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Longitudinal solitons in carbon nanotubes
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We present results on soliton excitations in carbon nanotubes~CNT’s! using Brenner’s many-body potential.
Our numerical simulations demonstrate high soliton stability in (10,10) CNT’s. The interactions of solitons
and solitary excitation with CNT defect are found to be inelastic if the excitations and defects length scales are
comparable, resulting in a substantial part of soliton energy being distributed inhomogeneously over the defect
bonds. In these solitary-excitation–cap collisions the local energy of a few bonds in the cap can exceed the
average energy by an order of magnitude and more. This phenomenon, denoted the ‘‘Tsunami effect,’’ can
contribute dynamically to the recently proposed ‘‘kinky chemistry.’’ We also present results of changes in the
local density of states and variations in the atomic partial charges estimated at different time instants of the
solitary-excitation Tsunami at the nanotube cap.
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I. INTRODUCTION

Since the discovery of carbon nanotubes by Iijima,1 a rich
variety of carbon nanotube morphologies has been exp
mentally observed. Carbon nanotubes~CNT’s! are very in-
triguing objects for both experimental and theoretical inv
tigations due to the many unusual properties they exh
Their potential for practical applications, especially in t
area of nanotechnology, is very promising. Among th
many uses envisioned are applications of nanoscale e
tronic devices, field-emission displays, and quantum wire2

Nanotube doping and structure modification can result in
formation of heterojunctions,3 diodes,4 quantum dots,5 field-
effect transistors6 and one-electron conductors.7

The dynamical properties of carbon nanotubes are of g
interest due to their potential for useful practic
applications.8 The theoretical methods for explaining the
properties range from accurateab initio methods to approxi-
mate empirical schemes. Few experimental findings, h
ever, were analyzed using empirical methods that explic
take into account harmonic contributions such as effects
different vibrational modes. In particular, nonlinear localiz
excitations can transfer energy and be involved in vari
processes of interest. There have been some speculatio
the role played by solitary excitations in heat transfer, po
mer destruction, and other processes occurring in molec
systems.9 While in most cases of interest the harmonic a
proximation is sufficient to describe molecular process
some molecular materials contain atoms interacting thro
nonlinear interatomic potentials that can give rise to soli
excitations. The investigation of these nonlinear effects
therefore interesting and timely.

In this work we investigate the nonlinear effects in carb
nanotubes giving rise to solitons using empirical metho
We employ Brenner’s nonlocal many-body potential for c
bon systems.10 Its simple analytical form as well as its rel
ability for carbon systems coupled with its computation
efficiency makes it a natural candidate for such investi
tions. The nanotube chosen for our simulations is a (10,
0163-1829/2001/64~3!/035418~8!/$20.00 64 0354
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tube containing 1000–11 000 atoms. The simulations w
performed for free, rigid, and capped tube ends. Our inv
tigations include soliton stability, reflection from free an
capped CNT ends, and soliton collisions as well as the in
ence of thermal fluctuations. We find that the interaction
solitary excitations with the CNT cap can be either elastic
inelastic. In the latter case some part of the energy is reta
as an internal excitation of the cap with the remaining p
tion distributed very inhomogeneously over the C-C bon
This effect is found to be most pronounced for the nonsy
metrical caps. The degree of energy concentration depe
sensitively on the cap structure and solitary-excitation ene
and profile. In some cases the energy of few bonds in the
exceeds the average solitary-excitation energy by an orde
magnitude or more. A similar phenomenon is also obser
for other defects in CNT’s.

The paper is organized as follows: In Sec. II we derive
nonlinear expansion of the Brenner’s potential for longitu
nal and radial atomic displacements. Section III contains
formulation of an analytical equation for the longitudinal di
placements of atoms along the CNT axis. In this section
derive the one-dimensional Korteweg–de Vries equation
suming angular homogeneity and neglecting the radial
placements and obtain the corresponding supersonic so
solution. Results of the numerical simulations of soliton b
havior in CNT’s are given in Sec. IV. Section V contains
detailed analysis of solitary-excitation collisions with CN
defects. The possible soliton contributions to various che
cal and physical properties of CNT’s are briefly discussed
Sec. VI with special attention paid to the changes in the lo
density of states and variations in partial atomic charge
different instances of the soliton-cap interaction. Along w
summarizing our results, we also propose possible way
soliton generation in this section.

