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Spin-dependent transport in a Luttinger liquid
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We develop a detailed theory for spin transport in a one-dimensional quantum wire described by Luttinger-
liquid theory. A hydrodynamic description of the quantum wire is supplemented by boundary conditions,
taking into account the exchange coupling between the magnetization of ferromagnetic reservoirs and the
boundary magnetization in the wire. Spin-charge separation is shown to imply drastic and qualitative conse-
guences for spin-dependent transport. In particular, the spin accumulation effect is quenched except for fine-
tuned parameter regimes. We propose several feasible setups involving an external magnetic field to detect this
phenomenon in transport experiments on single-wall carbon nanotubes. In addition, electron-electron back-
scattering processes, which do not have an important effect on thermodynamic properties or charge transport,
are shown to modify spin-dependent transport through long quantum wires in a crucial way.
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I. INTRODUCTION with different velocities. Thereby a spatial separation of spin
and charge of the electron results. Unfortunately, this hall-
Spin-polarized transport represents an interesting brancmark behavior of strongly correlated 1D fermions remains to
of mesoscopic physics, in which both the charge spidof ~ be observed experimentallat least in an unambiguously
the electron are actively manipulatsd.In different setups, accepted waly Elaborating on our short papEtwe propose
the spin may be employed as an information storage or tran§everal feasible setups that would allow one unambiguously
port element, where the advantage over charge transpoi@ detect spin-charge separation via spin-transport experi-
stems from the very long spin lifetimes in many materials,ments on an individual SWNT. For related but rather differ-
and the smallness of the dissipated power. These advantag®! Proposals to detect spin-charge separation in a LL via
have already resulted in many technological applicationsSPin transport, also see Refs. 17 and 18. .
and among the most popular future perpectives of spintronics As Will be described at length below, this can be achieved
is the field of quantum computati§nSpin-dependent trans- bPY attachingerromagnetideads to the QW, and possibly an
port also offers insights into fundamental physics. In thisadditional magnetic field; see Fig. 1. For simplicity, identical
paper we shall address in detail how spin transport proceed®ntact parameters are assumed below, with straightforward
in strongly interacting non-Fermi-liquid metals, taking the 9eneralizations possible. By measuring the variations of the
behavior of one-dimensiondlLD) metals as a paradigm in current-voltage [-V) characteristics with either the ange
which electron-electron interactions lead to a breakdown oP€tween the ferromagnetic magnetizations in the leads, or the
Fermi-liquid theory. The 1D non-Fermi-liquid behavior is magnetic fieldB, one can indeed directly probe spin-charge
often described by.uttinger-liquid (LL) theory’ separation. A related spin-transport experiment was carried
The primary motivation for this study comes from recentout recently for multiwall nanotubes, where the angleas
transport experimerfton carbon nanotub&swhich demon-  fixed to either zero o= 7.*° The experiment proposed here
strated the breakdown of Fermi-liquid theory in these nearlyfor SWNT’s should either allow for arbitrarg, or employ an
ideal 1D quantum wiregQW'’s). In fact, when studying additional magnetic field. We note that spin transport in such
charge transport in single-wall nanotuld€WVNT’s), the ob-  a setup is well understood for Fermi liquids. In particular, the
served power-law behaviors in the tunneling density of states-V characteristicgincluding a magnetic fieldwere recently
are consistent with their theoretical descriptfbim terms of  computed using a semiclassical descripfidn.
a LL. The LL describes metals in the 1D limit where only  In our theory, we assume that tunneling across the two
one or very few bands intersect the Fermi energy. This noneontacts proceeds incoherently, i.e., the lergihf the QW
Fermi liquid exhibits fractionalization of electrons into qua- must be longer than either the thermal length sdalékgT
siparticles, comprising a diverse set carrying spin separately
from charge, and charge in fractions of the electron charge
e.!! Furthermore, the LL is the simplest model showing the
remarkable phenomenon @pin-charge separatiorwhich
has been postulated by many to underly the cuprate
superconductorf™*®In a LL, spin and charge degrees of  F|G. 1. Proposed experimental setgshematiz. An individual
freedom are completely decoupled, and are moreover chawNT or quantum wire is connected via low-conductance contacts
acterized by different velocities. As Landau quasiparticleso two ferromagnetic reservoirs, ahd/ curves should be measured
are unstable, an electron will spontaneously decay inteither in an additional magnetic field or for various angles between
charge- and spin-density-wave packets which then propagatle magnetization directions in the leads.
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or the scalehiv/eV set by the applied voltage. We then ~ Wherey=ys,, is a four-component spinor. Heee=R/L in-
consider, in general, systems composed of 1D interactin§exes the chirality _that dlfferentlayes right- and Ieft-mo_vm_g
quantum wires and bulk ferromagnets. With the exception offodes, andv=1/| indexes the spin. We suppress the indi-
Sec. VI, where the additional flavor degree of freedomces whenever possible, employing Pauli matrieeand o
present in SWNT's will be addressed, we focus on single-acting in the chirality and spin spaces, respectively. Further-
mode QW'’s. more,v denotes the Fermi velocity, or, more generally, the
Another interesting aspect of spin transport concerns thepin velocity of the interacting theory. If the QW is isolated,
role of electron-electron backscattering interactions. In ahe zero-current condition at the end points requires that one
spin4 QW, these interactions afenarginally irrelevant un-  impose the boundary conditiongz(0)=#,(0) and (L)
der the renormalization groufRG) flow, and therefore only =, (L). Only the forward-scattering interactianis kept in
cause a renormalization of interaction parameters in the lowkg. (2.1). Alternatively, we will use the exponerit>0 for
energy LL theory. However, this essentially thermodynamic tunneling into the end of the LL, e.g., &&0, as a measure
(equilibrium) argument must be re-examined when dealingof the interaction strength. Equatid@.1) is not completely
with spin transport. In fact, such interactions, despite beingyeneral. It contains two parametersandu, while a general
irrelevant, can result in nonlinear and sometimes dramatisingle-mode LL has three parameters: a charge velogity
effects, e.g., a nonsinusoidal oscillatdry characteristics.  a spin velocityv, and a dimensionless “Luttinger param-
We pause for some guidance for focused readers. Experéter,” often denoted , or g, wherea:(K’jl— 1)/2. In Eq.
mentally minded readers will find two proposed experimentg2.1), we have assumed fu(Galilean translational invari-
(and analytical predictions for transport properties in theseince, leading td,=v/v.. This relation is expected to be
experimentsin Sec. V. Those looking for the principle ana- well satisfied in many experimentally relevant QW'’s, and
lytic results will find them in two parts. First, the constitutive moreover the manipulations to follow relax this condition
relations for the charge and spin currents through each cormnd thus can be applied even whép#v/v..
tact are given in Eq€3.28), (3.31), and(3.32 . To complete In some circumstances, E.1) should be supplemented

the transport problem, one needs only the charge curremy the electron-electrohackscatteringnteraction,
continuity condition, and its less familiar analog for spin,

which is given in Eq(4.14). s =

The structure of this paper is as follows. In Sec. I, we Hps= _bvf dx J. - Jg, 22
introduce the basic model, and outline the computation of the ] .
nonequilibrium spin current. In Sec. I1l, the physics arisingWith the chiral spin currents
at a contact between a ferromagnetic reservoir and a Lut-
tinger quyid is addressed at length. Two processes are shown jR/L(X) — E: lﬁE/L(X)&lﬂR/L(X)h (2.3
to be of importance, namely, electron tunneling and bound- 2
ary exchange. Exchange leads to conformally-invarian
boundary conditions which are derived here. In Sec. IV,
hydrodynamic description of spin transport in the 1D QW is

there the colons denote normal ordering. These chiral spin
urrents obey Kac-Moody commutation relationg, ¢

developed. In Sec. V, we derive theV characteristics in a =X.2)

magnetic field for the simplest spin-transport devisee Fig. [3E(X), 37 (X )] = =18 (X=X ) 8"

1), first for a short-to-intermediate length of the QW. Under LIRVATELIR

the latter condition, backscattering can be neglected. The ef- +ierM I R(X)8(x—X"), (2.4

fects of backscattering are then addressed in detail in Secs. o _ _
V C and V D, where we focus on zero magnetic field for Where the+ (—) sign is associated with thie (R) current.
clarity. Finally, several extensions and possible concerns aré/e note that in a spig-QW, the backscattering interaction
addressed in Sec. VI. We conclude in Sec. VII by discussingEd- (2.2] is marginally irrelevant in the RG sense, and
an analogy to ballistic  superconductor-normal-Nence can be neglected at low energies in many equilibrium
superconductoSNS junctions, summarizing some open Properties. In a SWNT, the generalizationtfs causes ex-
questions and providing an outlook. Details of our calcula-Ponentially small gaps that can be neglected at energies that
tions in Sec. V can be found in three appendixes. In inter2r€ not too low. Furthermore, the dimensionless backscatter-
mediate steps of the calculations, we @at# =1, but re- ing coupling constan is generally small, and scales a1/
below in detalil, a precession effect encoded in E42) is
crucial for understanding spin transport in long QW’s.

