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Phonon-mediated drag between one-dimensional electron systems
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The acoustic-phonon-mediated drag between spatially separated one-dimensional electron systems in quan-
tum wires is studied theoretically. The electron transport is assumed to be nearly ballistic. Both deformation-
and piezoelectric-potential mechanisms of the electron-phonon interaction are taken into account. It is found
that under conditions 2kFd@1, whered is the interwire distance andkF the Fermi wave number of electrons,
the increase of the drag resistance with increasing temperatureT evolves from the power-law dependence to
the exponential one, and then again to the power-law one. If the product 2kFd is large enough, the phonon-
mediated drag in one-dimensional electron systems becomes more important than the Coulomb drag as the
temperature increases. At largeT and at 2kFd@1 the phonon-mediated drag resistance is found to be inversely
proportional tod.
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I. INTRODUCTION

The mutual friction between spatially separated lo
dimensional electron layers gives rise to electron drag p
nomenon, which has been attracting a considerable atten
in modern condensed matter physics.1 This phenomenon al
lows one to investigate electron-electron interaction in lo
dimensional systems through the measurements of the tr
port coefficients. The quantity usually measured
experiments is the drag resistanceRD52VD /I , where I is
the current in one~drive! layer andVD is the voltage devel-
oped in the other~drag! layer, when no current is allowed t
flow in the latter. In past years, the studies were focu
mostly on the electron drag between two-dimensional~2D!
systems.1 A limited number of theoretical papers2–12 has
been devoted to the drag between one-dimensional~1D! sys-
tems. Both Fermi liquid2–8 and Luttinger liquid9–12 descrip-
tions of 1D electrons have been employed. Recent exp
mental observations of electron drag in ballistic quant
wires13,14 are expected to stimulate further investigations
this phenomenon in 1D systems.

Apart from the direct contribution to the interlayer m
mentum transfer, caused by the Coulomb interaction~Cou-
lomb drag!, there exists an alternate contribution comi
from phonon exchange between the layers~phonon-mediated
drag!. At low temperatures this contribution is determined
the interaction of electrons with acoustic phonons. In spite
weakness of the electron-phonon coupling, the phon
mediated drag in 2D systems is found to be important,
cause at large distances between 2D layers it appears
stronger than the Coulomb drag. The dependence of
phonon-mediated drag on the temperature and paramete
2D electron layers has been investigated b
theoretically15,17,18and experimentally.16,19 In contrast, there
were no studies of the phonon-mediated drag between
electron systems. The aim of this paper is to investigate
phonon-mediated drag in 1D case under the simplest
proximations, when the electron systems in the quan
wires are assumed to be normal Fermi liquids, and the p
non confinement effects are neglected.

The paper is organized as follows. In Sec. II the form
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ism involved in the calculations is described and the d
resistance is expressed through the integral over the squ
module of the matrix element of effective interactio
weighted with a temperature-dependent factor. In Sec.
this matrix element is calculated under the assumption
the distance between the wires is large in comparison to
wire widths. In Sec. IV the analytical expressions for t
drag resistance are derived for several temperature reg
determined by the characteristic energy scales assoc
with Fermi wave number, interwire distance, and w
widths. A comparison of the relative contributions of th
deformation- and piezoelectric-potential mechanisms of
electron-phonon interaction into phonon-mediated drag,
comparison of the latter with the Coulomb drag, and a br
discussion are given in Sec. V. The Appendix contains
pressions of the equilibrium Green’s functions of Keldysh
technique for electrons and phonons, which are employe
the calculations in Sec. II.

II. FORMALISM

Consider two homogeneous 1D quantum layers~wires! of
length L, labeled 1 and 2, along the axisx. The wires are
adiabatically connected to four leads at the ends labeled1
and 2. Each lead is characterized by its own chemical p
tential m j 65m1eVj 6 , j 51,2, wherem is the equilibrium
chemical potential. If the tunnel coupling between the lay
is neglected, one can write the generalized quantum kin
equations for each layer using electron Green’s functi
Gj «

ab of Keldysh’s technique20 ~herea andb are the standard
indices of this technique,1 or 2, and they should not be
mixed with the indices of the ends of the wires!. In Wigner
representation, the equation for layerj is written as

vp
j ]

]x
Gj «

21~p,x!5 iIj «~p,x!52 iS j «
21~p,x!Gj «

12~p,x!

1 iS j «
12~p,x!Gj «

21~p,x!,

~1!
©2001 The American Physical Society24-1
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wherep is the electron momentum,vp
j is the group velocity

in the layer j, and I is the generalized collision integra
Throughout the paper, the system of units where\51 and
kB51 is used. Equation~1! is valid when pL@1 and pl
@1, wherel is the mean free path of 1D electrons~note that
since in the ballistic regimel @L, only the first strong in-
equality is necessary!. The self-energy functionsS j «

ab(p,x)
describe the interactions. Consider the interaction of e
trons with acoustical phonons, which causes a coupling
tween the electrons in the layers. The lowest-order contr
tion to 2 iS j «

ab(p,x) is represented by the diagram in Fig.
The solid and dashed lines, respectively, correspond
iG j «

ab(p) andiD lv
ab(Q), whereD is the phonon Green’s func

tion. Next,Q5(qx ,qy ,qz) is the three-dimensional momen
tum of the phonon andl5 l ,t corresponds to longitudina
and transverse polarizations. The vertex in the point1 or
2 corresponds to the matrix element of the Hamiltonian
electron-phonon interactionVz j (Q) multiplied by 1 i or
2 i , respectively. The indexz5 l ,t1 ,t2 numbers the longitu-
dinal and two transverse phonon branches. In the analy
form, the self-energy function drawn in Fig. 1 is

S j «
ab~p!52E dv

2pE d«8

2p (
ll8

(
gd

l abgd(
p8q

(
q'q'8

Gj «2v
ab

3~p2q!Gj 8«8
dg

~p8!Gj 8«81v
gd

~p81q!

