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Quasi-one-dimensional system of molecules inside carbon nanotubes: Exact solution for the latti
gas model and its application to fullerene-filled nanotubes

Miroslav Hodak and L. A. Girifalco
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104

~Received 16 December 2000; published 20 June 2001!

The statistical mechanics of a system of molecules encapsulated inside a carbon nanotube was analyzed
using a one-dimensional lattice gas model. Both open and closed tubes were studied and both the grand-
canonical and the canonical partition functions were evaluated exactly. The formulas for the frequency of
occurrence of clusters of various sizes were also derived. The model was applied to a~10,10! nanotube
containing C60 molecules. The calculations gave detailed information on the clustering of molecules in both
open and closed nanotubes. Analysis of the open system yields information on the conditions under which the
nanotubes can be filled when they are in equilibrium with an external gas. The results show that an open
nanotube can be filled very efficiently at room temperature provided there are enough external fullerenes in the
gas phase. For a closed system at room temperature, we found a high degree of clustering that decreases with
increasing temperature. Because of the strong interaction between fullerenes, the system is far from its random
state even at the highest temperatures studied. For both cases, linear equations of state were determined as well.
Obtained results are in accord with the experimental observations.

DOI: 10.1103/PhysRevB.64.035407 PACS number~s!: 61.48.1c, 61.46.1w, 64.30.1t, 05.50.1q
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I. INTRODUCTION

A system is called quasi-one-dimensional~1D! when its
geometry is characterized by one macroscopic and two
croscopic spatial dimensions. These conditions are satis
for molecules moving inside a long narrow cylinder. R
cently, this type of cylindrical environment has become e
perimentally available with the discovery of carbon nan
tubes. Quasi-one-dimensional systems provide
opportunity to test 1D models, which are usually much si
pler than those formulated in three dimensions. One of
most interesting features of 1D systems with short-range
teractions is that they do not possess a phase transition
cept atT50 K.1

Attempts to experimentally observe one-dimensional p
nomena using carbon nanotubes have recently met with
cess. Teizeret al.2 have measured the desorption of4He
from interstitial regions between closed carbon nanotube
bundles. The data can be understood only when4He is as-
sumed to be a one-dimensional adsorbate. Predictions b
on 2D adsorption underestimate the experimental results
more than five orders of magnitude. Kuznetsovaet al.3 have
investigated the adsorption of Xe into nanotubes with b
closed and open ends. The measured desorption data
that a quasi-one-dimensional confined Xe phase is es
lished inside nanotubes with open ends and this phase
orbs via an equilibrium involving the 2D gas phase on
outer nanotube surface. Also, Smithet al.4 have observed
chains of C60 molecules~fullerenes! encapsuled in carbon
nanotubes using high-resolution transmission electron
croscopy~HRTEM!. This system is usually called a peapo
Because of the appropriate size of the~10,10! nanotube
~which is the most abundant in nanotube samples!, this sys-
tem provides a nearly ideal realization of a one-dimensio
system. These experiments have stimulated many Mo
Carlo simulation studies on adsorption of simple fluids su
0163-1829/2001/64~3!/035407~9!/$20.00 64 0354
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as hydrogen, nitrogen, methane, and carbon dioxide into
bon nanotubes.5–15 These studies analyze the conditions
which nanotubes can be filled and estimate the adsorp
capacity of carbon nanotubes for various species. Howe
the important question of dimensionality is not addressed
these studies.

The importance of this topic was recognized by the gro
led by Cole from Pennsylvania State University. Their inte
sive research activity16–24presents a great contribution to th
understanding of the behavior of quasi-one-dimensional s
tems of molecules confined inside a carbon nanotube. T
studies, which focused on rare gases and hydrogen, reve
that the effective dimensionality depends not only on m
lecular size relative to the nanotube radius but also on th
modynamic variables~number of atoms and temperatur!
and geometry~isolated tubes or ordered arrays of tubes!. The
full quantum-mechanical treatment of one-dimensional4He
was recently investigated by Krotscheck and Miller.25,26

