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Tamm-like states in finite antidot lattices
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Transport properties of finite antidots arrays, with large lattice parameters and electron densities, may be
roughly understood from a semiclassical approach. For weak magnetic fields, commensurability effects be-
tween the antidot spacing and the cyclotron radius are present with interference patterns superimposed on the
magnetoresistivity. For higher magnetic fields, transport through edge states becomes relevant. In the present
work, we discuss a completely different behavior that should occur in the quantum limit, for short lattice
parameters and small electron densities. The key feature is the formation of surface Tamm-like states within
the gap of the lowest bulk bands of a finite antidot lattice. The surface of a finite antidot superlattice may act
as an isolated quantum ring, a coupler of the superlattice to the contacts, or a barrier between the bulk of the
antidot lattice and the contacts, as a function solely of the applied magnetic field.
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I. INTRODUCTION

The combination of high-mobility two-dimensional ele
tron systems~2DES’s! with the possibility of patterning
them down to the nanometer scale, has brought abou
almost unlimited playground for research in condens
matter physics. This statement is true from several point
view. For example, one just has to recall unexpected p
nomena such as the quantum Hall effect, or a driven se
for the properties of artificial atoms and molecules made
the above-mentioned low-dimensional structured semic
ductor systems.

From another point of view, low-dimensional semico
ductor systems modulated in so-called lateral superlatt
may be considered artificial crystals, whose transport pr
erties are tunable from a classic regime1 to the quantum
limit,2 through a parameter range where semiclass
corrections3 can be verified. These systems settle the con
of the present work: an example of the quantum confinem
effect in a mesoscopic finite crystal with unusual con
quences on the electronic and transport properties of the
ter. The confinement effect we are talking about is a o
dimensional analog to a Tamm state4 in a finite antidot
lattice, and the unusual properties are related to a couplin
this surface state to the bulk of the artificial crystal, that c
be switched on and off by tuning a magnetic field perp
dicular to the system.

Here we refer to antidot lattices as strongly modula
2DES’s, in the sense that the Fermi energy is below
potential modulation hills. Many of the transport properti
of artificial crystals in the classical regime referred to abo
have been measured in such antidot lattices. A further
0163-1829/2001/64~3!/035313~8!/$20.00 64 0353
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hancement of the modulation could lead to what is calle
dot lattice: a Fermi sea is broken into lakes~quantum dots!
and confined in the interantidot valleys, so that we ha
weakly interacting artificial atoms such as core states in
crystals. This transition from an antidot lattice to a dot latti
is also addressed in the present paper, concerning the ro
ness of the surface state effects. From the point of view
transport properties, we consider a nearly ballistic regim
i.e., a finite system where the distances between surface
less than the electronic mean free path.

What is usually called an infinite antidot lattice sustains
close analogy to real crystals: a mean free path larger t
the crystal periodicity, but much smaller than the distan
between surfaces. Since the first experimental results
magnetotransport in infinite weakly modulated late
superlattices5,6,2,7–13and antidot lattices,1,14–20there has been
a great effort from a theoretical point of view in order to sh
light on the classical,21,22 semiclassical,23–25or quantum26–41

limits of these transport properties, as well as their relatio
to the electronic structure. On the other hand, finite squ
lateral superlattices17 have received considerably less atte
tion. In the context of the present work, one should ment
the study by Zozoulenkoet al.34 and, very recently the work
by Gudmundsson and co-workers;40,42 the latter was related
to a weakly modulated mesoscopic system and its magn
zation properties.

The surface states of a finite square antidot lattice g
rise to a quantum ring,43,44 which is completely decoupled
from the bulk of the system if these states are localized i
gap of the bulk-related electronic bands in the absence
magnetic field. Turning on the magnetic field, this quantu
ring couples to the bulk and decouples again at higher m
©2001 The American Physical Society13-1
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RIVERA, ANDRADE NETO, SCHULZ, AND STUDART PHYSICAL REVIEW B64 035313
netic fields. By properly choosing the electronic density a
the antidot spacing, the Fermi energy lies in the surface-s
band, and one expects dramatic consequences in transp
a function of magnetic field, due to the one-particle ele
tronic structure characteristics mentioned above.

