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Dynamics of a three-terminal mechanically flexible tunneling contact
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The dynamics of a nanoelectromechanical system in the form of a mechanically deformable three-terminal
metallic tunneling device is studied by analytical and numerical methods in the absence of single charging
effects. The coupling of electronic charge transport to the mechanical degree of freedom leads to a dynamical
instability characterized by limit-cycle behavior. Furthermore, the existence of two stable stationary points may
lead to directly detectable deterministic chaotic motion.
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I. INTRODUCTION

The growing interest in nanoelectromechanical syste
~NEMS! is partly due to the advances in microfabrication
self-assembly of biometallic composites where metallic
semiconducting clusters are combined with organic m
ecules such as polymers or DNA.1–5 Since the organic chain
molecules used in self-assembly are typically a few order
magnitude softer6–8 than ordinary solids, their utilization in
nanoelectronics implies that mechanical degrees of free
can have great impact on the electronic transport prope
in such systems.

We have previously9,10 investigated how the mechanic
degrees of freedom couple to the electrical transport pro
ties in a Coulomb blockade double junction where the cen
island is free to move in a parabolic potential. A dynamic
instability was shown to exist in this structure that caused
central island to oscillate between the external electrodes
the low-temperature limit, where charging effects are imp
tant, this instability gave rise to a mechanically media
current that approached the valueI 52eN f where e is the
elementary charge,N the maximum number of excess ele
trons allowed on the island, andf the frequency of elastic
vibrations. The fluctuations of this current have been sho
to disappear exponentially with decreasing temperature11

implying that this system may be well suited for curre
standard purposes. In realizing a current standard devic
this type, a grain placed on a flexible cantilever position
between the two electrodes can replace the grain and the
molecular links considered in Refs. 9,10. Such nanosc
mechanical resonators have successfully been fabricated12,13

It has also been suggested by Tuominenet al.,14 who studied
a macroscopic electromechanical system at room temp
ture, that carbon nanotubes connected to nanoscale me
grains,15,16 could be used for this purpose.

In this paper, it is shown that when a system consisting
a grain attached to the tip of a cantilever by a tunnel junct
@see Fig. 1~a!# is treated as a three-terminal device it show
rich dynamical structure ranging from stable limit-cycle b
havior to deterministic chaos. Since this paper focuses on
dynamical properties, the temperature is considered to
large enough for charging effects to be absent, while still l
enough for thermal fluctuations to be negligible.

The same model also applies to the dynamics of
single-electron transistor structure in Fig. 1~b!. The central
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island is here resting on a mechanically soft insulating mo
layer allowing for center-of-mass motion of the grain. Th
system should of course be studied in the low-tempera
limit where charging effects are of importance. Howev
since much of the dynamical features of the system in
high-temperature limit are expected to survive at lower te
peratures, the results obtained in this paper are of interes
further studies in the low-temperature regime.

II. MODEL SYSTEM

The system, as depicted in Fig. 1~a! consists of a small
metallic grain, typically a few nanometers in diameter,
tached to the tip of a metallic cantilever through a tunn

FIG. 1. Schematic layout of the system.~a! A cantilever at-
tached to a conducting grain through a tunnel junction situa
asymmetrically between two metallic electrodes separated by a
tanceL. The electrodes and the cantilever are biased with volta
VL , VR , andVB , respectively. The distance between the grain a
the electrodes are such that electrons may tunnel through the s
ture.~b! Self-assembled single-electron transistor structure. The
namical features discussed for system~a! are relevant also for this
system.
©2001 The American Physical Society26-1
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A. ISACSSON PHYSICAL REVIEW B 64 035326
junction. The other end of the cantilever is assumed to
clamped and connected to a voltage sourceVB . The grain
attached to the cantilever is situated between two meta
electrodes located close enough to the grain to allow tun
ing but with tunneling resistances much larger than tha
the grain-cantilever junction. If the typical frequency of th
dynamical motion of the system is well below the plasm
frequency of the metallic components, the charges
potentials on the conductors are related by the matrixCi j ;17

Qi5(
j

Ci j Vj .

The system can then be mapped onto an electrical netw
model seen in Fig. 2. In this model, only ‘‘nearest neighbo
coefficients inCi j have been taken into account. Each tun
junction is modeled by a resistanceR in parallel with a ca-
pacitanceC, the latter being related to the coefficientsCi j by
linear transformations. Using this model, the grain-poten
VG can be expressed in terms of the grain-chargeQG and the
applied bias voltagesVR,L,B ~cf. Fig. 1! as

VG~QG!5
QG1VRCR1VLCL1VBCB

CS
,

whereCS5CL1CR1CB1CG0. The currentsI L,R,B flowing
from the electrodes to the grain, as shown in Fig. 2, de
mine an equation of motion forQG ;

dQG

dt
5I L1I R1I B .