In all these theoretical studies, little attention has be
paid to the clustering of adsorbed molecules. Also, th
studies did not compare the closed system with one inter
ing with its enviroment. It is reasonable to consider bo
cases. An example of an open system is the nanotube
open ends or with wall defects. Synthesized nanotubes t
cally have their ends closed, but various techniques h
been developed to open them.27–29

In this paper, we use the lattice gas model to study
systems of molecules adsorbed inside a nanotube. This
simple model in which molecules are attached to lattice s
and move around on the vertices of the lattice. Confining
particles to a lattice in this way makes the model consid
ably simpler to deal with than a true gas model in whi
molecules can take any position in space, although it ma
the model somewhat less realistic. However, lattice ga
give a good deal of insight into the general behavior of r
gases. This model has proven useful to study various ph
©2001 The American Physical Society07-1
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cal phenomena such as diffusion, adsorption, interfa
phase transformations, equilibrium crystal shapes, and e
fragmentation in heavy ion collisions. Young and Lee30 have
shown that the grand-canonical ensemble in the lattice
model is equivalent to an Ising model. Using this, the gra
canonical ensemble can be solved by mapping onto the I
model, which is exactly solvable in one dimension. This p
cedure, however, does not work for the case of the canon
ensemble, which corresponds to the Ising model with fix
magnetization, known as the Kawasaki model.31 Because of
the restriction on the number of molecules~fixed magnetiza-
tion!, this model is more difficult to solve than the Isin
model.

In this paper, we present an exact solution for both
nonical and grand-canonical lattice gas models for a 1D
ray of molecules of arbitrary linear density. We also der
formulas for the frequency of occurrence of clusters of va
ous sizes. The 1D lattice gas model is then applied t
system of C60 molecules inside a~10,10! nanotube. The re-
cent theoretical treatment of interactions between fullere
and nanotubes32 shows that the C60 molecule is in a deep
potential well at the center of a~10,10! tube and its motion
perpendicular to the tube axis is highly restricted. T
means that this system is quasi-one-dimensional. S
HRTEM images4,33 provide information on the arrangeme
of C60 molecules, the computed distribution of fullerenes c
be compared to experiment. The frequency of occurrenc
molecular clusters of various sizes is computed for both o
and closed nanotubes as a function of linear density and
perature. The linear equation of state is obtained, and
open tubes, the efficiency of filling is also computed as
function of temperature and pressure.

II. THE MODEL

A. Canonical ensemble—The cluster method

In our lattice gas model, we divide a nanotube into a ch
of L lattice sites such that each lattice site can be eit
empty or occupied by one molecule. A site is characteri
by the occupation numberej , which is either 1 if thej th site
is occupied or 0 if thej th site is empty. Only nearest
neighbor~NN! interactions are considered, so that the pot
tial energy of the closed system is

H52e (
NN pairs

eiej , ~1!

where2e is the energy of interaction of a nearest-neighb
pair and the sum is over all nearest-neighbor pairs. The
responding partition functionZ is

Z~L,N,T!5 (
(

j
ej 5N

ebe(e1e21e2e31•••), ~2!

whereb5(kBT)21, kB being the Boltzmann constant, an
the sum is taken over all states with a total number of m
ecules equal toN. To evaluate it, we use the cluster method34

developed by Vavro, which is based on the fact that beca
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of nearest-neighbor interactions, the energy depends onl
the number of clusters~a cluster is defined as an array
sites in which all sites are occupied and the sites adjacen
the chain ends are either empty or are at a tube end!. Then
the sum over states can be replaced by the sum ove
possible numbers of clusters, that is,

Z~L,N,T!5 (
k51

min(L2N11,N)

Zcl~L,N,k,T!ebe(N2k), ~3!

where k denotes the number of clusters, min(L2N11,N)
gives the maximum number of clusters thatN molecules can
form in L sites, which is the minimum ofL2N11 andN,
andZcl(L,N,k) gives the partition function for the system o
lengthL with N molecules arranged intok clusters. We will
consider the case in which the molecules in the first and
last site interact with the system’s boundaries. This cor
sponds to the nanotube with capped ends. Binding ener
for these interactions are denoted aseL ~first site! and eR
~last site!. Obviously, taking both these energies to be ze
yields the case of free ends. Three separate cases have
considered: both sites 1 andL are occupied, one of the site
is occupied, and both sites are empty. According
Zcl(L,N,k,T) is written as the sum of three parts,

Zcl~L,N,k,T!5W2~L,N,k,T!eb(eL1eR)1W1~L,N,k,T!

