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Phonon-mediated drag between one-dimensional electron systems
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The acoustic-phonon-mediated drag between spatially separated one-dimensional electron systems in quan-
tum wires is studied theoretically. The electron transport is assumed to be nearly ballistic. Both deformation-
and piezoelectric-potential mechanisms of the electron-phonon interaction are taken into account. It is found
that under conditionsk-d>1, whered is the interwire distance arl}: the Fermi wave number of electrons,
the increase of the drag resistance with increasing temperatevelves from the power-law dependence to
the exponential one, and then again to the power-law one. If the pro#tgdti® large enough, the phonon-
mediated drag in one-dimensional electron systems becomes more important than the Coulomb drag as the
temperature increases. At lar§iend at X-d>1 the phonon-mediated drag resistance is found to be inversely
proportional tod.
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[. INTRODUCTION ism involved in the calculations is described and the drag
resistance is expressed through the integral over the squared
The mutual friction between spatially separated low-module of the matrix element of effective interaction,
dimensional electron layers gives rise to electron drag pheweighted with a temperature-dependent factor. In Sec. IlI
nomenon, which has been attracting a considerable attentidhis matrix element is calculated under the assumption that
in modern condensed matter phyg}c’ﬁ[‘us phenomenon al- the distance between the wires is Iarge in Comparison to the
lows one to investigate electron-electron interaction in low-Wire widths. In Sec. IV the analytical expressions for the
dimensional systems through the measurements of the trandtag resistance are derived for several temperature regions
port coefficients. The quantity usually measured indetermined by the characteristic energy scales associated
experiments is the drag resistarRg=—Vp /I, wherel is ~ Wwith Fermi wave number, interwire distance, and wire
the current in Onédrive) |ayer andVD is the V0|tage devel- widths. A Comparison of the relative contributions of the
oped in the othefdrag layer, when no current is allowed to deformation- and piezoelectric-potential mechanisms of the
flow in the latter. In past years, the studies were focuse@lectron-phonon interaction into phonon-mediated drag, the
mostly on the electron drag between two-dimensiq2al) ~ comparison of the latter with the Coulomb drag, and a brief
systems. A limited number of theoretical papérs? has discussion are given in Sec. V. The Appendix contains ex-
been devoted to the drag between one_dimensm| sys- preSSionS of the equilibrium Green’s functions of KeldySh,S
tems. Both Fermi liquit™ and Luttinger liquid=22 descrip-  technique for electrons and phonons, which are employed in
tions of 1D electrons have been employed. Recent experthe calculations in Sec. II.
mental observations of electron drag in ballistic quantum
wires'31% are expected to stimulate further investigations of
this phenomenon in 1D systems. Il. FORMALISM
Apart from the direct contribution to the interlayer mo-
mentum transfer, caused by the Coulomb interac{i@au-
lomb drag, there exists an alternate contribution coming
from phonon exchange between the lay@tsonon-mediated
drag. At low temperatures this contribution is determined by}ential jj=p+eVi., j=1,2, wherey is the equilibrium

the interaction of electrons with acoustic phonons. In spite oL hemical potential. If the tunnel coupling between the layers

weakness of the electron-phonon coupling, the phononi-s neglected, one can write the generalized quantum kinetic

mediated drag in 2D systems is found to be important, be %uations for each layer using electron Green’s functions

cause at large distances between 2D layers it appears to % B ; 4
stronger than the Coulomb drag. The dependence of thgic of Keldysh's techniqué’ (herea andj are the standard

) ; ingices of this technique or —, and they should not be
ggono;er(r:lterglr?tecliac:/rgg onhtgs ter;g:;atuirﬁvggggg?ézmett;s:()rfr{g]fljxed with the indices of the ends of the wiyeln Wigner

theoretically®>17*8and experimentall{®® In contrast, there representation, the equation for layds written as

were no studies of the phonon-mediated drag between 1D
electron systems. The aim of this paper is to investigate the g
phonon-mediated drag in 1D case under the simplest ap- ,i — G~ *(p,x)=iZ.(p,x)=—i3 " (p,X)G" " (p,X)
proximations, when the electron systems in the quantum " dX ' e e e
wires are assumed to be normal Fermi liquids, and the pho- i -+
non confinement effects are neglected. Fixje (PX)G" (pX),
The paper is organized as follows. In Sec. Il the formal- 2

Consider two homogeneous 1D quantum layerises) of
lengthL, labeled 1 and 2, along the axis The wires are
adiabatically connected to four leads at the ends labeled
and —. Each lead is characterized by its own chemical po-
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Fi(a,) | QiQidf,
V,=———|iDQd hy.4B; . (3
g 2porgV iDQd g+ ehiaBii 0 ()

where D is the deformation potential constamth,, is the
piezoelectric constang; is the tensor equal to 1 far#|
#k and equal to O otherwisgy, o=s,Q is the phonon fre-
quency § =t stands fo=t; and{=t,), andd,q is the unit
vector of the crystal lattice displacement. Next,

o, q

o

Fj(qL):f dyf dz|x;(y,2)|%e iy iaz 4

FIG. 1. Diagrammatic representation of the contribution to the.