Il. MODEL AND FORMULATION For energies well below the electronic bandwidd) a
ferromagnetic(FM) lead can be described using an effec-
tively noninteracting Stoner-like pictufé,with a constant
density of states. It is then sufficient to employ a noninter-
acting 1D model, e.g., for the left leact<€0),

The low-energy description of a single-mode QW is re-
markably universal, and a sufficient Hamiltonian for our
purposes is

How= de{—invTZaX¢+u(¢T¢)2}, (2.1 Hev= 2 def*(—ivsﬁsrzax)f, (2.5
0 s=*+1 J—=
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wheref.is again a.four-compo_nent spinor. Comparing to Eq. M=Jgt3d, . 2.19)
(2.1), different spin quantization axes have been used, and
therefore the projection operator Using the continuity equation in the absence of backscatter-

A A ing interactionsp=0, the steady-state current is thus
Us=(1+xm-o)/2, (2.9

projecting the spin quantization axis of the QW onto the

magnetizationm, is needed. This description of the semi- 1hen the tunneling current is
infinite lead must be supplemented by an appropriate bound- i
ary condition, fg(0)=f, (0). In Eq. (2.5), the two Fermi Jun== (FIWe¥ —wTe WF). (2.13
velocitiesv .. parametrize the different densities of states, 2
ps=1/(2mvy), for the majority and minority carriers. Fol- of course, a formula similar to E¢2.13) is obtained for the
lowing Ref. 20, we choose a suitable rescaling of tf®-  cparge current across the contact,
erators to seb , =v_=1, thereby incorporating the differ-
ence in the density of states into a redefinition of the hopping | =i(F'W¥ —¥TWTF). (2.19
matrix elements,t—ts/ps, employed in the tunneling
Hamiltonian; see Eq(2.7) below. Formally this is done by
choosing eigenstateg of m- o with eigenvalues= *, and
then rescaling‘s(x)—>v;1fs(x/vs), the spatial rescaling be-
ing allowed because the different spin polarizations are non- o
interacting, and tunneling acts only 0. He= —Km- T (2.15

The LL’s and ferromagnets in question will be considered 2
coupled by low-conductance contacts with identical propergyen if in a microscopic formulation no bare exchange cou-
ties. Processes in which electrons are transferred across susfhg K is present, it will be generated in the low-energy
a contact can be described by thenneling Hamiltonian  effective Hamiltonian, since tunneling causes virtual pro-
Hun. Provided this contact occurs at one of the ends of theesses corresponding to exchange; see below and Ref. 22.
LL, say, atx=0, this has the form Boundary exchange similar to E(2.15 was considered in

the context of spin chains in Ref. 23.
Hun=F'W¥ + W TWTF, (2.7 To study tranFs)port, we must formulate the nonequilibrium

where F=f(0") and ¥=(0") are fermion annihilation dynamics of the system. This formulation is more subtle than
operators at the ends of the ferromagnet and QW, respe#? conventional charge transport, due to the complications

tively. The 2x2 tunneling matrix reads, with Eq(2.6), arising from the noncommuting nature of spin. We therefore
proceed carefully along the lines of a Keldysh approach. For

concreteness, we specialize for the moment to a semi-infinite

j:U(jR_jL). (212

In addition to the tunnel coupling in E§2.7), the FM mag-
netization and the LL boundary magnetization can be
coupled by a purexchanggerm,

W= S;ﬂ tsUs- (28 || contacted ax=0. Consider an initial system composed
_ _ _ _ of two decoupled pieces, described by the Hamiltortign
Using the spin-dependent hopping matrix elemegtswe  —Hg,+Hgq,y,. The ferromagnetic part, governed By, is

may define spin-dependent conductanés=(e?/h)|t4/?,

; polarized along directiom, and located ak<0. The wire,
or, alternatively, the contact parameters

located atx>0, is governed byHqy, Which is assumed to
_ _ _ be SU2) invariant. The latter condition guarantees the exis-

G=G+G,, P=(G;=G)/G. 2.9 tence of a continuity equation for the spin density and cur-
HereG is the total conductance associated with the contactent. Similarly, charge conservation implies a continuity
In a slight abuse of terminology, we c#lthe polarization equation for the charge density and current.tAt—o, we
The polarization satisfiessfOP=<1, and in fact represents the assume that each half is at quasiequilibrium at its own
asymmetry between thiecal tunneling density of states of chemical potentiakgy anduqw. Similarly, we assume that
the majority and minority carriers of the ferromagnet. Hencethe LL supports a quasiequilibrium magnetization, which can
P is not a bulk property, and depends upon the detailed nabe described by a grand canonical distribution with a “spin
ture of the FM-QW contact. In the experiment of Ref. 19, chemical potential’h. We stress that neithgrq,y nor h are
application of our theoretical results, in particular E89—  physical potentials, such as electrostatic or Zeeman fields,
which differs slightly from the theory used in Ref. 19—gives pyt rather characterize the initial nonequilibrium distribution.
a value ofP=0.3 for a multi-wall NT to FM(cobal) contact  Then we adiabatically turn on the contact perturbatioh

atT=4.2 K. =H. +H
. . tun ex:»
From Eq.(2.7), one may deduce the spin current, defined

by H(t)=Hg+eH’, (2.16

- 9 R where §—07 is an infinitesimal inverse time scale control-

J un:ﬁ( f dx M/|un, (210 ling the slow turning on of the contact interaction.

The above formulation is rather rigorous, but has the limi-

where the magnetization density in the QW is tation of being formulated to tredioth the tunneling and
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boundary exchange terms as perturbations. In practice, this is o 1 -

appropriate in the low-conductance limit, since the boundary (0)= —iJ dtZTr{e‘ﬂHO[O,H ‘Hke”, (219
exchange is generally determined by virtual tunneling pro- o

cesses, and is hence small. However, it is useful theoreticallxlhereﬁo: Ho— A andH’ (t)=eMotH e o', Owing to the

to contemplate a situation in which the tunneling is small butractor of A in the Boltzmann weight, not present in the time

thet bolutnd_ar31 Z)éihang[e I1|S nottr.] Inthsuch”jl C?i“.a" 't.appea«@/olution of H'(t), this is a nonequilibrium expectation
hatural fo Includer ey INto Ho rather than 1. 1NIS TaSes 51,6 \We can cast it into a more equilibrium form by writ-

difficult conceptual issues, sint¢,, does not commute with ~

the total spin of the LL, and hence renders its magnetizatioﬂpg Ho=Ho+A. Then

uncertain in directions perpendicular to. On physical L ey ity ALY 7 a— i AL A iF ot

grounds, however, we expect that, becadggtransfers spin H'(D)=eTo (e H e M)e o 2.20
into and out of the LL only at the boundary, sense can be&quation(2.20 has the form of the time evolution of the
made of thebulk spin chemical potential in the limit of a operator in the brackets evolved by the “nonequilibrium”
semi-infinite LL. This is fairly clear from the following HamiltonianH o, which is the same as is used in the Boltz-
thought experiment: imagine preparing the LL with zero tun-,4 1 weight in Eq(2.19. Equation(2.19 can be rewritten
neling and zero boundary exchange in a state with a nonzerq o slightly more suggestive form

magnetization density not parallel tm. Then, if Hey is

turned on at some time, its effect will be to scatter left- _[o

moving electrons into right-moving ones upon their reaching (O)=~i f_wdt e ([O,H (D D7, (2.20)
x=0, changing their spin orientation in the process. If the

LL is semi-infinite, however, it would take an infinite whereH ', indicates the modified operator

amount of time to modify the mean magnetization of the LL

in this way. Instead, one expects a steady state to be estab- H;X:eiAtH re AL (2.22
lished, generally with a time-independent spin current. More-

over, for a finite but long LL, so long as there are somewhich evolves according to the fictitious equilibrium time
inelastic processes deep in the LL that can equilibrate thevolution dictated byH,. The subscripH, on the expecta-
returning electrons, one expects that an equilibrium state willion value indicates that it is a standard equilibrium average
be established which has a mean magnetization very close {gith respect to the Hamiltoniafi,, in which the argument

that before turning on the boundary exchange. In fact, a scaks the Fermion fields indicates standard Heisenberg picture
tering approach of this type can be directly |mplemented[ime dependence usir1~g
0

using bosonization methods, and will be discussed analyti-
cally in Sec. Il B. Alternatively,H,, can be incorporated 1 _
directly into Hy, but, in this case, care must be taken to (0-- -On)g():zTr(e‘ﬁHOOl- --0y),
ensure thah is coupled only to the magnetization outside a

neighborhood of the boundary. For the moment, we simply ot~ i

use the above discussion as motivation to incorpokite O(t)=e"o'0e 0.

into Ho. . . _ ._Thereby we can express an intrinsically nonequilibrium
We are interested in the properties of the system at tim roperty of the system with HamiltoniaH, in terms of a

t=0, when a steady-state transport .Of charge and spin b ictitious equilibrium average with respect to the shifted
tween the two systems has been achieved. Then we can for-

mally calculate the expectation value of any operator at thiyam'lton'anHO'
time:
Ill. CONTACTS
1 0 . . . . . .
(0(0))= =Tr| e AHo- VT exp i J' dtH(t)|O In this section, we analyze in detail th_e_ p_hysms of a single
Z — o contact between a FM lead and a semi-infinite (thken at

o x=0). We expect that the results apply to finite-length LL’s
XTexp{ _if dt H(t)”, (2.17 Ionggr .than the thermal lengVkgT, beyond which trans-
—w port is incoherent.

where7 denotes time ordering and A. End contacts: Boundary operators

We first study the properties of the contact in equilibrium
from the RG point of view. It is helpful to view bothl,,
andH,, as perturbations to a decoupled fixed point described
such thatupy= ow=h=0 in equilibrium, i.e., for zero ap- by Hy. Standard arguments give the scaling dimension of

plied voltage. bothts andK:
Expanding out the time-ordered exponential, to lowest or-
der one obtains

A= pemNem+ MQWNQW+H'§8{N' (2.19

It will be most convenient to choose the zero of energidin

A =1+al2, Ac=1. (3.1
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The scaling dimension\ ¢ is not renormalized due to spin- Neglecting the bulk backscattering interactidty. (2.2)]

charge separation in the QW. A simple calculation then givegor the moment, the LL Hamiltonian splits into spin and

the RG scaling equations charge componentsj=H ,+H,. We require only the spin
component,

atd2(H=—altd?, aKh=c(t;|>=t,|», 3.2

v (> K
wherel = In(D/E) is the standard RG flow parameter, and Hazﬁfo dx[(‘?xea)2+(5X<P<r)2]_ﬂ__\/§ﬁxea(0)-
denotes a nonuniversal constant. Note & renormalized 3.5
by the hopping matrix elements, but the inverse does not '
occur. The most important property of E§.2) is that, while  The last term is the boundary exchange term. It can be trans-
the tunneling isrrelevant for >0, the exchange coupling formed away by the canonical transformation
K between the LL and the ferromagnet is exactigrginal
Following the RG flow from the ultraviolet cuto® down K

to energy E~maxksT.eV)<D, we find |tg%(E) 05(X)— 0,(x) + —2®(X—0+), (3.6)
=|tJ%(E/D)“ and v

which simultaneously encapsulates several physical effects.

