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Quasi-one-dimensional system of molecules inside carbon nanotubes: Exact solution for the lattice
gas model and its application to fullerene-filled nanotubes
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The statistical mechanics of a system of molecules encapsulated inside a carbon nanotube was analyzed
using a one-dimensional lattice gas model. Both open and closed tubes were studied and both the grand-
canonical and the canonical partition functions were evaluated exactly. The formulas for the frequency of
occurrence of clusters of various sizes were also derived. The model was appliedl@il@ nanotube
containing Gy molecules. The calculations gave detailed information on the clustering of molecules in both
open and closed nanotubes. Analysis of the open system yields information on the conditions under which the
nanotubes can be filled when they are in equilibrium with an external gas. The results show that an open
nanotube can be filled very efficiently at room temperature provided there are enough external fullerenes in the
gas phase. For a closed system at room temperature, we found a high degree of clustering that decreases with
increasing temperature. Because of the strong interaction between fullerenes, the system is far from its random
state even at the highest temperatures studied. For both cases, linear equations of state were determined as well.
Obtained results are in accord with the experimental observations.
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I. INTRODUCTION as hydrogen, nitrogen, methane, and carbon dioxide into car-
bon nanotube3:® These studies analyze the conditions at
A system is called quasi-one-dimensiofdD) when its ~ which nanotubes can be filled and estimate the adsorption
geometry is characterized by one macroscopic and two mieapacity of carbon nanotubes for various species. However,
croscopic spatial dimensions. These conditions are satisfigtie important question of dimensionality is not addressed in
for molecules moving inside a long narrow cylinder. Re-these studies.
cently, this type of cylindrical environment has become ex- The importance of this topic was recognized by the group
perimentally available with the discovery of carbon nano-led by Cole from Pennsylvania State University. Their inten-
tubes. Quasi-one-dimensional systems provide asive research activitj~>*presents a great contribution to the
opportunity to test 1D models, which are usually much sim-understanding of the behavior of quasi-one-dimensional sys-
pler than those formulated in three dimensions. One of théems of molecules confined inside a carbon nanotube. Their
most interesting features of 1D systems with short-range instudies, which focused on rare gases and hydrogen, revealed
teractions is that they do not possess a phase transition ethat the effective dimensionality depends not only on mo-
cept atT=0 K.! lecular size relative to the nanotube radius but also on ther-
Attempts to experimentally observe one-dimensional phemodynamic variablesnumber of atoms and temperature
nomena using carbon nanotubes have recently met with suend geometryisolated tubes or ordered arrays of tubd$e
cess. Teizeret al? have measured the desorption Bfle  full quantum-mechanical treatment of one-dimensiotaée
from interstitial regions between closed carbon nanotubes iwas recently investigated by Krotscheck and Mifl&f®
bundles. The data can be understood only whEe is as- In all these theoretical studies, little attention has been
sumed to be a one-dimensional adsorbate. Predictions baspdid to the clustering of adsorbed molecules. Also, these
on 2D adsorption underestimate the experimental results bstudies did not compare the closed system with one interact-
more than five orders of magnitude. Kuznetseval? have  ing with its enviroment. It is reasonable to consider both
investigated the adsorption of Xe into nanotubes with botlcases. An example of an open system is the nanotube with
closed and open ends. The measured desorption data shawen ends or with wall defects. Synthesized nanotubes typi-
that a quasi-one-dimensional confined Xe phase is estalzally have their ends closed, but various techniques have
lished inside nanotubes with open ends and this phase delseen developed to open thém?°
orbs via an equilibrium involving the 2D gas phase on the In this paper, we use the lattice gas model to study 1D
outer nanotube surface. Also, Smigh al* have observed systems of molecules adsorbed inside a nanotube. This is a
chains of Gy molecules(fullerene$ encapsuled in carbon simple model in which molecules are attached to lattice sites
nanotubes using high-resolution transmission electron miand move around on the vertices of the lattice. Confining the
croscopy(HRTEM). This system is usually called a peapod. particles to a lattice in this way makes the model consider-
Because of the appropriate size of thE0,10 nanotube ably simpler to deal with than a true gas model in which
(which is the most abundant in nanotube samplss sys- molecules can take any position in space, although it makes
tem provides a nearly ideal realization of a one-dimensionathe model somewhat less realistic. However, lattice gases
system. These experiments have stimulated many Montgive a good deal of insight into the general behavior of real
Carlo simulation studies on adsorption of simple fluids suclhgases. This model has proven useful to study various physi-
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cal phenomena such as diffusion, adsorption, interface®f nearest-neighbor interactions, the energy depends only on
phase transformations, equilibrium crystal shapes, and evahe number of clusterga cluster is defined as an array of
fragmentation in heavy ion collisions. Young and E&leave  sites in which all sites are occupied and the sites adjacent to
shown that the grand-canonical ensemble in the lattice gabe chain ends are either empty or are at a tube. eftten
model is equivalent to an Ising model. Using this, the grandthe sum over states can be replaced by the sum over all
canonical ensemble can be solved by mapping onto the Isingossible numbers of clusters, that is,
model, which is exactly solvable in one dimension. This pro-
cedure, however, does not work for the case of the canonical
ensemble, which corresponds to the Ising model with fixed ~ Z(L,N,T)= k21 Zg(LNk T)ePN0, 0 (3)
magnetization, known as the Kawasaki motleBecause of
the restriction on the number of moleculéised magnetiza- where k denotes the number of clusters, nhir(N+1,N)
tion), this model is more difficult to solve than the Ising gives the maximum number of clusters thamolecules can
model. form in L sites, which is the minimum of —N+1 andN,