3Dlv
ag~Q!Dl8v

db
~Q8!Wl~Q!Wl8~2Q8!, ~2!

where j 8Þ j , q5qx , q'5(qy ,qz), Q5(q,q'), Q8
5(q,q'8 ), Wl(Q)5Vl j (Q)Vl j 8(2Q), Wt(Q)
5Vt1 j (Q)Vt1 j 8(2Q)1Vt2 j (Q)Vt2 j 8(2Q), and the coordi-

nate index of Green’s functions is omitted. The factorl abgd
is equal to 1 for even number of the indices of one sign a
to 21 for odd number of the indices of one sign. The pre
ence of a closed loop of electron lines and spin summatio
this loop gives an additional factor of22 in Eq. ~2!.

Consider the interaction of electrons with both deform
tion ~microscopic! and piezoelectric~macroscopic! fields
generated by the acoustical phonons in the crystals of
blend symmetry, assuming that the quantum wires lie in
plane of crystallographic axes and are directed along on
the axes. The matrix elements are given by

FIG. 1. Diagrammatic representation of the contribution to
electron self-energy due to phonon exchange between the laye
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F j~q'!

A2rvlQV
F iDQdzQ1eh14b i lk

QiQldzQ
k

Q2 G , ~3!

whereD is the deformation potential constant,eh14 is the
piezoelectric constant,b i lk is the tensor equal to 1 foriÞ l
Þk and equal to 0 otherwise,vlQ5slQ is the phonon fre-
quency (l5t stands forz5t1 andz5t2), anddzQ is the unit
vector of the crystal lattice displacement. Next,

F j~q'!5E dyE dzux j~y,z!u2e2 iqyy2 iqzz ~4!

is the overlap integral, wherex j (y,z) is the wave function
describing confinement of the electrons in the wirej. Since
the matrix elements of interaction with deformation and
ezoelectric fields generated by a phonon (lQ) are shifted
with respect to each other by the phasep/2, these mecha-
nisms do not interfere, and one has

Wl5
F j~q'!F j 8~2q'!

2rslV Fdl,lD 2Q1~eh14!
2
Al

Q G , ~5!

where j Þ j 8, and the anisotropy factorsAl are given by21

Al~Q!536qx
2qy

2qz
2/Q6,

~6!
At~Q!54~qx

2qy
21qy

2qz
21qz

2qx
2!/Q42Al .

In the following, layer 1 is chosen to be the drag layer a
layer 2 the drive one. Consider Eq.~1! for j 51. It is conve-
nient to introduce22 the energy distribution functions for th
electrons with the positive group velocity~moving from 1
to 2) and with the negative one~moving from 2 to 1),
according to

g1«
6 ~x!56E

0

6` dp

2p i
uvpuG1«

21~p,x!. ~7!

With use of Eq.~7!, Eq. ~1! is transformed to a pair of equa
tions for g1 andg2:

6
]

]x
g1«

6 ~x!5I 1«
6 ~x!, ~8!

where the functions I 1«
6 are defined as I 1«

6 (x)
56(2p)21*0

6`dpI1«(p,x). The boundary conditions fo
Eq. ~8! at x50 and x5L are determined by the chemica
potentials of the leads to which the drag wire is connecte

g1«
1 ~0!5@e(«2m11)/T11#21,

~9!
g1«

2 ~L !5@e(«2m12)/T11#21.

The general expression for the electric current in the layj
is

Jj52eE d«

2p i E dp

2p
vp

j Gj «
21~p,x!. ~10!

Using Eqs.~7!–~10!, one obtains

e
.

4-2
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J15
e

pE d«@g1«
1 ~x!2g1«

2 ~x!#

5G0~V112V12!1
G0

e E
0

L

dxE d«I 1«
1 ~x!, ~11!

whereG05e2/p is the conductance quantum. In the expe
ments one measures the drag voltageVD5V112V12 at J1
50. Thus, Eq.~11! can be used for determination ofVD
through the drive voltageV5V212V22 .

The functionI 1«
1 (x) in Eq. ~11! depends on bothV and

VD . However, if the drag effect is weak, i.e.,uVDu is much
less thanuVu, one can substitute the equilibrium Green
functionsG1«

(0)ab(p) ~see the Appendix! instead ofG1«
ab(p)

into I 1«
1 (x). Using also the equilibrium Green’s functions

the free phonons~see the Appendix! in Eq. ~2!, after some
transformations one gets

I 1«
1 52E

0

` dp

2pE dvE d«8E dp8

2p E dq

2p
uM ~v,q!u2

3G1,«
c ~p!G1,«2v

c ~p2q!$ f ~«2v!