K(E)=K+a 1cGP[1-(E/D)*]>|tJ%E). (3.3  First, since

Therefore, the effective exchange couplidgE) does not é-ﬁw:axaol(w\/i),
pick up the E/D)* suppression factor, and generally is . o . S ]
much larger than the effective hoppingE), regardless of @ local “proximity effect” magnetization is induced in the
the microscopic “bare” values of these couplings. Paren-n€ighborhood of the contact. As this induced magnetization
thetically, we note that the noninteracting limit,~0, is not ~d€c@ys on the microscopic scale of the Fermi wavelength,
correctly handled by the simple RG equatidBs2), as this the magnetization appears within bqsonlzatlpn a%fanc-
limit involves additional marginal operators. In fact, for ~ tion. Second, theransvgrseleft- and right-moving spin cur-
.0, not logarithmic dependencidss predicted by Eq. 'ents also depend of,:
(3.3)] but instead a principal parts prescription emerges. £ _+i2(e+0,) £ ariZ(e,—0,)

Since the exchange coupling is exactly marginal and the Jr~e ot Ji~e 7T
tunneling irrelevant, solving the problem faero tunneling 5 the shift in Eq(3.6) leads to modifications of the trans-
but nonzero exchange gives the “boundary fixed point” so- o5 spin current
lution. From the viewpoint of low-energy physics, the only ’

effect of the boundary exchange coupling is then to induce a JE(x>0%)—e 232 (x>0"), (3.7
modified boundary condition at the contact. This modified

conformally invariant boundary condition comprises a = v>0t FivRyE < gt

boundary fixed poirif describing the semi-infinite LL close I (x=07)—e L (x=07), 39

to a ferromagnet. where a dimensionless measure of the boundary exchange

coupling is provided by thexchange angle

B. Zero tunneling boundary fixed point 9=2K/v. 3.9
To gain maximum insight into the physics, we solve the _ ) )

equilibrium problem with zero tunneling exactly in a number This transformation can thus be interpreted physically as a

of equivalent ways. The most familiar method is AbelianPhase shiftWhere before the transformation spin conserva-

bosonizatior!. Choosing the quantization axis for the spinor tion requiredJx(0)=J,(0"), after the change of variables

basis along then axis, the electron field can be written in We have

terms of boson fields, . e
Jr(0T)=e""?3"(0"). (3.10

E P e o= 1 eli/V2)le,=0p+s(es= 0] (3.4 Unlike thg purely local magnetization parallel to, this
7 ss S ’ phase shift can have measurable consequences far from the

s Qo
contact.
where (¢,,6,) and (¢, ,6,) are charge and spin bosons, The phase shift can also be understood directly in terms of
respectively, that satisfy the algebra electrons, which is useful for making contact with earlier
noninteracting theorie? It is simplest to combine the right-
[6,/6(X), @pro(X )] =i 7O (X—X), and left-moving Fermions of the semi-infinite LL into a

single chiral right-moving Fermion for each spin species on

with the Heaviside step functiof (x). The short-distance the full infinite line. In particular, we let

cutoff ag describes a nonuniversal scale factor relating the

microscopic Fermion field to the continuum bosonized ver- b (X) = Yo(=x)  (x<0) (3.1
tex operators, and is related to the bandwiagh=v/D. “ Yra(X) (x>0), '
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which ensures continuity off’ at the origin due to the C. General formulation
boundary conditionjr(0)= ¢ (0). At the boundary where  \ye now include the effect of tunneling on top of the

the original right and left movers have been “merged” t0- ,5yndary exchange above. To do this is slightly subtle, ow-
gether, we havdg(0)=J, (0)=J'(0), sothat the exchange ing to an(unphysical short-distance singularity inherent to

Hamiltonian becomes the linearized spectrum of the Luttinger model. To resolve
this difficulty, we are required to choose some short-distance
Hex= — 2Km-J'(x=0), (3.12 regularization for the microscopic physics of the contact. The

form of the resulting macroscopic equations is independent
with j'=(¢,’)T(}¢'/2_ We may then write the Dirac equation Of this choice, although the quantitative values of certain
for ' as O(1) coefficients can be cutoff dependent. A convenient
method is to employ the combined infinite chiral Fermion
- S description introduced above, and then assume that the tun-
(ditvdy) ' (X)=iKS(x)m- oy’ (x). (313 neling occurs on the right-moving branch slightly after the
For low-energy stationary states, the time derivative may h&*change coupling acts, i.e., within some distance of the or-
neglected, and Eq3.13 then yields der of a;. When an electron tunnels into the LL from the
ferromagnet, its spin and charge are propagated to the right
and do not themselves interact with the exchange torque, so
¥ (x=07). (3.14 that

. .
¢’(x=0+)=exy{i§m~a

Thus the boundary exchange simply induces different phase J =307, Jz=Jr(0")+ Ejmn_ (3.18
shifts for (left-moving) electrons incident upon the contact v

from the LL and reflected back into the L(as right mover, . . . -
K g 5 The additional tunneling spin curred,, can now be calcu-

depe_ndent upon their polanzat_lon reIatlvenno. ) lated using the time-dependent perturbation theory treatment
Itis technically most convenient to work directly with the < ihad'in Sec. II

spin currents. This has the advantage of keeping the spin . . = .

guantization axis arbitrary at all stages. Using the same ,IE particular, we consideO =Jyn W'th_Eq' (2',13)’ and
“merged” operators as defined above, the Kac-Moody com- _THtun' For this case, Eq.(2.22 yields H\=A(t)
mutation relation€2.4) and Eq.(3.12 result in the equation TA'(t), where

of motion for the merged chiral spin current,
g P A(t)=FTWU(1) T,

(9+vd)d =2KS(x)mx J’, (3.19  with the unitary matrix
where bulk backscattering is again neglected. In a steady h-o
state,d,J’ =0, and Eq.(3.15 can be formally solved to ob- U)=expgi| V+——]t|, (3.19

tain
whereV= uow— uem. Note thatU(t) is simply a matrix,
JR(0H)=R($)I (07). (3.1 and hence does not represent an operator in the Hilbert
space. It comprises the only explicit time dependence in the
Here the phase shift is encoded in the one-paramet¢8)SO integrand in Eq.(2.21), and can be removed outside the
matrix, trace. Applying the above results to H.21), we find (re-
peated indices are summed

R(9=expd), T,,=2 Me,, (3Bl . 0 .
(9) o ) ® ; NEap (3.1 <‘]tun>: Rej_xdt em(WU)aB(UT(t)WT)y)\
which describes rotation by an angfearound the rotation + +
- X{[F(0)¥4(0),¥ (O),F () Df.. (3.2
axism. Equationg3.16) and(3.17) provide the most general ([Fa(0)¥5(0) AUl )DHO (3.29

formulation of the effects of boundary exchange. Usinga formula similar to Eq.(3.20 is obtained for the charge
these, we take to definethe dimensionless “exchange cou- cyrrent[Eq. (2.14:

pling constant” of the low-energy theory. It describes the

angle that an incident spin in the LL precesses around the 0

FM magnetization directiom due to the exchange interac- (=2 ReJ_wdt e&WaB(UT(t)W*)W\

tion. In principle, since the boundary exchange operator is

exactly marginal,§ need not be small, but for the case of ><([FL(O)\PB(O),\P;(t)FA(t)])go. (3.21

low-conductance contacts, one has<1l; see Ref. 22.

Boundary condition(3.16 describes the zero tunneling Thereby both the charge and spin currents across the contact
boundary fixed point in the presence of exchange, and isan be calculated in terms of equilibrium correlation func-
crucial to the subsequent development of our theory. tions.
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To calculate these correlation functions, it is more conve- R
nient to switch to a Euclidean Lagrangian approach. Note (= —Imf_
that we require correlators calculated not with respeci §p

but to H,. Thus we must consider

)

dt Tr(U(tH)W'Wea)C(t),

(y==-2 |mf°° dt Tr(U(H)W'W)C(t).

0
= )
Lew=Leu f dTﬁwdx’uFMf f It is helpful to express the matrices appearing in these ex-

pressions in terms of projection operators,

- = . Lo A
LQW=LQW—f drfo dx| powi y+h-y' Sy ). Wiw= 21 |te20s,
S==*
Fortunately, this modification of the Lagrangians has no ef- "ol
fect on theF and V¥ correlators. Physically, this is because U(t)= E ex;{i V+ - tlvg,
the lead and wire correlators are calculated in equilibrium, so s'==1

that the added terms act as potentials. They thus simply riq/—vith ;

: . : =(1+sh-¢)/2 defined analogously ta,; see Eq.
idly shift the spectrum of states on both sides of the contactCZ_G)_ Then it becomes straightforward to compute the aver-

and those states, raised or lowered below (gguilibrium) ages

chemical potential, are filled or emptied, respectively. In
general, this would induce some weak change in the correla- 1
tors due to energy dependence of the density of states. For Tr(asl}s,): —(1+ss'm-h),
our model, however, the correlators of interest are strictly 2
unaffected. Formally this follows, since the transformations 1
() exql i 72 xl0 1F0), Tr(ugwg o) 2(sm+s h+iss'mXxh),

and hence the tunneling spin current is

(),

_ . o x
lﬂ(X)HeX[{ITZ ,bLQW+h‘§);

_ G N
(Jud==% > [(Pm+shImC(V+hs/2+i)

transformLgy—Lpy and Low—Low, leaveF and ¥ in-

variant, and respect the boundary conditionx&t0. Note

that calculating expectation values using these transformegim”a”y’

fields (governed bylLgy and Lgy) in a functional integral

formalism naturally produces correlators normal-ordered o

with respect to the shifted fields. This correctly captures the ()=—G2, (1+Psmh)ImC(V+hs/2+i5).

physics of filling and emptying the shifted energy eigenstates s

discussed above. o The quantitiess andP were defined in Eq2.9), and we use
From the above discussion, it is apparent that the reale Fourier convention

time correlator appearing in Eg63.20 and (3.21) can be

calculated using the pure, unpolarized Lagrangiagg and _ ,

Low corresponding to Egs(2.5) and (2.1), respectively. C(w)=f dtC(t)e'". (3.26

Their SU2) invariance therefore implies

—PsmxhReC(V+hs/i2+id)]. (3.29

the charge current is

The terms involving In€ are not surprising, since this is
([FL(O)\PB(O),\If;(t)FA(t)])gO(B(—t)= Oan0p,iC(—1), directly proportional to the spectral function Bf and hence
(3.22  has a simple interpretation in terms of tunneling via Fermi’s
golden rule. For these terms, we can use well-known results
where discussed below. However, the terms involving the real part

of C correspond to exchange processes generated by tunnel-
iC(t)=0(t)([B(1),BT(0)]) (3.23  ing; see Refs. 16 and 22. That tunneling indeed causes effec-
tive exchange couplingéeven in the absence of a “bare”
is the standard retarded Green'’s function of the operator exchange couplingfollows already from the simple RG
equations(3.2). As the physical effects of exchange are in-

B= FPI’T _ (3.24  cluded via boundary conditiof8.16 with the S@3) rotation
matrix R(9), we drop the terms proportional to Rein the
The choice of spin components in E.24) is arbitrary. spin currenf{Eqg. (3.29)].
Substituting Eq.(3.22 into Egs.(3.20 and (3.2, and After some algebra, we then obtain the tunneling spin
usingUT(—t)=U(t), we find current as
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. 1 . . IV. HYDRODYNAMIC DESCRIPTION
G =73 2 (Pm+shZ(V+hs2T), (3.2 OF BULK PROPERTIES
S
_ . In Sec. Ill, we discussed how to determine the charge and
where we have defined the function spin currents in the neighborhood of a contact in terms of the

U local charge and spin chemical potentialsandﬁ of a LL.

