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Complete quantum confinement of one-dimensional Bloch waves
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An analytical solution is given for the complete quantum confinement of one-dimensional Bloch waves in an
inversion-symmetric potential. The energy spectrum of the confined Bloch states maps the energy bands
exactly. For each band gap, the energy of one band-edge state does not change as the confinement length
changes. Only the energy of the other band-edge state changes and might be described by the effective-mass
approximation.
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The quantum confinement is one of the most fundamentadre located at eithde=0 or k= =/a. Due to Eq.(3), a band-
problems in low dimensional physics. A clear understandingedge state has a specific parity for an inversiea —x. A
of the physics on the quantum confinement of Bloch wavesoteworthy point is that a band-edge state also has a specific
in low dimensional systems could be both theoretically veryparity for an inversion relative te=a/2.° For the band-edge
interesting and practically very importahtAlthough the states ak=0, the parity does not depend on the selection of
quantum confinement of plane waves has been treated ihe inversion center: They are the same for eitker0 or
almost any standard quantum mechanics textbook, theoreti=a/2 to be the inversion center. However, for the band-
cal investigations on the quantum confinement of Blochedge states located lat= 7/a, the parity does depend on the
waves were usually based on approximated and/or numericgklection of the inversion centgfor simplicity, we assume
approaches. The complete confinement is the simplest btat there is only one lowest periodic potential minimum in
also the most fundamental quantum confinenfeftclear  the interval[0,a).2° To be specific, in this work the bulk
understanding of the complete confinement is the basis fosarity of a band-edge state means the parity for an inversion
understanding of all other not-so-complete confinements. Imelative to one of these periodic potential minimum locations
this work, we give an analytical solution of the complete (PPML’s).
quantum confinement of one-dimensional Bloch waves in an We consider the Bloch states confined in the region
inversion-symmetric potential, based on an early paper of-|/2<x<L/2 and are interested in the case where the con-
Kohr® and a mathematical theorem on the Bloch functibns. finement length
It is found that the approximate correspondence between the
bulk energy dispersion and quantum-confined energy levels L=Na,
noted previously by many authdrs is in fact an exact cor-  poren s a positive integer+ L/2 are located/2 away from
respondence for a fairly broad class of one-dimensional POhe nearest PPMLL
tentials. It also shows that the existence of confined Sttes X
whose energy is independent of the confinement length iﬁ/e
quite general, relying on the symmetry of the periodic potens

For the complete quantum confinement of Bloch waves,
look for the the eigenvaluésand eigenfunctiong(x) of
he following equation:

tial.
One-dimensional Bloch waves in an inversion symmetric Hy(x)=E (). (4
potential are the solutions of Schiinger differential
equatior ere
Hogn(k,X) = &4(K) (K, ), (1) H=Ho*V, ©
where whereH,, is defined in Eq(2) and
5 ) L L
H he d N e @ V=0 if — §<x<§
= - — — 0 o0
0 2m dX2 U(X)v X
_ L L
and =+ if xs—3 or x=5.
v(X+a)=v(x), is the confinement potential. Thus all eigenfunctions of Eq.
(4) must have
v(=X)=v(X). ()
_ L L
We assume EqJ) is solved, and all energy bandg(k) Y(x)=0 if x<—2 or x=7. 6

and Bloch functionsp,(k,x) are known. Following Kohn, _ .
we assume that the energy bands do not intersect, and thef&€ confined states have a discrete energy spectrum.
are energy gaps between energy bands. The band-edge statesVe define a functiorg,, ;(x) as follows:
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A ™ jm . j
fn,j(x): \/E[ ¢n<T1X) _(_1)]¢n( - T,X)

—ooIX<+®©, (7)
wherej=1,23...N—1, andn=0,1,2 ... . Thefunction
%n,j(x) in Eq. (7) satisfied?

~ (L} -« L
En.j 2 =¢&nj ) =0. (8)
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12 d? jm
“ om @"'U(X)) gn,j(x)zsn(r> fn,j(x)a
if EsxsE (12
2-%52
and
+oo
| Caimen poodx=sns a3

The functiong(x) in Eq. (4) can be expanded in the basis of
Eq. (1D):

The band-edge states need special consideration. Accord-

ing to a mathematical theorem on the Bloch functibrise

two band-edge states of each band gap have the same num-
ber of zeros: Two band-edge states of the first band gap hav
one zero in0,a), two band-edge states of the second ban
gap have two zeros if0,a), ... . Thus the two band-edge