The discussion of these surface state effects is the aim
the present work. We should stress the fact that these b
fide surface states are of a completely different origin th
the edge states around antidots and at the edge of the
fining external square reported in one of the few experim
tal results on such systems obtained by Schusteret al.19

The paper is organized as follows. First we briefly pres
the model calculation, which will be followed by a discu
sion of our results. We initially focus on the energy spec
of a finite lattice in the presence of a magnetic field, show
the evolution of the surface states and bulk bands as we
the spectrum change caused by going from an antidot la
to a dotlike lattice. Next we further investigate the surfa
and bulklike states by means of the probability density
selected eigenvectors, as well the local current density
tern, which give further insight into the measurements
these effects by means of magnetotransport. We also dis
the influence on the spectra and current density of includ
wide contacts to the system in a two-terminal configurati
Finally, our results are summarized, and estimates for exp

FIG. 1. ~a! Antidot unit cell with a lattice parametera85na,
wherea is the host latticeconstant. The color of the circles ind
cates the local potential profile: black for the antidot regions do
to open circles for the host material.~b! Finite square 535 antidot
array with a lateral dimensionL5ma8 build up by repeating the
unit cell shown in~a!.
03531
d
te
t as
-

of
na
n
on-
-

t

a
g
as
ce
e
f
t-
f
ss
g
.
ri-

mental observation of the discussed effects are given.

II. MODEL

The lower part of the energy spectrum of a tw
dimensional~2D! array of antidots, that can be described
the framework of the effective-mass approximation, will
emulated here by a tight-binding model for a square lattice
s-like orbitals, considering only nearest-neighb
interactions.33,34The potential modulation is given simply b
a periodic modification of the atomic site orbital energy
order to mimic a given potential profile due to the antido
This modeling becomes clearer by referring to Fig. 1~a!,
where a unit cell of the square lattice showing one antido
shown, and Fig. 1~b!, where a finite array of 535 antidots is
represented. The lattice parameter of the antidot array isa8
5na, where a is the host latticeconstant, and the latera
dimension of the array isL5ma8. The colors of the sites in
Fig. 1 indicate the potential profile: black defines the antid
~barrier region!, white defines the host 2D system, and gr
represents an interdot potential smoothing of the small in
barrier height. The surface of the antidot array is defined
hard wall boundary conditions.

The magnetic field is introduced by means of a Peie
substitution, choosing the Landau gaugeA5(0,l 1aB,0),
leading to the following model Hamiltonian:

H5(
l 1l 2

$El 1l 2
u l 1l 2&^ l 1l 2u1Vl 1l 2

@ u l 1l 2&^ l 111,l 2u

1u l 111,l 2&^ l 1l 2u#1Vl 1l 2
ei2pa l 1@ u l 1l 2&^ l 1 ,l 211u

1u l 1 ,l 211&^ l 1l 2u#%, ~1!

where l 1 and l 2 are site indexes in thex and y directions,
El 1l 2

5Es is the atomiclikes orbital energy which is varied

along thehost lattice, andVl 1l 2
is the nearest-neighbor hop

ping parameter which is kept constant toV52\2/2m* a2 in
both x andy directions.

The magnetic phase factora is defined bya5F/Fe ,
whereFe5h/e is the magnetic flux quantum, andF5a2B
is the magnetic flux per unit cell of thehost lattice. There-
fore, the magnetic flux through an antidot unit cell is giv
by F85n2F, and the magnetic flux through the total array
FT5n2m2F.

The Schro¨dinger equation is solved by finding the eige
values and eigenvectors via standard matrix diagonaliza
methods. The eigenvectors are given byuC&5(Cl 1l 2

u l 1l 2&
5(Fl 1l 2

; the probability density is given bŷCuC&, and the
probability current by

J5(
l 1l 2

a2V

i\
@Fl 1l 2

* ~Fl 111,l 2
2Fl 121,l 2

!i

1Fl 1l 2
* ~e2 i2pa l 1Fl 1 ,l 2112ei2pa l 1Fl 1 ,l 221!j #. ~2!

n
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TAMM-LIKE STATES IN FINITE ANTIDOT LATTICES PHYSICAL REVIEW B 64 035313
III. RESULTS AND DISCUSSION

A. Parameter choice

We emulate a system withm* 50.067mo , using a heuris-
tic lattice constanta52 nm, resulting in a hopping param
eterV52142 meV. We take the atomics orbital energy for
the host 2D system asEl 1l 2

54uVu5568 meV, so our energy

origin coincides with the bottom of the GaAs conducti
band, giving an appropriate energy scale for our results.