electron self-energy due to phonon exchange between the Iayers.Is the. qverlap irltegral, Wher,ej(y,z) is th? wave .fun.ction
describing confinement of the electrons in the wir&ince

the matrix elements of interaction with deformation and pi-
ezoelectric fields generated by a phonoQ) are shifted
with respect to each other by the phasg, these mecha-
nisms do not interfere, and one has

wherep is the electron momentunz),lp is the group velocity
in the layerj, and Z is the generalized collision integral.
Throughout the paper, the system of units whirel and
kg=1 is used. Equatioril) is valid whenpL>1 and pl
>1, wherel is the mean free path of 1D electrofmote that Fi(a)F;(—qy) ) )
since in the ballistic regimé>L, only the first strong in- A= 295V o\, D°Q+(ehy) Q. ®)
equality is necessaryThe self-energy function& *#(p,x) A

describe the interactions. Consider the interaction of elecwherej+j’, and the anisotropy factois, are given by*
trons with acoustical phonons, which causes a coupling be-

A

tween the electrons in the layers. The lowest-order contribu- A(Q)=36a50795/Q°,

tion to —iEf‘f(p,x) is represented by the diagram in Fig. 1. (6)
The solid and dashed lines, respectively, correspond to At(Q)=4(q§q§+ q§q§+ aZq3)/Q*—A,.

iG(p) andiD{5(Q), whereD is the phonon Green’s func- _ _

tion. Next, Q= (dy,dy,d,) is the three-dimensional momen- In the following, layer 1 is chosen to be the drag layer and

tum of the phonon and =1t corresponds to longitudinal layer 2 the drive one. Consider Ed) for j=1. It is conve-
and transverse polarizations. The vertex in the pginor nient to mtrpducé2 the energy distribution functions for the
— corresponds to the matrix element of the Hamiltonian oféléctrons with the positive group velocignoving from +
electron-phonon interactioW;(Q) multiplied by +i or ~ t0 —) and with the negative ongémoving from — to +),
—i, respectively. The index=1,t,,t, numbers the longitu- &ccording to

dinal and two transverse phonon branches. In the analytical

_ . . . . . + oo dp B
form, the self-energy function drawn in Fig. 1 is gE(x)= iJ - |Up|G18+(D,X)- @
dw [ de’ : ; ;
s aB :ZJ hubadll il | GaB With use of Eq.(7), Eq. (1) is transformed to a pair of equa-
iz (P) 27) 2w g % “B’/‘s% KEL le=w tions forg™ andg:

X(p=a)G;, (PG, ,(p'+0)

J

ta—ngs(x)zlfs(x), 8
a B ’ '

XDYIQ)DL, (QHWL(QWy/(—=Q"), (2

where the functions I, are defined as I],(x)
where j'#j, q=0,, q,=(ay,0), Q=(a,q), Q' =*(27) 1fo"dpZ..(p,x). The boundary conditions for
=(9,9}), Wi(Q)=V};(Q)Vij(—Q), W,(Q) Eqg. (8) at x=0 andx=L are determined by the chemical
=V, j{(QVy,; (—Q)+ V¢ ;(QV,;/(—Q), and the coordi- potentials of the leads to which the drag wire is connected:

1 1 2 2 !

nate index of Green’s functions is omitted. The fadtos, s gi(0)=[ele 1 )/T4 1)1

is equal to 1 for even number of the indices of one sign and le '

to —1 for odd number of the indices of one sign. The pres- — (L) =[ele—r )T 171 ©)

ence of a closed loop of electron lines and spin summation in 91.(L)=[e 17

this loop gives an additional factor 6f2 in Eq. (2). The general expression for the electric current in the layer
Consider the interaction of electrons with both deforma-ig

tion (microscopi¢ and piezoelectric(macroscopit fields

generated by the acoustical phonons in the crystals of zinc de (dp . .,

blend symmetry, assuming that the quantum wires lie in the J; :ZGJ Z_mf EULG,‘S (p.Xx). (10
plane of crystallographic axes and are directed along one of

the axes. The matrix elements are given by Using Eqgs.(7)—(10), one obtains
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e . B +p?/2m and e,,= —A/2+p?/2m, shifted with respect to
JF;f de[g1.(X) = g1.(X)] each other by the energ¥, one can easily calculate the
integrals overs, ¢, p, andp’. As a result,

Gn (L
=GO(V1+—V1_)+?OL dxf delf.(x), (11

_ f f IM (0,9)[?
whereG,=e?/ 7 is the conductance quantum. In the experi- AnT) . zqP;q
ments one measures the drag voltA&ge=V,, —V,_ atJ;
=0. Thus, Eq.(11) can be used for determination ¥ P g = COShY,,q+ COst (w+ A)/2T], (15)

through the drive voltage¥/=V,, —V,_.