_ = Doy aginH To complete the formulation of the full transport problem,
Z(U,T)=GImC(U +i8)=GkgT(ksT/D) Smr(ZkBT) we need to understand how to relate these quantities at dif-
5 ferent pointswithin the LL. This is the subject of this section.
(3.29 In doing so, we assume that the length of the system is al-

ways long compared to some characteristic dephasing length
) ) . beyond which the behavior is incoherent, and hence classi-
with the bandwidthD _and the I,_L end—tunnellng exponent ¢4 For a LL, we expect the dephasing length is set simply
a>0. We note that in SWNT'D~1 eV, while a~1.1  py the thermal length scaleksT. At low temperatures, this
according to thfa experiments reported in Ref. 8. In the "m'tlength is very long, and thus we are interested in the consti-
eU<kgT, function(3.28 becomes tutive laws governing the LL on long length scales.
GU On such long length scales, we expect a rather classical
_ a2 description to apply both to charge and spin. For charge,
o= T(I(BT/D) [(1+al2), classical behavior follows due to dephasing. For spin, more
care must be taken, due to the noncommuting nature of the
while, in the opposite limit, spin operators. On long length scales, however, the total spin
fis within any region is large. For large>1, all three com-
ponents of the spin can in fact be specified with very good
accuracy, the uncertainty being €f(1/s). Thus the long-
wavelength “hydrodynamic” equations will simultaneously
The LL magnetization away from the contact can now beinvolve all 'Fhree components of the magnetization and the
related to the spin chemical potential using the LL spin susC0résponding currents.
ceptibility xy=1/(27v):

X|T

1+ 22
E I2’7TkBT

GU
Z,= T(GU/ZWD)OI.

A. Operator equations of motion

M=Jg+J, = xh. (3.29 To construct the hydrodynamic equations, first consider
the operator equations of motion for the spin currents. These
Thereby we obtain the spin curredtinjected into the LL ~are obtained from the usual Heisenberg equations,
from the ferromagnet at any given contact for arbitrary ex-9,J, ;r(X) =i[H,J;r(X)], with the Sugawara form of the
change coupling. Omitting the expectation values for brev- spin Hamiltoniarf. Writing

ity, we find
HQW: Ho+ HbS+ Hmagn.,
.1 . R . . . .
J= EShHl_S)Jmn, (3.30 the spin part of the LL Hamiltoniaki, is
v O s> o>
where S=(R—1)/(R+1) is a real antisymmetric matrix. HO:EJ dx:Jg-JrtJdL-Jdi:. (4.)

Similarly, the injected charge current is i o o
The backscattering contribution was already specified in Eq.

o (2.2), and now we also include an external magnetic fBld
I=—2 (1+sPmR)Z(V+hs2T).  (3.3)  acting on the QW. For this purpose, assuming a static and
s homogeneous field, we add the term

For the case of a low-conductance contact, the exchange

angle is smallgy<1, and Eq(3.30 can be further simplified H mag= _:“Bf dxB-M, (4.2)
to
with the LL magnetizatiofEq. (3.29]. Here we have ab-
= 0 Fxcht 1 E >+ sh sorbed the electromy factor g, into a renormalized Bohr
I=gme g 2 [Pm+sh]Z(V+sh2T). magnetonug = g.eh/2mc. The equations of motion are
(3.32 - - - - I
(&t_vaX)JL:bU\]RX\]L_bUD"XJR_,LLBJLXB, (43)
From Eq.(3.32, 9/47 can recognized as acting as a sort of
dimensionless spin conductance—proportional in fact to the (9 +v3,)Ig=bvJ X Ig+bvdJ, — ugJrXB. (4.4

“spin mixing conductance” of Ref. 20. Relatior{8.31) and L
(3.32, together with the results in Sec. IV, provide the basisHere terms likel, X J, are absent by virtue of normal order-
for our subsequent discussion of the setup in Fig. 1. ing. Their absence also follows by comparing the equations
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of motions obtained from the Sugawara foffq. (4.1)] to Lt
the strictly equivalent equations of motion of the correspond-
ing SU2) level k=1 Wess-Zumino-Witten actioh. PPl
Taking the sum of Eq94.3) and(4.4), we find s L N
M +d,J=— ugM X B, (4.5 \i”
where -
. I R R R

Comparing Eq(4.6) to Eq.(2.12), we see that backscattering _FIG. 2. Self-energy diagram to estimate the decay time for the
leads to a renormalization of the spin current. This is aSPN current.
“backflow” effect, similar to those in Fermi-liquid theory. o .
For B=0, Eq. (4.5) represents the standard spin continuityPination of such processes, it is natural to expect a finite
equation. Of course, the magnetic field will then spoil spinlifetime for the decay of an initial spin current.
current conservation. Further, on physical grounds, we can express the rate of
Taking the difference of Eq$4.3) and (4.4) gives such decay processes based on Fermi’s golden rule. In par-
ticular, we expect the inelastic spin current relaxation rate
0J+(1-b?)p20M=boMxJ— ugdxB. (4.7  1/75 to be proportional to an expectation value that is qua-
. dratic inHps. More formally, we can determine the lifetime
For B=0, we have a conserved spin currdnbut bulk pre-  using the leading nonconstant correction to the fermion self-
cession of the magnetization around the fixed spin current.energy, which is the usual two-loop bubble in Fig. 2. Either
way, since 14} is quadratic inb, scaling determines the
B. Hydrodynamics form of the decay rate,

Note that Egs(4.5 and (4.7) are operator identities, not - 5
equations for the expectation values of these quantities. We 1y =Ab%kgT/1, (4.9
will call these expectation valuetassicalvalues. As argued )
at the beginning of this section, to describe the bulk physicg/here we have usekLT to provide the energy scale needed
on long length scales, the hydrodynamics should be phrasdePm scaling. In addition, we have neglected more subtle
in terms of equations of motion for these classical variableslogarithmic corrections expected on general grou_?ﬁdshe
In the absence of backscatterinmg= 0, Egs.(4.5) and (4.7) or_der_unlty numerical prefactdk is not (_)btalned reliably by_
are both linear, and so taking their quantum expectation imthis simple argument, but a crude estimate may be obtained
mediately gives the correct hydrodynamic description for the/Sing Fermi's golden rule. From the first term in H4.8),
classical values. At zero temperature in the linear-respons&€ may consider the rate for a single right-moving electron
limit, moreover, the RG analysis, demonstrating thais ~ With down-spin and momenturk to flip its spin, simulta-
marginally irrelevant, implies that this=0 hydrodynamics Neously creating a left-moving electron-hole pair,
remains qualitatively correct. In general, even in this case

there will also be finite renormalizations of physical quanti- bv\? [ dk’ dqdq , )

ties, but forb<1 these are expected to be small. T W(ZW) S(vk—vk'—vq+ovq’)
However, for T>0, and possibly also in nonlinear re-

sponse aff=0, the hydrodynamic equations are generally X (2m)s(k+k'=q—q")f(vk’)[1-f(vq)]

corrected by dissipative terms. Formally, these exist due to X[1—f(vq")],

the fact thaf M x J)# (M) x (J). Physically, dissipative cor-
rections to Eq(4.7) describe processes caused by the backyhere f(e)=1/(e“%8T+ 1) is the Fermi function. This can
scattering in which a nonzero spin current can decay. Thae evaluated in the low-energy limitk<kgT, and using
the backscatterln.g interaction medlate§ such processes can Pﬁ5”=2/m (since both the electron and hole in the two-
seen by expressing it in terms of fermions: particle current operator may dedagives the result in Eq.

bu (4.9), but with a surprisingly small prefactdx= 1/8.

Hpe= — _f dX[ZIIwa//Ri l/’L‘//uJF(THU We proceed at this stage on phenomenological grounds by
4 modifying Eq. (4.7) by hand to include spin current relax-
SR A (4.8 2mon

C<_Jn3|d(?r an mmal state containing one r|g_ht—mc_>V|ng Fer-  9J+(1-bY)v29M=—J/7;+boMXJ— ugIxB,
mion with up-spin and one left-moving Fermion with down- (4.10
spin, thereby carrying a net spin currelit-0 but no mag-
netization. Acting on this stateé{, flips the spins of right- which provides a detaile¢but approximate description of
and left-moving fermions, thereby conserving the magnetizathe crossover between ballistic and diffusive spin transport at
tion butreversingthe spin currend?— —J*. Through a com- low temperatures. In general, elastic impurity scattering pro-
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cesses will also relax the spin current, where in fact no spinFurthermore, we assume<1 for algebraic simplicity, al-
orbit interaction is required. This can be included accordinghough our results actually hold somewhat more genefally.

to Matthiessen'’s rule: The latter condition is probably fulfilled in any practical ap-
plication, and ensures that the spin chemical potential is
1 1 1 small, h/V<1. The validity of the latter condition is then
7 - T_|Jn +7_Je" (4.1D self-consistently checked below. AotV <1, we can use the

following expansion for Eq(3.28):

Since the same impurity scattering processes relax both spin

and charge currents, we expectto be comparable to the ZL(V=sh) /2, T]=1,V,T)=shG,(V,T). (5.1

elastic scattering rate deduced from charge transport.
Taken together, Eqg4.5 and (4.10 provide a starting

point for the investigation of the spin hydrodynamics of a LL 1 (V,T)=Z,(VI2T), (5.2)

in the presence of electron-electron backscattering. A useful

check is that these equations correctly recover the Landaguch that for parallel FM magnetizationg=0) the charge

Lifshitz dynamicg® of classical ferromagnets at nonzero currentl(0)=2I, results in the absence of backscattering.

temperatures. Considerirg=0 for simplicity, in the low-  Furthermore, the respective conductance is

frequency, linear-response limit, the nonlinearity in Eq.