In this paper, we present an exact solution for both caandz(L,N,k) gives the partition function for the system of
nonical and grand-canonical lattice gas models for a 1D arengthL with N molecules arranged intio clusters. We will
ray of molecules of arbitrary linear density. We also deriveconsider the case in which the molecules in the first and the
formulas for the frequency of occurrence of clusters of vari-ast site interact with the system’s boundaries. This corre-
ous sizes. The 1D lattice gas model is then applied to &ponds to the nanotube with capped ends. Binding energies
system of G, molecules inside &10,10 nanotube. The re- for these interactions are denoted @s (first site and e
cent theoretical treatment of interactions between fullerenegdast sitg. Obviously, taking both these energies to be zero
and nanotubé$ shows that the g molecule is in a deep yields the case of free ends. Three separate cases have to be
potential well at the center of @0,10 tube and its motion  considered: both sites 1 amdare occupied, one of the sites
perpendicular to the tube axis is highly restricted. Thisis occupied, and both sites are empty. Accordingly,
means that this system is quasi-one-dimensional. Sincg (L,N,k,T) is written as the sum of three parts,
HRTEM image&> provide information on the arrangement
of Cgo molecules, the computed distribution of fullerenes can  Zq(L,N,k, T)=W,(L,N,k, T)ef(cL* <R+ W, (L,N,k,T)
be compared to experiment. The frequency of occurrence of el . Be
molecular clusters of various sizes is computed for both open X (€7 +e7R) + Wo(L,N.k,T), (4)
and closed nanotubes as a function of linear density and temghere W, (L,N,k,T) (i=0,1,2) gives the number of states
perature. The linear equation of state is obtained, and fof, which N molecules are arranged inkoclusters inL sites
open tubes, the efficiency of filling is also computed as gjth i clusters attached to the ends of the system. These

min(L—N+1,N)

function of temperature and pressure. numbers have to account for two things: the number of ways
to arrange molecules into a given number of clusters and the
Il. THE MODEL number of ways to arrange clusters of given lengths into the

available sites. The first number is given by the binomial
coefficient § ;) for N molecules irk clusters. To calculate

In our lattice gas model, we divide a nanotube into a chainhe latter, we realize that arrangirgclusters with given
of L lattice sites such that each lattice site can be eithefengths intoL sites is equivalent to arrangig— N vacant
empty or occupied by one molecule. A site is characterizegites intok’ clusters. This number has three possible values:
by the occupation numbey , which is either 1 if thgth site. k-1, k, andk+1, so that the number of possible arrange-
is occupied or O if thejth site is empty. Only nearest- ments is found to be Lgﬁ—ll). Obviously, considering

neighbor(NN) interactions are considered, so that the potenW(L N,k,T) (i clusters attached to the endk’=k+1
tial energy of the closed system is —li a’mé syo