3@12 f ~«!#G2,«8
12

~p8!G2,«81v
21

~p81q!2 f ~«!

3@12 f ~«2v!#G2,«8
21

~p8!G2,«81v
12

~p81q!%, ~12!

where

M ~v,q!5L(
lq'

2vlQ

v22vlQ
2 1 i0

Wl~Q!. ~13!

The term M (v,q) contains all information about th
phonons. It comprises both real and virtual phonon contri
tions and is called the matrix element of effective interacti

Taking into account that the transport in the drive wire
ballistic, one can replaceG2«

21(p) by the quasiequilibrium
Green’s function 2p iG2«

c (p) f 2p(«), where the energy distri
bution is dictated by the leadsf 2p(«)5 f («2eV21) for p
.0 and f 2p(«)5 f («2eV22) for p,0. The collision inte-
gral ~12! is nonzero only if the signs ofp8 and p81q are
opposite, i.e., when the backscattering takes place in
drive wire. SubstitutingI 1 from Eq. ~12! to Eq. ~11! and
assuming the linear transport regime,eV!T, one finds

J15G0VD1V
e2L

p2T
E

0

`

dpE
2`

0

dp8E
2p8

`

dqE dvE d«

3E d«8uM ~v,q!u2G1,«
c ~p!G1,«2v

c ~p2q!G2,«8
c

~p8!

3G2,«81v
c

~p81q! f ~«!@12 f ~«2v!# f ~«8!

3@12 f ~«81v!#. ~14!

Equation ~14! provides an explicit relation between th
drag voltageVD and the drive voltageV at J150. In the
following, the free-electron approximation is used, wh
Gj «

c (p)5d(«2« jp). Assuming that the electrons in the wire
are described by parabolic dispersion laws«1p5D/2
03532
-

-
.

e

1p2/2m and «2p52D/21p2/2m, shifted with respect to
each other by the energyD, one can easily calculate th
integrals over«, «8, p, andp8. As a result,

VD

V
52

Lm2

4pTE2`

`

dvE
Amv

`

dq
uM ~v,q!u2

q2Pvq
1 Pvq

2
,

Pvq
6 5coshgvq1cosh@~v6D!/2T#, ~15!

gvq5v2m/2q2T1q2/8mT2m/T.

The denominatorPvq
1 Pvq

2 rapidly increases when eitherv or
D exceeds 2T, and the expression under the integrals ha
sharp maximum, as a function ofq, aroundq5qm satisfying
gvqm

50. Sincev is much smaller than the Fermi energ

one can find thatqm.2kF , where the Fermi wave numbe
kF is equal toA2mm. Assuming thatuM (v,q)u2 slowly
changes in the regiondq;2mT/kF around q52kF , it is
possible to replaceM (v,q) in Eq. ~15! by M (v,2kF) and
take the integral overq, expandinggvq near qm as gvq
5qm(q2qm)/4mT. A justification of this assumption is the
following. In the next section, it is shown thatuM (v,q)u2
changes withq on the scalesq;1/d and q;v/sl . There-
fore, the substitutionq52kF is justified as long asT
!kF /md andT!kFv/msl . The first of these conditions is
easy to fulfill at low enough temperatures. As for the seco
one, the characteristic frequencyv is estimated as eitherT or
slq, so that it is valid when the Fermi velocity is great
comparison to the sound velocities and the Fermi energ
great in comparison to the temperature. Both these requ
ments are assumed.

The drag resistanceRD52VD /J252(VD /V)G0
21 is fi-

nally expressed as

RD5
L

2vF
3e2E0

`

dvuM ~v,2kF!u2FD/2T~v/2T!, ~16!

Fn~x!5
x cothx2n cothn

cosh2x2cosh2n
.

This expression formally coincides with the one obtained
Coulomb drag6,7 if uM (v,2kF)u2 is replaced by the
frequency-independent squared interlayer Coulomb ma
element uM (2kF)u2.(2e2/e)2K0

2(2kFd), where e is the
static dielectric constant andK0 is the modified Bessel func
tion; the remaining integral*0

`FD/2T(v/2T)dv is equal to
(D2/4T)/sinh2(D/2T), producing a simple temperature d
pendenceRD;T at D→0. In contrast, for the phonon
mediated drag the frequency dependence of the effective
teraction M (v,2kF) is essential. For this reason, bo
temperature and interlayer separation behavior of
phonon-mediated drag appear to be more complicated
of the Coulomb drag. To determine them, it is necessary
calculate the effective interaction. This is the subject of
next section.
4-3
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III. THE EFFECTIVE INTERACTION

The effective interaction is described by Eqs.~13! and
~4!–~6!. The calculation of the overlap integralsF j (q') in
this section is based upon the model of quantum wires
planar coupling geometry.23,13 Such wires are obtained from
a 2D electron layer formed at the heterojunction interfa
~perpendicular toz axis! by the electrostatic depletion iny
direction. With a good accuracy, the wave functionsx j (y,z)
can be modelled by properly normalized products of
Fang-Howard wave functionze2z/2b by the Gaussian func
tionse2(y2yj )

2/2a2
. The wires are assumed to be identical a

interwire distanced is expressed asd5uy12y2u. Then, a
calculation of the overlap integral gives

ReF1~q'!F2~2q'!5
e2a2qy

2/2cosqyd

~11qz
2b2!3

, ~17!

while ImF1(q')F2(2q') is an odd function ofqy , which
does not contribute intoM (v,q). Other models of double
quantum wires, such as the wires of vertical coupli
geometry,24,25can be considered as well. The lengthsa andb
are the characteristic widths of the wires, iny and inz direc-
tions, respectively.