(4.10 is small, and the time derivative of can also be
neglected. Then one can solve fdrperturbatively in the Similarly we define a dimensionless contact conductagce

Here the currenfper spin channglfor nonmagnetic leads is

G,(V,T)=dl, /dV=(e%27h)g,. (5.3

nonlinearity to obtain, to leading order, via G=(e%/27h)g.
) ) R R From EQ.(3.32), we can then write down the spin current
J=-DsyM —bv7,DM X ,M, (4.12  J, through the left contact, taken &t 0 with the local spin
where the spin diffusion constant is chemical potentiaﬁlzﬁ((p, and likewise J, through the
right contact atx=L with h,=h(L):
D= (o) ory (4.13 9
° T AbGT Jy= X My Plyiy — G hiy, (5.4)

For SWNT's,b<1, and it is appropriate to approximate 1

—b?~1. In addition, the golden-rule estimate is at best valid R 9. . . .

for b<1, and we therefore ignore the tiny renormalization Jo= = g -haXmy+ Plamy+G,ohy. (5.9
v—v'=(1-b?wv. Inserting Eq.(4.12 into Eq. (4.5 then

indeed gives the usual Landau-Lifshitz equatibn. The signs are chosen such that currents are oriented from left

We are predominantly interested in steady-state situationto right. Similarly, from Eq.(3.31), the charge current flow-

in which bothM and J are time independent. Using Egs. ing through the device follows,
(3.29 and(4.10, we find

—Iw)—l —PG“H Y 5.6
o1 . 2mpe) - o1, -, M 5.6
dh+—J=(bl/v)| h+ B|XxJ, (4.19
Ts where we have exploited current conservation:
where the linear-response spin conductivity is given by the R,
Einstein relation hy-mp+hy-my=0. (5.7
ho Next these relations describing the spin chemical potential
os=xDs=v7i2m= (4.19  and the spin current at the boundaries need to be related by

2mAb*kgT virtue of the hydrodynamic description of Sec. IV. In the
Note that the spin conductivity has dimensions of length astéady state, the basic hydrodynamic equations aré4Eky)
expected in one dimension, and is essentially given by th&"
mean free path for decay of spin currertssv ;. u

asz—z—Bﬁx B: (5.8

V. APPLICATIONS m
see Eq.(4.5. We first consider transport in zero magnetic
: : .-field, and later on extend the analysis to finite fields in Sec.

sider transport for a LL connected to two FM reservoirs with ' .

. p directions dim f lied voltaaev: V B. In Secs. V A and V B, the effects of the backscattering
magnguzanon irectionsn, gn .m2 or applied vo ta@! ' interaction are neglecteth—0, so that the spin resistivity
see Fig. 1. The FM magnetization unit vectarg, are tilted  vanishes. This is expected to be appropriate for a short-to-
by the angle 6= 6=, so thatm, - m,=cosé. For simplicity, intermediate length.. The effects ob#0 will then be ad-
we assume identical low-conductance contacts on both sidesessed in Secs. V @ithout dissipation and V D (includ-
such thatuqyw=0 and the exchange angle is smal<1. ing spin diffusion.

As an application of our general formalism, we now con-
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A. Effects of spin-charge separation 1/2

tarf( 6/2)
o\ tarf(0/2)+ Y,

h PI,

We start with the simplest casestof0 andB=0, where V. 2VG
the steady-state equatiof.14) and (5.8) are solved by a

constant magnetization and hence spin chemical potentiaNote that M= yh=h/(27v), so that Eq.(5.11) also de-

h,=h,=h, and conserved spin curredt To compute the scribes thespin accumulationin the QW. Nowl,/VG,

charge currenfEq. (5.6)], we then need to finth which in ~ €quals 1 at high temperatures, and #(d) for kgT<eV.
turn is determined from spin current conservatiﬁ@,zjz. Thereforeh/V<=P/2, and, forP<1, the assumed smallness

Using Egs.(5.4) and (5.5, we then obtain three equations of h/V is self-consistently verified’ Finally, we explicitly
namely, Eq.(5.7) and ' " write down the spin current:

(5.11

19ﬁ m; X m,)+G,h-(m;—m,)—2P1, sir’(6/2)=0 J= Pla —2(Mmy+my)! 1+(Y,—1) tark(6/2)
—h-(m;xXmy)+G, h-(m;—m,)— o Si =0, m;+m -1)—1.
At ( 1 2 ( 1 2) ( 4 1 2 ta r?( 0/2) + Ya
s (5.12
Ecos’-(ﬁ/Z)h-(ml—mz)—Gah(m1><m2)=0. Note that, from Eq(5.7), this implies thath and J are or-
thogonal.
From these relations, with(0)=2I,, the current results in
the form B. Magnetic field dependence
1(6) ) tarf( 6/2) Next we consider a different and probably more feasible
W: - W- (5.9 experimental setup aimed at revealing spin-charge separa-
@ tion. Instead of changing the angebetween the FM mag-
Here the quantityy, reads netizations, a simpler setup could work with a fixed angle
912 but employ the additional magnetic fielki=BB. We assume
Y (V,T)=1+ ) ) (5.10 thatthe bulk FM magnetizatiorfsm are not affected by this
20 magnetic field, and considdr=0. Under these conditions,
For eV<kgT<D, using Eq.(5.3), this becomes the steady-state hydrodynamics in EGs14) and(5.8) de-
scribes a precession of both right- and left-moving spin cur-
(29/9)? .T/D) -2 rents around. Therefore, when moving from the left to the
a 41+ a/2)( B ) right contact, the magnetic-field-dependent precession phase
while, for kgT<eV<D, v=ugBL/fv (5.13
(2919)? 2. accumulates, so that/27 is essentially the ratio of the Zee-
Yo= (1+a)? ( eV/amD) " man energy to the level spacing. Since a field.dl' corre-

sponds to 0.058 meV, a sizable precession phase can easily
For a Fermi liquid,Y,=1+ (29/g)? is related to the dimen- be achieved for tube lengths in the micron range and stan-
sionless spin mixing conductancg of Ref. 20 by Y, dard magnetic-field strengths.

=|5|*/Re(n), and Eq.(5.9 correctly recovers the current-  From Eqs(4.14) and(5.8), we can relatd, andJ, at the

voltage relation of a Fermi liqud in the limit «—0. right contact to the respective quantities at the left contact.
In the interacting casey>0, however, foreV,kgT<D, Some algebra leads to

Eq. (5.9 describes a drastically different behavior. Sinte

becomes very large for low energies, thgn gccumulation ﬁz=c05751+(1—005y)(l§~ ﬁl)é_sm'yjlx B,

effect is completely destroyéat any 6+ 7r. This remarkable (5.14)

phenomenon is entirely due to spin-charge separation, since

only then the exchange coupling is so efficient at relaxing th@nd, similarly

injected polarized tunneling spin current. The absence of

spin accumulation is then a direct signature of the presence  J,=cosyJ;+(1—cosy)(B-J;)B—sinyh,xB.

of spin-charge separation, and would allow one to experi- (5.195

mentally establish this phenomenon in a spin transport

experiment® Only for 6=, does one obtain the standard To compute the current, we then have to computem, as

1— P2 Suppress|0n in the current. At low app“ed V0|tage outlined in Appenle A. Thisis in general CUmbersome and

eV<kgT, the jump inl (6)/1(0) from unity for 6<= down  requires a numerical analysis. We thus restrict our attention

to 1— P2 at = is only smeared out by thermal fluctua- to the special cas€= m, where the FM magnetizations;,

tions [see Eq.(5.10], and therefore becomes very sharp at= —m, are antiparallel. Note that fof< s, the spin accu-

low temperatures. mulation effect is quenched by spin-charge separation, and
Next we self-consistently check on the magnitudé®f.  then the magnetic field should have virtually no effect for

Multiplying J;—J,=0 byh yields, with Eqs(5.4) and(5.5, «>0. The case&d=r is therefore also of most interest.
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First we consider dixed field strength BLet us suppose 1

that B has been adjusted such that the precession phase is
y=, but one allows for an arbitrary field directidd. In
this case, the equation in Appendix A can be solved analyti-
cally, and the current is . ;

1(B)/2l,=1—P? ! (5.16

“ 1+Y, tar’B’ ' — a=0
2 ) A a=1.1
0 w 27

P

whereY (V,T) is defined in Eq(5.10 andB-m;=cosg. If 3r 4r¢
the magnetic field is parallel to the FM magnetizatiofis, vy

—0, a maximum spin accumulation effect is recovered,
1(8)/2l ,=1—P2?. Upon tilting the magnetic field, however,
since the quantity, diverges at low energies, spin accumu-
lation is quenched again. This is in effect very similar to
varying the angled between the FM magnetizations, but may

be easier to |mplement experlnjentally. -0, trjere IS o Remarkably, the way that one interpolates between these
precession sinck; is parallel tom; , and hence t@. There- o |imiting cases by varyingy strongly depends on the
fore, spin accumulation is not affected by the magnetic fieldcgrrelation strengthy; see Fig. 3. They dependence of the
From this observation, we then expect that the suppression @{rrent-voltage relation can therefore again reveal spin-
spin accumulation agB+ 0 holds in fact for a broad regime charge separation. While far=0, the current is a smooth
of magnetic-field strengths, and no special fine tuning/to  periodic function iny, for >0 and low energies, the peri-
= should be necessary. The behaviorl 08) is qualita-  gdicity is turned into a series of very sharp dipsyaqual to
Fively Qiﬁerent depending on whether spin-charge separatio|ﬂﬁ,teger multiples of . This can be seen from E¢5.18),
is realized or not. . yielding, for T=0 andeV<D,

Another possibility consists of fixing thigeld direction B
and then measuring thieV characteristics for a different B 4a1+(19/477)200§2( vI2)
magnetic field strengtB or, equivalently, a precession phase F(y)~V (914m)7+ coB(712)

v see Eq.(5.13. For simplicity, let us assume th& is

adjusted perpendicularly ton,. Under this condition, the
current can be found in closed form again, with the result

I(7)/I(m)

—

FIG. 3. Magnetic-field dependence of tiie=0 current for 6
=1, G=0.0%%/h, eV/D=0.1, andd=0.5, both for a Fermi lig-
uid (a=0) and for a LL witha= 1.1, whereB.L m,. The precession
phasey~B is given in Eq.(5.13.