II. NONLINEAR EXPANSION OF THE BRENNER
POTENTIAL

Carbon nanotubes~only single-walled CNT’s are consid
ered in this work! are highly anisotropic and ordered objec
©2001 The American Physical Society18-1
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with great aspect ratio. The CNT surface is formed by
graphitic sheet folded into a cylinder with bond lengths a
angles differing slightly from graphite on account of th
strain induced by the folding. The interatomic C-C potent
is highly unharmonic and can be approximated using cla
cal many-body potentials containing either exponential
power terms. Generally, these potentials do not provide
exactly solvable dynamical equation in the nonlinear c
tinuum approximation, and therefore some approximati
need to be made in order to yield desired solutions.

The unharmonic solutions in nonlinear one-dimensio
~1D! lattices are frequently approximated by th
Korteweg–de Vries~KdV! equation.12 Since CNT’s are
quasi-1D objects, in order to obtain nonlinear excitations
CNT’s, it is reasonable to approximate a CNT as a 1D latt
with a nonlinear effective potential. We then make the co
tinuum approximation for this system and derive the cor
sponding KdV equation.

We obtain the nonlinear effective potential for CNT’s b
expanding Brenner’s many-body potential in a Taylor ser
up to the third-order terms. The corresponding Newton
equations of motion in finite differences are then derived a
finally, the continuous analog~nonlinear partial differential
equation! for the system is obtained. This results in a Kd
equation that describes longitudinal nonlinear excitatio
~solitons! in CNT’s.

According to Brenner’s many-body potential,10 the bond
energy between adjacent atomsi and j is expressed as

Ei j
b 5Vi j

R2B̄i j Vi j
A , ~1!

where Vi j
R and Vi j

A are, respectively, exponential repulsiv
and attractive terms:VR(r i j )527.27 exp@23.28(r i j 21.39)#
and VA(r i j )533.27 exp@22.69(r i j 21.39)#. B̄i j represents
an environment-dependent many-body coupling between
omsi andj containing geometric information associated w
the system.10 The total energy of the system is obtained
summing Eq.~1! over all bonds. The energy and distanc
are measured in eV and angstro¨ms, respectively.

The reliability of Brenner’s potential has been demo
strated in many numerical calculations of carbon system
different phases~graphite, diamond, fullerenes, and larg
clusters!, in both the ground state as well as in nonequil
rium states including chemical reactions.11 Furthermore, the
simple form of the potential allows us to easily derive an
lytical expressions for forces. This also allows efficie
large-scale simulations of the system using available c
puter resources.

In the present work we consider only armchair (m,m)
CNT’s. The procedure and results are similar in the case
zigzag (m,0) nanotubes. We use the cylindrical coordina
system (R,F,Z) for obvious reasons and align the tube a
along thez axis~Fig. 1!. With this choice there are 2m atoms
in the CNT layer having the samez coordinates. The equi
librium distance between layers,l 0, has a slight dependenc
on the CNT diameter~see Table I!. For a ~10,10! tube, l 0
'1.26 Å.

Let us consider a cylindrically symmetrical disturbance
the CNT geometry in which all 2m atoms in thenth layer
03541
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have identicalz and radial displacements from their equilib
rium positionsZn

0 and R0: Zn5Zn
01zn and Rn5R01rn ,

whereZn andRn are the perturbed coordinates andzn andrn
are the displacements from the equilibrium. Then, the co
dinates ofi th atom in nth layer are (R01rn , F i

0 , Zn
0

1zn). If z andr are much smaller when compared to cha
acteristic length scales (zn! l 0 andrn!R0), then the inter-
atomic potential@Eq. ~1!# can be expanded in a Taylor serie
and the terms up to the third order retained:

E5E01 (
n51

Nl

En , ~2!

whereE0 is the ground state energy of the relaxed CNT a
the perturbation energy is the sum over allNl layers of
CNT’s. For every layerEn52mEn

a is the sum of perturbation
energies of 2m atoms in thenth layer due to atomic displace
ments, and the energy of an atom isEn

a5 1
2 (E11E21E3),

whereE1 , E2, andE3 are energies of bonds emerging fro
any atom in thenth layer ~see Fig. 1!. It is convenient to
reduce both z and r to dimensionless units:zn
→zn / l 0 , rn→rn / l 0.