__ o N-1)/L—-N-1
"= GNNZpairse'e” @ Wi(L’N’va):(k—l)( k—i ) ©

A. Canonical ensemble—The cluster method

where — € is the energy of interaction of a nearest-neighbor]c

i and th ) I t-neiahb s Th ori=0,1,2. Here we take any binomial coefficient equal to
pair and the sum IS over all nearest-neighbor pairs. the Colze . \yhenever any of its arguments is negative. Also, we
responding partition functioZ is

defineW,(L,L,k,T)=1. These assumptions allow the same
expression to be used for special cases such=abl or L
Z(L,N,T)= 2 gBe(ereategegt ) 2) =0. Equation(3) in conjunction with Eqs(4) and(5) gives
&=N the partition function.

j The Helmholtz free energl is given by
where 8= (kgT) !, kg being the Boltzmann constant, and F=—kgTInZ(L,N,T) (6)
the sum is taken over all states with a total number of mol- T
ecules equal tdl. To evaluate it, we use the cluster metffbd From the free energy, any thermodynamic quantity of inter-
developed by Vavro, which is based on the fact that becausest can be computed.
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To evaluate the probabilit ,(L,N,x) that a cluster has a L
lengthx, let us first find the total number of clusters with the Q. =1+ >, Z(L,N,T)efN(eo+n), (14)
length x, when N molecules are distributed intio clusters. N=1
USing the same ideas as before, we find this number to bewhereEO is the b|nd|ng energy of a molecule to a site and

is the chemical potential.

N—x—-1}/L=N-1 The grand-canonical case with free ends can be solved

k—2 k'—1 more efficiently when the transfer matrix method is used. Let
us write the grand-canonical partition function as the sum
for k=2 and fork=1, over all possible values of occupational numbiges,

Wp(L,N,k,k’,x,T)zk( ) (7)

L-N-1
k'—1

Wo(L,N, LK X, T) = 8y +on.,  (® QL= efelererrerest - Jehleotmertet ) (15)

1ent

dyy being the Kronecker delta defined as 1 fory and 0  To evaluate this partition function, we define the quantities
otherwise. Summing over all possible numbers of clusterg,(0) andZ,(1) that give the grand partition function for the
and expressingV,(L,N,k,k’,x) in terms of the partition system ofk sites in which the last site is empfy,(0)] or
functionZ(L,N,T), the probability can then be expressed asoccupied[Z,(1)]. Let us compute these quantities for the

follows: one-site system,
1 Z1(0)=1 and Z;(1)=¢€" (16)
F— —Be
Pp(LNXT) Z,(L,N,T) Za(LNLT) Oy Here we have defined=ge and b=p(eo+u). For the
min(L—N+1N) Ny 1 two-site system,
+ kZy(L,N,k, T
,(22 o )( k-2 ) Z,(0)= D>, edeedghleite)— N gber—q 4 gb
1 e1=0,1g,=0 e;=01
N—1\"~ 17
X — Bek
k—1) e : 9
— a(eep) ab(e+ey) — ae;qbe;+1
whereZ(L,N,T) is the normalization factor needed to sat- Z5(1) e,=0Te,=1 eTreT e;&le e
isfy S}_,Pp(L,N,x,T)=1. The mean size of the cluster is
then =eP+e2e?, (18)
N We can write this as
X)= P,(L,N,x,T)x 10
< > le p( ) (10 (Zz(l)) (eaeb eb)(zl(1)> 19
= . 1
and the mean number of all clusters is Z5(0) 1 1/124(0)
N Thi_s relation holds for any, ,Z, _4, and so for a system of
(Ky= —. (12) L sites
<X> b b\ L—-1
. : Z (1)) [e%” e Z,(1)
Now the mean number of clusters of various sizes can be = ) (20
written as Z,(0) 1 1 Z,(0)
Obviously, the total grand parttion function is
n(x)=Py(L,N,x, T)(k). (12
QL=2Z.(1)+Z.(0). (21

The sum in the partition functioi3) can be evaluated in

terms of the hypergeometric function,F(a,b;c;z) Expanding the vectorig(l)) into eigenvectors of the matrix

% 0
:En=0[(a)n(b)n/(c)nn!]zny where a)n:a(a"_l)' ’ '(a in Ea. (20). th d titi f ti b itt
+n—1) and @)g=1, a#0. For the case of open ends, the in Eq. (20), the grand partition function can be written as

partition function then reads Q =7, (1)+Z2.(0)