¢(x)=n2j Chjénj(X), (14)

fhd thus the eigenvalues and eigenstates of(&gcan be
etermined by

states of each band gap must have different bulk parity: one detH, 5, —E&; 5|=0, (15)
is odd and the other is evéhThey have different energy, i ' ’
but which one is higher is dependent on the specific form ofvhereJ=(n.j) and
the potentialv(x). If the potentialv(x) is deep and short -
range around the PPML, such as used in Kittel's Bdak HJ’J,:f & i(OHE  ()dx.
Pedersen and Hemmer's wdtkye expect that the lower e
band-edge state has an even bu_lk parity _and the higher bang,q 1o Egs(12) and(13), we havé®
edge state has an odd bulk parity. In this work, we assume
this is the case, while being aware that a different order of jr
bulk parity of band-edge states is possilile. HJ,J’:Sn(T) Onn Oj i - (16)
We define
Thus the function setl1) diagonalizes the Hamiltoniaf®).
o Hence we have the solutions of Ed), the complete quan-
£ o(X)= /T¢n(0,X) (9)  tum confinement of Bloch waves, as
j
and Enj=en| T/ (17)
and
A B 2 T 10
Enn() =\ | X (10 U (0 =Enj(X), —o=x=+o, (18)

It is easy to see th@ih,o(x) of odd bulk parity ancgn,N(x) of
even bulk parity satisfies E@8): They have an odd parity
for an inversion relative a poira/2 away from a PPML.

That corresponds t§,—evendX) (Ref. 19 and &, - evenn(X)

wherej=1,2,...N for n=0, j=0,1,2 ...N for n=even
(exceptn=0) andj=1,2,...N—1 for n=o0dd, for the case
of deep and short-range local potential. They can be obtained
from the solutions of Eq(l).

Figure 1 shows a comparison between the energy bands

for the case of deep and short-range local potential. We desn(K) as the solutions of Eql) and the energy spectrum

fine another functiorg, j(x) as follows:

~ . |_ L
Eni(X)=¢&q;(x) if — Esxs >

) L L
if Xx<——= or x>—=.

=0, 2 2

11

Here &, ;(x) is defined in Eqs(7), (9), or (10). For &, ;(x)
defined in Eqs(9) or (10), only those satisfying Eq8) are
included in Eq.(11). Due to Eq.(8), the functioné, ;(x) is a
continuous function satisfying E¢6). Furthermore we have

Enj [Eq. (17)] as the solutions of Eq4) for N=8.

By using a Kronig-Penney potential, Pedersen and Hem-
mer found that the energy spectrum of the confined Bloch
waves maps the energy barfdBhe “central observation” of
an investigation of Zhang and Zunges also the energy
spectrum of confined electrons in Si quantum films maps the
energy band structure of Si approximately. Much previous
work also indicates that the eigenvalues of confined Bloch
states maloselythe dispersion relations of the unconfined
Bloch waves. Equation(17) shows that the map igeneral
andexactin the one-dimensional case treated here.

The energy of most confined states changels elsanges.
This is the energy quantum confinement effect in the usual
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FIG. 2. The energies of two confined band-edge states near the
band gapA,; as functions of the confinement length Note the
energy of the lower confined band-edge state is a constant; only the
energy of the higher confined band-edge state change& as
changes.

0
0.0

FIG. 1. A comparison betweeB, ; (solid circleg in Eq. (17)
and the energy bands,(k) (solid lines for the lowest four bands
for the casdN=_8. Note:(i) thatE, ; map the energy bands exactly;
(i) the existence of constant-energy confined states.

sense. However, there is always a band-edge state for each
band gap whose energy does not change. For the case 6 band gag\, ; between then=1 andn=2 energy bands
deep and short-range local potential, the energy of the lowetS functions of confinement length

confined band-edge state near the band gdp=at/a is Zhang and Zunger observed a state with such behavior in
their investigation on Si quantum filmisEranceschetti and