FIG. 1. A part of (10,10) nanotube. The tube is oriented alo
the z axis. Atoms innth, (n61)th layers are marked by black an
gray circles, respectively.

TABLE I. Coefficients ~in eV! in the expansion of Brenner’s
potential @Eq. ~3!# and the equilibrium distance between layersl 0

~in Å! for CNT’s of different diameters.

(5,5) (10,10) (15,15) (20,20)

a1 102.80 102.76 102.70 102.66
a2 296.46 296.22 295.86 294.39
b1 11.80 2.98 1.32 0.76
b2 0.34 0.10 0.04 0.00
b3 9.06 4.59 3.09 2.31
b4 18.42 2.40 0.72 0.30
c1 12.24 6.16 4.14 3.10
c2 71.34 35.82 24.06 17.94
c3 152.40 154.56 154.20 153.66
l 0 1.2601 1.2573 1.2568 1.2565
8-2
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Then an expansionEn
a over atomicz andr displacements

in the nth layer has the form

En
a5

a1

2
~zn112zn!22

a2

3
~zn112zn!31

b1

2
rn

2

1
b2

2
~rn111rn!21

b3

3
~rn112rn!2~rn111rn!

2
b4

3
rn

31
c1

2
~zn112zn!~rn111rn!

2
c2

3
~zn112zn!2~rn111rn!1

c3

3
~zn112zn!

3~rn112rn!2. ~3!

Numerical values for the expansion coefficients in Eq.~3! are
given in Table I for (5,5),(10,10),(15,15), and (20,20)
nanotubes. All coefficients in Eq.~3! are measured in eV an
variablesz andr are chosen to be dimensionless. Here o
the leading terms in the nearest-neighbor interaction are
tained. In this assumption the CNT is treated as a o
dimensional lattice with 2m carbon atoms at each lattice si
interacting through an effective potential given by Eq.~3!.

Terms in Eq.~3! can be categorized in three groups. T
first contains only longitudinal variablesz, the second con-
tains only the radial variablesr, and the third contains cros
terms. The coefficientsa1 ,a2 in the first group have the larg
est absolute values and are mostly independent on the
diameter~see Table I!. The coefficients in other groups (bi
and ci) have smaller numerical values but a strong dep
dence on the CNT diameter: the larger the CNT diameter,
smaller the values of these coefficients. This indicates
the contribution from the longitudinal degree of freedom
the dynamical properties of CNT is dominant, and the role
other members decreases with the increase in the CNT d
eters. We therefore consider only the longitudinal degree
freedom in the study of nonlinear dynamics. Analytical a
numerical results for the case in which both longitudinal a
radial degrees of freedom are considered will follow in
future report. We note that these results differ only in min
quantitative details, the main features being determined
the longitudinal degree of freedom.

Note that the oscillatory equation for the radial vibratio

M
]2rn

]t2
52b1rn

gives the lowest-frequency ‘‘breathing’’ mode in the ha
monic radial approximation for CNT’s, and the Raman fr
quency for this mode for the (10,10) CNT is'165 cm21,
whereM is the mass of carbon atom.

The Newtonian equation of motion for longitudinalz dis-
placements~neglecting radial degrees of freedom! is

M
]2zn

]t2
5a1@~zn112zn!2~zn2zn21!#

2a2@~zn112zn!22~zn2zn21!2#. ~4!
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This is a nonlinear equation in finite differences. In the ne
section we derive its continuum analog and examine the c
sequences.