The atomic energies for the antidotlike sites, black in F
1, are shifted toEl 1l 2

58uVu, representing a barrier height o

568 meV. On the other hand, the atomic energies for
intermediate sitesEi ~gray sites in Fig. 1! are varied between
4uVu<Ei<4.5uVu, representing an interdot potential smoot
ing around the antidots. In summary, the surface of the a
dot array is modeled by an infinite barrier, while the antid
are potential barriers of'0.5 eV. All results shown here ar
for the structure represented in Fig. 1~b!: a 535 array of
antidots (m55) and a unit cell of 11311 sites (n511) of
the host lattice, with a8522 nm andL5110 nm. The anti-
dots, showing approximately a cylindrical symmetry, ha
an effective radius of approximately 7 nm. The lower bou
is achieved when the atomic energies of the intermed
sites areEi54uVu, while the upper bound is forEi54.5uVu,
characterizing, as will be seen in what follows, anantidot
array and adot array, respectively.

The present results are robust regarding antidot sha
and antidot lattice parameters up toa8555 nm. This has
been checked for the same antidot unit cell described by
n511 array, as the results shown here, by increasing thehost
lattice parameter froma52 to 5 nm, using the sam
effective-mass value and consequently reducing the
band width. The choice of the finer mesh for our systema
study is a compromise between numerical costs and a g
resolution of probability and local current density structur
as well as an adequate emulation of the effective-mass
proximation limit.

At the end of the present work, we consider the effect
adding contacts to the closed structure of Fig. 1~b!. These
contacts are modeled by long strips of finite width made
the samehost lattice, connected at the center of the left an
right sides of the antidot array.

B. Energy spectra of closed antidot arrays

The starting point for describing the properties of a sho
period finite-antidot array is given by the electronic structu
as a function of magnetic field, for different effective antid
radii as shown in Fig. 2. Here we focus on the very bottom
the energy spectrum, namely, the quantum limit. Recall
Sec. III A, all the spectra are for the structure depicted in F
1~b! and we turn from an antidotlike system@Fig. 2~a!# to a
coupled-dot array@Fig. 2~c!# by increasing the intermediat
sites atomic energy only fromEi54uVu to Ei54.5uVu. Fig-
ure 2~b! shows a transition between both limits, a
antidotlike-to-dot-like lattice transition, forEi54.25uVu.
Varying the energy of these intermediate sites is the o
parameter change we address in the present work. Increa
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Ei models a saddle shape interantidot potential that could
expected, for instance, by reducing the electron density.

The lowest energy band, in all three cases, is a core b
band, which shrinks monotonically with increasing modu
tion strength. For states above this core band, more dram
changes in the spectrum occur by increasing the modula
strength. For the smallest antidot radius@Fig. 2~a!# almost a
continuum of states can be seen above 50 meV. On the o
hand, in Fig. 2~c! we see that this continuum of state
evolves to three narrow bands. The origin of the two high
bands at zero magnetic field are the first doubly degene

FIG. 2. Energy spectra of a 535 antidot lattice for three differ-
ent modulation profiles as functions of magnetic field.~a! Antidot-
like lattice.~b! Antidotlike-to-dotlike lattice transition.~c! Coupled-
dot-like lattice. The horizontal arrow in~a! indicates the modulation
period of the incipientcorelike band. The vertical arrows in~b! are
described in the text.
3-3
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levels of a quantum dot. This degeneracy is broken by
plying a magnetic field, as expected from various previo
results on isolated quantum dots.33,45,46One of these band
anticrosses at finite magnetic fields with a very narrow o
which is a surface state band. It can be seen in Figs. 2~a!,
2~b!, and 2~c! that this surface state band separates fr
bulklike ones with increasing potential modulation, i.e., g
ing from an antidotlike to a dotlike finite lattice. This beha
ior characterizes a 1D Tamm-like state in analogy to the
case in finite superlattices.4

Signatures of an anticrossing between bulk and surf
states are already seen for an antidot lattice@Fig. 2~a!# but a
clearer identification of both kinds of states in the ene
spectrum is obtained at a transition from an antidotlike latt
to a dotlike lattice@Fig. 2~b!#. In what follows, we will con-
centrate on the system described by the spectra of Fig. 2~b!.