2F1(1=N,—L+N;2;e %)

)\2 L-1
)\—) (X1 axX2)) |,
eﬁe 1

Z(L,N,T)=efN(L—N+1) =N Y agxgtaXt

(13 (22)

wherea;,a, are constants ang;;, Xi», Xy, Xy, are the
components of the eigenvectors andx, corresponding to

The partition function for the grand-canonical ensemblethe eigenvalues ; andA, (A1>\,). The eigenvalues and
can easily be written from the canonical partition function aseigenvectors are found to be

B. Grand-canonical ensemble

035407-3



MIROSLAV HODAK AND L. A. GIRIFALCO PHYSICAL REVIEW B 64 035407

e"P4 1+ \[(eTP—1)2+4€P 12
N1o= > ; (23)
10 -
D A
= = : 24 8
X1 1 ’ X2 < 1 ) ( )

The constants; anda, are

Number of clusters
[e)]

&P+l n—eb-1 -
R 2

Equation(22) in conjunction with Eqs(23), (24), and (25)
gives the exact expression for the grand partition function. g ‘
For largelL, the third and fourth term in Eq22) can be 200 40 1200
neglected so that the partition function reads Temperature [K]

FIG. 1. The mean number of clusters vs temperature for 90, 80,
Q,_=7\E71(a1X11+ a1X1o) (26) 70, 60, and 50 g molecules in 100 site6rom bottom to top.

and the thermodynamic potenti@l= —kTInQ is lll. APPLICATION OF THE MODEL TO THE PEAPODS:
CLOSED SYSTEM

Q= —kT(L=D)inAy. @7 For G;p molecules inside &10,10 nanotube, the interac-

To get the probability that a given site is occupied, Weg?en ne;neorgjyb:s i(s).:23’.7286ee\<3/,?2whereas the binding energy to
first write the probability that a giyen site is empty. This is Two types %f boundary conditions are applied: free ends
easy to get, since when a site s empty, the twbe can bgnd spherically capped ends. The number of sites in the
descnbeq as two |erpendent noninteracting tbes. That Banotube is taken to be 100. Using a higher number of sites
whenl, |s_t_he posn!on .Of an empty site from the left, _the does not affect results for given linear densiyL signifi-
grand partition function i®, -1 XQu -y, Then the probabil- .- “The number of internal molecules studied ranges

ity that this site is empty is from 50 to 90 in steps of 10. An important thing to note is
that the system with. —N molecules behaves just like the
Qi,-1QL-1, one withN molecules. The reason for this is the fact that the
pempty:Q—L- (28 energy depends only on the number of clusters the system

forms and this number is the same for bdthand L — N

Here and below we assun@=1 for anyl<0. The prob- Mmolecules inL sites. _
ability that the site is occupied is-1pempy- For the free ends, the total number of clusters in the sys-

To get the probability of occurrence of clusters, let ustém as a function of temperature is displayed in Fig. 1. For

note that a cluster effectively gives three noninteracting€mperatures up to 300 K, the system is frozen and all mol-
tubes. For the molecules inside the cluster of lengtthe ecules form one cluster. As the temperature is increased, the

partition function ise2®*~ Ve, Multiplying the partition n_umber of cll_Jsters_ris_es r_apidly, depending on Fhe Iin_ear d_en-
functions for configurations outside the cluster gives sity. The typical distribution of clusters of various sizes is
shown for 80 fullerenes at temperatures 300 K, 600 K, and
1000 K in Fig. 2. At room temperature, the system is an
almost perfect 1D solid. The different behavior for the single
cluster is a consequence of the fact that the state at which all
Gholecules form a single cluster has a different entropy than
all the others. As the temperature is increased, smaller clus-
ters start to form and the single large cluster gradually dis-
a(x=1)2b" appears. Figure 3 shows the decay of the probability of oc-
Qi,-2€ €”"QL-1,-x currence of the single cluster for all studied linear densities
p(l1,x)= QL - (80 as a function of temperature. Clearly, there is no phase tran-
sition. The decreasing occurrence of the single cluster can be

Using this probability, the mean number of clusters of vari-described as a “quasimelting” taking place over an extended