Therefore the spin accumulation effect is quenched unless
cot(y/2) diverges. Measuring the magnetic field difference
corresponding to the distandey= 27 between two dips can
1(y) , 1 also provide a direct estimate of the contacted lethgftom

o0 =1—-P TFF()" (5.17 Eq. (5.13.
where we use C. Backscattering: dissipationless precession

(2m19.)P—1+Y, cos 2(y/2) For the remainder of this section, we address the conse-
F(y)= Ya il Y _ (5.18 quences of a finite backscattering couplmgaking for sim-
(9/27)2Y ,+ cot(y/2) plicity B=0. We start with the zero-temperature limit, where
the spin resistivity vanishes and HEg.14) predicts bulk pre-

cession of(x) around the fixed spin current:

Note that Eq.(5.17) predicts a sharmegative transverse
magnetoresistancpeak nearB=0 (and again at periodic

intervalg. In particular, at low temperatures, and in the linear A= Axj
= xJ. 2
bias regimeyY ,g;1>1, and one can estimate the full width 9xh=(blv)h>xJ (5-20
half maximum of this feature ih(B) by Clearly,h-J is also conserved. It is then useful to introduce
the quantities
Zga 21-1/2
bzm, (52],)

which therefore decreases &% asT— 0. Theheightof the

peak is, however, temperature independent. More generally, 29
the currenf{Eq. (5.17] is a periodic function of the preces- ﬁ:(m
sion phasey, with F(y)=0 for y equal to an integer mul-
tiple of 27. In that case, the spin accumulation effect iswhich provide dimensionless measures of the backscattering
maximal, and thus the current minimal y)/2l ,=1— PZ. strength Cp) and of exchange@g). The problem is then
On the other hand, foy being an odd multiple ofr, F(7y) fully specified in terms of four dimensionless parameters,
—oo and thus a complete suppression of spin accumulationamely, the LL exponent, the tilting angled, and of course
obtains. Cp andCy.

2

: (5.22
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Similar to Sec. V B, precession #f(x) around the con- resolution of this question has to remain open. Below we
served spin current implies a precession phase when goirgall argue on intuitive grounds as to which of the multiple

from the left to the right contact, branches is realized. ' _ .
In general, one needs to numerically find the solutions to
Ap=bJIl/v. (5.23 Eqg. (5.27, e.g.,, using a Newton-Raphson root-finding

algorithm?® Numerical results accurately confirm an analyti-
The spin chemical potentials, and h, can now be deter- cal solution possible for low energiesy<D, anda>0. In
mined from spin conservatior;=J,, and the precession the following, we focus on this regime of most interest,
equation (5.20. In addition, a self-consistency condition WhereY,>1 [see Eq.(5.10], and search for solutions that
arises since) appears itself in the precession phdse.  also fulfill YQX2>_1._ Note that otherwise the effect of back-
(5.23]. This self-consistency implies that we are dealingScattering is negligible in any case. Under these conditions,
with a nonlinear transport problem fob>0, and has far- the self-consistency equatidh.2? is solved by the preces-
reaching consequences. For convenience, we use the abbf¥an phase taking only one of the discrete values,
viation
Ap=(2n+1)7— 6, (5.28
hG,
X=5r (5.249  wheren=0,1,2 ... is awinding numbeicounting the num-
“ ber of full precession cycles of the steady-state bulk magne-
with 0O<X=<1, which provides a dimensionless measure oftization as one proceeds from the left to the right contact. In
the absolute value of the spin chemical potential. Then th@rinciple, there is also a set of solutions obtained from the

charge currenfEq. (5.6)] is substitutiond— — 6 in Eq. (5.28. For 6=0 and 6=, both
sets coincide, and for ©6<7 we expect that only Eq.
| =21,(1-P?X?). (5.25  (5.28 gives stable solutions.

Then the following general picture emerges. Focusing for
From Eq.(5.4), the absolute value of the spin current can beconcreteness on the cage 0, the self-consistency equation
expressed in terms of as well, (5.27) is solved either byx=0 or by Ag=(2n+1)m. As
5 the voltageV is increased, first we have an arbitrary preces-
) }(1—X2) (5.26 sion phase\ p< 7 that increases witW. At the same time,
' ' Eq. (5.27) enforcesX=0, leading to the standatus=0 cur-
o _ _ _ rent | =21,. As the precession phase hifsp=7 at the
whereg,, is given in Eq.(5.3). In Appendix B, we derive the  ygjtageV=\V/,(6) (see below, the spin currend is locked at
following self-consistency equation determining the current;y fixed value such thah ¢ remains constant when further
increasing the voltage. To keep constant, however, the
X2+ (9X/29,)? 2 charge current (or, equivalently, the quantit)) has to
1+ (9X/2g,)? cos(Aef2).  (5.27) qdjust from Eq.(5.26). Since this leads Fo a quadratic equa-
tion for I, there are two possible solutions farHowever,
Using the precession phalegq. (5.23] with Eqg. (5.26, one  one of them would lead to unphysical currents exceeding
can then solve foK, and thereby obtain theV relation[Eq.  2l,, and is disregarded in what follows. As the voltage is
(5.29]. now increased up t&¥,(6), the precession phasee=3w
Remarkably, solution of Eq5.27) predicts amultivalued  becomes possible, and the above picture is re-iterated.
I-V relation. This is a direct consequence of the nonlinearity For arbitrary 6, Eq. (5.28 then predicts the following
of this spin-transport problem in the presence of backscattecurrent-voltage relation. Fo¥<Vqy(6), the b=0 current
ing. Under an exact calculation, we would in fact expect adEqg.(5.9] is realized. Upon increasing the voltage above the
unique answer for the current, since thermal or quantal flucthresholdVy(6), however,sawtoothlike oscillationgppear.
tuations around Eq5.27) should stabilize just one solution In the windowV,(6) <V<V,, 1(6), we obtain
out of the multiple branches. Such a calculation could be
performed in principle following a Keldysh approach or em- |(v) p2 (eVI4AmD)>%® (eVI4mrD)?%\?
ploying Langevin-type equations, but seems difficult to pur- - — =1~ 7[ —C—+H1+ C—)
sue in practice. A simpler approach based on(gpproxi- « o o
mate free energy principle could obtain from the analogy to 1 [(2n+1)7—6)?]2
SNS ]'}Jn.CtIOI’IS in Sec. VIIA_ or t_he related “t||ted. _Wash— C, Cb(eV/47-rD)> } ]
board” picture of Josephson junctions above the critical cur-
rent. In the latter system, a free-energy pr_incip_l_e is welljy the low-energy limit, the voltage¥,(d) are given by
known to apply and to correctly resolve ?ﬁultlstablhty ques-
tions posed by the equations of motion aléh&he difficulty
with this approach for the spin-transport problem at hand is eVa(0) — (2n+1)m—¢
to describe the dissipative terms in such a free energy. While 47D Cp/Cy
the bulk energy is known, the boundary terms are less
straightforward to handle, and, unfortunately, a rigorousand thel-V relation forV,(0)<V<V,.1(6) simplifies to

J2=(Pl,)?% 1+

29

(23

Sirf(6/2)=

(5.29

(5.30
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[ E— ' ' "] _ (V) p?
= 2(| =1- 5 (1+V1-A), (5.33
o 4 where
S 1Pnt
= 248G, ([(2n+1)7— bev |? 53
" ol bPI, (534
1P : | : _ . R Remarkably, sincers~1/b?, any dependence on the back-
o 1 2 3 4 5 6 scattering couplingy drops out in this temperature regime. In

V/V, principle, the current is then again multivalued and indexed
by a winding numben. Here the appropriate threshold volt-
FIG. 4. Current-voltage relation in the presence of backscatterages, above which the respective current can be realized,
ing for T=0 and #=0,7. The scales are set Hy=21, andV,  follow from the conditionA,<1. On physical grounds, in
=V (6=0). this spin-diffusion-limited transport regime, we expect that
only the lowest winding numben=0 is realized, leading,

(V) for V>V,(6), to the current

21,

2
=1- F)—[1+ V1= (V,(0)/V)?]. (5.31)
2 (V) p?
- / AV /\/\2+a

Note that theV,,(6) ~ 1/L and hence can in principle be made 21, 1= 5 (AHNI=NVo(DNV)T, - (539
arbitrarily small simply by increasing the QW length
Therefore the effects of backscattering become very imporwhere we assumksT<eV and use the voltage scale
tant in sufficiently long QW's. Estimating the perialV
=V,.1—V, corresponding to a full precession cycle from eVo(0)\*"¢ (1+a)hie*v?(1—6/m)?
Eq. (5.30 for typical SWNT parameters, we finilV~ 10 to 47D - 20 Lb?P2GD?
100 mV. Measuring the oscillation periddVv could provide
useful information about the backscattering interactions andNote that the right-hand side of E.36) is proportional to
the exchange angle. (kgT/D)(hv/LD), with a prefactor of order unity. Hence

The nonsinusoidal oscillatorlV relation[Eq. (5.31)] is this spin-diffusion-limited regime should be accessible to ex-
depicted in Fig. 4 for typical SWNT parameters afd periments.
=0,7. Apparently, backscattering has a dramatic influence

(5.39

on spin transport not anticipated from thermodynamical con- VI. EXTENSIONS
siderations. To experimentally observe the predicted o _ .
sawtooth-like oscillatory-V relation, however, it will prob- The approach developed in this paper is very flexible, and

ably be necessary to measure at very low temperatures usi§gn be straightforwardly extended to describe a variety of
rather long and clean QW's. Note that these oscillatory beother physically relevant situations. We sketch some of these
haviors are a nonequilibrium effect not present in the temeXxtensions in this section.
perature dependence of the linear conductance.