A finite array of antidots can be equivalently described
a dot lattice. The terminology is just a matter of modulati
strength, as shown by the examples in Fig. 2. Therefore,
finite array of 535 antidots shown in Fig. 1~b! is equivalent
to a 434 array of bulklike dots with 16 dots at the surfa
walls together with four ‘‘corner dots.’’ From this point o
view, one can identify the bulk or surface character of
states in Fig. 2 by state counting: the first bulk core ba
count is 16 states, due to the ground levels of the bulk d
while the first surface band will also have 16 states for
present case, but these will be higher in energy since
surface wall dots are smaller, splitting into groups of fo
states due to the presence of the corners. This can be ve
by looking closer at the spectrum of Fig. 2~b! at low mag-
netic fields: Fig. 3~a! shows the surface state spectra in det
and Fig. 3~b! the corelike band at low magnetic fluxes.
Fig. 3~a! we count four subbands with four states each, a
in Fig. 3~b! only one band with 16 states.

Two main aspects should be emphasized as regards
3. The first one refers to the bulk band, which shows, for
cases shown in the spectra of Fig. 2, an envelope that o
lates periodically with the magnetic flux. This period, ind
cated by an arrow in Fig. 2~a!, is approximatelyF/Fe
>831023, which corresponds to a flux quantum through
antidot unit cell (F85n2F,n511) in our case. This is a
further signature of the bulk character of this state, and e
dence that for such a small system fingerprints of bona
bands of an infinite system are already present. Indeed,
band is a precursor of a Hofstadter spectrum:35,41,47,48 the
internal self-similar structure is not yet resolved, but a ba
envelope modulation scaling with an integer number of fl
quantum per unit cell is clearly seen. Second, referring to
surface state band@Fig. 3~a!#, the subbands also oscillate in
nearly periodic fashion. The oscillation period has an av
age value aroundF/Fe'7.531024, equivalent to a flux
quantum through an area corresponding to the nine inte
antidot unit cells, as expected if the surface state behave
in a quantum ring.43,44 This quantum ring behavior can b
inferred from a comparison with the spectrum of an id
one. The simplest model for a quantum ring is a on
dimensional tight-binding ring of sites, enclosing a magne
flux, which can be treated analytically.44 In such a simple
model, the spectrum shows a particle-hole symmetry an
03531
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periodicity in the magnetic flux, with the period given by
quantum flux. The present quantum ring, a quasi-o
dimensional ring of boundary quantum dots, has a fin
width and shows an internal structure in the spectrum
construction~the presence of ‘‘corner dots,’’ as discuss
above!. Deviations from a perfect periodicity are also e
pected, due to a small coupling to the second bulk ba
~already at very low magnetic fluxes!, which is magnetic
field dependent.

Having these results in mind, and considering an el
tronic density corresponding to a Fermi energy within t
surface state band at zero magnetic field, a short-period fi
antidot lattice shows an unusual behavior in this quant
limit. For very low magnetic fields the structure acts as
quantum ring. Increasing the magnetic field, the quant
ring couples to the bulk states, while a further increase of
field would make the Fermi energy lie within the seco
bulk band. From the point of view of transport propertie
these results lead to the following inference: for low ma
netic fields the structure would show persistent current
fects, while, for high ones, the surface acts as a barrier
tween the interior of the array and eventual contacts t
could be connected at the walls. These consequence
transport properties can be further characterized in what
lows, where we analyze the probability densities and lo
current patterns related to selected states of the spec
given in Fig. 2~b!.

FIG. 3. Amplified energy spectra of the lowest bands in F
2~b! for lower magnetic fields.~a! Surface states bands.~b! Corelike
bulk band.
3-4
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TAMM-LIKE STATES IN FINITE ANTIDOT LATTICES PHYSICAL REVIEW B 64 035313
C. Probability and local current densities of closed arrays

A better understanding of the behavior of a finite antid
array in the quantum limit, as a function of the magne
field, can be obtained by inspecting the probability dens
and local current pattern associated with individual eig
states of the system. For the parameters chosenF5Fe , cor-
responds to a magnetic fieldB'103 T. Therefore, the anti-
crossing in Fig. 2~b! at F/Fe'0.01 corresponds to a
magnetic fieldB'10 T. This magnetic field value depend
on the antidot spacings as well as on the modulat
strength: in the case illustrated in Fig. 2~a!, the anticrossing
starts atB'5 T. These are still relatively high magnet
fields, since the coupling between the bulk and the quan
ring occurring atB510 T corresponds to a magnetic leng
l B5256/AB'8 nm, which is less than the interdot spaci
(a8522 nm). It is important to note that the potential mod
lation effects are still important in the limitl B,a8, as can be
seen in the periodic modulation of the bulk bands of Fig.
as discussed above. One has to be careful to respect the
l B>2a, below which the present approach ceases to emu
the effective-mass approximation, and thehost latticeeffects
become important.

