton stability increases with the CNT diam-
that t_he kmetu; energy is congentrated mainly at the tip of theeter and, in the limiR— =, the solutionEq. (15)] describes
cap, irrespective of the location of pentagons. the nonlinear excitations in graphite. Our numerical simula-
We denote this effect of energy concentration as thgjons of the evolution of the initial longitudinal soliton con-
“Tsunami effect” (named for the effect explaining ocean firms its high stability.
waves coming to a beaghbecause initially the long-  we have also performed numerical simulations of the in-
wavelength and low-amplitude excitation is concentratederaction of solitary-wave excitation@lifferent from soli-
into a sharp impulse of energy if the conditions for thetong with defects in CNT’s, especially with cagthe Tsu-
solitary-wave propagation are changed in a special mannenami effecy. Our simulations show many new fascinating
It was found that this effect depends on the cap structure anfiéatures in the dynamics of CNT’s. The collision is found to
is more pronounced in less symmetrical caps. The effect ibe partially inelastic, and the cap excitation is highly inho-
observed if the cap radius is comparable with solitary-wavenogeneous. Interestingly, at some instances the energy in a
half-width w (in the case shown in Fig. 7 fav=10). Oth-  few bonds considerably exceeds the averaged energy of the
erwise, the Tsunami effect is less prominent. Analogoushsolitary excitation. This process can provide an extra dy-
similar phenomena with varying degrees of perfections wer@amical contribution to the recently discovered phenomenon
observed for other defectkinks and bendsin CNT’s. of the enhanced reactivity of defect sites in CNT’s termed
We have also calculated electronic properties of the'kinky chemistry.” 819
capped CNT'’s during the solitary-wave—cap collision using The issues concerning methods of soliton excitation in
a generalized tight-binding scheme of Menon andreal CNT’s and their possible contribution to various chemi-
Subbaswamy’ The variation of the partial Mulliken charge cal and physical phenomena are not yet clear. In reality, the
distribution obtained using this scheme is shown in Fig. 7 generation of the highly coherent ultrashort longitudinal dis-
These calculations were performed for time instants correplacements of atoms in the CNT seems hardly probable.
sponding to the maximal cap distortiorsdagegA) and(C)].  This, however, is not the case for the long-wavelength soli-
The most significant change, as expected, is observed fdary excitations. In this connection we would like to point out
atoms at the tip of the cafindicated by large number labels recent results on the optomechanical effect in CN¥%.
in Fig. 7) where perturbation in the structure is a maximum.Conceivably a short flash of light could trigger the CNT
The local electron density of statd30S) averaged over excitation in such a manner that the solitary excitations will
atoms at the cap at stages) through(C) of solitary-wave— be generated. They can also be generated due to external
cap collision is shown in Fig. 8. The DOS is obtained fromfactors such as electron or ion impacts, stress release, and
the Green’s functionG(E)=[ES—H+i46] !, whereH is  other mechanisms. If solitary excitations do exist in CNT’s
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in reasonable “concentration,” then they can be identified Note addedRecently we became aware of a very recent
through their contribution to some detectable CNT properwork on solitons by Chamoff.In this paper the spontaneous
ties. A possible example is the Tsunami effect when the entattice distortions are investigated similar to the case of poly-
ergy, smoothly distributed in the large-scale excitation of amacetylene. The solitons are topological domain walls separat-
arbitrary profile, can be concentrated on a few bonds of ang different symmetry-broken vacua with different Kekule
defect with considerable energy excess. The greater the digpnd-alternation structures. Note that the solitons discussed
tortions in CNT'’s, the greater this influence. It can also be &y Chamon and those found in the present work have a dif-

way for “self-healing” of CNT’s when a rearrangement of fgrent nature: we have considered solitons formed due to the
structural imperfection is activated by solitary excitations. 5|astic and nonlinear properties of CNT, while the Chamon
This effect also can promote chemical reactions sucBas | tion is a topological soliton ’

incorporation into nanotube caps.
The high specific heat of a rope of single-walled nanotube

observe® can be partially explained by solitary excitations
generated in parallel with phonons. Heat transfer in CNT's is
another exampl&~2° Emission of short electric field pulses,  The authors thank INTASGrant No. INTAS-00-23yand
when the solitary wave inelastically interacts with the non-the Program “Physics of Condensed Matter,” Direction
symmetrical caps or other defect sites, can be yet anothéiFullerenes and Atomic Clusters” for financial support.
example. Our results of the calculation of variation in chargel.A. and O.G. are also indebted to RFBR Project No. 00—
distribution and DOS confirm the large deviation of the elec-15-97334. Stimulating discussions with A.A. Ovchinnikov
tronic properties from their equilibrium values at the and A.V. Zabrodin are gratefully acknowledged. M.M. ac-
solitary-excitation—cap collision. The process of charge disknowledges support through grants by the N@®¥. 99-
tribution variation under dynamical excitation is probably 07463, MRSEC Program under Grant No. DMR-9809686
inversely related to the optomechanical phenomenon IDEPSCoR(No. 99-63231 and No. 99-63282DOE Grant
CNT's.2%2LNanotechnology is one area where the mechano¢No. 00-63857, NASA, and the University of Kentucky
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