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Dynamics of a three-terminal mechanically flexible tunneling contact
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The dynamics of a nanoelectromechanical system in the form of a mechanically deformable three-terminal
metallic tunneling device is studied by analytical and numerical methods in the absence of single charging
effects. The coupling of electronic charge transport to the mechanical degree of freedom leads to a dynamical
instability characterized by limit-cycle behavior. Furthermore, the existence of two stable stationary points may
lead to directly detectable deterministic chaotic motion.
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[. INTRODUCTION island is here resting on a mechanically soft insulating mono-
layer allowing for center-of-mass motion of the grain. This
The growing interest in nanoelectromechanical systemsystem should of course be studied in the low-temperature
(NEMS) is partly due to the advances in microfabrication bylimit where charging effects are of importance. However,
self-assembly of biometallic composites where metallic osince much of the dynamical features of the system in the
semiconducting clusters are combined with organic molhigh-temperature limit are expected to survive at lower tem-
ecules such as polymers or DNA Since the organic chain Peratures, the results obtained in this paper are of interest for
molecules used in self-assembly are typically a few orders ofurther studies in the low-temperature regime.
magnitude softér® than ordinary solids, their utilization in
nanoelectronics implies that mechanical degrees of freedom
can have great impact on the electronic transport properties
in such systems. The system, as depicted in Fig(al consists of a small
We have previousR® investigated how the mechanical metallic grain, typically a few nanometers in diameter, at-
degrees of freedom couple to the electrical transport propetached to the tip of a metallic cantilever through a tunnel
ties in a Coulomb blockade double junction where the central
island is free to move in a parabolic potential. A dynamical L
Tunnel Junction

Il. MODEL SYSTEM

instability was shown to exist in this structure that caused the
central island to oscillate between the external electrodes. In
the low-temperature limit, where charging effects are impor-
tant, this instability gave rise to a mechanically mediated
current that approached the value 2eNf wheree is the
elementary chargé\l the maximum number of excess elec-
trons allowed on the island, arfdthe frequency of elastic
vibrations. The fluctuations of this current have been shown Cantilever
to disappear exponentially with decreasing temperattires, (a)

implying that this system may be well suited for current
standard purposes. In realizing a current standard device of
this type, a grain placed on a flexible cantilever positioned Metallic Gates
between the two electrodes can replace the grain and the soft

molecular links considered in Refs. 9,10. Such nanoscale T ==

8
mechanical resonators have successfully been fabri¢atéd. v [

<
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)

Metallic Gates

L

It has also been suggested by Tuomieerl,'* who studied S5
a macroscopic electromechanical system at room tempera- Conducting substratel
ture, that carbon nanotubes connected to nanoscale metallic Monolayer
grains*®>!® could be used for this purpose.
In this paper, it is shown that when a system consisting of (b)

a grain attached to the tip of a cantilever by a tunnel junction FIG. 1. Schematic layout of the systerfa A cantilever at-

[see Fig. 1a)] is treated as a three-terminal device it ShOWS &,cned 1o a conducting grain through a tunnel junction situated
rich dynamical structure ranging from stable limit-cycle be- 5qymmetrically between two metallic electrodes separated by a dis-
havior to deterministic chaos. Since this paper focuses on thgncel. The electrodes and the cantilever are biased with voltages
dynamical properties, the temperature is considered to bg v, andvg, respectively. The distance between the grain and
large enough for charging effects to be absent, while still lowhe electrodes are such that electrons may tunnel through the struc-
enough for thermal fluctuations to be negligible. ture. (b) Self-assembled single-electron transistor structure. The dy-
The same model also applies to the dynamics of theamical features discussed for syst@hare relevant also for this

single-electron transistor structure in FigbL The central  system.
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G,C, G, Cp we can consider the grain to move on a straight line between
V. the two electrodes. The deflectighof the grain from the
/e, m m O Vi equilibrium position towards the right electrode is described
L ~— \/I by the equation of motion
R . .
I b+ y6+ wad=EQg/m,
G,. G, EI> where wq is the elastic frequency of the system amda
= C, phenomenological parameter introduced to account for dissi-
pation of mechanical energy. Although the use of Stokes
O friction is valid for the cantilever setup in Fig(d it may not
Va2 T be appropriate for the type of setup of Figbjlwhere the

o ) o precise mechanism of dissipation is more unclear. The mass
FIG. 2. Electric circuit model. Each tunnel junction is modeled m appearing on the right-hand side is an effective mass de-
by a capacitor in parallel with a tunnel resistarR@R'B=G[,lR,B. pending on the precise geometry and design of the
Furthermore, the grain-ground capacitance has been taken into agz tjjever-grain system. In the force term only the effect of
gg:2::iizzoclghatrzecgizacét;g%‘ﬁqi?:?;;g? nearest neighbor the electrostatic field between the left and right electrodes
' E~(V_—VR)/L to linear order inQg has been considered.
gor this approximation to be valid, and for the island not to

junction. The other end of the cantilever is assumed to b L o
clamped and connected to a voltage sowge The grain get stuck F:Iose to one ele'ctrO(Ije, it is important that the mini-
mum grain-lead separation is large enough for adhesive

attached to the cantilever is situated between two metalli . ! . .
! orces(mainly cohesiotf and van der Waals interactibh to
electrodes located close enough to the grain to allow tunnel-