III. KORTEWEG –DE VRIES SOLITONS IN CNT’S

Equation~4! presents a true 1D nonlinear problem wi
only one variablez. The corresponding continuum equatio
is obtained by using the work of Toda.13 Let the relative
displacement of all atoms innth and (n21)th layers be
given by xn5zn2zn21. The continuum approximation is
then valid if only excitations with wavelengths much grea
than the lattice constantl 0 are allowed. The expression fo
the 1D expansion of Brenner’s potential@Eq. ~2!# in Taylor
series can be written as

E5E01 (
n51

Nl S a1

2
xn

22
a2

3
xn

3D . ~5!

The corresponding equation of motions for relative displa
mentsx is

M
]2xn

]t2
52@a2xn

22a1xn#2@a2xn11
2 2a1xn11#

2@a2xn21
2 2a1xn21#. ~6!

Equation ~6! contains terms withxn61 and xn61
2 . It is

convenient to introduce a shift operatorP 615exp(6]/]n)
for a shift along the discrete chain by one step to the ri
~left! such thatP 61f (n)5 f (n61), where f (n) is an arbi-
trary function of discrete coordinaten. Equation~6! can then
be written as

M
]2xn

]t2
5F22expS ]

]nD2expS 2
]

]nD G~a2xn
22a1xn!,

~7!

or

M
]2xn

]t2
52F2 sinhS 1

2

]

]nD G2

~a2xn
22a1xn!, ~8!

resulting in

M
]2x

]t2
2a1F2 sinhS 1

2

]

]nD G2

x1a2F2sinhS 1

2

]

]nD G2

x250.

~9!

If sinh(1
2]/]n) in the third term in Eq.~9! is expanded in

Taylor series up to the linear term, then the equation can
rewritten as

M
]2x

]t2
2a1F2 sinhS 1

2

]

]nD G2

x1a2

]2

]n2
x250, ~10!

and can be factored into the following products:
8-3
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H AM
]

]t
72Aa1 sinhS 1

2

]

]nD6
a2

Aa1

]

]nJ
3H AM

]

]t
62Aa1 sinhS 1

2

]

]nD7
a2

Aa1

x
]

]nJ x50.

~11!

Equations~10! and ~11! are equivalent modulo terms o
third order. Equation~11! has a form of a product of two
operatorsF̂1F̂2x. If we make a further assumption:F̂2x
50,13 then the wave packet moving to the right~left! is
described by

H AM
]

]t
62Aa1 sinhS 1

2

]

]nD7
a2

Aa1

x
]

]nJ x50. ~12!

If sinh(1
2]/]n) in Eq. ~12! is further expanded in a Taylo

series up to the third-order terms andn is substituted by
continuum variablez, one gets the corresponding continuu
equation:

]x

]t
1k1

]x

]z
1k2

]3x

]z3
2k3x

]x

]z
50, ~13!

where k15k, k25k/24, k35(a2 /a1)k, and k5
6Aa1 /M .

Equation~13! can be reduced to the standard KdV equ
tion (ut16uux1uxxx50) by the linear substitution of vari
ables:

d5k/24, t5dt, x5z2kt, u5a2kx/6da1 . ~14!

Then the soliton solution of Eq.~13! has a form

x56A sech2~Bz6Ct!. ~15!

Here A512(k2 /k3)B2, C5B(k114k2B2). Solution of
Eq. ~15! is a soliton with amplitudeA of either compression
(A,0) or elongation (A.0) propagating in the positive o
negative direction along thez axis with velocityvsol5C/B.
It describes a continuum set of one-parametric solitons,
coefficientsA and C can be expressed through the sing
parameter, e.g., soliton half-widthw'1.76/B.