Using I L,R,B5(VL,R,B2VG)GL,R,B , whereGL,R,B are con-
ductances of the tunnel junctions~cf. Fig. 2! one finds

dQG

dt
5VLGL1VRGR1VBGB2VG~GL1GR1GB!.

The flexibility of the cantilever allows for a mechanic
degree of freedom in the system. We will assume that
freedom is one dimensional, i.e., that the cantilever o
bends in one direction and that this bending is so small

FIG. 2. Electric circuit model. Each tunnel junction is model
by a capacitor in parallel with a tunnel resistanceRL,R,B5GL,R,B

21 .
Furthermore, the grain-ground capacitance has been taken int
count through the capacitanceCG0. Only the ‘‘nearest neighbor’’
capacitances are considered in this model.
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we can consider the grain to move on a straight line betw
the two electrodes. The deflectiond of the grain from the
equilibrium position towards the right electrode is describ
by the equation of motion

d̈1gḋ1v0
2d5EQG /m,

where v0 is the elastic frequency of the system andg a
phenomenological parameter introduced to account for di
pation of mechanical energy. Although the use of Stok
friction is valid for the cantilever setup in Fig. 1~a! it may not
be appropriate for the type of setup of Fig. 1~b! where the
precise mechanism of dissipation is more unclear. The m
m appearing on the right-hand side is an effective mass
pending on the precise geometry and design of
cantilever-grain system. In the force term only the effect
the electrostatic field between the left and right electro
E'(VL2VR)/L to linear order inQG has been considered
For this approximation to be valid, and for the island not
get stuck close to one electrode, it is important that the m
mum grain-lead separation is large enough for adhes
forces~mainly cohesion18 and van der Waals interaction19! to
be negligible compared to the electrostatic force.

The tunneling conductancesGL,R have a sensitive depen
dence on the grain displacementd

GL,R5GL,R
0 expS 7

d

l D ,

where the tunneling lengthl is determined by the work
function f of the electrodes,

l'S 2A2mef

\ D 21

.

The variations of the capacitances with position have b
neglected since they are much smaller than the change
the conductances that dominate the nonlinear behavior o
system. By measuring the deflectiond in units of lambda i.e.,
d5jl, one arrives at the following system of equations,

j̇5P, ~1!

Ṗ52gP2v0
2j1S VL2VR

Lml DQG , ~2!

Q̇G5VLGL
0e2j1VRGR

0ej1VBGB2VG~QG!GS , ~3!

where

GS~j!5GL
0e2j1GR

0ej1GB , ~4!

and

VG~QG!5
QG1VLCL1VRCR1VBCB

CS
. ~5!

III. FIXED POINTS AND STABILITY

In order to characterize the dynamical behavior of t
system, the existence of fixed points is investigated and t

ac-
6-2
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DYNAMICS OF A THREE-TERMINAL MECHANICALLY . . . PHYSICAL REVIEW B 64 035326
the stability of these points is considered. Throughout
rest of the paper the right electrode potential will be used
reference, i.e., we will putVR50 from here on. With this
convention, the stationary points satisfy the following syst
of equations:

5
0 5 P

0 5 2gP2v0
2j1S VL

Lml DQG

0 5 VLGL
0e2j1VBGB2

QG1VLCL1VBCB

CS
GS~j!.

~6!

Defining a[v0
2Lml/CS , h25VL

2 and s5VLVB , Eq. ~6!
can be recast in the formaj5H(j) where

H~j!5
h2gLe2j1s

gLe2j1gRej11
2~h2cL1scB!.

Here, the dimensionless conductancesgR,L5GR,L
0 /GB and

capacitancescL,B5CL,B /CS have been introduced. Sinc
H(j) is a restricted function, the equationaj5H(j) has at
least one solution, and at the most, three solutions. Defin
q5h2/s5VL /VB , three different cases can be identified

• q,0, H(j) has one minimum located atj0

5 1
2 ln(@12q#gL /gR) which means that the system has eith

one or three fixed points.
• 0,q,1, H(j) has one maximum located atj0

5 1
2 ln(@12q#gL /gR) and again we may have either one

three fixed points.
• q.1, In this caseH(j) is monotonic hence only one fixe

point can exist.