A. Bulk contacts

D. Finite-temperature dynamics In many cases, particularly in experiments on carbon
As outlined in Sec. IV B, for finite temperature, back- Nanotubes, contacts are made not to the ends of the quantum

scattering causes spin diffusion, and we now address the eftiré but to points in the “bulk.” Much of the preceding
fects of spin diffusion on the current-voltage relation, focus-theory applies to this case as well, but there are some addi-
ing on zero magnetic fieldB=0, where the spin is still tional complications. First, let us reconsider the problem of a

conserved. The self-consistency equation in this case is déingle contact ak=x, this time in the bulk (8<x;<L)

rived in detail in Appendix C. To solve this lengthy equation, "ather than at the boundary. Because there is no boundary
we again restrict ourselves to the low-energy regimecondition relating right- and left-moving fields, there are

kgT,eV<D, with a>0. more independent couplings. In general, the contact Hamil-
For T<T*, we then basically recover the results of sec.tonianH. has three distinct contributions, neglecting redun-
V C, while for T>T*, with the crossover temperature dant forward-scattering terms which give spin-independent
phase shifts,
hv —
TF=————~1, (5.32 Hc=HuntHext Hpsa.-
2m°KgAD?L &

Tunneling is described by the tunneling Hamiltoniggg.
a spin-diffusion-dominated regime emerges. This temperat2.7)], where¥ = ¢(x,), and we allow for different hopping
ture is defined byrdL=o(T*) (see Appendix ¢ with the  matrix elements for right- and left-moving states of each spin
spin conductivity(4.15. In the following, we focus on the polarization,t?=R'") . There are also two distinct exchange
regimeT>T*, for which thel-V relation can be written as terms:
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-

Hom— S Kar“n.qf;gqfa_ (6.1) (at+avcax)la=2i S(x—x)19(x;), (6.4)
a=R/L

Finally, there are local single-particle backscattering proWherev, is the charge velocity. Each pair of equations can
cesses described by be combined to give equations for the spin and charge den-
sities and currents, which can be solved in the steady state
o knowing the tunneling spin and charge currents at each con-
Hb51=§ £V iug oW +H.c, (6.2 tact (determined by the voltagesind the boundary condi-

tionsg=1, andJg=J, atx=0 andx=L. Precession, dif-
where the projection operata, is given in Eq.(2.6). These fusion, and spin-orbit scatteringsee below can also be
terms arise since the presence of a contact inevitably leads tgcluded simply by adding the appropriate terms to the right-

local disorder within the QW. hand sides of Eq¢6.3) and(6.4).
For a noninteracting QW, all three contributions are on an
equal footing, as they all involve fermion bilinears. When B. Nanotubes and flavor

interactions are present in the QW, however, this is no longer
the case. In fact, in the boundary RG framework, they scal
completely differently. In particular, the tunneling Hamil-
tonianHy,, is irrelevant, the boundary exchanbe, is mar-
ginal, and the single-particle backscatteridgs; is relevant.
Thus provided all terms irH, are comparableH g, will
dominate at low energies, where the distance to another co
tact, the inverse temperature, and any inverse voltage are
sufficiently large. The effect of such relevant backscatteringbn
terms was studied extensivelyWe expect that the final
result in the low-energy limit is to completely sever the LL
into two halves atx=Xx;. In this case, one can effectively
ignore at very low-energy half of the LL, namely, the one not

connected to a closed circuit, and treat the other half USingymmetry implies that, to a good approximati@nce back-

the end-contact phenomenology of the previous sections. : :
X . : scattering terms are weplknot only the SW2) spin currents
The latter discussion presumes that fere substantial. - 9 R y @) sp

In many cases, however, it is natural to expect that in facgrL Put the full SU4) spin-flavor currents
|£4 <|Ka|,|t?)]. For nanotubes, if the characteristic scale of BByt g 6.5
the contacts is substantially larger than the interatomic di- a ‘Papa¥aBp - :

mensions of the nanotube, tfg, involving matrix elements 416 conserved. In the ballistic limit, these currents satisfy

that oscillate on the atomic scale, are considerably SUpzhiral wave equations away from the contacts
pressed. Similarly, in contacts to semiconductor quantum

wires with widths large compared to the Fermi wavelength, (9 Fva,)I3*BF=0, (6.6)

& can be suppressed due to the smoothness of the effective

potential at the contact. It is therefore of interest to describeind a full solution of the transport problem in the steady state
the problem in the absence of single-particle backscatteringequires imposing constant values of each of theset (116
és=0. The equation-of-motion methods of Secs. lll and IV =32) chiral currents between contacts and/or ends of the

can then be straightforwardly extended to describe bulk connanotube. Moreover, S¥) generalizations of the contact ex-
tacts. For illustration purposes, consider in particular the casghangeH,, can be expected.

While the general methodology and physical results ap-
%Iied above pertain to any interacting QW, some differences
exist that should be taken into account in applying the for-
malism in detail to nanotubes. In particular, a “pristine”
SWNT has not one but two 1D bands crossing the Fermi
energy, arising from the sublattice reflection symmetry of the
raphene lattice. Thus in fact the low-energy description of
NTs requires an additional “flavor” indeA=1 and 2
all electron fieldsy,,— ap. - Moreover, the low-energy
Hamiltonian describing the nanotube in the absence of back-
scattering and magnetic fields respects the full chiral U(4)
XU(4) symmetry of arbitrary separate(4) rotations of
right and left movers in the combined spin-flavor space. This

of multiple tunneling contacts at points<0q;<L, neglect- As we have seen in the simpler single-channel case above,
ing, for simplicity, bulk backscattering. Then the equationspackscattering terms, even when weak, can lead to signifi-
of motion for the chiral currents are cant effects in long tubes. Because the backscattering inter-

actions do not respect tHaccidental SU(4) symmetry but
only the physical symmetries, there is in fact a variety of
independent backscattering couplings. Thus, in general, the
o extension oH 4 to include flavor is rather complicated—the

+ K om; X J,], (6.3 interested reader will find théeight or 11, depending upon

R whether the nanotube is undoped or dopdiverse back-

wherea=L/R= ¥, and the tunneling curredlg*”(xi) is de-  scattering terms enumerated in Refs. 10 and 31. These inter-
termined from Eq(3.27), with chemical potential/ andh  actions lead to a variety of generalized “precession” terms
appropriate to that contact and chirality. Furthermore, in Eqin the operator equation of motion, which must be added to
(3.27), one has to replace the end-gunneling exponetty ~ EQ.(6.6). These have the general form
the bulk-tunneling exponent,, <«." Similarly, the chiral
charge currentsg,, obey the equations of motion (9 Fva) I PP = F IR ™ I — F ) erdR PP,

(9r+ava)Ja=— padaX B+ 20 9x=x)[J3"x)
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where f&.,~buv are related to the detailed form of the metry of the lattice, and allow some spin-orbit scattering.
backscattering terms, and repeated indices are summed. However, these same defects also elastically scatter ordinary
In the hydrodynamic equations for the classical values ofmomentum, so that one may estimate the spin-orbit scatter-
these fields, we expect damping terms similar to that in Eqing rate as = e/rJe', wheree<1 reflects the relativistic
(4.10. In fact, there are two distinct sorts of damping pro- nature of the microscopic spin-orbit coupling. Since the elas-
cesses which need be considered. First, as for the flavorleis mean-free-path of SWNT's is known to be of the order of
problem, backscattering terms lead to decay of ¢then-  microns, the corresponding spin-orbit scattering length must
chiral) SU(4) CurremsjAaBB:U(jéaBB_j/L*aBB)' which can  be orders of magnitude Iarger, and hence also of no impor—
be included via a lifetimer;. Second, however, unlike in the tance for current tubes which are at best a few tens of mi-

SU(2) case, the flavor densities themselves can decay vigrons long. Parenthetically, we note that in multiwall nano-

scattering may be of more relevance. In any case, it is
M :(jéaAﬁJrjﬁaAB)(;aﬂ/z straightforward to include the effect of spin nonconservation

theoretically by modifying Eq(4.5) to
and charge density
= — o JheAe s Jhane) M+, J=—M/ 74— ugM XB. (6.7
Probably more significant is spin-flip scattering at the bound-
are required to obey continuity equations, namely @)  aries of the QW and contacts, which are often much more
and the usual charge continuity equation, by spin-rotationagiisordered than the bulk of the QW. Such processes can be

and U1) invariance. The remaining orthogonal linear com-incorporated by a renormalization of the contact parameters
binations of the spin-flavor densities can themselves decay G, and; see Ref. 20.

with some “flavor decay rate” M;~1/7;. For sufficiently
long nanotubes and low energidsr; <1, these flavor den-
sities become negligible between contacts, and we expect to
be able to simply ignore the flavor currents. Given the small- A uniform magnetic field was already included in Eq.
ness of the backscattering couplings in nanotubes, howevel#-2). In general, magnetic contacts give rise to a spatially
this may occur only at very low voltages and temperaturesyarying dipolar field acting on the electron spin in the QW.
and for very long tubes. Provided the variation of this field is smooth on the scale of
A proper treatment of these effects at intermediate lengtthe Fermi wavelength of the QW, however, the hydrody-
scales is technically rather complicated, and beyond th&amic treatment of the magnetic field can be applied to this
scope of this paper. Nevertheless, the extension is in princase as well, simply letting3—B(x) in Egs. (4.5 and
cip|e Straightforward|y based on the techniques deve|0peﬁ4.l@. Because the characteristic Spatial scale of variation of
here. It is amusing to note that the issue of flavor currents i§he magnetic field is the size of the leads themselves, this
actually a concern even when all the leads are ordinary par&ondition should be amply satisfied for nanotubes and most

magnetic metals, since even such contacts generically do ngémiconductor QW's. - .
respect flavor. One can obtain an idea of the magnitude of the effect of

dipolar fields by considering an idealized uniformly polar-
ized spherical ferromagnet of radiug and magnetization

. . . o, €nd contacting the QW at=0. The external magnetic
Up to this point, we have assumed that the QW is |tselg0 g Q g

D. Dipolar fields

C. Spin-flip scattering

. : : - >~ field of such a sphere is a pure magnetic dipole, and hence
spin rotationally invariant. In general, quantum-mechanica - 3 .
spin-orbit coupling mixes spin and orbital angular momen- ~|m0|/(1+x/rc)ﬁ, with the usual dipolar dependence on
tum, leading to a small violation of spin conservation. Thisthe orientation ofny. To maximize the effects of the dipolar
can occur both as bulk and boundary effects. For semicorinteractions, assume an Fe contaghich has a larger mag-
ductor QW’s, the spin-orbit effects are well understood. Fornetization than Co or Nj and a radius . comparable to the
SWNT's, they are expected to be extremely small. Indeed, ifengthL of the QW, so thaB~|m,| over the whole length.

an ideal flat sheet of graphene, spin-orbit effects are negliFor |ow-temperature iromy|~0.17 T, and thus Eq5.13

gible due to the high symmetry of the zone-boundary wavgeads to the typical phase change, estimated for a SWNT, of
vector, thep? nature of the electronically active carbon or-

bitals, and the small atomic number of carbon. From a vEe L
|p0|ar%O 00{ )
. 1)

simple tight-binding treatmerthot shown herg we indeed > (6.8
find a vanishing effect for ideal graphene. In SWNT’s, bulk

spin-orbit effects can then in principle occur solely due to theThus the effect of dipolar fields is probably negligible.
curvature of the nanotube, to phonon distortions, and to de-
fects in the tube. The first two factors are probably negli-
gible, as they are suppressed both by the smallness of the
relativistic nature of spin-orbit coupling and by the smallness We conclude this paper by establishing a connection to
of the nanotube curvature and the electron-phonon couplinghndreev currents in superconductor-normal-superconductor
respectively. Tube defects generally destroy the local symjunctions and by pointing out some open questions.