3~ebeL1ebeR!1W0~L,N,k,T!, ~4!

whereWi(L,N,k,T) ( i 50,1,2) gives the number of state
in which N molecules are arranged intok clusters inL sites
with i clusters attached to the ends of the system. Th
numbers have to account for two things: the number of w
to arrange molecules into a given number of clusters and
number of ways to arrange clusters of given lengths into
available sites. The first number is given by the binom
coefficient (k21

N21) for N molecules ink clusters. To calculate
the latter, we realize that arrangingk clusters with given
lengths intoL sites is equivalent to arrangingL2N vacant
sites intok8 clusters. This number has three possible valu
k21, k, andk11, so that the number of possible arrang
ments is found to be (k821

L2N21). Obviously, considering
Wi(L,N,k,T) ( i clusters attached to the ends!, k85k11
2 i , and so

Wi~L,N,k,T!5S N21

k21 D S L2N21

k2 i D ~5!

for i 50,1,2. Here we take any binomial coefficient equal
zero whenever any of its arguments is negative. Also,
defineW2(L,L,k,T)51. These assumptions allow the sam
expression to be used for special cases such asL5N or L
50. Equation~3! in conjunction with Eqs.~4! and~5! gives
the partition function.

The Helmholtz free energyF is given by

F52kBT ln Z~L,N,T!. ~6!

From the free energy, any thermodynamic quantity of int
est can be computed.
7-2
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To evaluate the probabilityPp(L,N,x) that a cluster has a
lengthx, let us first find the total number of clusters with th
length x, when N molecules are distributed intok clusters.
Using the same ideas as before, we find this number to

Wp~L,N,k,k8,x,T!5kS N2x21

k22 D S L2N21

k821 D ~7!

for k>2 and fork51,

Wp~L,N,1,k8,x,T!5dN,xS L2N21

k821 D 1dL,N , ~8!

dx,y being the Kronecker delta defined as 1 forx5y and 0
otherwise. Summing over all possible numbers of clust
and expressingWp(L,N,k,k8,x) in terms of the partition
functionZ(L,N,T), the probability can then be expressed
follows:

Pp~L,N,x,T!5
1

Zp~L,N,T! FZcl~L,N,1,T!dN,xe
2be

1 (
k52

min(L2N11,N)

kZcl~L,N,k,T!S N2x21

k22 D
3S N21

k21 D 21

e2bekG , ~9!

whereZp(L,N,T) is the normalization factor needed to sa
isfy (x51

N Pp(L,N,x,T)51. The mean size of the cluster
then

^x&5 (
x51

N

Pp~L,N,x,T!x ~10!

and the mean number of all clusters is

^k&5
N

^x&
. ~11!

Now the mean number of clusters of various sizes can
written as

n~x!5Pp~L,N,x,T!^k&. ~12!

The sum in the partition function~3! can be evaluated in
terms of the hypergeometric function2F1(a,b;c;z)
5(n50

` @(a)n(b)n /(c)nn! #zn, where (a)n5a(a11)•••(a
1n21) and (a)051, aÞ0. For the case of open ends, th
partition function then reads

Z~L,N,T!5ebeN~L2N11!
2F1~12N,2L1N;2;e2be!

ebe
.

~13!

B. Grand-canonical ensemble

The partition function for the grand-canonical ensem
can easily be written from the canonical partition function
03540
rs
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e
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QL511 (
N51

L

Z~L,N,T!ebN(e01m), ~14!

wheree0 is the binding energy of a molecule to a site andm
is the chemical potential.

The grand-canonical case with free ends can be so
more efficiently when the transfer matrix method is used.
us write the grand-canonical partition function as the s
over all possible values of occupational numbers$en%,

QL5(
$en%

ebe(e1e21e2e31•••)eb(e01m)(e11e21•••). ~15!

