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Complete quantum confinement of one-dimensional Bloch waves
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An analytical solution is given for the complete quantum confinement of one-dimensional Bloch waves in an
inversion-symmetric potential. The energy spectrum of the confined Bloch states maps the energy bands
exactly. For each band gap, the energy of one band-edge state does not change as the confinement lengthL
changes. Only the energy of the other band-edge state changes and might be described by the effective-mass
approximation.
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The quantum confinement is one of the most fundame
problems in low dimensional physics. A clear understand
of the physics on the quantum confinement of Bloch wa
in low dimensional systems could be both theoretically v
interesting and practically very important.1 Although the
quantum confinement of plane waves has been treate
almost any standard quantum mechanics textbook, theo
cal investigations on the quantum confinement of Blo
waves were usually based on approximated and/or nume
approaches. The complete confinement is the simplest
also the most fundamental quantum confinement.2 A clear
understanding of the complete confinement is the basis
understanding of all other not-so-complete confinements
this work, we give an analytical solution of the comple
quantum confinement of one-dimensional Bloch waves in
inversion-symmetric potential, based on an early pape
Kohn3 and a mathematical theorem on the Bloch function4

It is found that the approximate correspondence between
bulk energy dispersion and quantum-confined energy le
noted previously by many authors5–7 is in fact an exact cor-
respondence for a fairly broad class of one-dimensional
tentials. It also shows that the existence of confined stat5,8

whose energy is independent of the confinement lengt
quite general, relying on the symmetry of the periodic pot
tial.

One-dimensional Bloch waves in an inversion symme
potential are the solutions of Schro¨dinger differential
equation3

H0fn~k,x!5«n~k!fn~k,x!, ~1!

where

H052
\2

2m

d2

dx2
1v~x!, 2`,x,` ~2!

and

v~x1a!5v~x!,

v~2x!5v~x!. ~3!

We assume Eq.~1! is solved, and all energy bands«n(k)
and Bloch functionsfn(k,x) are known. Following Kohn,3

we assume that the energy bands do not intersect, and
are energy gaps between energy bands. The band-edge
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are located at eitherk50 or k5p/a. Due to Eq.~3!, a band-
edge state has a specific parity for an inversionx→2x. A
noteworthy point is that a band-edge state also has a spe
parity for an inversion relative tox5a/2.9 For the band-edge
states atk50, the parity does not depend on the selection
the inversion center: They are the same for eitherx50 or
x5a/2 to be the inversion center. However, for the ban
edge states located atk5p/a, the parity does depend on th
selection of the inversion center.9 For simplicity, we assume
that there is only one lowest periodic potential minimum
the interval @0,a).10 To be specific, in this work the bulk
parity of a band-edge state means the parity for an invers
relative to one of these periodic potential minimum locatio
~PPML’s!.

We consider the Bloch states confined in the reg
2L/2<x<L/2 and are interested in the case where the c
finement length

L5Na,

hereN is a positive integer.6L/2 are locateda/2 away from
the nearest PPML.11

For the complete quantum confinement of Bloch wav
we look for the the eigenvaluesE and eigenfunctionsc(x) of
the following equation:

Hc~x!5Ec~x!. ~4!

Here

H5H01V, ~5!

whereH0 is defined in Eq.~2! and

V50 if 2
L

2
,x,

L

2

51` if x<2
L

2
or x>

L

2
.

is the confinement potential. Thus all eigenfunctions of E
~4! must have

c~x!50 if x<2
L

2
or x>

L

2
. ~6!

The confined states have a discrete energy spectrum.
We define a functionĵn, j (x) as follows:
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ĵn, j~x!5Ap

L FfnS j p

L
,xD2~21! jfnS 2

j p

L
,xD G ,

2`,x,1`, ~7!

where j 51,2,3, . . .N21, andn50,1,2, . . . . Thefunction
ĵn, j (x) in Eq. ~7! satisfies12

ĵn, j S L

2D5 ĵn, j S 2
L

2D50. ~8!

The band-edge states need special consideration. Acc
ing to a mathematical theorem on the Bloch functions,4 the
two band-edge states of each band gap have the same
ber of zeros: Two band-edge states of the first band gap h
one zero in@0,a), two band-edge states of the second ba
gap have two zeros in@0,a), . . . . Thus the two band-edg
states of each band gap must have different bulk parity:
is odd and the other is even.13 They have different energy
but which one is higher is dependent on the specific form
the potentialv(x). If the potentialv(x) is deep and shor
range around the PPML, such as used in Kittel’s book13 or
Pedersen and Hemmer’s work,6 we expect that the lowe
band-edge state has an even bulk parity and the higher b
edge state has an odd bulk parity. In this work, we assu
this is the case, while being aware that a different orde
bulk parity of band-edge states is possible.14

We define

ĵn,0~x!5A2p

L
fn~0,x! ~9!

and

ĵn,N~x!5A2p

L
fnS p

a
,xD . ~10!