The effective interactionM (v,q) is represented as a su
of two termsMl(v,q):

Ml~v,q!52
1

rsl
2E

2`

` dqy

2p
Yl~v,q,qy!e2a2qy

2/2cosqyd,

~18!

where the integrals

Yl5E
2`

` dqz

2p

D 2Q2dl,l1~eh14!
2Al~Q!

~11qz
2b2!3@Q22v2/sl

22 i0#
~19!

can be calculated exactly. However, the exact express
are rather complicated. The approximate result, correspo
ing to smallb, is given below:

Yl.D 2F 3

16b
1

v2

2sl
2ql

G2~eh14!
2q2F18

sl
6

v6
~ql

32q2ql2q1
3

1q2q1!19
sl

4

v4
~2ql1q12q2/q1!1

9sl
2

4v2
~1/q12q2/q1

3!G
~20!

and

Yt.~eh14!
2F18

st
6

v6
q2~qt

32q2qt2q1
31q2q1!1

st
4

v4
~22qt

3

120q2qt22q4/qt12q1
317q2q127q4/q1!1

st
2

v2
@22qt

12q2/qt2q11~5/4!q2/q12~5/4!q4/q1
3#G , ~21!
03532
in

e

e

d

ns
d-

where

q15~q21qy
2!1/2,

~22!

ql5~q21qy
22v2/sl

22 i0!1/2.

This result is applicable under the following conditions:

~q21qy
2!b2!1, ~vb/sl!2!1. ~23!

The reliability of these conditions can be checked as follow
Since the characteristicqy contributing in the integral in Eq.
~18! are not great in comparison to eitherq.2kF or v/sl ,
the first condition can be replaced by (2kFb)2!1. The width
b is given26 by b5(33pN2D/2aB)21/3, whereaB5e/me2 is
the Bohr radius andN2D is the sheet electron density on th
interface. For GaAs-based structures (e.13) at typical den-
sity N2D.231011 cm22 used in experiments,b is less than
5 nm. On the other hand, the maximal Fermi wave numbe
the quantum wire, in conditions when only one 1D subba
is populated, is of the order ofa21. Typical values ofa are
from 20 to 30 nm, so thata2@b2. This strong inequality
reflects the fact that the lateral confinement energy~which is
usually a few meV! is much smaller than the energy of qua
tization in z direction ~which is of the order of 100 meV!.
Thus, (2kFb)2!1 is fulfilled. As for the second condition, i
requires rather small temperatures, since the characteristv
contributing into the integral in Eq.~16! cannot be much
larger thanT. The ballistic transport regime is normally re
alized atT,1 K. Then, usingb.5 nm, and sound veloci-
ties in GaAs~see below!, one can find that (sl /bT)2@1 at
such small temperatures. Therefore, the second conditio
Eq. ~23! is also valid under reasonable assumptions.

The calculation is continued below in the limitd@a,
which is consistent with present experimental situation
double quantum wire systems of planar geometry,13,14where
d.200 nm. Neglecting the terms proportional toe2d2/2a2

, it
is possible to calculate the integral overqy in Eq. ~18! ana-
lytically, which gives

Ml~v,q!52
~eh14!

2ea2q2/2

prsl
2 $9~u42u2/4!K0~qd!

1@~18u619u4!/qd19u2qd/4#K1~qd!

154u6K2~qd!/~qd!22e2a2v2/2sl
2

3@18u3~u221!3/2K1~k ld!/qd

154u4~u221!K2~k ld!/~qd!2#%

2
D 2v2

2prsl
4

ea2q2/22a2v2/2sl
2
K0~k ld!

[Ml
P1MD, ~24!

whereu5slq/v, and
4-4
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Mt~v,q!52
~eh14!

2ea2q2/2

prst
2 $~27v415v2/4!K0~qd!

1@~v227v4218v6!/qd25v2qd/4#K1~qd!

16v4~129v2!K2~qd!/~qd!22e2a2v2/2st
2

3@2v2~v221!K0~k td!12v~v221!3/2

3~129v2!K1~k td!/qd16v2~v221!

3~129v2!K2~k td!/~qd!2,#%

[Mt
P , ~25!

wherev5stq/v. In Eqs.~24! and ~25! kl5(q22v2/sl
2)1/2

is the complex wave number. Ifv.slq, then kl and
Kn(kld) are transformed according to the rule

~q22v2/sl
2!1/2→2 i ~v2/sl

22q2!1/2,
~26!

Kn~2 ix !→ i n11~p/2!Hn
(1)~x!,

where Hn
(1)(x) is the Hankel function.27 It is expressed

through the ordinary Bessel functions of the first and sec
kind asHn

(1)(x)5Jn(x)1 iNn(x). The rule~26! follows from
the fact thatv2 contains an infinitely small imaginary par
see Eqs.~19! and ~22!, which is omitted in Eqs.~24! and
~25!. Ml are real atv,slq and complex atv.slq. If v is
much smaller than boths̄kF and s̄/d ~heres̄ is the averaged
sound velocity!, one can expandKn(kld) in power series of
v, which gives

Ml~v,q!.2
3~eh14!