Q('l,x):Qll—zea(xil)ebXQL—ll—w (29

here we assume that the first occupied site in the clust
starts at positioni;. Then the probability that a cluster of
molecules occurs at given sites is

ous sizes is temperature change. As expected, the rate of quasimelting is
lower the higher the linear density {for N=L/2), and at
L—x+1 1000 K the single cluster disappears even for the highest
n(x)= E p(l1,X). (31 linear density.
=1 The approach of the system to a quasigas state can be
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1 1
09 - @ 09
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g 0.6 2 g6
£ 0.5 £
§ 041 @ 059
€ p3 > 0.4
0.2 1 g 0.3
0.1 £ 02
0 ' ' ' ' ‘ ' ' 0.1
0 10 20 30 40 50 60 70 80
: 0 ; . ‘
Cluster size 200 400 600 800 1000
0.09 Temperature [K]
0.08 (b) FIG. 3. Probability of occurrence of a single cluster as a func-
0.07 l tionlof temperature computed t1)‘or 90, 80, 70, 60, and 3Qrfol-
ecules in 100 sitedrom top to botton).
5 0.6 "I I T=600 K ¢ P "
% 0.05 1 about twice as many clusters at the high-temperature regime:
g 0.04 25.5 clusters foN/L=0.5 and 9.9 clusters fdd/L=0.9.
é 0.03 Figure 4 shows the mean potential enekgyormalized to
0.02 1 the potential energy of the largest cluskgy as a function of
0.01 - temperature. As the temperature is increased, the single clus-
ter decays, smaller clusters are formed, and subsequently the
0 - number of pair interactions decreases. Figure 5 displays the
0 10 20 30 40 50 60 70 80 heat capacity as a function of temperature. As shown before,
cluster size the number of clusters increases with temperature and the
peak in the plot corresponds to the highest rate of cluster
06 formation. Note that the position of the maximum is rather
(C) insensitive to the linear density.
0.51 The cluster distribution is dramatically changed when
c _ capped ends are used as boundary conditions. The binding
é 04 T=1000K energy of the fullerene to the hemisphere at the end of the
203 tube is 1.14 e\?? This energy is more than four times higher
c than that between two fullerenes. Therefore, the energetically
g 0.2 most favorable state is that in which the molecules form two
clusters attached to the ends of the nanotube. Figure 6 shows
0.1
0 - " T T T
0 10 20 30 40 50 60 70 80
cluster size

FIG. 2. Mean numbers of clusters of various sizes for 89 C
molecules inside 610,10 nanotube with 100 sites for temperatures

(a) 300 K, (b) 600 K, and(c) 1000 K.

determined by comparing the properties of the system to
those at very high temperature. This can be easily obtained,
since at high temperatures the binding energy is negligible
compared to the thermal energy and so one can simply use
zeros for binding energies in the derived formulas to deter-
mine the high-temperature behavior. Computing the mean
number of clusters for the high-temperature regime, we find

0.6 .
200

400 600 800

1000 1200

Temperature [K]

that the system is far from the random state even at 1200 K, FIG. 4. Mean potential energy as a function of temperature for
the highest temperature studied here, since the system forrdsferent linear densitiedl/L. E, is the potential energy at 0 K.
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o T=300 K @
_ 0.025 1
£0.003 - £ 002
[0)] 3
— < 0.015
= (3]
®0.002 - 2 o0t
Q.
8 0.005 -
$0.001 - 0.
T 0 10 20 30 40 50 60 70 80
cluster size
0
200 700 1200 0.08 ©)
Temperature [K] 0.07
. 0.06
FIG. 5. Heat capacity vs temperature for 90, 80, 70, 60, and 50 80_05 |
Cgo molecules in 100 siterom bottom to top. ;E,
20.04 1
the cluster distributions for 300 K, 500 K, and 1000 K. At $0.03 1
300 K, the system forms two clusters attached to the nano- €0.02
tube ends. Because of the nearest-neighbor interactions be- 0.01 -
tween Gy molecules, the system is frustrated at this state, 0 |
since its energy is the same for all possible cluster sizes. As 0 10 20 30 40 50 60 70 80
a result, all clustergexcept the one that contains all mol- closter sizo
ecules are observed with equal frequency. As the tempera-
ture is increased, this feature gradually disappears and at 0.7
about 600 K the cluster distribution shape is similar to that 0.6 | ©
with free ends, with the mean numbers of small clusters be-
ing slightly higher. The difference persists as the temperature g L T=1000 K
is further increased up to 1000 K. This comes from the high E 04
binding energy to a cap, which is significant even at high c 03
temperatures; we find that for all studied temperatures the g
probability that a site next to the cap is occupied is close to € 0.2
100%. 01 |
The “quasimelting” phenomenon in this case can be 5 -