To evaluate this partition function, we define the quantit
Zk(0) andZk(1) that give the grand partition function for th
system ofk sites in which the last site is empty@Zk(0)# or
occupied@Zk(1)#. Let us compute these quantities for th
one-site system,

Z1~0!51 and Z1~1!5eb. ~16!

Here we have defineda5be and b5b(e01m). For the
two-site system,

Z2~0!5 (
e150,1,e250

ea(e1e2)eb(e11e2)5 (
e150,1

ebe1511eb,

~17!

Z2~1!5 (
e150,1,e251

ea(e1e2)eb(e11e2)5 (
e150,1

eae1ebe111

5eb1eae2b. ~18!

We can write this as

S Z2~1!

Z2~0!
D 5S eaeb eb

1 1 D S Z1~1!

Z1~0!
D . ~19!

This relation holds for anyZL ,ZL21, and so for a system o
L sites

S ZL~1!

ZL~0!
D 5S eaeb eb

1 1 D L21S Z1~1!

Z1~0!
D . ~20!

Obviously, the total grand parttion function is

QL5ZL~1!1ZL~0!. ~21!

Expanding the vector (Z1(0)
Z1(1)

) into eigenvectors of the matrix

in Eq. ~20!, the grand partition function can be written as

QL5ZL~1!1ZL~0!

5l1
L21Fa1x111a1x121S l2

l1
D L21

~a2x211a2x22!G ,
~22!

wherea1 ,a2 are constants andx11, x12, x21, x22 are the
components of the eigenvectorsxW1 andxW2 corresponding to
the eigenvaluesl1 and l2 (l1.l2). The eigenvalues and
eigenvectors are found to be
7-3



on

e
is

t
e

us
in

st

ri

-
o

ds
the
ites

es
is
e
he
tem

ys-
or
ol-

, the
en-
is
nd
an
le

h all
an
lus-
is-
oc-
ies
ran-
n be
ed
g is

est

n be

80,

MIROSLAV HODAK AND L. A. GIRIFALCO PHYSICAL REVIEW B 64 035407
l1,25
ea1b116A~ea1b21!214eb

2
, ~23!

xW15S l121

1 D , xW25S l221

1 D . ~24!

The constantsa1 anda2 are

a15
eb2l211

l12l2
, a25

l12eb21

l12l2
. ~25!

Equation~22! in conjunction with Eqs.~23!, ~24!, and ~25!
gives the exact expression for the grand partition functi
For largeL, the third and fourth term in Eq.~22! can be
neglected so that the partition function reads

QL5l1
L21~a1x111a1x12! ~26!

and the thermodynamic potentialV52kT ln Q is

V52kT~L21!ln l1 . ~27!

To get the probability that a given site is occupied, w
first write the probability that a given site is empty. This
easy to get, since when a site is empty, the tube can
described as two independent noninteracting tubes. Tha
when l 1 is the position of an empty site from the left, th
grand partition function isQl 1213QL2 l 1

. Then the probabil-
ity that this site is empty is

pempty5
Ql 121QL2 l 1

QL
. ~28!

Here and below we assumeQl51 for any l<0. The prob-
ability that the site is occupied is 12pempty.

To get the probability of occurrence of clusters, let
note that a cluster effectively gives three noninteract
tubes. For the molecules inside the cluster of lengthx, the
partition function is ea(x21)exb. Multiplying the partition
functions for configurations outside the cluster gives

Q~ l 1 ,x!5Ql 122ea(x21)ebxQL2 l 12x , ~29!

here we assume that the first occupied site in the clu
starts at positionl 1. Then the probability that a cluster ofn
molecules occurs at given sites is

p~ l 1 ,x!5
Ql 122ea(x21)ebnQL2 l 12x

QL
. ~30!

Using this probability, the mean number of clusters of va
ous sizes is

n~x!5 (
l 151

L2x11

p~ l 1 ,x!. ~31!
03540
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III. APPLICATION OF THE MODEL TO THE PEAPODS:
CLOSED SYSTEM

For C60 molecules inside a~10,10! nanotube, the interac
tion energye is 0.278 eV,35 whereas the binding energy t
the nanotubee0 is 3.26 eV.32

Two types of boundary conditions are applied: free en
and spherically capped ends. The number of sites in
nanotube is taken to be 100. Using a higher number of s
does not affect results for given linear densityN/L signifi-
cantly. The number of internal molecules studied rang
from 50 to 90 in steps of 10. An important thing to note
that the system withL2N molecules behaves just like th
one withN molecules. The reason for this is the fact that t
energy depends only on the number of clusters the sys
forms and this number is the same for bothN and L2N
molecules inL sites.