Soliton velocity can be expressed asvsol5k114k2B2

5vsound(110.52/w2), wherevsound5k15Aa1 /M is the lon-
gitudinal sound velocity ('20 km/sec). This value is in
good agreement with the value 20.35 km/sec obtained
Ref. 14. The solution@Eq. ~15!# is thus the supersonic sol
ton. For the solitons used extensively in our numerical sim
lations~Sec. IV!, the valuew52 was usually employed, an
vsol'1.13vsound. Note that the solution@Eq. ~15!# has a form
of solitary wave forrelative zdisplacements. Forabsolute z
coordinates it transforms into a kink solution'tanh(Bz
6Ct). In the limit w→` the soliton velocity tends to the
sound velocity. The dependence ofvsol on w is shown in Fig.
2. Solitons withw<1 ~less than the lattice constantl 0) are
highly unstable in discrete systems, and therefore this de
dence is shown only forw>1.5.
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The soliton in Eq.~15! contains both kinetic and potentia
energies and their contribution to the total energy of soli
(Etot) are roughly the same. The dependence of (Etot) on w
as well as individual contributions from kinetic (Ekin) and
potential (Epot) energies is shown in Fig. 3.

The solution@Eq. ~15!# was obtained using rather crud
approximations, neglecting higher-order terms in the exp
sion of Eq.~5! and radial displacements. In order to obtain
more realistic soliton behavior, we next perform detailed n
merical simulations.

IV. NUMERICAL SIMULATION OF SOLITONS IN CNT’S

We present our results of the molecular dynamical~MD!
simulation using Brenner’s many-body potential for the so
ton evolution in the (10,10) CNT subject to different boun
ary conditions that include free, rigid, or capped ends. T
findings for the (6,6) CNT are essentially the same.

FIG. 2. The dependence of soliton velocityvsol on the soliton
half-width w. vsound is the longitudinal sound velocity.

FIG. 3. The dependence of total soliton energy (Etot) on soliton
half-width w and individual contributions from kinetic (Ekin) and
potential (Epot) energies.
8-4
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Our CNT consisted of 1000– 11 000 carbon atoms~the
number of layersNl550– 550), with a nanotube length i
the range 63– 700 Å. The integration MD step was 0.35
and the Verlet-Beemann algorithm was used to integrate
equations of motion. Initial conditions were chosen in t
form given by Eq.~15! with typical range of parameter
values:w5225, A50.220.03 Å.

The solution Eq.~15!, describes the compression or elo
gation soliton with variable amplitudes and velocities d
pending on the half-widthw, propagating on the CNT sur
face. This solitary excitation is homogeneous with respec
the azimuthal angleF. As a first step in the numerical simu
lation we investigate the soliton evolution in CNT’s wit
frozen radial displacements, i.e., by allowing only thez dis-
placements of the atoms.

The time evolution of a single soliton propagating alo
the (10,10) nanotube is shown in Fig. 4. The soliton is rat
stable as it traverses the CNT length ('150 Å) with only a
minimal decrease in amplitude. For CNT’s with cycl
boundary conditions the soliton can travel much longer pa
without suffering any noticeable decrease in amplitude. T
uAu2 value, approximately proportional to the elastic solit
energy in the harmonic approximation, is plotted in Fig.
The wider the soliton, the greater its stability. In the limit
infinite CNT diameter, Eq.~15! describes a soliton propaga
ing on the graphite surface. Its behavior is likely to be sim
lar to the soliton in an isotropic hexagonal lattice with t
Lennard-Jones interatomic potential, propagating along

@ 1̄10# direction.15

While the soliton with half-widthw,2 interacts with
open CNT ends inelastically, a wider soliton reflects fro
the open ends without any appreciable changes. Rigid C
ends, on the other hand, are found to preserve the so
stability for anyw.

The collision of two solitons with different parameters
illustrated in Fig. 5. As seen in the figure, the solitons colli
and pass through each other without changing their pro

FIG. 4. Soliton evolution in the (10,10) nanotube with 30
atoms~150 layers! with free ends. The soliton half-width isw52
anduAu25xn

2 is the square of relative longitudinal displacements
the nth and (n21)th layers. The modulation of the soliton amp
tude in this figure is explained by the lattice discreteness and so
narrowness. Actualx values are shown in insertion at two differe
time instants~labeled by the full circle and empty stars, respe
tively!. Only maximal values ofuAu2 reflect the soliton stability.
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and velocities, demonstrating their characteristic soli
feature.