. . . . e negligible compared to the electrostatic force.

ing but with tunneling resistances much larger than that o The tunnelina conductanc have a sensitive depen-

the grain-cantilever junction. If the typical frequency of the g conc € R P
dence on the grain displacemant

dynamical motion of the system is well below the plasma

frequency of the metallic components, the charges and )
potentials on the conductors are related by the marjx*’ GLr=G. R exp( :X)’
Q:Z C.V. where the tunneling lengtih is determined by the work
I = Y-
J

function ¢ of the electrodes,

The system can then be mapped onto an electrical network N -1
modelyseen in Fig. 2. In this rr?cr))del, only “nearest neighbor” )\~(22ﬁ—me¢) .

coefficients inC;; have been taken into account. Each tunnel

junction is modeled by a resistangein parallel with a ca- The variations of the capacitances with position have been
pacitanceC, the latter being related to the coefficie@g by  neglected since they are much smaller than the changes in
linear transformations. Using this model, the grain-potentiathe conductances that dominate the nonlinear behavior of the
Vs can be expressed in terms of the grain-cha&geand the  system. By measuring the deflectiérin units of lambda i.e.,

applied bias voltage¥g g (cf. Fig. 1) as o=¢&N, one arrives at the following system of equations,
QG+VRCR+VLCL+VBCB ; :H, 1
Ve(Qo)= c , § («y
s
. : 2 VL—=Vr
whereCy=C + Cr+Cg+ Cgo. The currentd g flowing IM=—yIl—wpé+ T Qg 2

from the electrodes to the grain, as shown in Fig. 2, deter-

mine an equation of motion faQg ; . B
° Qo=ViGle ¢+ VRGRef+VgGs—Vg(Qe)Gy, (3

d
%ZIL‘FIR‘FIB. Where
. G:(§)=Gle ¢+ G+ Gg, 4
Using I rg=(VLrB—Ve)GLRrpe: WhereG g are con- (=6 R B )
ductances of the tunnel junctiofsf. Fig. 2 one finds and
dQ QG+VLCL+VRCR+VBCB
TG=VLGL+VRGR+VBGB—VG(GL+GR+ Gg). Vo(Qg) = o . (5)
The flexibility of the cantilever allows for a mechanical Ill. FIXED POINTS AND STABILITY

degree of freedom in the system. We will assume that this
freedom is one dimensional, i.e., that the cantilever only In order to characterize the dynamical behavior of the
bends in one direction and that this bending is so small thagystem, the existence of fixed points is investigated and then
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the stability of these points is considered. Throughout the
rest of the paper the right electrode potential will be used as
reference, i.e., we will pu¥g=0 from here on. With this
convention, the stationary points satisfy the following system
of equations:

0 = 1I
\2
0 = —HIl-w? —
+V, C +VgC
0 = V,Gle +VgGg— Qe LCL 2 BGE(f)-
3
(6)
8 . .
Defining a=wiLm\/Cs, 7°=V? and o=V, Vg, Eq. (6) 6 oo /o @8 (b)
can be recast in the formé=H (&) where 4t Le
2
0 ___________________________________
2 —&
n°ge *to
H(&=—— ———(7°c +0Ce). -2
g e *+gre-+1 _al
-6t
Here, the dimensionless conductan@@zG%L/GB and -8r
capacitancex g=C g/Cy have been introduced. Since _10+
H (&) is a restricted function, the equatia€=H(¢) has at » , i , ,
least one solution, and at the most, three solutions. Defining 20 -10 0 10 20

g

FIG. 3. Solutions to the fixed-point equatiat=H(&). When
UJ=V, /Vg<O0, either one or three solutions exist depending on
whetherd is larger or smaller than the ratie C, /Cz and what
value ae wé assumes. Irfa), only one stationary point exists while
in (b), either one or three stationary points appear.