In this context, an interesting behavior related to the s
face states can be observed at low magnetic fields. Figu
shows the probability density and local current pattern of
highest state in energy of the surface state band of Fig.~b!
at the magnetic fluxF/Fe5331024 ~vertical arrow!, which
corresponds toB'0.3 T andl B'47 nm. One can see tha
the probability density and the current loops are spatia
squeezed at the surface at dimensions a few times sm
than the length scale given byl B . This picture confirms the
quantum ring behavior inferred from the energy spectra
Fig. 2. Due to the antidotlike potential modulation, the co

FIG. 4. Probability density and local current pattern of a surfa
state atF/Fe5331024.
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mensurability between the magnetic flux and the anti
spacing will determine the modulation of the probabili
density for the interantidot regions at the surface.

Figure 5 shows the probability density and local curre
pattern for a state at an anticrossing between surface
bulk states in Fig. 2~b!. The magnetic flux now isF/Fe
51.431022 ~vertical arrow!, equivalent to a high magneti
field B'14 T and a small magnetic lengthl B'7 nm. The
coupling between bulk and surface can be clearly seen in
probability density distribution at both surface and bulk r
gions. The current patterns in the bulk exhibit, due to
small magnetic length, a character of edge states around
central antidots of the array, as well as hopping from o
edge to the other, since the antidot effective diameter is q
large compared to the spacing between them.11

These probability density and local current mappings
relative to the antidot lattice whose energy spectrum is
picted in Fig. 2~b!. For a weaker interdot potential modula
tion, as in Fig. 2~a!, an edge-bulk anticrossing occurs
lower magnetic fields, for which the magnetic length is co
parable to the dimension of the array itself. On the oth
hand, the quantum ring is less well defined, since the Tam
like states are already merging with the bulk states at v
low magnetic fields. It is important to note, however, that,
the case of Fig. 2~b!, the quantum ring is well defined at low
magnetic fields and the bulk band structure effects are
portant up to magnetic fluxes beyond the anticrossing reg
as indicated by the periodic modulation of the bulk ba
width.

D. Contact effects

The closed systems analyzed so far fit into the contex
searching fingerprints of the spectral features of Tamm-

e FIG. 5. Same as Fig. 4 for a coupled surface-bulk state
F/Fe51.431022.
3-5
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FIG. 6. Same as Fig. 4 for a Tamm state connected to contacts atF/Fe5331024.
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states on the magnetization, as discussed for weakly m
lated structures by Gudmundssonet al.42 However, an analy-
sis of the modifications introduced by contacts is of pa
mount importance regarding transport propert
measurements.

For this purpose we proceed with the fundamental ste
analyzing the robustness of the quantum-ring and ant
spectra fingerprints, when a continuum of states is introdu
to the problem by adding contacts. We consider t
contacts34 centered at the left and right sides of the struct
shown in Fig. 1~b!. These contacts are finite strips, of ho
material-like sites, which are quite wide~three antidot cells!
and long~each contact considered is at least as long as
lateral dimension of the square array itself!. These dimen-
sions are sufficient for probing the coupling between a fin
array with outer regions. The mean level separation in
surface and bulk bands of the closed structure is of the s
order as in the contact regions considered; therefore, the
pling can be adequately followed as a function of either
ergy or magnetic flux. Furthermore, with such wide contac
we are minimizing point-contact effects that could hinder
Tamm-like state effects. The contact regions, however,
not guarantee a bona fide continuum for calculating cond
tivities, for instance, a situation where infinite contacts
more appropriate. It should be mentioned that the pres
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model is also suitable for this further step, namely incorp
rating infinite contacts in a similar way as in previou
works.34