The functionl,(x) in Eq. (11) depends on botV and
Vp . However, if the drag effect is weak, i.e\p| is much
less than|V|, one can substitute the equilibrium Green’s
functions G{*#(p) (see the Appendixinstead ofG{?(p)
into I;,(x). Using also the equilibrium Green’s functions of
the free phononsgsee the Appendixin Eg. (2), after some
transformations one gets

Yoq= 0 M29°T+q%/8MmT— u/T.
The denommatoli’zq q 'apidly increases when eitheror
A exceeds Z, and the expression under the integrals has a
sharp maximum, as a function gf aroundg= q,,, satisfying
ywqmzo. Sincew is much smaller than the Fermi energy,
one can find that),,=2kg, where the Fermi wave number
: p 5 ke is equal toy2mu. Assuming that|M (w,q)|? slowly
do [ de’ |M(w Q)| changes in the regiodq~2mT/ke aroundq= 2k, it is
possible to replac (w,q) in Eq. (15 by M(w,2kg) and

X GS.(p) 18 HJP—{f(e—w) take the integral oven, expandingy,q Near gy as v,q
¢ 3 3 =0m(q—qm/4mT. A justification of this assumption is the
><[1—f(s)]GZS,(p’)GZS,m(p’+q)—f(s) following. In the next section, it is shown tha¥l(w,q)|?

changes withg on the scaleg|~1/d and q~ w/s, . There-
X[1=f(e= )]G, (P)Gy (P +D}, (12 fore, the substitutionq=2kg is justified as long asT
where <krg/md andT<krw/ms, . The first of these conditions is
easy to fulfill at low enough temperatures. As for the second
one, the characteristic frequeneyis estimated as eithdror
M(w,q)= LE —WA(Q) (13 S,\Q, so that it is valid when the Fermi velocity is great in
ML @ “’AQJ”O comparison to the sound velocities and the Fermi energy is
The term M(w,q) contains all information about the 9reat in comparison to the temperature. Both these require-
phonons. It comprises both real and virtual phonon contribuMents are assumed.
tions and is called the matrix element of effective interaction. The drag resistancBp=—Vp/J,=—(Vp/V)Gq * is fi-
Taking into account that the transport in the drive wire ishally expressed as
ballistic, one can replac&,," (p) by the quasiequilibrium
Green'’s function 2riG§£(p)f2p(s), where the energy distri- L o 5
bution is dictated by the leadi,(e)=f(e—eV,.) for p Rfﬁ fo do|M(w,2ke)|*® ypr(w/2T),  (16)
>0 andf,y(e)=f(e—eV,_) for p<0. The collision inte- F
gral (12) is nonzero only if the signs gb’ andp’+q are
opposite, i.e., when the backscattering takes place in the x cothx— v cothv
drive wire. Substituting ™ from Eg. (12) to Eg. (11) and @, (x)=
assuming the linear transport regine/<T, one finds

cosi¥x—cosiv

Q2L (= 0 . This expression formally coincides with the one obtained for
leGOVD"_VTJ dpf dp,f qu' dwf de Coulomb dra§’ if |M(w,2kg)|? is replaced by the
wTJo —o -p’ frequency-independent squared interlayer Coulomb matrix
element |M (2kg)|%=(2e?/ €)?K2(2kgd), where € is the

Xf de’|M(w,q)|2GS PGS, (P —q)Gg (p") static dielectric constant aritl; is the modified Bessel func-
° tion; the remaining integral {® or(w/2T)dw is equal to
2 . - .
XGES,m(p’+q)f(s)[1—f(s—w)]f(8’) (A?/4T)/sink?(A/2T), producing a simple temperature de-
pendenceRp~T at A—0. In contrast, for the phonon-
X[1-f(e'+w)]. (14 mediated drag the frequency dependence of the effective in-

teraction M (w,2kg) is essential. For this reason, both
Equation(14) provides an explicit relation between the temperature and interlayer separation behavior of the
drag voltageVp and the drive voltage/ at J;=0. In the  phonon-mediated drag appear to be more complicated than
following, the free-electron approximation is used, whenof the Coulomb drag. To determine them, it is necessary to
jSs(p)z d(e —&jp). Assuming that the electrons in the wires calculate the effective interaction. This is the subject of the
are described by parabolic dispersion laws,=A/2  next section.
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Ill. THE EFFECTIVE INTERACTION where
The effective interaction is described by E¢$3) and s o
(4)—(6). The calculation of the overlap integraf§(q,) in q:=(q°+agy) "
this section is based upon the model of quantum wires in (22

planar coupling geomet’?*3 Such wires are obtained from

a 2D electron layer formed at the heterojunction interface
(perpendicular ta axis) by the electrostatic depletion
direction. With a good accuracy, the wave functignéy,z)
can be modelled by properly normalized products of the

Fang-Howard wave functione ?? by the Gaussian func- (0?+a)b?<1, (wbls))?<1. (23

tionse~~¥)*22° The wires are assumed to be identical and
interwire distanced is expressed agd=|y;—Y,|. Then, a The reliability of these conditions can be checked as follows.

o= (a+ay— w?/s{—i0)"2

This result is applicable under the following conditions:

calculation of the overlap integral gives Since the characteristig, contributing in the integral in Eq.
, (18) are not great in comparison to eithgr2kg or w/s, ,
e azqylzcosqyd the first condition can be replaced bykib)?<1. The width