studied in terms of the probability of finding two clusters in
the system. Plotting this quantity with respect to temperature
for different linear densities, we get very nearly the same
plot as for the melting in the free ends cdség. 3). Also, FIG. 6. Mean number of clusters of various sizes for 8y C
other characteristics of this system give the same behavianolecules inside a spherically capped nanotube with 100 sites for
compared to the free ends case: the heat capacity as a furtemperaturega) 300 K, (b) 500 K, and(c) 1000 K.

tion of temperature yields the same plot as for the free ends . N ]
case(Fig. 5). Plotting E/E,, for different densities as a func- Method. The exact expression for the grand partition function
tion of temperature gives a slightly different plgnot ~ 9iven by Eq.(22) is used. In fact, both cluster and matrix
shown, but the difference comes from using a different nor-methods could be used, but the latter method is more useful,
malization constantH,, the energy at 0 K, is different for Since the derived formulas are simpler and require less com-

free and capped endsvhereas the actual behavior of the Putational effort. ,
system is the same. It is of importance to compare the results obtained for

The mean number of clusters is shown in Fig. 7. Note thaPPen and closed systems. The major difference between the

the only notable difference from Fig. 1 is that for tempera-\WO Systems comes from the fact that the number of mol-
tures up to 300 K, two clusters are formed instead of one. ecules is fixed in the closed system, whereas it is given by
the distribution of probabilities of having various numbers of

molecules in the open system. In general, quantities that de-

pend linearly on the number of molecules in the system give

the same results for both cases. This can be shown as fol-
For an open system, the properties are controlled by vallows: Let us consider a quantitg, linear in N:G(N)

ues of the chemical potential and temperaturd. In this  =CN, C being a constant and the probability distribution

section, all the results we report were obtained by the matriPy . Let us choose any number of moleculd$ and any

0 10 20 30 40 50 60 70 80
cluster size

IV. APPLICATION OF THE MODEL TO PEAPODS: OPEN
SYSTEM
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12 3
E 900 K open
2519 900 K closed
" H ——700 K open
) =5 24 [ = 700 K closed
= N B —500 K open
(&) ' |
= E 1.5 - % » 500 K closed
3 = \ —300 K open
\ | = 300 K closed
£ 14 1%
=z
0.5
0 - O T = = \- —=
200 700 1200 0 2.5 VIV, 5 7.5 10

Temperature [K]

h ber of cl FIG. 8. The equation of state forggmolecules inside §10,10
FIG. 7. The mean number of clusters vs temperature for 90, 8Onanotube for temperatures 300 K, 500 K, 700 K, and 900r&m

70, 60, and 50 g, molecules inside a spherically capped nanotubebOttom to top for both open(lines) and closedpoints systems.
with 100 sites(from bottom to top.

. : =10.05 A being the length of one site, so th&tv, gives
— * L]

distribution Py, for vx'/h|c.h<N)—N , and let us compare the the reciprocal linear density/N. The lines correspond to the

values for the quantit in the open and closed systems. For

the closed system open system, whereas the equation of state for the closed
’ system is displayed as points. Note that the differences be-
G(N*)=CN*. (32) tween the two cases are significant at low temperatures,
while at high temperatures the behavior of the two systems is
For the open system,

very close. As expected, the transition from the high to low

compressibility regime is more rapid at lower temperatures

_ _ — CON* as the system goes from a gaslike to a solidlike state, al-
(GN) EN: G(N)Py CEN: NPN=CNT, 33 though there is no phase transition.

o .. Similarly, for clustering in terms of the mean numbers of
which is the Same as for the closed system. Clearly, this i§sters of various sizes, we find different results for the two
not true for nonlinear depend(_a_nt ql_Jan_t|t|e_s. . cases at low temperatures, while at high temperatures the

For our system, the probability distribution functi®y, is

, clustering in the open system reproduces that of the closed
given as s
ystem well.