For the free ends, the total number of clusters in the s
tem as a function of temperature is displayed in Fig. 1. F
temperatures up to 300 K, the system is frozen and all m
ecules form one cluster. As the temperature is increased
number of clusters rises rapidly, depending on the linear d
sity. The typical distribution of clusters of various sizes
shown for 80 fullerenes at temperatures 300 K, 600 K, a
1000 K in Fig. 2. At room temperature, the system is
almost perfect 1D solid. The different behavior for the sing
cluster is a consequence of the fact that the state at whic
molecules form a single cluster has a different entropy th
all the others. As the temperature is increased, smaller c
ters start to form and the single large cluster gradually d
appears. Figure 3 shows the decay of the probability of
currence of the single cluster for all studied linear densit
as a function of temperature. Clearly, there is no phase t
sition. The decreasing occurrence of the single cluster ca
described as a ‘‘quasimelting’’ taking place over an extend
temperature change. As expected, the rate of quasimeltin
lower the higher the linear density is~for N>L/2), and at
1000 K the single cluster disappears even for the high
linear density.

The approach of the system to a quasigas state ca

FIG. 1. The mean number of clusters vs temperature for 90,
70, 60, and 50 C60 molecules in 100 sites~from bottom to top!.
7-4
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QUASI-ONE-DIMENSIONAL SYSTEM OF MOLECULES . . . PHYSICAL REVIEW B 64 035407
determined by comparing the properties of the system
those at very high temperature. This can be easily obtai
since at high temperatures the binding energy is neglig
compared to the thermal energy and so one can simply
zeros for binding energies in the derived formulas to de
mine the high-temperature behavior. Computing the m
number of clusters for the high-temperature regime, we fi
that the system is far from the random state even at 120
the highest temperature studied here, since the system f

FIG. 2. Mean numbers of clusters of various sizes for 8060

molecules inside a~10,10! nanotube with 100 sites for temperatur
~a! 300 K, ~b! 600 K, and~c! 1000 K.
03540
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about twice as many clusters at the high-temperature reg
25.5 clusters forN/L50.5 and 9.9 clusters forN/L50.9.

Figure 4 shows the mean potential energyE normalized to
the potential energy of the largest clusterE0 as a function of
temperature. As the temperature is increased, the single
ter decays, smaller clusters are formed, and subsequentl
number of pair interactions decreases. Figure 5 displays
heat capacity as a function of temperature. As shown bef
the number of clusters increases with temperature and
peak in the plot corresponds to the highest rate of clu
formation. Note that the position of the maximum is rath
insensitive to the linear density.

The cluster distribution is dramatically changed wh
capped ends are used as boundary conditions. The bin
energy of the fullerene to the hemisphere at the end of
tube is 1.14 eV.32 This energy is more than four times high
than that between two fullerenes. Therefore, the energetic
most favorable state is that in which the molecules form t
clusters attached to the ends of the nanotube. Figure 6 sh

FIG. 3. Probability of occurrence of a single cluster as a fu
tion of temperature computed for 90, 80, 70, 60, and 50 C60 mol-
ecules in 100 sites~from top to bottom!.

FIG. 4. Mean potential energy as a function of temperature
different linear densitiesN/L. E0 is the potential energy at 0 K.
7-5
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MIROSLAV HODAK AND L. A. GIRIFALCO PHYSICAL REVIEW B 64 035407
the cluster distributions for 300 K, 500 K, and 1000 K. A
300 K, the system forms two clusters attached to the na
tube ends. Because of the nearest-neighbor interactions
tween C60 molecules, the system is frustrated at this sta
since its energy is the same for all possible cluster sizes
a result, all clusters~except the one that contains all mo
ecules! are observed with equal frequency. As the tempe
ture is increased, this feature gradually disappears an
about 600 K the cluster distribution shape is similar to t
with free ends, with the mean numbers of small clusters
ing slightly higher. The difference persists as the tempera
is further increased up to 1000 K. This comes from the h
binding energy to a cap, which is significant even at h
temperatures; we find that for all studied temperatures
probability that a site next to the cap is occupied is close
100%.