ReF1(q,)F2(—q.)= : (A7) bis giverf® by b= (337N p/2as) ~° whereag=e/mée? is

(1+0%b?)3 . . _

z the Bohr radius and\,p is the sheet electron density on the
while ImF,(q, )F,(—q,) is an odd function ofy,, which interface. For GalAs-Qgsed structures(m) at 'prical den-
does not contribute intd(w,q). Other models of double Sity Nop=2X 10" cm™? used in experimentd is less than
quantum wires, such as the wires of vertical coupling® M. On the other hand, the maximal Fermi wave number in
geometry2’425(;an be considered as well. The |engﬂ~m’1db the quantum wire, in conditions when Only one 1D subband
are the characteristic widths of the wiresyiand inzdirec-  is populated, is of the order @ . Typical values ofa are

tions, respectively. from 20 to 30 nm, so thaa?>b?. This strong inequality
The effective interactioM (w,q) is represented as a sum reflects the fact that the lateral confinement endvgyich is
of two termsM, (,q): usually a few meYis much smaller than the energy of quan-

tization in z direction (which is of the order of 100 meV

1 (= dagy 0 Thus, (Xgb)?<1 is fulfilled. As for the second condition, it
Mi(w.q)==-—] S -Yiw.q.q,)e aay2cosq,d, requires rather small temperatures, since the charactasistic
PSYI contributing into the integral in Eq(16) cannot be much
(18) larger thanT. The ballistic transport regime is normally re-
where the integrals alized atT<1 K. Then, usingob=5 nm, and sound veloci-
ties in GaAs(see below, one can find thatg, /bT)?>>1 at
v joc dag, DZQ25M+(ehl4)2AA(Q) 19 such small temperatures. Therefore, the second condition of
Sl o= (17 2023 QP w22 —10] (19 Eq. (23 is also valid under reasonable assumptions.

The calculation is continued below in the limit>a,
can be Calcu|ated exact'y' However, the exact expressioﬁghich iS Consistent W|th present experimenta| Situation fOI’
are rather complicated. The approximate result, correspondlouble quantum wire systems of planar geomé?tﬁfz,wr;ere
ing to smallb, is given below: d=200 nm. Neglecting the terms proportionaleo? ", it
is possible to calculate the integral owsy in Eg. (18) ana-

3 w? s lytically, which gives
Yi=D? s+ ——— |~ (ehu)?? 18- (o~ a%qi—a
16b  2s7q, 2 -
(ehyy)?e® 2
, st , 9s? - Mi(@,q)=— —————{9(u*—u?/4)Ko(qd)
+q q1)+93(2q|+q1—q /gy) + m(llql—q lay) TPS)
20 +[(18u®+9u%)/qd+9uqd/4]K,(qd)
and +54u°Ko(qa)/ (qd)2— e~ 32t
o o X [18ud(u?—1)%%K,(k,d)/qd
Yt:(eh14)2{ 18;q2(q?—q2qt—q§+ 9%qy) + E(_ZQ? +54u4(u2— 1)K o ,d)/(qd) 2]}
D?w? 2
2 2,2 2 2
S _ e?d 2—a w/25|K Kd)
+209°q,— 29*/q,+ 203 + 790, — 7q*/q) + w—tz[—th 2mps; ol
—MP+MP, (24)
+20%q— as+ (5/4)9% 9, — (5/4)q*/aF] |, (21)

whereu=s,q/w, and
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2,2 0.16
(eh )ZGa q°/2

Mt(w,Q):_14—2{(—7044-502/4)K0(qd) 0.14
TPSt ~

2 a 6 2 s 0.12

+[ (02— Tv*— 18°)/qd— Sv2qdi4]K,(qd) L

2 F

+604(1- 902)K,(qd)/(qd)?— e % 0.8

X[20%(v?—1)Ko( ked) + 20 (v%—1)32 = 0.06

X (1—902)K,(k,d)/qd+6v2(v2—1) 2 o004
b

X (1= 90*)Ky( i)/ (qd)?, 1} — B0E

=MP, (25) 000

®/ 5,9

wherev=sg/w. In Egs.(24) and (25) k\,=(q°— w?/s%)*?
is the complex wave number. lv>s,q, then «, and

. FIG. 2. Frequency dependence of piezoelectric-potential contri-
K,(k,d) are transformed according to the rule d y Zep P P

bution to the effective interaction gid=1 andqd=8 (q%a?<1 is

assumell The absolute values of the functiok’ andM{, given

by Egs.(24) and (25), are expressed in units ot (114)2/ps|2 and
(26)  (ehy)?ps?, respectively.