2ea2q2/2

8prsl
2 @qdK1~qd!2~qd!2K0~qd!#

2
D 2v2

2prsl
4

ea2q2/2K0~qd!, ~27!

and

Mt~v,q!.2
~eh14!

2ea2q2/2

8prst
2 @2qdK1~qd!

1~21~qd!2!K0~qd!#. ~28!

With the increase ofv, the deformation-potential contribu
tion MD increases and has a logarithmic divergency atv
5slq. The piezoelectric-potential contributionsMl

P andMt
P ,

are regular atv5sl ,tq. If qd@1, both Ml and Mt at v
.sl ,tq are great in comparison toMl and Mt at v!sl ,tq.
The dependence of the absolute values of the piezoele
contributionsMl

P(v,q) on v/slq, for qd51 andqd58, is
shown in Fig. 2. In Fig. 3 the total squared matrix eleme
uM (v,q)u2 is shown as a function ofv/slq. The material
parameters of GaAs used in this calculation aresl55.14
3105 cm/s, sl53.043105 cm/s, r55.31 g/cm3, h1451.2
3107 V/cm,21,17andD510 eV,28 and the interlayer distanc
d is set to 200 nm.
03532
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It is important to notice thatuM (v,q)u2 does not contain
any divergency that would make the drag resistance infi
~the logarithmic divergency atv5slq, of course, does no
create any problems!. In contrast, the theory of phonon
mediated drag in 2D systems encounters the problem
divergency,17 which can be removed, for example, by intr
duction of a finite free path for the phonons; this leads
logarithmically large factors in the drag resistance. Ma
ematically, the difference between the matrix elements
effective interaction in 1D and 2D cases exists because in
case the calculation of the matrix element involves a sin
integral over transverse wave number of the phonon, w
in 1D case one has a double integral, overqz andqy , which
kills the dangerous divergency. From the physical point
view, the reduction of dimensionality from 2D to 1D reduc
the number of the phonons participating in the interlay
exchange, thereby making the phonon-mediated drag les
fective.

FIG. 2. Frequency dependence of piezoelectric-potential con
bution to the effective interaction atqd51 andqd58 (q2a2!1 is
assumed!. The absolute values of the functionsMl

P andMt
P , given

by Eqs. ~24! and ~25!, are expressed in units of (eh14)
2/rsl

2 and
(eh14)

2/rst
2 , respectively.

FIG. 3. The squared absolute value of the effective interac
uM (v,q)u2 for GaAs wires atd5200 nm,q2a2!1, qd51, and
qd58. The dashed line shows the deformation-potential contri
tion uMD(v,q)u2 for qd58 ~this contribution is negligible forqd
51 in the frequency interval considered!. The data forqd58 is
multiplied by the factor of 5.
4-5
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IV. DRAG RESISTANCE

The results obtained in the previous section are used
low to evaluate the integral overv in Eq. ~16!. For the sake
of simplicity, only the case of aligned 1D subbands,D50, is
studied. Consider first the region oflow temperatures T

! s̄kF ,s̄/d. The contribution to the integral comes fro
small v, where the approximate expressions~27! and ~28!
are valid. This gives the polynomial power-law temperatu
dependence of the drag resistance

RD5
Le24a2kF

2

e2r2vF
3sl

4 FD 4
p2K0

2~2kFd!

5sl
4

T5

1D 2~eh14!
2
K0~2kFd!B~2kFd!

24sl
2

T3

1~eh14!
4

B2~2kFd!

128p2
TG , ~29!

where the dimensionless functionB(2kFd) is given by

B~x!5@~x212!r 223x2#K0~x!1~32r 2!xK1~x! ~30!

and r 5sl /st is the sound velocity ratio.
If 2kFd@1, the drag resistance atT!2s̄kF can be repre-

sented as a sum of two parts

RD5RD
(1)1RD

(2) . ~31!

The first part is the contribution from the region of smallv.
If the characteristic frequenciesv;2T are small in compari-
son to 2s̄AkF /d, this contribution is given by Eq.~29! in the
limit 2kFd@1:

RD
(1)5

pLe24kFd14a2kF
2

4e2r2vF
3sl

4kFd
FD 4

p2T5

5sl
4

1~r 223!D 2~eh14!
2
~kFd!2T3

6sl
2

1~r 223!2~eh14!
4
~kFd!4T

8p2 G . ~32!