Our numerical simulations performed atT5300 K
showed no evidence of the influence of thermal fluctuatio
on the soliton stability. Also, there were no detectable soli
distortions in the presence of defects~point mass defects
vibrationally excited bonds, etc.! in the CNT structure. Fur-
thermore, no significant interaction with low-intensi
Raman-active tangential mode (;1585 cm21) was ob-
served. Results of the MD simulations, therefore, support
fact that the KdV equation is a good approximation for t
description of longitudinal nonlinear excitations—solitons
CNT’s—if radial displacements are frozen.

We have also performed MD simulations of soliton ev
lution ~propagation, reflection and collision between tw
solitons! in a 1D lattice~a true 1D analog of CNT! consisting
of atoms interacting through the potential described by
~5!. Our results are in full agreement with the findings for t
CNT’s, suggesting that the neglect of higher-order terms
the expansion of Brenner’s many-body potential@Eq. ~1!# is
justified. The situation changes, however, if the radial d
grees of freedom are allowed. The folding of the graph
sheet to form CNT’s results in the mixing of longitudinal an
radial modes. As a result, equations of motion for these
modes now contain cross terms that can influence the be
ior of a longitudinal soliton.

The numerical simulation of the initial state evolutio
chosen in the form of longitudinal soliton in CNT@Eq. ~15!#
with all allowed degrees of freedom shows the soliton to
less stable, with a slow dissipation of the initial ener
through the harmonic radial oscillations. Results of analy
cal analysis and detailed numerical investigations of
longitudinal-radial solitons are planned to be presented i
forthcoming paper.

V. INTERACTION OF SOLITARY EXCITATIONS
WITH NANOTUBE CAPS

We next investigate the interaction of the solitons w
nanotube caps. Our results for the interaction of narroww

f

n

-

FIG. 5. Temporary evolution of two solitons withw152 ~right
at t50) and w253 ~left at t50) moving initially toward each
other. CNT’s and notations are the same as in Fig. 4.
8-5
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ASTAKHOVA, GURIN, MENON, AND VINOGRADOV PHYSICAL REVIEW B 64 035418
5224) solitons with nonlocal defects~free tube ends and
caps! show it to be inelastic with the excitation energy bei
distributed approximately evenly over all the bonds in t
region. Interesting effects can be expected in the case w
the length scales of both the excitations and defects are c
parable. Towards this end, we perform a detailed numer
investigation of interaction of excitations with the CNT cap

Solitons withw510 carry too small an energy to induc
any noticeable effects in the cap. So we used solitary e
tations with other profiles. When a solitary excitation ha
characteristic length scale much greater than the lattice
stant the nonlinear effects can be ignored and can be tre
within the harmonic approximation. Furthermore, for lon
wavelength excitations, the dispersion effects in harmo
approximation are not significant. In this case, an arbitr
excitation propagates along the harmonic chain with spe
close to the sound velocity with only a minimal change in
profile. We have examined the propagation of a longitudi
solitary excitation using the parametersx5A sech2@B(z
2vsoundt)# with w510 andA50.1 Å. This excitation was
found to be highly stable even when all degrees of freed
were allowed and survived the reflection from free ends.

The same results were obtained for solitary waves w
other analytical profiles and similar widths and amplitud
The other types of excitations studied included an excita
of the Gaussian profile

x5
A

A2pw
expF2

~z2vsoundt !
2

2w2 G ,

also withw510 andA50.1 Å.
Although the soliton propagation is accompanied by

highly coherent and predominantly longitudinal displac
ments of the atoms on the cylindrical surface of the CNT,
atoms on the cap behave quite differently after the solita
wave–cap collision. When the solitary excitation reaches
cap, there is an accumulation of energy at the cap. Part o
total energy of the solitary wave is likely to be dissipat
and/or accumulated on structural defects. We conside
example in which solitary wave interacts with nonsymme
cal caps.