It is easy to see thatĵn,0(x) of odd bulk parity andĵn,N(x) of
even bulk parity satisfies Eq.~8!: They have an odd parity
for an inversion relative a pointa/2 away from a PPML.
That corresponds toĵn5even,0(x) ~Ref. 15! and ĵn5even,N(x)
for the case of deep and short-range local potential. We
fine another functionjn, j (x) as follows:

jn, j~x!5 ĵn, j~x! if 2
L

2
<x<

L

2

50, if x,2
L

2
or x.

L

2
. ~11!

Here ĵn, j (x) is defined in Eqs.~7!, ~9!, or ~10!. For ĵn, j (x)
defined in Eqs.~9! or ~10!, only those satisfying Eq.~8! are
included in Eq.~11!. Due to Eq.~8!, the functionjn, j (x) is a
continuous function satisfying Eq.~6!. Furthermore we have
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S 2
\2

2m

d2

dx2
1v~x!D jn, j~x!5«nS j p

L D jn, j~x!,

if
L

2
<x<

L

2
~12!

and

E
2`

1`

jn, j* ~x!jn8, j 8~x!dx5dn,n8d j , j 8 . ~13!

The functionc(x) in Eq. ~4! can be expanded in the basis
Eq. ~11!:

c~x!5(
n, j

Cn, jjn, j~x!, ~14!

and thus the eigenvalues and eigenstates of Eq.~4! can be
determined by

detuHJ,J82EdJ,J8u50, ~15!

whereJ5(n, j ) and

HJ,J85E
2`

`

jn, j* ~x!Hjn8, j 8~x!dx.

Due to Eqs.~12! and ~13!, we have16

HJ,J85«nS j p

L D dn,n8d j , j 8 . ~16!

Thus the function set~11! diagonalizes the Hamiltonian~5!.
Hence we have the solutions of Eq.~4!, the complete quan-
tum confinement of Bloch waves, as

En, j5«nS j p

L D , ~17!

and

cn, j~x!5jn, j~x!, 2`<x<1`, ~18!

where j 51,2, . . .N for n50, j 50,1,2, . . .N for n5even
~exceptn50) and j 51,2, . . .N21 for n5odd, for the case
of deep and short-range local potential. They can be obta
from the solutions of Eq.~1!.

Figure 1 shows a comparison between the energy ba
«n(k) as the solutions of Eq.~1! and the energy spectrum
En, j @Eq. ~17!# as the solutions of Eq.~4! for N58.

By using a Kronig-Penney potential, Pedersen and He
mer found that the energy spectrum of the confined Blo
waves maps the energy bands.6 The ‘‘central observation’’ of
an investigation of Zhang and Zunger5 is also the energy
spectrum of confined electrons in Si quantum films maps
energy band structure of Si approximately. Much previo
work also indicates that the eigenvalues of confined Blo
states mapcloselythe dispersion relations of the unconfine
Bloch waves.7 Equation~17! shows that the map isgeneral
andexactin the one-dimensional case treated here.

The energy of most confined states changes asL changes.
This is the energy quantum confinement effect in the us
2-2
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sense. However, there is always a band-edge state for
band gap whose energy does not change. For the cas
deep and short-range local potential, the energy of the lo
confined band-edge state near the band gap atk5p/a is

En,N5«nS p

a D ~19!

and the state is

cn,N~x!5A2p

L
fnS p

a
,xD if 2

L

2
<x<

L

2

50, if x,2
L

2
or x.

L

2
~20!

for n50,2,4, . . . . Theenergy of the higher confined band
edge state near the band gap atk50 is

En,05«n~0! ~21!

and the state is

cn,0~x!5A2p

L
fn~0,x! if 2

L

2
<x<

L

2

50, if x,2
L

2
or x.

L

2
~22!

for n52,4,6. . . . Thus the energy of these band-edge st
does not change as the confinement lengthL changes. There
is a such confined band-edge state for each band gap, t
fore the energy of a half of confined band-edge states d
not show the quantum confinement effect in the usual se
In Fig. 2 are shown the energies of two confined band-e
states near the band gapD0,1 between then50 and n51
energy bands as functions of confinement lengthL. In Fig. 3
are shown the energies of two confined band-edge states

FIG. 1. A comparison betweenEn, j ~solid circles! in Eq. ~17!
and the energy bands«n(k) ~solid lines! for the lowest four bands
for the caseN58. Note:~i! thatEn, j map the energy bands exactl
~ii ! the existence of constant-energy confined states.
03532
ch
of

er

es

re-
es
e.
e

ear

the band gapD1,2 between then51 andn52 energy bands
as functions of confinement lengthL.