This part is exponentially small, since it is proportional
e24kFd. The second partRD

(2) , which rapidly increases with
the increasing temperature, is the contribution from the
gions of v just abovev l52slkF and v t52stkF , for the
longitudinal and transverse phonons, respectively. Beca
of the substantial difference between the velocitiessl andst ,
the longitudinal-phonon and transverse-phonon terms in
contribution have to be considered independently. Expand
kl nearvl askl52 i2(kF /sl)1/2(v2vl)1/2, one finds that
the argument of the Bessel functions,kld, is large at (v
2vl);T, if T@ s̄/kFd2. Therefore, one may use th
asymptotic of the Bessel functions at large arguments in
culation of the integrals containingKn(kld). Keeping in
Eqs.~24! and~25! only the leading terms with respect to th
03532
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small parameter (qd)215(2kFd)21, one can see tha
piezoelectric-potential contribution is much less important
the longitudinal-phonon terms than in the transverse on
and, therefore, should be accounted in the transverse te
only. The contributionRD

(2) is represented as a sum of tw
thermal-activated parts

RD
(2)5

L

A2pe2r2vF
3d

F2D 4kF
4

sl
3 S 2slkF

T D 1/2

e22slkF /T

1
6~eh14!

4

st
3 S T

2stkF
D 3/2

e22stkF /TG . ~33!

This contribution exponentially increases with temperatu
and it does not contain a small factor ofe24kFd. From a
comparison of the exponentse22stkF /T ande24kFd, it follows
that RD

(2) becomes comparable toRD
(1) as the temperature

reachesst/2d. With the further increase of the temperatur
RD

(2) rapidly overcomesRD
(1) . The region where the tempera

ture dependence of the drag resistance follows the expo
tial law ~33!, can be called as the region ofintermediate
temperatures. This region exists only if 2kFd@1. In view of
large interwire separationd in existing double-wire devices
this condition is easy to satisfy even at relatively small Fer
energies of 1D electrons. On the other hand, the oppo
condition 2kFd!1 assumes very small Fermi energies, wh
it is practically impossible to avoid localization of the ele
trons due to the inhomogeneities of the wires. For this r
son, the case of small 2kFd is not considered in this paper

The derivation of Eq.~33! is done under conditions
(qd)2@1 and 2stkF /T@1. However, because of the larg
numerical coefficients and large powers ofv/stq standing in
Eq. ~25! for Mt(v,q), the expression for the pre-exponenti
factor in the second term of Eq.~33! is not quite reliable
even if qd and 2stkF /T are as large as 10, and has to
improved. With more accuracy, the factor (T/2stkF)3/2 in this
term should be replaced by another temperature-depen
factor

@117/~qd!2#I 7~2stkF /T!263I 9~2stkF /T!/~qd!2,

where the integrals

I k~x!5
4

3Ap
xE

0

`

dt
t3/2e2xt

~11t !k

are not reduced tox23/2 at x@1 if k is large.
Consider now the region of relativelyhigh temperatures,

whenT@ s̄kF , and the contribution in the integral in Eq.~16!
comes from large frequencies. Under conditionskFa!1 one
can notice a qualitative difference in behavior of t
piezoelectric-potential and the deformation-potential parts
M (v,2kF) at v. s̄kF . The former, M P5Ml

P1Mt
P , de-

creases withv on the scalev; s̄kF , and the contribution to
the integral overv in Eq. ~16! coming fromuM P(v,2kF)u2

converges on this scale. The latter,MD, increases withv,
and the contribution to the integral in Eq.~16! coming from
uMD(v,2kF)u2 converges either atv;2T or at v;sl /a: in
4-6
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any casev@ s̄kF . The drag resistance associated with bo
parts considered above can be represented as a sum o
terms

RD5RD
P1RD

D , ~34!

and the cross-term contribution, caused by the interferenc
piezoelectric-potential and deformation-potential parts, is
glected. It is always small in comparison to eitherRD

D or RD
P ,

because the regions ofv contributing to RD
P and RD

D are
essentially different.

The term RD
P is proportional to the integra

*dvuM P(v,2kF)u2F0(v/2T), which converges at v

;2s̄kF . Therefore, the termse2a2v2/2sl
2

in M P should be
replaced by 1, andF0(v/2T) should be replaced byF0(0)
51/3. This term describes temperature-independent co
bution to the drag resistance

RD
P5

L~eh14!
4Z~2kFd,r !

6e2r2vF
3sl

3d
, ~35!

whereZ is a dimensionless function plotted in Fig. 4 forr
51.69, the ratio of sound velocities in GaAs. The oscil
tions of this function appear because of the interference
different oscillating terms fromMl

P andMt
P at v.2slkF and

v.2stkF , see Eqs.~24! and ~25!. As kFd increases, the
oscillations weaken andZ(2kFd,r ) saturates to the value o
4r 3/35p.0.176.

Since the characteristic frequencies contributing toRD
D

;*dvuMD(v,2kF)u2F0(v/2T) are much larger thans̄kF , it
is possible to use the asymptotic of the Bessel funct
K0(k ld) at large arguments in calculation of the integr
This part is given by

RD
D5

LD 4T4L~2Ta/sl !

pe2r2vF
3sl

7d
, ~36!

where

L~x!5E
0

`

dtt3F0~ t !e2x2t2 ~37!

FIG. 4. The functionZ(2kFd,r ), entering Eq.~35!, at r 51.69.
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if T!sl /a, L(2Ta/sl)53z(3)/2.1.803. In this caseRD
D

increases with the temperature asT4. In the opposite limit
the temperature dependence vanishes.