Our simulation of soliton interaction with the nanotub
cap consisted of the following sequences:~A! The incoming
excitation causes the cap to ‘‘inflate’’ with the cap attaini
nearly a spherical shape. At this instant the potential ene
of the cap attains a maximum value, although the ene
distribution in the bonds are unequal due to the asymmetr
the cap. Atoms in the tip of the cap are displaced by'0.3 Å
in the positivez direction. ~B! The recoil of the elastic en
ergy of the cap causes atoms to move in the opposite d
tion and at some instant the kinetic energy attains a m
mum value. The velocities of atoms are all predominan
directed along thez axis although they differ significantly
from each other in their magnitudes.~C! Atoms at the cap
continue to be propelled by inertia and the elastic poten
energy attains a maximum again. At this instant, the
acquires regions with negative curvature, and the displa
ment of the tip of the cap from its equilibrium position
'20.8 Å. ~D! After this the atoms in the cap start to mov
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in the opposite direction toward the equilibrium state and
second, but less intense, maximum in the kinetic energ
observed.

The nanotube cap continues to oscillate with rapidly d
creasing amplitude, the energy being dissipated in hea
the cap and the CNT ‘‘body.’’ Note the large total amplitud
of the tip displacements (.1.0 Å!. A striking feature of this
preliminary result observed in MD simulations is the inh
mogeneity of the energy distribution in the cap after t
solitary-wave–cap collision. We next investigate the cap
namics and energy distribution over atoms in more detai

A typical time dependence of the kinetic energy distrib
tion over atoms in the (10,10) cap is shown in Fig. 6~b! as a
histogram. The Schlegel diagram of this cap is shown in F
6~a!. This cap was chosen from a full list of 9342 topolog
cally different caps with isolated pentagons genera
previously.16 Atom numbering is common to both Figs. 6~a!
and 6~b!, and atoms with numbers less than 30~in the cap

FIG. 6. ~a! Schlegel diagram and atomic numbering of the no
symmetrical~10,10! CNT cap; ~b! temporary evolution of the ki-
netic energy distribution over atoms in the cap. Initial conditio
solitary excitation withw510 moves from the tube to the cap an
at thet'600 MD step reaches the cap. The maximum energy c
centration is attained att'800 MD steps.
8-6
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base! are not shown as they have lower (,0.02 eV) excita-
tion levels. Two ‘‘waves’’ of excitations are visible in thi
figure: one att57502800 MD steps@stage~B!# and the
other with a lower excitation level—at 130021600 MD
steps @stage ~D!#. The atoms with energy>0.1 eV are
drawn in large circles in Fig. 6~a!; atoms with energy
>0.05 eV in medium circles. An excitation area is localiz
and bears a larger portion of total cap energy. One can
that the kinetic energy is concentrated mainly at the tip of
cap, irrespective of the location of pentagons.

We denote this effect of energy concentration as
‘‘Tsunami effect’’ ~named for the effect explaining ocea
waves coming to a beach! because initially the long-
wavelength and low-amplitude excitation is concentra
into a sharp impulse of energy if the conditions for t
solitary-wave propagation are changed in a special man
It was found that this effect depends on the cap structure
is more pronounced in less symmetrical caps. The effec
observed if the cap radius is comparable with solitary-wa
half-width w ~in the case shown in Fig. 7 forw510). Oth-
erwise, the Tsunami effect is less prominent. Analogou
similar phenomena with varying degrees of perfections w
observed for other defects~kinks and bends! in CNT’s.