(q2_ (1)2/5)2\)1/2—> —j (w2/S§— q2) 1/2,

—ix)—ijhtl (1)
Kn(=O) =TT (/2R (x), It is important to notice thafM (w,q)|? does not contain
where Hgl)(x) is the Hankel functiot’ It is expressed any divergency that would make the drag resistance infinite
through the ordinary Bessel functions of the first and secondthe logarithmic divergency ab=sq, of course, does not
kind asH(x) = J,,(x) +iN(x). The rule(26) follows from ~ create any problems In contrast, the theory of phonon-
the fact thatw? contains an infinitely small imaginary part, mediated drag in 2D systems encounters the problem of
see Egs(19) and (22), which is omitted in Eqs(24) and dlvergencyl, which can be removed, for example_, by intro-
(25). M, are real aw<s,q and complex at>s,q. If  is ducnqn o_f a finite free path for the phonons, this leads to

A 2\ = R logarithmically large factors in the drag resistance. Math-
much smaller than botbke ands/d (heres is the averaged ematically, the difference between the matrix elements of
sound velocity, one can expank{,(«,d) in power series of  effective interaction in 1D and 2D cases exists because in 2D
w, which gives case the calculation of the matrix element involves a single

integral over transverse wave number of the phonon, while
3(ehy,) 263972 in 1D case one has a double integral, ogyeandg, , which
M (w,0)=— ——————[qdKy(qd)— (qd)*Ko(qd)] kills the dangerous divergency. From the physical point of

87ps view, the reduction of dimensionality from 2D to 1D reduces
2 2 the number of the phonons participating in the interlayer
2@ e P2K (qd), (27)  exchange, thereby making the phonon-mediated drag less ef-
2mps; fective.
and 0.6
(eh14)2ea2q2,2 0.5
M(w,q)=—- ————[ —qdK,(qd <3
(®,q) 8ps? [—qdKy(qd) g 0.4l
>
+(2+(ad)?)Ko(qd) . 29 o3}
With the increase ofv, the deformation-potential contribu- =< g2}
tion MP increases and has a logarithmic divergencywat g
=s,q. The piezoelectric-potential contributiod” andM 3 01}
are regular atw=s;q. If qd>1, both M, and M, at w o

>s; g are great in comparison tbl; and M, at o<s; (q. 0.0
The dependence of the absolute values of the piezoelectric
contributionsM f(w,q) on w/s,q, for gd=1 andqd=8, is

shown in Fig. 2. In Fig. 3 the total squared matrix element g1 3 The squared absolute value of the effective interaction
IM(w,q)|? is shown as a function of/s,q. The material IM(,q)|2 for GaAs wires atd=200 nm,q?a?<1, qd=1, and
parameters of GaAs used in this calculation afe5.14  gd=8. The dashed line shows the deformation-potential contribu-
X 10° cm/s, s;=3.04x10° cm/s, p=5.31 g/lcnd, h1;=1.2  tion IMP(w,q)|? for qd=8 (this contribution is negligible fogd

X 10" Viem 21" andD=10 eV?® and the interlayer distance =1 in the frequency interval considejedhe data forqd=8 is

d is set to 200 nm. multiplied by the factor of 5.

®/sq

035324-5



O. E. RAICHEV

IV. DRAG RESISTANCE

The results obtained in the previous section are used b

low to evaluate the integral oves in Eq. (16). For the sake
of simplicity, only the case of aligned 1D subbandss 0, is
studied. Consider first the region ddw temperatures T

<skg,s/d. The contribution to the integral comes from

small w, where the approximate expressiof2y) and (28)

are valid. This gives the polynomial power-law temperature

dependence of the drag resistance

2,2
Le—4a K .

212
. (KB 2ked)
e’p?vis! 5s;'

Ko(2ked)B(2ked)

+D?(ehyy)?
( 14) 24S|2

+(ehy?

2
B2(2kqd) l 9

12872

where the dimensionless functi@{2kgd) is given by

B(x)=[(x2+2)r2—3x2]Ky(x)+(3—r?)xK;(x) (30)

andr =s,/s; is the sound velocity ratio.
If 2ked>1, the drag resistance at2skg can be repre-

sented as a sum of two parts

Rp=RY+RY). (31)

The first part is the contribution from the region of small
If the characteristic frequencies~ 2T are small in compari-
son to &kg/d, this contribution is given by Eq29) in the
limit 2ked>1:

— akpd+4a2k2 25

R(Dl):’ﬂLe rATARKE) T

4e?p?visiked 5s;'
(ked)?T3
+(r2—3)DZ(eh14)ZT

4
+(r2—3)2(eh14)4(k;d) T]. (32)

772

This part is exponentially small, since it is proportional to
. The second pa®?), which rapidly increases with
the increasing temperature, is the contribution from the re

o 4ked

gions of w just abovew,=2skr and w;=2skg, for the

PHYSICAL REVIEW B 64 035324

small parameter d) '=(2ked) !, one can see that
iezoelectric-potential contribution is much less important in
he longitudinal-phonon terms than in the transverse ones,
and, therefore, should be accounted in the transverse terms
only. The contributiorR{) is represented as a sum of two

thermal-activated parts

L
V2me?p?uid

ZSt kF

2)_
Rf))—

4,4 1/2
2D kF ( 25|k|:> o 25ke /T
T

s

3/2
e—2stk,: IT )