9=n?lo=VIVg, three different cases can be identified,

e <0, H(& has one minimum located até,
= 1In([1—9]g, /gr) Which means that the system has either
one or three fixed points.

e 0<9<1, H(& has one maximum located at,
=2In([1—9]g, /gr) and again we may have either one or
three fixed points. 1

. 19>_1, In thls.case-l(g) is monotonic hence only one fixed Ye=— 5{ 7 HE)+ wir(§)
point can exist.

woH' ()
— VT O+ (9P b—|. (D
When 9<0 two different cases can be distinguished; «

9<-cg/c, and 0>9>-—cgl/c . In the first case, Here, the totaRC-time (&) is defined as

Iim§a+wH(§)<O and only one solution lying in the left half

plane is possible. In the second case, the corresponding limit ()= Gs(€) _ Qg
is positive and ifa is chosen small enough, three solutions Cs Qg

will appear, one in the left half plane and two in the right. i . . .
The different scenarios are shown in Fig. 3. Whenm the case of three fixed points, one will be conditionally

0<9<1, one can again single out two Cases;stable depen“dir!g on”whetharis_ larger or_smaller thary, .
ca/(1-c)<d<1 and 0319<CB/(E_CL)' When cg/(1 The second “middle” ondcf. Fig. 3b)] will not be a node

. : but instead, will be a saddle point of index oft@o negative
—c ) <9< > " . .
c)<9=1, then Img_}_mH(g) 0 and only one solution and one positive eigenvalue of the Jacopjamd hence, not

located in the right half plane is possible. In the other casea stationary point irrespective of the value gf while the
the limit is negative and one can find two more solutions inremaining pointcorresponding to the rightmost solution in

the left half plane by choosing sufficiently small. Fig. 3(b)] will always be a stable node.
A stability analysis of the fixed points, obtained above
shows that: In the case of only one fixed point, this point will IV. STATIONARY OPERATION
be a stable node, i.e., all eigenvalues Jacobian of the system
are real and negativ8,if the dampingy exceeds the critical When /e, which is proportional to the frequency of elas-
dampingy, tic vibrationswy, is large compared to the applied bias volt-
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984 -10 et electrodeOVoItage v [\ﬁ 10
50 T v 5
V =40V ®) FIG. 5. Bistable operation. Whem is small enough, two stable
25} g 125 fixed points emerge leading to a bistable situation. The solid line
- corresponds to the “expected” solution, while the dashed lines cor-
Z 03 respond to the new second stable root to the fixed-point equations.
__I ;E;
g -2.5 £
5 £ a few times\ (for Au \ is typically 0.5 A).
K 18 2 For Va small compared to the applied bias voltages, it is
,5 possible to have two stable fixed points in the system. Using
' exactly the same parameters as above, but with a reduced
100 . _10 this second solution appears. In Fig. 5, theV characteris-

10 tics of thishistable modés shown. The solid line correspond

to the same solution as above and the dashed solution to the

FIG. 4. Stationary operation. When the damping constaig  new one that appears due to the reduaed
large, the static deflection of the cantilever will cause a pronounced

transistorlike action due to the exponential decrease of the tunneling
resistance between the grain and the right electri@leCurrent V. DYNAMICAL OPERATION
flowing from the grain to the right electrode as a function of the
voltageV, applied to the left electrode. The different curves corre- [N the dynamical regime, the system displays a rich struc-
spond to different biaseég applied to the bottom electrode. (h), ture. One of the most interesting features is that this is a
the displacemend of the cantilever and the current flowing from nanoscale system with directly detectable chaotic behavior.
the left electrode to the grain is plotted for the ca%g=4.0 V. This means that in order to determine what type of motion
the system exhibits, it is sufficient to monitor the currents.

ages, one expects to find only one stationary solution as difue to the multitude of parameters and the system’s complex
cussed above. In Fig.(@ the | —V characteristics for this dependence on these, only a few archetypical cases will be
case is shown for an asymmetric setup V\ARﬁzl GQ, illustrated by means of numerical integration of the equa-
RE:]_ TQ, Rg=6 MQ and all capacitances set to 1 aF. Thetions of motion(1)—(5). In the presented simulations, a sys-
frequency of elastic vibrations was set to 4.4 GHz. The figurdem with the same parameters as in the static ¢sse the
shows the current flowing from the grain to the right elec-previous sectionis considered but with a damping raje
trode(as opposed tbg, defined in Fig. 2, which was defined reduced belowy.. The different simulations then corre-
in the opposite directionas a function of the voltage applied spond to different sets of bias voltagég andV, .
to the left electrode. The different curves correspond to dif-
ferent biases applied to the bottom electrode. For negative . .
V., almost no current flows in the system, since the grain is A. One Fixed Point
essentially disconnected from both leads. As the field is in- We first consider the situation when the system has only
creased, the cantilever will start to deflect towards the righbne fixed point corresponding to the situation in Figa)3
electrode, causing an exponential decreas®inallowing  This is achieved by using a fixed voltayg=3 V and im-
the current to grow. posing a positive bias voltagé, . For small values of this