Zunger also observed a such state in their investigations on
(19 the free standing GaAs quantum fifniThey call it “zero
confinement state.” In fact these states are confined: In real

o

En,Nzgn a

and the state is space they are confined in the regierL/2<x<L/2 [Egs.
(20) and (22)] and in the Bloch space each confined state
27 | . L L (n’,k|n,j) (Ref. 17 has a distribution, rather than beingba
P N) =1\ T¢n(gax if —5<x<3 function as is an unconfined Bloch wave. This distribution in
the Bloch space is widened aglecreases, due to the uncer-
L L tainty principle. Nevertheless, the energy of these states does
=0, if x<—% or x>¢ (20 not change ak changes. This is due to the fact that E49)
2 2 and(21) are eigenvalues of the confined HamiltontdnWe

for n=0,2,4 ... . Theenergy of the higher confined band-

edge state near the band gagkatO is 4.4
En,OZSn(O) (21)
® © & 0 & & & 06 0 6 0 & 0 0 0 0 0 0
and the state is 42T T
27 . L L
= —_— —_ e Y= —
UnoX)=\T¢n(0X) if —5=x=7 W 40 |
. L L ...........0
=0, f x<—§ or x>§ (22 e
38 [
forn=2,4,6. . . . Thus the energy of these band-edge state .
does not change as the confinement lengtianges. There
is a such confined band-edge state for each band gap, ther .

fore the energy of a half of confined band-edge states doe 0 5 10 15 20

not show the quantum confinement effect in the usual sense. Lia

In Fig. 2 are shown the energies of two confined band-edge FiG. 3. The energies of two confined band-edge states near the
states near the band gdp ; between then=0 andn=1  pand gapA, , as functions of the confinement length Note that
energy bands as functions of confinement lerigtin Fig. 3 the energy of higher confined band-edge state is a constant; only the
are shown the energies of two confined band-edge states nedtergy of the lower confined band-edge state changeshanges.
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prefer to call these states constant-energy confined statehen the energy spectrum of the near band-edge confined
The fundamental reason of the existence of those constargtates can be directly obtained from Eg7) as
energy confined states is due to the symmetry of the periodic
potential; for each band gap there is always a band-edge
state which has an odd parity for an inversion relative to a h? j%a?
point a/2 away from a PPML and thus naturally satisfigg. En,i”‘?n(OHZm* L2
(8). Whether this is the higher band-edge state or the lower
band-edge state is dependent on the location of the band gap
and the specific form of (x). This is the complete confinement results of the EMA. A
Pedersen and Hemmer used a Kronig-Penney potential @orresponding expression of EMA can be easily obtained for
investigate the quantum confinement of Bloch waves. Howthe confined states near the band gak-=atr/a.
ever, they did not treat the band edge states and thus did not In summary, we have given an analytical solution of the
obtain results such as Eq4.9)—(22). quantum confinement of one-dimensional general Bloch
The effective-mass approximatiofEMA) has been waves in an inversion-symmetric potential. The major result
widely used in investigating the quantum confinement ofis Egs.(17) and(18).
Bloch electrons. Essentially this approach is derived from the Any real solid always has a limited size and does not have
understanding on the quantum confinement of plane wave& periodic boundary. Nevertheless, Bloch theorem based on
However, originally the EMA was developed for treating thethe periodic boundary condition has been the basis of our
electronic states near band edges in the presence of slowdyrrent understanding on the electronic structures in modern
varying weak perturbations, such as an external electrigolid-state physics. A similar problem on phonons was the
and/or magnetic field, as well as the potential of shallowsubject of argument between Born and RarffaNaturally
impurities® But in quantum confinement problems, the per-one will be interested in the problem on what a difference
turbation is neither weak nor slowly varying at the confine-there will be if a more realistic boundary condition on
ment boundaries, and the conditions for justifying the use obolids—such as the electrons being completely confined in
EMA are thus completely violated. There has been muctihe limited size of a real solid—is used. This work gives a
work on this interesting puzzle, mainly using the envelopecomplete and exact answer to this interesting problem for an
function approach? inversion-symmetric potential in the one-dimensional case.
However, we have seen that there are constant-energy The quantum confinement of Bloch waves treated in this
confined states for which the concept of EMA is not evenwork—the one-dimensional case—is the simplest case. The
qualitatively correct. This point has also been noticed byhigher dimensional cases would be more complicated. Nev-
Zhang and ZungetThe failure of EMA for these band-edge ertheless, since we have seen that even in the simplest one-
states clearly indicates that one has to be careful in usindimensional case the quantum confinement of the Bloch
EMA or EMA derived ideas in the quantum confinement of waves could be fundamentally different from the quantum
Bloch waves. On the other hand, for other confined bandconfinement of plane waves, it is very likely that there still
edge states whose energy does change @sanges, as so- could be some fundamental difference between the quantum
lutions of the Schrdinger Eq.(4), the only requirement for  confinements of Bloch waves and plane waves in higher di-
the EMA to be valid is that the energy basg(k) near the mensional cases. A clearer understanding on this interesting
band edge can be approximated by a parabolic energy bangroblem will need more work in the future.
For example fom=odd, if

(23
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