When q,0 two different cases can be distinguishe
q,2cB /cL and 0.q.2cB /cL . In the first case,
lim

j→1`
H(j),0 and only one solution lying in the left ha

plane is possible. In the second case, the corresponding
is positive and ifa is chosen small enough, three solutio
will appear, one in the left half plane and two in the righ
The different scenarios are shown in Fig. 3. Wh
0,q,1, one can again single out two case
cB /(12cL),q,1 and 0,q,cB /(12cL). When cB /(1
2cL),q,1, then lim

j→2`
H(j).0 and only one solution

located in the right half plane is possible. In the other ca
the limit is negative and one can find two more solutions
the left half plane by choosinga sufficiently small.

A stability analysis of the fixed points, obtained abo
shows that: In the case of only one fixed point, this point w
be a stable node, i.e., all eigenvalues Jacobian of the sy
are real and negative,20 if the dampingg exceeds the critica
dampinggc ,
03532
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2 F t21~j!1v0
2t~j!

2A@t21~j!1v0
2t~j!#224

v0
2H8~j!

a
G . ~7!

Here, the totalRC-time t(j) is defined as

t21~j![
GS~j!

CS
52

]Q̇G

]QG
.

In the case of three fixed points, one will be conditiona
stable depending on whetherg is larger or smaller thangc .
The second ‘‘middle’’ one@cf. Fig. 3~b!# will not be a node
but instead, will be a saddle point of index one~two negative
and one positive eigenvalue of the Jacobian!, and hence, not
a stationary point irrespective of the value ofg, while the
remaining point@corresponding to the rightmost solution
Fig. 3~b!# will always be a stable node.

IV. STATIONARY OPERATION

WhenAa, which is proportional to the frequency of ela
tic vibrationsv0, is large compared to the applied bias vo

FIG. 3. Solutions to the fixed-point equationaj5H(j). When
q5VL /VB,0, either one or three solutions exist depending
whetherq is larger or smaller than the ratio2CL /CB and what
valuea}v0

2 assumes. In~a!, only one stationary point exists while
in ~b!, either one or three stationary points appear.
6-3
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A. ISACSSON PHYSICAL REVIEW B 64 035326
ages, one expects to find only one stationary solution as
cussed above. In Fig. 4~a! the I 2V characteristics for this
case is shown for an asymmetric setup withRR

051 GV,
RL

051 TV, RB56 MV and all capacitances set to 1 aF. T
frequency of elastic vibrations was set to 4.4 GHz. The fig
shows the current flowing from the grain to the right ele
trode~as opposed toI R , defined in Fig. 2, which was define
in the opposite direction! as a function of the voltage applie
to the left electrode. The different curves correspond to
ferent biases applied to the bottom electrode. For nega
VL , almost no current flows in the system, since the grain
essentially disconnected from both leads. As the field is
creased, the cantilever will start to deflect towards the ri
electrode, causing an exponential decrease inRL allowing
the current to grow.

As VL is further increased, the charge on the grain w
eventually become negative due to the capacitive couplin
the left electrode resulting in a decreased deflection disc
necting it from the leads once again. In Fig. 4, the displa
ment of the grain along with the current flowing to it fro
the left electrode, is shown as a function ofVL when VB
54.0 V. This current is essentially zero until a bias of a
proximately 23.0 V is reached. Furthermore, from th
graph it can be seen that the displacement of the grain is

FIG. 4. Stationary operation. When the damping constantg is
large, the static deflection of the cantilever will cause a pronoun
transistorlike action due to the exponential decrease of the tunne
resistance between the grain and the right electrode~a! Current
flowing from the grain to the right electrode as a function of t
voltageVL applied to the left electrode. The different curves cor
spond to different biasesVB applied to the bottom electrode. In~b!,
the displacementd of the cantilever and the current flowing from
the left electrode to the grain is plotted for the caseVB54.0 V.
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a few timesl ~for Au l is typically 0.5 Å).
For Aa small compared to the applied bias voltages, it

possible to have two stable fixed points in the system. Us
exactly the same parameters as above, but with a reducea,
this second solution appears. In Fig. 5, theI 2V characteris-
tics of thisbistable modeis shown. The solid line correspon
to the same solution as above and the dashed solution to
new one that appears due to the reduceda.