As V| is further increased, the charge on the grain willvoltage the system remains stable, as expected, until a criti-
eventually become negative due to the capacitive coupling toal threshold voltage is reached. Further biasing leads, for
the left electrode resulting in a decreased deflection discorpositiveV, , to a limit-cycle regime. For the range of posi-
necting it from the leads once again. In Fig. 4, the displacetive voltages where the algorithm was stable, this cycle re-
ment of the grain along with the current flowing to it from mained. For negative bias voltages, there exists a threshold
the left electrode, is shown as a function \6f whenVyz  voltage as well, and as this is reached, a stable limit cycle
=4.0 V. This current is essentially zero until a bias of ap-appears. An example of this type of motion is shown in Fig.
proximately —3.0 V is reached. Furthermore, from this 6 (recorded a¥, = —0.35 V). Decreasing/_ moves the sys-
graph it can be seen that the displacement of the grain is jus¢m toward the situation in Fig.(B), i.e., we approach the

-5 0 5
Left electrode Voltage, VL [\
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FIG. 6. Phase-space trajectory for a stable limit cycle. As the
damping vy is reduced below the critical damping. the system
settles in to a stable limit cycle.

situation with three fixed points. This leads to a sequence of
period doublings. The behavior in this regime is illustrated in
Fig. 7(a). These period doublings can be directly detected by
simultaneously measuring the currergsandl, and plotting
them as in Fig. ). Lowering the bias more eventually
leads to a totally chaotic regime like the one in Fig. 8
(V_.=—0.6 V) which is again reflected in the currents. Fur-
ther lowering ofV after this point leads to an alternating
series of period-doubled limit cycles and chaotic trajectories
until three fixed points appear in the system.
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FIG. 8. Chaotic motion(a) Phase-space trajectory in the chaotic
regime. Biasing the system very close to the situation with three
fixed points the system becomes chadf{ig.Chaos is also reflected
in the corresponding plot of the currer{sandlg.

B. Three Fixed Points

In order to be able to study the case with three fixed
points,Vg was raisedd 6 V while V| was set to 0.7 V. This
corresponds to the situation with three solutions in Fif).3
Numerical integration revealed the structure displayed in

Charge Q/e ~ —50 -10 Displacement,[A] Fig. 9. Starting close to the conditionally stable fixed point,
the leftmost one in Fig.(®), a stable limit cycle is eventually
o.
—100} (b)
—200}
<
- [=]
<300 S
- £
—400} g
2-100
| 200
-600}
25 30 35 40 45 50 55

I [DA]

Charge Qe -100 -10

Displacement [A]

FIG. 7. Multiply period-doubled phase-space trajectory and the FIG. 9. Phase-space trajectory when three fixed points are
corresponding plot of the currenits andl z . (8) Biasing the system present. When the system has three fixed points, one of them will
towards the situation with three fixed points will cause subsequenalways be stable, one will always be unstable, and one will be

period doublings of the limit cyclgb) By monitoring the currents

unstable ify<y.. The three fixed points are indicated by * in the

flowing in the left lead and the bottom lead at the same time theséigure. The stable limit cycle that exists in this case can also be seen

period doublings can be detected.

in the figure.

035326-5



A. ISACSSON PHYSICAL REVIEW B 64 035326

reached. Starting the simulation in the vicinity of the middlenamics of the system range from stable limit-cycle behavior
one (always unstablethe trajectory either connects to this to deterministic chaos. It is furthermore possible to have a
limit cycle or becomes attracted by the third fixed point, situation where stable fixed points coexist with stable limit

which is always stable. cycles. The chaotic motion of the system can be directly
detected by measuring the currents flowing from the termi-
VI. CONCLUSIONS nals.

We have shown that the three-terminal flexible tunneling
structures in Fig. 1, which are of interest for both current
standard purposes, as well as for self-assembled quantum The author would like to acknowledge Leonid Gorelik,
devices, have several characteristic dynamical featurefRobert Shekhter, and Sara Blom for fruitful discussions. This
When the damping in the system is higlilow-quality fac-  work has been supported by the Swedish Research Council
tor) the system displays a stationary behavior, which forfor Engineering Science§TFR) and the Swedish Strategic
some parameter values, can be bistable. If the quality factdResearch Foundatidi®SH program “Quantum Devices and
is large enough, i.e., the damping satisfies y., the dy- Nano-Science.”
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