The ‘‘quasimelting’’ phenomenon in this case can
studied in terms of the probability of finding two clusters
the system. Plotting this quantity with respect to temperat
for different linear densities, we get very nearly the sa
plot as for the melting in the free ends case~Fig. 3!. Also,
other characteristics of this system give the same beha
compared to the free ends case: the heat capacity as a
tion of temperature yields the same plot as for the free e
case~Fig. 5!. PlottingE/E0 for different densities as a func
tion of temperature gives a slightly different plot~not
shown!, but the difference comes from using a different no
malization constant (E0, the energy at 0 K, is different fo
free and capped ends! whereas the actual behavior of th
system is the same.

The mean number of clusters is shown in Fig. 7. Note t
the only notable difference from Fig. 1 is that for tempe
tures up to 300 K, two clusters are formed instead of on

IV. APPLICATION OF THE MODEL TO PEAPODS: OPEN
SYSTEM

For an open system, the properties are controlled by
ues of the chemical potentialm and temperatureT. In this
section, all the results we report were obtained by the ma

FIG. 5. Heat capacity vs temperature for 90, 80, 70, 60, and
C60 molecules in 100 sites~from bottom to top!.
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method. The exact expression for the grand partition funct
given by Eq.~22! is used. In fact, both cluster and matr
methods could be used, but the latter method is more us
since the derived formulas are simpler and require less c
putational effort.

It is of importance to compare the results obtained
open and closed systems. The major difference between
two systems comes from the fact that the number of m
ecules is fixed in the closed system, whereas it is given
the distribution of probabilities of having various numbers
molecules in the open system. In general, quantities that
pend linearly on the number of molecules in the system g
the same results for both cases. This can be shown as
lows: Let us consider a quantityG, linear in N:G(N)
5CN, C being a constant and the probability distributio
PN . Let us choose any number of moleculesN* and any

0

FIG. 6. Mean number of clusters of various sizes for 80 C60

molecules inside a spherically capped nanotube with 100 sites
temperatures~a! 300 K, ~b! 500 K, and~c! 1000 K.
7-6
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QUASI-ONE-DIMENSIONAL SYSTEM OF MOLECULES . . . PHYSICAL REVIEW B 64 035407
distributionPN , for which ^N&5N* , and let us compare th
values for the quantityG in the open and closed systems. F
the closed system,

G~N* !5CN* . ~32!

For the open system,

^G~N!&5(
N

G~N!PN5C(
N

NPN5CN* , ~33!

which is the same as for the closed system. Clearly, thi
not true for nonlinear dependent quantities.

For our system, the probability distribution functionPN is
given as

PN5
Z~L,N!ebN(e01m)

QL
. ~34!

Clearly, PN is a nonlinear function ofN, so we expect some
differences in the behavior of closed and open systems.
can be demonstrated by computing the equation of st
which relates one-dimensional pressure to the tempera
and linear density. The one-dimensional pressure is a fo
acting in the linear array of molecules, and for the gran
canonical ensemble it is given as

p1D52S ]V

]L D
T,m

. ~35!

In the case of the canonical ensemble, pressure can be d
mined by using a similar expression replacingV by the free
energyF,

p1D52S ]F

]L D
T

. ~36!

The results are shown in Fig. 8, in which the force~linear
pressure! is plotted against the 1D ‘‘volume’’V5Ld, in
units of V05^N&d ~for closed systems we useV05Nd), d

FIG. 7. The mean number of clusters vs temperature for 90,
70, 60, and 50 C60 molecules inside a spherically capped nanotu
with 100 sites~from bottom to top!.
03540
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510.05 Å being the length of one site, so thatV/V0 gives
the reciprocal linear densityL/N. The lines correspond to th
open system, whereas the equation of state for the clo
system is displayed as points. Note that the differences
tween the two cases are significant at low temperatu
while at high temperatures the behavior of the two system
very close. As expected, the transition from the high to l
compressibility regime is more rapid at lower temperatu
as the system goes from a gaslike to a solidlike state,
though there is no phase transition.