3 (33
This contribution exponentially increases with temperature,
and it does not contain a small factor ef *4. From a
comparison of the exponergs 25F/T ande ™ #F4 it follows
that R?) becomes comparable @) as the temperature
reachess,/2d. With the further increase of the temperature,
R(Dz) rapidly overcomestDl). The region where the tempera-
ture dependence of the drag resistance follows the exponen-
tial law (33), can be called as the region @ftermediate
temperaturesThis region exists only if Red>1. In view of
large interwire separatiod in existing double-wire devices,
this condition is easy to satisfy even at relatively small Fermi
energies of 1D electrons. On the other hand, the opposite
condition Xgd<<1 assumes very small Fermi energies, when
it is practically impossible to avoid localization of the elec-
trons due to the inhomogeneities of the wires. For this rea-
son, the case of smallkgd is not considered in this paper.
The derivation of EQ.(33) is done under conditions
(qd)?>1 and Zkg/T>1. However, because of the large
numerical coefficients and large powersaffs;q standing in
Eq. (25 for M(w,q), the expression for the pre-exponential
factor in the second term of E@33) is not quite reliable
even ifqd and Zkg /T are as large as 10, and has to be
improved. With more accuracy, the factdr/gs;kg)*?in this
term should be replaced by another temperature-dependent
factor

[1+7/qd)?]l,(25ke /T)— 631 o(25ke /T)/(qd)?,
where the integrals

t3/2e— xt

| x—ixfwdt—
3 )_3JE 0 (1+t)K

are not reduced ta 3?2

atx>1 if kis large.
Consider now the region of relativelyigh temperatures

longitudinal and transverse phonons, respectively. BecauséhenT>ske, and the contribution in the integral in E4.6)

of the substantial difference between the velocigeands; ,

comes from large frequencies. Under conditiktpa<<1 one

the longitudinal-phonon and transverse-phonon terms in thi§an notice a qualitative difference in behavior of the
contribution have to be considered independently. Expandingiezoelectric-potential and the deformation-potential parts of

Ky Nearwm, asx,=—i2(kg/s,) Y w— w,)*? one finds that
the argument of the Bessel functions,d, is large at @

M(w,2ke) at w>skg. The former,MP=M"+MP, de-
creases witho on the scalev~ skg, and the contribution to

—w,)~T, if T>s/ked?. Therefore, one may use the the integral ovemw in Eq. (16) coming from|MP(w,2kg)|?
asymptotic of the Bessel functions at large arguments in caleonverges on this scale. The lattdt®, increases withw,

culation of the integrals containing,(«,d). Keeping in

and the contribution to the integral in E{.6) coming from

Egs.(24) and(25) only the leading terms with respect to the [MP(w,2k)|? converges either ab~2T or atw~s;/a: in
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FIG. 4. The functiorZ(2ked.r), entering Eq/35), atr =1.69. FIG. 5. Solid lines: functionsy (x) and n(x), defined by Egs.

o (39) and (40). Dashed line: the ratio ofy(x)/r3#,(x) atr=1.69.
any casew>skg. The drag resistance associated with both

parts considered above can be represented as a sum of tWoT<s,/a, A(2Ta/s)=3¢(3)/2=1.803. In this caser]

terms increases with the temperature B In the opposite limit
o b the temperature dependence vanishes.
Ro=Rp+Rp, (34 Consider now the cask-a~1. This also implies Rrd

I . >1, and only the leading-order terms with respect to this
and the cross-term contribution, caused by the interference %f y 9 P

: lectric-potential and def i tential parts. | arameter should be kept iMM(w,q)|?. Both the
piezoeiectric-potential and detormation-potentia’ par SF’, IS nef:)olarization-potential and deformation-potential contribu-
glected. It is always small in comparison to eitRg or R,

because the regions @ contributing toR5 and RS are tions to the '”tegr_a' In Eq(16) converge aw~s/a, since
essentially different. under the conditionsT>skg one has alsoT>s/a, and
The term RB is proportional to the integral ®o(w/2T) should be replaced by 1/3. This means that the

fdw|MP(w,2kF)|2(I>o(w/2T), which converges at o drag resistance is temperature-independent. It is given by

2
~2sk . Therefore, the terme 2°“/25\ in MP should be

replaced by 1, andy(w/2T) should be replaced b$,(0) RD:W[(ehM)“re’m(ZkFa)
=1/3. This term describes temperature-independent contri- 3me‘puesid
bution to the drag resistance +(Dla)*y (2k-a)], (38)
L(ehyn)*Z(2ked,r where
rp = L(emy Z(2kedr) -
6e“p“vgsd x\4 r= APt
whereZ is a dimensionless function plotted in Fig. 4 for WX)Z(E) 1 dt Jiz=1 (39

=1.69, the ratio of sound velocities in GaAs. The oscilla-

tions of this function appear because of the interference ofnd

different oscillating terms frontM{” andM{” at w>2s ke and B

w>2ske, see Eqs(24) and (25). As ked increases, the ﬂt(X):f dtt78(t2_1)3/2ex2(1*t2). (40)
oscillations weaken and(2kgd,r) saturates to the value of 1

4r3/357=0.176. I : .
' Tr The cross-term contribution &y is neglected in Eq(38). It