We have also calculated electronic properties of
capped CNT’s during the solitary-wave–cap collision us
a generalized tight-binding scheme of Menon a
Subbaswamy.17 The variation of the partial Mulliken charg
distribution obtained using this scheme is shown in Fig.
These calculations were performed for time instants co
sponding to the maximal cap distortions@stages~A! and~C!#.
The most significant change, as expected, is observed
atoms at the tip of the cap~indicated by large number labe
in Fig. 7! where perturbation in the structure is a maximu

The local electron density of states~DOS! averaged over
atoms at the cap at stages~A! through~C! of solitary-wave–
cap collision is shown in Fig. 8. The DOS is obtained fro
the Green’s functionG(E)5@ES2H1 id#21, where H is

FIG. 7. Variation of the partial Mulliken charges at the cap
different time instants. Atomic numbering is the same as in Fig
~A! largest ‘‘positive’’ expansion of the cap@stage~A!#; ~C! ‘‘nega-
tive’’ shrinkage@stage~C!#.
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the generalized tight-binding Hamiltonian,S the overlap,17

and d50.05 eV. Note the rather large variations in th
DOS.

VI. CONCLUSION

We have thus demonstrated analytically, using numer
simulations, that the KdV solitons are reasonably good
proximations for the description of nonlinear excitations
CNT’s. The soliton stability increases with the CNT diam
eter and, in the limitR→`, the solution@Eq. ~15!# describes
the nonlinear excitations in graphite. Our numerical simu
tions of the evolution of the initial longitudinal soliton con
firms its high stability.

We have also performed numerical simulations of the
teraction of solitary-wave excitations~different from soli-
tons! with defects in CNT’s, especially with caps~the Tsu-
nami effect!. Our simulations show many new fascinatin
features in the dynamics of CNT’s. The collision is found
be partially inelastic, and the cap excitation is highly inh
mogeneous. Interestingly, at some instances the energy
few bonds considerably exceeds the averaged energy o
solitary excitation. This process can provide an extra
namical contribution to the recently discovered phenome
of the enhanced reactivity of defect sites in CNT’s term
‘‘kinky chemistry.’’18,19

The issues concerning methods of soliton excitation
real CNT’s and their possible contribution to various chem
cal and physical phenomena are not yet clear. In reality,
generation of the highly coherent ultrashort longitudinal d
placements of atoms in the CNT seems hardly proba
This, however, is not the case for the long-wavelength s
tary excitations. In this connection we would like to point o
recent results on the optomechanical effect in CNT’s.20,21

Conceivably a short flash of light could trigger the CN
excitation in such a manner that the solitary excitations w
be generated. They can also be generated due to ext
factors such as electron or ion impacts, stress release,
other mechanisms. If solitary excitations do exist in CNT

t
. FIG. 8. Variation of the densities of states averaged over the
atoms at different instances. Legends are the same as in Fig. 7
8-7
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in reasonable ‘‘concentration,’’ then they can be identifie
through their contribution to some detectable CNT prope
ties. A possible example is the Tsunami effect when the e
ergy, smoothly distributed in the large-scale excitation of
arbitrary profile, can be concentrated on a few bonds o
defect with considerable energy excess. The greater the
tortions in CNT’s, the greater this influence. It can also be
way for ‘‘self-healing’’ of CNT’s when a rearrangement o
structural imperfection is activated by solitary excitation
This effect also can promote chemical reactions such asC2
incorporation into nanotube caps.

The high specific heat of a rope of single-walled nanotu
observed22 can be partially explained by solitary excitation
generated in parallel with phonons. Heat transfer in CNT’s
another example.23–25Emission of short electric field pulses
when the solitary wave inelastically interacts with the no
symmetrical caps or other defect sites, can be yet anot
example. Our results of the calculation of variation in char
distribution and DOS confirm the large deviation of the ele
tronic properties from their equilibrium values at th
solitary-excitation–cap collision. The process of charge d
tribution variation under dynamical excitation is probab
inversely related to the optomechanical phenomenon
CNT’s.20,21Nanotechnology is one area where the mechan
electric property of CNT’s can be used.
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Note added. Recently we became aware of a very rece
work on solitons by Chamon.26 In this paper the spontaneou
lattice distortions are investigated similar to the case of po
acetylene. The solitons are topological domain walls sepa
ing different symmetry-broken vacua with different Kekul
bond-alternation structures. Note that the solitons discus
by Chamon and those found in the present work have a
ferent nature: we have considered solitons formed due to
elastic and nonlinear properties of CNT, while the Cham
solution is a topological soliton.
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