V. DYNAMICAL OPERATION

In the dynamical regime, the system displays a rich str
ture. One of the most interesting features is that this i
nanoscale system with directly detectable chaotic behav
This means that in order to determine what type of mot
the system exhibits, it is sufficient to monitor the curren
Due to the multitude of parameters and the system’s comp
dependence on these, only a few archetypical cases wi
illustrated by means of numerical integration of the equ
tions of motion~1!–~5!. In the presented simulations, a sy
tem with the same parameters as in the static case~see the
previous section! is considered but with a damping rateg
reduced belowgc . The different simulations then corre
spond to different sets of bias voltagesVB andVL .

A. One Fixed Point

We first consider the situation when the system has o
one fixed point corresponding to the situation in Fig. 3~a!.
This is achieved by using a fixed voltageVB53 V and im-
posing a positive bias voltageVL . For small values of this
voltage the system remains stable, as expected, until a c
cal threshold voltage is reached. Further biasing leads,
positiveVL , to a limit-cycle regime. For the range of pos
tive voltages where the algorithm was stable, this cycle
mained. For negative bias voltages, there exists a thres
voltage as well, and as this is reached, a stable limit cy
appears. An example of this type of motion is shown in F
6 ~recorded atVL520.35 V!. DecreasingVL moves the sys-
tem toward the situation in Fig. 3~b!, i.e., we approach the

d
ng

-

FIG. 5. Bistable operation. Whena is small enough, two stable
fixed points emerge leading to a bistable situation. The solid
corresponds to the ‘‘expected’’ solution, while the dashed lines c
respond to the new second stable root to the fixed-point equati
6-4
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DYNAMICS OF A THREE-TERMINAL MECHANICALLY . . . PHYSICAL REVIEW B 64 035326
situation with three fixed points. This leads to a sequenc
period doublings. The behavior in this regime is illustrated
Fig. 7~a!. These period doublings can be directly detected
simultaneously measuring the currentsI B andI L and plotting
them as in Fig. 7~b!. Lowering the bias more eventuall
leads to a totally chaotic regime like the one in Fig.
(VL520.6 V) which is again reflected in the currents. Fu
ther lowering ofVL after this point leads to an alternatin
series of period-doubled limit cycles and chaotic trajector
until three fixed points appear in the system.

FIG. 6. Phase-space trajectory for a stable limit cycle. As
dampingg is reduced below the critical dampinggc the system
settles in to a stable limit cycle.

FIG. 7. Multiply period-doubled phase-space trajectory and
corresponding plot of the currentsI L andI B . ~a! Biasing the system
towards the situation with three fixed points will cause subsequ
period doublings of the limit cycle.~b! By monitoring the currents
flowing in the left lead and the bottom lead at the same time th
period doublings can be detected.
03532
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B. Three Fixed Points

In order to be able to study the case with three fix
points,VB was raised to 6 V while VL was set to 0.7 V. This
corresponds to the situation with three solutions in Fig. 3~b!.
Numerical integration revealed the structure displayed
Fig. 9. Starting close to the conditionally stable fixed poi
the leftmost one in Fig. 3~b!, a stable limit cycle is eventually

e

e

nt

e

FIG. 8. Chaotic motion.~a! Phase-space trajectory in the chao
regime. Biasing the system very close to the situation with th
fixed points the system becomes chaotic.~b! Chaos is also reflected
in the corresponding plot of the currentsI L and I B .

FIG. 9. Phase-space trajectory when three fixed points
present. When the system has three fixed points, one of them
always be stable, one will always be unstable, and one will
unstable ifg,gc . The three fixed points are indicated by * in th
figure. The stable limit cycle that exists in this case can also be s
in the figure.
6-5



le
is
nt

in
n
t
re

fo
ct

ior
e a

it
tly

mi-

k,
his
ncil

c

A. ISACSSON PHYSICAL REVIEW B 64 035326
reached. Starting the simulation in the vicinity of the midd
one ~always unstable! the trajectory either connects to th
limit cycle or becomes attracted by the third fixed poi
which is always stable.

VI. CONCLUSIONS

We have shown that the three-terminal flexible tunnel
structures in Fig. 1, which are of interest for both curre
standard purposes, as well as for self-assembled quan
devices, have several characteristic dynamical featu
When the dampingg in the system is high~low-quality fac-
tor! the system displays a stationary behavior, which
some parameter values, can be bistable. If the quality fa
is large enough, i.e., the damping satisfiesg,gc , the dy-
.R
ci

.A

a-

.J

k-

k-
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namics of the system range from stable limit-cycle behav
to deterministic chaos. It is furthermore possible to hav
situation where stable fixed points coexist with stable lim
cycles. The chaotic motion of the system can be direc
detected by measuring the currents flowing from the ter
nals.
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