Since [t)he charazctenstlc frequencies contrlbu@gR@ is small because of the presence of the fast-oscillating factor
~Jdw|M°(w,2k)|*®o(w/2T) are much larger thask , it cogdyw?/st — 4ki — d w?/sf — 4kz] under the integral over
is possible to use the asymptotic of the Bessel function

: : . w for this contribution. The functionsgy (x) and 7(x), as
Ko(xd) at large arguments in calculation of the integral. "< he ratio ofm(X) /3 (x) at rzli gg arenstﬁo)wn "
This part is given by I t :

Fig. 5.
Equations(35), (36), and(38) show that in the region of
LDAT4A(2Tals))  Equations(35), (36), and(38) . > 169
= , (36) high temperature§>skr the drag resistance is inversely
me?p?vis/d proportional to the interwire separatiohat kra<<1 this is
true under conditions K-d>1, when Z(2kgd,r) is con-
stanf. The same dependence, &8> 1, takes place in the
. region of intermediate temperatures, see 89). The law
A(X):f dtt3<I>0(t)e*X2t2 (37) Rp>1/d has a simple physical explanatipn. Ik,;d% 1. and
0 the temperature is large enough, the main contribution to the

RD

where
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integral of Eq.(16) comes from the frequencies>2s,ke. |11, one can estimate the ratib/ehy, in GaAs as 8.3 nm. An
This is the region ofeal phonon exchange. Thus, d&a  analysis of Eqs(29)—(33) under condition shows that the
the drive wire can be roughly considered as a line emittingiezoelectric-potential contribution dominates in the region
phonons, while the drag wire is a line receiving phonons, anq-<ng_ In the high-temperature regio‘h>§kF and atkea
the drag rate is proportional to the intensity of the radiation. 1 5ne should compare EqE35) and (36), taking into
received. In this model, the spatial distribution of the accé)unt thaZ~0.1 (see Fig. 4 This again shows that the
phonons emitted have cylindrical symmetry, so that the inyje;gelectric-potential contribution dominates. Only when
tensity of the radiation decreases with the distashbetween >k dkea—~1. both tributi b bl
the wires as H, and so does the drag resistance. A similar fSOﬁ:O\?Vr; frcF); thé ;nalcsc;)irs] rcl)quIgQZ) Cire]e ?:icorgp?rrr?ise’
consideration shows that the phonon-mediated drag betwe . y : ’ 9. o
2D layers does not depend on the interlayer separatian emperature region, however, lies well above 1 K, where the
: ... ballistic transport regime in quantum wires is hardly achiev-
I_arg.e enoughr andd. Of course, if one accounts for finite le Therefgre ogrgle shogld consider the piezyoelectric—
lifetime of the phonons, the drag resistance should decreasaep L . . ;
. potential mechanism of electron-phonon interaction as the
with d faster. ) . .
main cause of the phonon-mediated drag in GaAs quantum
wires. Still, the deformation-potential mechanism can be-
V. DISCUSSION come comparable with the piezoelectric-potential one even at

In this paper, a theoretical study of the phonon-mediated <1 K in the quantum wires fabricated from a different
drag between the electrons in two parallel one-dimensiondhaterial, where the ratid/ehy, is greater[note that the
conductorgquantum wireshas been done. The electron sys- comparison is based upon the factor @#/€hy,)*]. An ex-
tems have been assumed to be normal Fermi liquids. Th@mple of such a material is InAs, where the piezoelectric
electron transport has been assumed to be nearly ballistiEonstant is about four times smaller than in GaAs.
which means that most of the electrons pass through the Within the same approximations as used in the calcula-
wires without any scattering. The phonons have been deions above, the Coulomb drag is given by a simple
scribed within the bulk modéthree-dimensionalapproxi- formula’
mation, which is reliable if the difference between the den-
sities, elastic modules and piezomodules of the crystals c 2LTé?
forming the heterostructure is not substantial. Both the Ro=—3"
deformation-potential and piezoelectric-potential interaction
between the electrons and phonons have been considered. 2
The detailed calculations of the matrix element of effective X K0(2kF|y—y’|)1 : (412)
interaction and of the drag resistariRg have been done for
the case when the interwire separatibis large in compari-
son to the characteristic width of the electron systems de-

if dyf dy/efyzlazf(yurd)z/az

7Ta2

ezvg

The factor[ - - - ]? in this equation can be approximated by
termined by the lateral confinement in the wires. Ko(2ked), with a good accuracy. This approximation is used

The temperature, electron density, and interlayer separdX6/0W in comparison oRg with Ry, the latter is calculated
tion dependencies of the phonon-mediated drag are rath&} the previous sections. Only the piezoelectric-potential
complicated. Though the drag resistance always increas&9ntribution toRy is taken into account, as the main one. It
with the temperature, one should stress that in the differeris interesting that in the regiofi<s/d both R, andR§ are
regions ofT, which are determined by the characteristic en-described by the functions proportional Te % and a
ergy scales/d, s/a, andng, the temperature dependence comparison of them shows thgt the Coulomb d_rag is much
of Rp is considerably different. If R-d>1, there exists a Stronger than the phonon-mediated drag at physically reason-
region of intermediate temperatures, characterized by exp@Pleksd. Further, if Xed~1, the Coulomb drag appears to
nential increase oRp with T. This region separates the low- be much stronger than the phonon-mediated drag, regardless

temperature T<s/d) and high-temperatureT& ske) re- to the temperature. This is the consequence of weakness of

gions, where the temperature dependencies are given t;[he electron-phonon coupling, as compared to Coulomb cou-

different polynomial power laws. In the low-temperature re-dmgf However, if Xed is large enough, the phonon-
gion, when the drag is dominated by virtual phonon eX_medlated drag can overcome the Coulomb drag as the tem-

change Ry, is proportional toe~ %4, while at higher tem- perature increases, since Bt-s;/d the drag resistancBp