Zhang and Zunger observed a state with such behavio
their investigation on Si quantum films.5 Franceschetti and
Zunger also observed a such state in their investigations
the free standing GaAs quantum film.8 They call it ‘‘zero
confinement state.’’ In fact these states are confined: In
space they are confined in the region2L/2<x<L/2 @Eqs.
~20! and ~22!# and in the Bloch space each confined st
^n8,kun, j & ~Ref. 17! has a distribution, rather than being ad
function as is an unconfined Bloch wave. This distribution
the Bloch space is widened asL decreases, due to the unce
tainty principle. Nevertheless, the energy of these states d
not change asL changes. This is due to the fact that Eqs.~19!
and~21! are eigenvalues of the confined HamiltonianH. We

FIG. 2. The energies of two confined band-edge states nea
band gapD0,1 as functions of the confinement lengthL. Note the
energy of the lower confined band-edge state is a constant; only
energy of the higher confined band-edge state changes aL
changes.

FIG. 3. The energies of two confined band-edge states nea
band gapD1,2 as functions of the confinement lengthL. Note that
the energy of higher confined band-edge state is a constant; onl
energy of the lower confined band-edge state changes asL changes.
2-3
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prefer to call these states constant-energy confined st
The fundamental reason of the existence of those cons
energy confined states is due to the symmetry of the peri
potential; for each band gap there is always a band-ed
state which has an odd parity for an inversion relative to
point a/2 away from a PPML and thus naturally satisfiesEq.
~8!. Whether this is the higher band-edge state or the lo
band-edge state is dependent on the location of the band
and the specific form ofv(x).

Pedersen and Hemmer used a Kronig-Penney potenti
investigate the quantum confinement of Bloch waves. Ho
ever, they did not treat the band edge states and thus did
obtain results such as Eqs.~19!–~22!.

The effective-mass approximation~EMA! has been
widely used in investigating the quantum confinement
Bloch electrons. Essentially this approach is derived from
understanding on the quantum confinement of plane wa
However, originally the EMA was developed for treating t
electronic states near band edges in the presence of sl
varying weak perturbations, such as an external elec
and/or magnetic field, as well as the potential of shall
impurities.18 But in quantum confinement problems, the pe
turbation is neither weak nor slowly varying at the confin
ment boundaries, and the conditions for justifying the use
EMA are thus completely violated. There has been mu
work on this interesting puzzle, mainly using the envelo
function approach.19

However, we have seen that there are constant-en
confined states for which the concept of EMA is not ev
qualitatively correct. This point has also been noticed
Zhang and Zunger.5 The failure of EMA for these band-edg
states clearly indicates that one has to be careful in u
EMA or EMA derived ideas in the quantum confinement
Bloch waves. On the other hand, for other confined ba
edge states whose energy does change asL changes, as so
lutions of the Schro¨dinger Eq.~4!, the only requirement for
the EMA to be valid is that the energy band«n(k) near the
band edge can be approximated by a parabolic energy b
For example forn5odd, if

«n~k!'«n~0!1
\2

2m*
k2,
cs
,

a

c
at

l
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then the energy spectrum of the near band-edge confi
states can be directly obtained from Eq.~17! as

En, j'«n~0!1
\2

2m*

j 2p2

L2
. ~23!

This is the complete confinement results of the EMA.
corresponding expression of EMA can be easily obtained
the confined states near the band gap atk5p/a.

In summary, we have given an analytical solution of t
quantum confinement of one-dimensional general Blo
waves in an inversion-symmetric potential. The major res
is Eqs.~17! and ~18!.

Any real solid always has a limited size and does not h
a periodic boundary. Nevertheless, Bloch theorem based
the periodic boundary condition has been the basis of
current understanding on the electronic structures in mod
solid-state physics. A similar problem on phonons was
subject of argument between Born and Raman.20 Naturally
one will be interested in the problem on what a differen
there will be if a more realistic boundary condition o
solids—such as the electrons being completely confined
the limited size of a real solid—is used. This work gives
complete and exact answer to this interesting problem for
inversion-symmetric potential in the one-dimensional cas

The quantum confinement of Bloch waves treated in t
work—the one-dimensional case—is the simplest case.
higher dimensional cases would be more complicated. N
ertheless, since we have seen that even in the simplest
dimensional case the quantum confinement of the Bl
waves could be fundamentally different from the quantu
confinement of plane waves, it is very likely that there s
could be some fundamental difference between the quan
confinements of Bloch waves and plane waves in higher
mensional cases. A clearer understanding on this interes
problem will need more work in the future.
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ĵn,j~x1L!5~21!jĵn,j~x!,
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