Z(L,N)eBN(eot 1) From the mean number of molecules inside the nanotube,

Pn o, (34)

Q)

I . w=-(2] . @
Clearly, Py is a nonlinear function oN, so we expect some )
differences in the behavior of closed and open systems. Thi - . . .
can be demonstrated by computing the gquatiyon of stattﬁ‘e filling fr.act|0n<N>/L can be dgtermlned as a function of
which relates one-dimensional pressure to the temperaturk@1d/- Itis found that filling varies from 0 to complete for
and linear density. The one-dimensional pressure is a forcg'eémical potentials in the range3.8 eV <u<-3.3 eV
acting in the linear array of molecules, and for the grandfor &ll temperatures studied. Using the expression for the

canonical ensemble it is given as chemical potential of an ideal gas,
F1o) (27mkT)¥2 kT
- =—kTIn| —————— —|, 38
P1ib il (35) M 3 o (39

In the case of the canonical ensemble, pressure can be det#te can express the fractional filling as a function of tempera-
mined by using a similar expression replaciigoy the free  tureT and outside pressuge This is displayed in Fig. 9. The
energyF, efficiency of filling depends on temperature, and as it is de-
creased the curves approach a step funciigrare the val-
JF ues of the pressure at which the filling of the nanotube is
' (36) 50% complete for a given temperature. These values are
T found to be extremely smalp, at 300 K is of the order of
10" %6 Pa. These values increase with increasing tempera-
ture, but they remain extremely low unless the filling occurs
at high temperature,=3.0x10 2 Pa for 1000 K. This

plD:_(I

The results are shown in Fig. 8, in which the for¢@ear
pressurg is plotted against the 1D “volume’V=Ld, in
units of Vo=(N)d (for closed systems we udg=Nd), d
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ecules were detectdthe mobility is only observed for tem-
peratures exceeding 325 {Ref. 33], so one can expect that
the system behaves as closed and that clustering will be
comparable to that of the closed systéwhich can be ex-
pected to reach equilibrium easier than the total systé&ime
HRTEM observations show that the internal molecules pre-
fer to form a single cluste® which is in accord with our
results.

VI. CONCLUSIONS

We have applied the lattice gas model with nearest-
neighbor interactions to a quasi-one-dimensional system of
5 25 molecules encapsulated inside a carbon nanotube. We have

P/Po found an exact solution for both open and closed systems.
FIG. 9. Adsorption isotherms for an open nanotube for tempera:rhe model was applied to the system Qf)@loleculesl inside
tures 300 K. 500 K, 750 K, and 1000 K. a (10,10 nanotube. We have computed the clustering gf C

molecules as a function of temperature for different linear

means that, unless the filling takes place at high temperdlensities of the internal molecules. We have found that C
tures, an efficiency of almost 100% is expected. We havénolecules form an almost perfect one-_dlr_nensmnal solid at
also investigated the effect of caps, which would correspon&C0M témperature. As the temperature is increased, quasim-

to filling nanotubes through wall defects, while the encapsu€!ting takes place over an extended temperature range, which

lated ends are intact. We have found that neither of the tw&@®P€nds on linear density. The effect of caps on clustering

possible case&aps on both ends or one cap and an open en¥S also inv_estigated. At low temperatures, the system was
on the other side of the nanotybmfluences equilibrium ound to be in a frustrated state as two clusters attached to

filling substantially. The differences are well below 1%. nanotube ends are formed. 'I_'he _cl_ustering distribution ap-
proaches that for free ends with rising temperature. For the

open system, we have computed the adsorption isotherms for

different temperatures and found that nanotubes can be filled

To prepare peapods experimentally, the sample contairwith Cgo molecules very efficiently at room temperature. Dif-
ing closed nanotubes is annealed, typically for 2 Buring ~ ferences between open and closed systems have also been
the annealing process, thegdnolecules diffuse into nano- Studied. We have found differences between the two systems
tubes through wall defects and opened ends. Since they afé low temperatures, while their behavior is close at high
allowed to diffuse only for a relatively short time, it is not temperatures. Obtained results were compared with HRTM
likely that the whole system has reached its equilibriumobservations and showed good agreement.
state. Observation shows that many nanotubes are almost
fully filled with CGO._33 It is reasonable to expect that the ACKNOWLEDGMENTS
equilibrium filling will be even higher, which agrees well
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