Consider now the casekFa;1. This also implies 2kFd
@1, and only the leading-order terms with respect to t
parameter should be kept inuM (v,q)u2. Both the
polarization-potential and deformation-potential contrib
tions to the integral in Eq.~16! converge atv; s̄/a, since
under the conditionsT@ s̄kF one has alsoT@ s̄/a, and
F0(v/2T) should be replaced by 1/3. This means that
drag resistance is temperature-independent. It is given b

RD5
L

3pe2r2vF
3sl

3d
@~eh14!

4r 3h t~2kFa!

1~D/a!4h l~2kFa!#, ~38!

where

h l~x!5S x

2D 4E
1

`

dt
t4ex2(12t2)

At221
, ~39!

and

h t~x!5E
1

`

dtt28~ t221!3/2ex2(12t2). ~40!

The cross-term contribution toRD is neglected in Eq.~38!. It
is small because of the presence of the fast-oscillating fa
cos@dAv2/st

224kF
22dAv2/sl

224kF
2 # under the integral over

v for this contribution. The functionsh l(x) and h t(x), as
well as the ratio ofh l(x)/r 3h t(x) at r 51.69 are shown in
Fig. 5.

Equations~35!, ~36!, and~38! show that in the region of
high temperaturesT@ s̄kF the drag resistance is inverse
proportional to the interwire separationd @at kFa!1 this is
true under conditions 2kFd@1, when Z(2kFd,r ) is con-
stant#. The same dependence, at 2kFd@1, takes place in the
region of intermediate temperatures, see Eq.~33!. The law
RD}1/d has a simple physical explanation. If 2kFd@1 and
the temperature is large enough, the main contribution to

FIG. 5. Solid lines: functionsh l(x) andh t(x), defined by Eqs.
~39! and ~40!. Dashed line: the ratio ofh l(x)/r 3h t(x) at r 51.69.
4-7
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O. E. RAICHEV PHYSICAL REVIEW B 64 035324
integral of Eq.~16! comes from the frequenciesv.2slkF .
This is the region ofreal phonon exchange. Thus, atd@a
the drive wire can be roughly considered as a line emitt
phonons, while the drag wire is a line receiving phonons,
the drag rate is proportional to the intensity of the radiat
received. In this model, the spatial distribution of t
phonons emitted have cylindrical symmetry, so that the
tensity of the radiation decreases with the distanced between
the wires as 1/d, and so does the drag resistance. A sim
consideration shows that the phonon-mediated drag betw
2D layers does not depend on the interlayer separationd at
large enoughT and d. Of course, if one accounts for finit
lifetime of the phonons, the drag resistance should decre
with d faster.

V. DISCUSSION

In this paper, a theoretical study of the phonon-media
drag between the electrons in two parallel one-dimensio
conductors~quantum wires! has been done. The electron sy
tems have been assumed to be normal Fermi liquids.
electron transport has been assumed to be nearly ball
which means that most of the electrons pass through
wires without any scattering. The phonons have been
scribed within the bulk mode~three-dimensional! approxi-
mation, which is reliable if the difference between the de
sities, elastic modules and piezomodules of the crys
forming the heterostructure is not substantial. Both
deformation-potential and piezoelectric-potential interact
between the electrons and phonons have been consid
The detailed calculations of the matrix element of effect
interaction and of the drag resistanceRD have been done fo
the case when the interwire separationd is large in compari-
son to the characteristic widtha of the electron systems de
termined by the lateral confinement in the wires.

The temperature, electron density, and interlayer sep
tion dependencies of the phonon-mediated drag are ra
complicated. Though the drag resistance always incre
with the temperature, one should stress that in the diffe
regions ofT, which are determined by the characteristic e
ergy scaless̄/d, s̄/a, and s̄kF , the temperature dependen
of RD is considerably different. If 2kFd@1, there exists a
region of intermediate temperatures, characterized by ex
nential increase ofRD with T. This region separates the low
temperature (T! s̄/d) and high-temperature (T@ s̄kF) re-
gions, where the temperature dependencies are given
different polynomial power laws. In the low-temperature r
gion, when the drag is dominated by virtual phonon e
change,RD is proportional toe24kFd, while at higher tem-
peratures, when the drag is dominated by real pho
exchange,RD is proportional to 1/d.

The results obtained allow to compare relative contrib
tions of the piezoelectric- and deformation-potential mec
nisms of the phonon-mediated drag in the quantum wire
is very important also to compare the phonon-mediated d
contribution with Coulomb drag contribution in such sy
tems. Both these tasks are done below with use of the m
rial parameters of GaAs.

Taking the values ofeh14 andD given in the end of Sec
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III, one can estimate the ratioD/eh14 in GaAs as 8.3 nm. An
analysis of Eqs.~29!–~33! under condition shows that th
piezoelectric-potential contribution dominates in the reg
T! s̄kF . In the high-temperature regionT@ s̄kF and atkFa
!1, one should compare Eqs.~35! and ~36!, taking into
account thatZ;0.1 ~see Fig. 4!. This again shows that the
piezoelectric-potential contribution dominates. Only wh
T@ s̄kF andkFa;1, both contributions can be comparab
as follows from the analysis of Eq.~38!, see Fig. 5. This
temperature region, however, lies well above 1 K, where
ballistic transport regime in quantum wires is hardly achie
able. Therefore, one should consider the piezoelect
potential mechanism of electron-phonon interaction as
main cause of the phonon-mediated drag in GaAs quan
wires. Still, the deformation-potential mechanism can b
come comparable with the piezoelectric-potential one eve
T,1 K in the quantum wires fabricated from a differe
material, where the ratioD/eh14 is greater@note that the
comparison is based upon the factor of (D/eh14)

4]. An ex-
ample of such a material is InAs, where the piezoelec
constant is about four times smaller than in GaAs.