Figure 6 illustrates modifications due to the contacts
the behavior of the closed structure discussed so far:
probability density and local current pattern for a Tamm-li
state coupled to contacts forF/Fe5331024 are nearly
equivalent to the closed structure counterpart shown in F
4. It can be seen that the quantum ring character is preser
in spite of the wideness of the contacts. Since the magn
length l B'47 nm is of the order of the strip length, stron
interference effects appear in the lateral strips. It should
noted that such effects are partly present even for infinit
long strips, if l B is of the order of the contact width. Th
main point here, however, is the robustness of the quant
ring probability density and local current pattern in the pre
ence of such contact strips. For higher magnetic fluxes th
interference effects disappear, and a well-defined quan
ring now couples to edge states of the contacts~not shown
here!. With a further increase of the magnetic fluxes, o
could see that these contact edge states first couple to
bulklike states of the array. In Fig. 7, an example of
contact-edge state coupled to the array for an energy nea
anticrossing between the bulk and surface states band
Fig. 2~b!, at F/Fe51.431022, is shown. In the unmodu
FIG. 7. Same as Fig. 4 for a coupled surface-bulk state connected to contacts atF/Fe51.431022.
3-6
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TAMM-LIKE STATES IN FINITE ANTIDOT LATTICES PHYSICAL REVIEW B 64 035313
lated contacts the edge states are defined, since the mag
length l B'7 nm is much smaller than the contact width~66
nm!. Within the array, the probability density and local cu
rent pattern show fingerprints of a state with both bulk a
surface character, like the case depicted in Fig. 5. The
rent pattern presents a character of internal edge states,
the edges defined by the antidots of the array, as wel
interedge hopping, since, as mentioned above, the an
effective diameter is quite large compared to the spac
between them.

IV. FINAL REMARKS

In summary, the 1D Tamm-like states of a finite squa
antidot lattice give rise to a quantum ring, which is com
pletely decoupled from the bulk of the system if these sta
are localized in a gap of bulk-related electronic bands in
absence of a magnetic field. Turning on the magnetic fi
this quantum ring couples to the bulk and decouples aga
higher magnetic fields. By properly choosing the electro
density and the antidot spacing, the Fermi energy lies in
surface state band, and one expects dramatic consequ
on transport as a function of magnetic field, due to the o
particle electronic structure characteristics mentioned.
surface of a finite antidot superlattice may act as an isola
quantum ring, a coupler of the superlattice to the conta
and a barrier between the bulk of the antidot lattice and
contact, by solely increasing the magnetic field. These
haviors are the opposite of what is expected in the semic
sical limit, where the edge states at high magnetic fields o
partially mimic the present surface state effects at low m
netic fields. These effects could be observable as oscillat
in magnetoresistance measurements. The oscillation pe
should show abrupt changes as the surface states m
their role with increasing magnetic field.

Although the results shown here are for antidot periods
the range of 20–50 nm, such a length scale is still reali
considering the state of art and open possibilities of na
l-
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lithography technology. From what has been shown, the
fects would be resolved by available temperatures ofT
'100 mK. On the other hand, typical 2DES’s with mobili
m'100 m2/V s, and densityn'231015 m22, patterned in
finite antidot arrays with a spacing ofa8540 nm ~corre-
sponding to an effective antidot radius of approximately
nm, if we consider the same structure geometry of Fig.!,
would satisfy the requirements of long enough mean f
paths and partially filled surface states band to warrant
observation of the above-discussed effects. On the o
hand, such an electronic density in the finite array reg
represents a Fermi wavelengthlF'56 nm which is of the
order of the typical dimensions of the system. Therefo
screening effects could be worth considering, but should
be strong enough in order to qualitatively change the p
nomena pointed out here.42

Finally, the surface of a finite antidot array shows som
peculiarities compared to the surface of a 2D superlattic4

Besides the difference between the surface barrier and
dot modulation heights, it is unavoidable that the dot size
the boundary is different than in the bulk of the array. Th
aspect is as important as the relation between barrier hei
in determining the energy of the surface state band. The
ticrossing between these states and the bulk state, is ra
robust against the changing surface position.49 A surface
state~Tamm-like! band is nevertheless always present. F
surfaces farther apart than 2a8 from the boundary antido
centers, the quantum-ring spectrum merges into the
bulklike band,49 which would lead to effects to be discusse
in a further work.
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