; . t contain a small factor ef *F% and increases with
eratures, when the drag is dominated by real hono&oes not co . .
gxchangeRD is proportiongl to 1d. y P exponentially. Comparing Eq33) with Eq. (41), one can

The results obtained allow to compare relative contribu-]clnd that it occurs when

tions of the piezoelectric- and deformation-potential mecha- 34 2

nisms of the phonon-mediated drag in the quantum wires. It ok d>&+ E|nSt—kF+|nﬂ- PSt 42)

is very important also to compare the phonon-mediated drag F T 47T 31/26h§4'

contribution with Coulomb drag contribution in such sys-

tems. Both these tasks are done below with use of the matdhe last term in the right-hand side of E@-2) is approxi-

rial parameters of GaAs. mately equal to 3.5 for GaAs. Therefore, the phonon-
Taking the values oéh,, andD given in the end of Sec. mediated drag can be stronger than the Coulomb drag under
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PHONON-MEDIATED DRAG BETWEEN ONE. ..
parameters depends on whether direct Coulomb drag or
phonon-mediated drag prevails. The relative contributions of

these two mechanisms can be separated experimentally by
measuring the dependence of the drag resistance on the tem-
perature and on the gate voltages controlling 1D electron

densities and interlayer distances in the double quantum wire

2k d=8

_______
-

systems.
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drag resistance (Q)
o
S

The equilibrium one-particle Green’s functi@{®)~* of
Keldysh's technique for fermions of branglis given by the

following expression:
0001 L v iviin® o L G (p)=27G,(p)f(e),
0.1 1
®) wheref(g)=[e®*~#/T+1]7 1 is the Fermi distribution func-
T (K tion andG®=(G”— GR)/2i is the causal Green’s function,
FIG. 6. The temperature dependence of electron drag in GaAgxpressed through the retardé and advanced?) Green’s

RD
(A1)

i
?
1]
]
I
i
]
[}
1
1
]
1
[}
1
]

quantum wires of the length=2 um, widtha=20 nmandin-  functions. For bosons of branoh the equilibrium Green's
function D@~ is given by

terwire separatiod=200 nm, at X-d=8. The solid line shows
the total drag resistance, and the dashed line shows the phonon- (0)—+ _ .
mediated drag contribution. Dio (Q)=—27DY,(QN(w), (A2)
whereD®= (DA—-DR)/27i, andN(w)=[el*"#/T—1]71 is

physically reasonable conditions. The phonon-mediated corfl€ Planck distribution function. For phonons the chemical
tribution Rp, is compared with the total drag resistarkg ~ Potentialu should be set to zero. , .

+RS in Fig. 6. The calculation oRy, is done by a numerical The other compcin+ents of the Green’s functi@¥’ are
integration overw in Eq. (16) using Eqs.(24) and (25) for ~ €XPressed throug ™" as

the matrix elements of the effective interaction, GaAs param- G (p)=—27GS (D)+G -+

eters listed above, and wire parame@#s200 nm,a je (P) mMG(P)+ G (P,

=20 nm,and.=2 um, at Xed=8. Figure 6 shows that Gj—g—(p):Gsz(p)JrGj—;(p)’

the phonon-mediated drag gives a considerable contribution

G/, (p)=—G(p)+G}. " (p), (A3)

to the total drag resistance in the region between 0.2 and 2 K.

The magnitude of the drag resistance in this region is within ) ) .

the range of experimental measurements. With the increagdld the equations expressirg** through D, (Q) are
of 2ked, the relative contribution oR rapidly increases, Ccompletely analogous to EGA3).

and at X-d=10 the drag resistance in the region above 0.1 For free electrons with spectrum),

K is determined mostly by the phonon-mediated drag contri- RA, Lo

bution. On the other hand, if the factokl is smaller than G (p)=[e—ejp=10]"7, (A4)
5, the phonon-mediated drag contribution can be neglected iand for free phonons with spectrua) o

DRMNQ)=([w—wyo*i0] ' —[w+wyo*i0] }).

comparison to the Coulomb drag one.
(A5)

In conclusion, the description of the electron drag be-

tween quantum wires should include consideration of the
phonon-mediated interlayer electron-electron interaction iin Eqgs. (A4) and (A5) the upper sign corresponds to the

the interlayer distanced is large enough. The behavior of the retarded, and the lower sign to the advanced Green’s func-
drag resistance as a function of the temperature and wirgons.
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