Similarly, for clustering in terms of the mean numbers
clusters of various sizes, we find different results for the t
cases at low temperatures, while at high temperatures
clustering in the open system reproduces that of the clo
system well.

From the mean number of molecules inside the nanotu

^N&52S ]V

]m D
T,L

, ~37!

the filling fraction^N&/L can be determined as a function
T andm. It is found that filling varies from 0 to complete fo
chemical potentials in the range23.8 eV <m<23.3 eV
for all temperatures studied. Using the expression for
chemical potential of an ideal gas,

m52kT lnS ~2pmkT!3/2

h3

kT

p D , ~38!

we can express the fractional filling as a function of tempe
tureT and outside pressurep. This is displayed in Fig. 9. The
efficiency of filling depends on temperature, and as it is
creased the curves approach a step function.p0 are the val-
ues of the pressure at which the filling of the nanotube
50% complete for a given temperature. These values
found to be extremely small:p0 at 300 K is of the order of
10246 Pa. These values increase with increasing temp
ture, but they remain extremely low unless the filling occu
at high temperatures:p053.031023 Pa for 1000 K. This

0,
e

FIG. 8. The equation of state for C60 molecules inside a~10,10!
nanotube for temperatures 300 K, 500 K, 700 K, and 900 K~from
bottom to top! for both open~lines! and closed~points! systems.
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means that, unless the filling takes place at high temp
tures, an efficiency of almost 100% is expected. We h
also investigated the effect of caps, which would corresp
to filling nanotubes through wall defects, while the encap
lated ends are intact. We have found that neither of the
possible cases~caps on both ends or one cap and an open
on the other side of the nanotube! influences equilibrium
filling substantially. The differences are well below 1%.

V. COMPARISON TO EXPERIMENTAL OBSERVATIONS

To prepare peapods experimentally, the sample cont
ing closed nanotubes is annealed, typically for 2 h.33 During
the annealing process, the C60 molecules diffuse into nano
tubes through wall defects and opened ends. Since they
allowed to diffuse only for a relatively short time, it is no
likely that the whole system has reached its equilibriu
state. Observation shows that many nanotubes are al
fully filled with C60.33 It is reasonable to expect that th
equilibrium filling will be even higher, which agrees we
with results of our calculations, from which almost 100
filling is expected at the experimental conditions.

For the clustering of fullerenes, it is important to note th
all the experimental observations were made at room t
perature. At these conditions no mobile external C60 mol-

FIG. 9. Adsorption isotherms for an open nanotube for tempe
tures 300 K, 500 K, 750 K, and 1000 K.
ys

em

m

03540
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e
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d
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re
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t
-

ecules were detected@the mobility is only observed for tem
peratures exceeding 325 °C~Ref. 33!#, so one can expect tha
the system behaves as closed and that clustering wil
comparable to that of the closed system~which can be ex-
pected to reach equilibrium easier than the total system!. The
HRTEM observations show that the internal molecules p
fer to form a single cluster,36 which is in accord with our
results.

VI. CONCLUSIONS

We have applied the lattice gas model with neare
neighbor interactions to a quasi-one-dimensional system
molecules encapsulated inside a carbon nanotube. We
found an exact solution for both open and closed syste
The model was applied to the system of C60 molecules inside
a ~10,10! nanotube. We have computed the clustering of C60
molecules as a function of temperature for different line
densities of the internal molecules. We have found that60
molecules form an almost perfect one-dimensional solid
room temperature. As the temperature is increased, qua
elting takes place over an extended temperature range, w
depends on linear density. The effect of caps on cluste
was also investigated. At low temperatures, the system
found to be in a frustrated state as two clusters attache
nanotube ends are formed. The clustering distribution
proaches that for free ends with rising temperature. For
open system, we have computed the adsorption isotherm
different temperatures and found that nanotubes can be fi
with C60 molecules very efficiently at room temperature. D
ferences between open and closed systems have also
studied. We have found differences between the two syst
at low temperatures, while their behavior is close at h
temperatures. Obtained results were compared with HR
observations and showed good agreement.
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