Within the same approximations as used in the calcu
tions above, the Coulomb drag is given by a simp
formula6,7

RD
C5

2LTe2

e2vF
3 F 1

pa2E dyE dy8e2y2/a22(y81d)2/a2

3K0~2kFuy2y8u!G 2

. ~41!

The factor@•••#2 in this equation can be approximated b
K0

2(2kFd), with a good accuracy. This approximation is us
below in comparison ofRD

C with RD , the latter is calculated
in the previous sections. Only the piezoelectric-poten
contribution toRD is taken into account, as the main one.
is interesting that in the regionT! s̄/d both RD andRD

C are
described by the functions proportional toTe24kFd, and a
comparison of them shows that the Coulomb drag is m
stronger than the phonon-mediated drag at physically rea
ablekFd. Further, if 2kFd;1, the Coulomb drag appears t
be much stronger than the phonon-mediated drag, regard
to the temperature. This is the consequence of weaknes
the electron-phonon coupling, as compared to Coulomb c
pling. However, if 2kFd is large enough, the phonon
mediated drag can overcome the Coulomb drag as the
perature increases, since atT.st /d the drag resistanceRD
does not contain a small factor ofe24kFd and increases with
T exponentially. Comparing Eq.~33! with Eq. ~41!, one can
find that it occurs when

2kFd.
stkF

T
1

1

4
ln

stkF

T
1 ln

p3/4rst
2

31/2eh14
2

. ~42!

The last term in the right-hand side of Eq.~42! is approxi-
mately equal to 3.5 for GaAs. Therefore, the phono
mediated drag can be stronger than the Coulomb drag u
4-8
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physically reasonable conditions. The phonon-mediated c
tribution RD is compared with the total drag resistanceRD

1RD
C in Fig. 6. The calculation ofRD is done by a numerica

integration overv in Eq. ~16! using Eqs.~24! and ~25! for
the matrix elements of the effective interaction, GaAs para
eters listed above, and wire parametersd5200 nm,a
520 nm, andL52 mm, at 2kFd58. Figure 6 shows that
the phonon-mediated drag gives a considerable contribu
to the total drag resistance in the region between 0.2 and
The magnitude of the drag resistance in this region is wit
the range of experimental measurements. With the incre
of 2kFd, the relative contribution ofRD rapidly increases,
and at 2kFd510 the drag resistance in the region above
K is determined mostly by the phonon-mediated drag con
bution. On the other hand, if the factor 2kFd is smaller than
5, the phonon-mediated drag contribution can be neglecte
comparison to the Coulomb drag one.

In conclusion, the description of the electron drag b
tween quantum wires should include consideration of
phonon-mediated interlayer electron-electron interaction
the interlayer distanced is large enough. The behavior of th
drag resistance as a function of the temperature and

FIG. 6. The temperature dependence of electron drag in G
quantum wires of the lengthL52 mm, widtha520 nm and in-
terwire separationd5200 nm, at 2kFd58. The solid line shows
the total drag resistance, and the dashed line shows the pho
mediated drag contribution.
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parameters depends on whether direct Coulomb drag
phonon-mediated drag prevails. The relative contributions
these two mechanisms can be separated experimentall
measuring the dependence of the drag resistance on the
perature and on the gate voltages controlling 1D elect
densities and interlayer distances in the double quantum
systems.
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APPENDIX

The equilibrium one-particle Green’s functionG(0)21 of
Keldysh’s technique for fermions of branchj is given by the
following expression:

Gj «
(0)21~p!52p iG j «

c ~p! f ~«!, ~A1!

wheref («)5@e(«2m)/T11#21 is the Fermi distribution func-
tion andGc5(GA2GR)/2p i is the causal Green’s function
expressed through the retarded~R! and advanced~A! Green’s
functions. For bosons of branchl, the equilibrium Green’s
function D (0)21 is given by

Dlv
(0)21~Q!522p iD lv

c ~Q!N~v!, ~A2!

whereDc5(DA2DR)/2p i , andN(v)5@e(v2m)/T21#21 is
the Planck distribution function. For phonons the chemi
potentialm should be set to zero.

The other components of the Green’s functionsGab are
expressed throughG21 as

Gj «
12~p!522p iG j «

c ~p!1Gj «
21~p!,

Gj «
22~p!5Gj «

R ~p!1Gj «
21~p!,

Gj «
11~p!52Gj «

A ~p!1Gj «
21~p!, ~A3!

and the equations expressingDab through Dlv
21(Q) are

completely analogous to Eq.~A3!.
For free electrons with spectrum« j p

Gj «
R,A~p!5@«2« j p6 i0#21, ~A4!

and for free phonons with spectrumvlQ

Dlv
R,A~Q!5~@v2vlQ6 i0#212@v1vlQ6 i0#21!.

~A5!

In Eqs. ~A4! and ~A5! the upper sign corresponds to th
retarded, and the lower sign to the advanced Green’s fu
tions.
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