VIl. DISCUSSION
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A. Analogies to superconductors in the fully coherent limit,eV,kgT<<v/L. To translate this

An interesting view on many of the above results follows €SUlt back into the spin problem, we can make a dictionary
through an analogy to Andreev processes in ballistic sndelating quantities in the two pictures. Some interesting vari-
junctions. A very similar relation was considered previously2P!€s in the spin problem are
in Ref. 32. Consider, for example, the device depicted in Fig.
1. Without loss of generality, we choose the magnetization of 32:3 T r2oty=112e,
the left FM lead asn;=x, and that of the right lead in the 2
x-y plane,m,= cos@)x—sin(d)y. Neglecting electron tunnel- 1 1
ing, magnetic fields, and backscattering, the Hamiltonian mzzzl/fTUZ(//:E:l//Tl,b: =n/2,
fully decouples into spin and charge components. Because
the spin Hamiltonian is independent of electron-electron in- N ., ~p~p g~
teractions, we are free to model it using effectively noninter- I =vi 7 =v(Prir, — YL ¥L)),
acting fermionsy.. Note that this in no way implies that the
QW is noninteracting, but simply represents the physics of
spin-charge separation. With boundary exchange couplings
K, andK,, we thus have

1 ~t o~ ~ o~
M =S =k U+ L -

We see thaf* andm? correspond to the charge current and
L K density, respectively, in the transformed variables. Thus the
H,= —ivj dx o' 720, — _1[1/,¥(0)¢l(0)+ H.c] FM-LL-FM device indeed carries a nonvanishin@xis spin
0 2 current. Note, however, that the in-plane magnetization cor-
K responds to strange “large-momentum” pair fields in the
— —z[emt//}r(L)t,/fl(L)Jr H.cl. (7.7  analog SNS system. . .
2 For comparison to the results of the previous sections,
) note that our hydrodynamic treatment gives zero spin current
Equation(7.1) must be supplemented by the boundary con-4t zero applied voltage. This is not inconsistent, because Eq.
ditions yr=1¢ atx=0 andx=L. Now consider thespin- (7.5 which is exact in equilibrium, predicts a spin current

down) particle-hole transformation, J?~v/L that vanishes in the thermodynamic limit. More pre-
N B cisely, the hydrodynamic results require incoherent transport,
=y, ¥ = WI , (7.2 which holds, e.g., foeVV>v/L. The hydrodynamic approach

predicts J*~GPV, which can be crudely matched to the
which retains canonical anticommutators fgr and pre- “Andreev” prediction [Eq. (7.9]. In particular, the hydro-
serves the boundary conditions. Under this transformatiorfynamic and “Andreev” currents are comparable whevi
the kinetic terms irH,, are invariant, but the boundary terms ~v/PL, that is essentially at the boundary between the co-

become anomalous, herent and incoherent regimes. One learns from the SNS
mapping that the spin current is actually enhanced by coher-
Lo 5 5 s ence.
HU=—ivf dx ' o, —[K,A(0)+K,e'PA(L) +H.cl, In an SNS junction, one expects a proximity-effect-
0 induced pair field within the normal region. Naively, one

(7.3 might therefore expect some uniform bulk magnetization in
the x-y plane. However, this conclusion is false, as can be

where the pair field is seen by rewriting the superconducting pair field:

~ 1 .- ~4 o~ X— .t T
R =5 (O, =Tl ), (7.4 A=vRidu T diidr (79
The pair field thus maps back to th&2oscillatory compo-

and we used the boundary conditions to remove the factor afent of thex-y magnetizationA = m;kFJr My, but not to
2 in the magnetic exchange. EquatiofY.3) is the the uniform one.
Bogoliubov-deGennes Hamiltonian for a SNS junction in the
limit of large normal reflection. The latter limit is implied by
the boundary conditiongr=1, at the ends. , _ _
The presence of the pair-field terms leads to Andreev re- L€t us finally summarize some of the open questions from
flection at the boundaries. As is well known, such a SNSOUT Point of view, and provide an outlook. One rather obvi-
: . . _ ~ S ous concern might be thiecoherentnature of transport as-
junction carries arequilibrium current | for any 6 which is

. . sumed in our study. For sufficiently long quantum wires
gfée? 1mu|t|p|e of 2r. In particular, we expect, for ¢ of and/or low conductance of the contacts, it certainly is appro-

priate to assume a two-step sequential transport mechanism

through the FM-LL-FM device. What happens if one has

Tzev(T//TTZ'&)~(KlK2)e—U (75 coherent transport? The latter situation could arise for
v? | L’ ' higher-transparency contacts or at very low energies. How-

B. Outlook and open questions
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ever, from the analogy to SNS junctions, we expect that ouNSF Grant No. DMR—-9985255, and the Sloan foundation.
main conclusions are qualitatively unaffected by coherence,
and we therefore do not expect a dramatic change. Neverthe- APPENDIX A: TRANSPORT IN A MAGNETIC FIELD
less, it would be interesting to study this question in detail.
For noninteracting electrons, this could be done in the frame- Here we outline the main step in the derivation of tHé
work of a Landauer-type approach; also see Refs. 20 and 2gharacteristics in a magnetic field for=0; see Sec. V B. To
A related issue concerns the role dfiarging effects*  do so, we first eliminatém andh, from spin current con-
where transport through the LL is hindered by Coulombservation using the spin currents in E¢5.4) and(5.5), and
blockade. For low-transparency contacts, these effects arelations(5.14) and(5.15. We are then left with the follow-
known to be .crumal at energy scales below the chargingng pulky relation determinind, :
energyE., which can be estimated for a SWNT of lendth
radiusR, and background dielectric constant 0} ~ A .9 P
4—COS‘y(ml+ my) Xhy+ 4—(1—0057)[(B-h1)(m2>< B)
E.=(e?/xL)In(L/R), i i
and typically is of the order of a few meV. Charging effects —{hy- (M xB)}B]+(1+G3)sinyh; X B
are washed out by intermediate-to-high temperatures, and . Ao A A N A
could in principle be avoided altogether by using higher- +(9/4m)? siny[(B-hy)(myxmy) +(B-my)(myxhy)]
transparency contacts and/or long tubes. We note that charg- 9 o A
ing effects also tend to destroy spin accumulafomnd +4—Gasiny[hl{B-(m1+ m,)}—(B-hy)my
therefore one has to be careful that they are not present when ™
experimentally testing for spin-charge separation. However, (R MR > _ B EA
since they manifest themselves through quite pronounced de- (hy-mg)B]+2G, [cosyh; +(1—cosy)(B-hy)B]
pendencies on external gate voltages, this issue is not ex- ~ A A a A
pected to create serious difficulties in practice. Furthermore, = Plaj c0sym;—m,+(1—cosy)(B-m,)B
although our present theory does not include charging ef-
fects, this could be accounted for easily via a proper treat-
ment of the zero modes in the bosonized version of the Lut-
tinger liquid.-®
A very interesting extension of the methods of this paperThis equation is then analyzed fér = and special choices
is to problems involvingnesoscopiderromagnetic contacts for B in Sec. V B.
which are sufficiently small so that their magnetization be-
comesdynamical Here the quantum wire/nanotube would APPENDIX B: DISSIPATIONLESS PRECESSION
mediate an effective Ruderman-Kittel-type interaction be-
tween the FM magnetizations, and interesting transport phe- The algebraic manipulations necessary to obtain the self-
nomena can be anticipated. consistency equatiof5.27) in Sec. V C are provided in this
It would now clearly be of great interest to experimentally appendix. With fi;—h,)-J=0, we can write
study the scenario put forward here. The probably best can-
didates for such experiments are single-wall carbon nano- hy-ho=[1—(h-J)2]cogA¢)+(h-I)2. (B1)
tubes, which should offer the unique possibility of observing R
spin-charge separation directly on a single 1D quantum wireSinceh;-J;=h,-J; is conserved, by multiplying Eq5.4)
In addition, the effects of backscattering were shown to im-y ﬁl and Eg. (5.5 by ﬁz, and exploiting Eq.(5.7), we

ply rather_dramat.ic consequences for spin transport, such asgiain h;,-J=0. This in turn implies directly that we can
sawtoothlike oscillatory current-voltage relation. Such spec- s e .

: . “relateh, to hy. With h=h,, we obtain
tacular consequences of the electron-electron interactions
have not been predicted previously, to our knowledge, but
should be observable for long nanotubes at very low tem-

peratures.

9 PP N A~ 4
+Esiny[(B'mz)ml—cosaB]+Gasinyml><B .

h,=cogAg)h—sin(Ag)hxJ. (B2)

Future work should also address in detail the 2D gener:rhe unkpown spin chemical potianthilcan .then be obtained
om spin current conservation;=J,, with the currents

alization of these ideas, which seems particularly interestingér P
in the context of some theories of high-superconductivity.  >Pecified in Egs(5.4) and(5.5.
We hope that our paper has convinced the reader that spin USing the abbreviations E¢5.24, W=J/PI,>0 andZ
transport in strongly correlated mesoscopic systems repre= 9/(47G,), the relatiorh-J, =0 givesh-m; = X. Further-
sents an exciting area of research that leads to both fund&ore, from Egs(5.4) and(5.5),
mental insights and technologically useful devices. o
my-Jy=my-J,=(1—X?)/W. (B3)
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SPIN-DEPENDENT TRANSPORT IN A LUTTINGER LIQUID
wherem-J is determined by Eq(B3). In addition, m,-J;
=m-J [see Eq(B3)] gives
h-(myxm,)=(2/XZ)[sir(6/2) — X? cof(A ¢/2)]
+Xsin(Ag)m-J.

Finally, we may employ the relatiom;-J,=m-J, which
yields

XZ cogAp)h-(myxm,)—XZsin(Ag)(m-J)h-(m;—m,)
— 2 sirf(8/2) + 2X2 co(A o/2) — X sif(A@)m, - (h < J)
=0. (B4)

Alternatively, one could use spin conservation bf(m;

X m,), which produces the same answer. When simplifying
Eq. (B4), it is helpful to use the relation

m;- (hxJ3)=—2ZX(1—X?)/W=—ZXm-J,

PHYSICAL REVIEW B4 035310

We now employ spin-current conservation to obtain a
closed nonlinear self-consistency equation for findxg
and thereby the current-voltage relation. Witk)?
=(G,/Pl)h-m,, the relationm,-J,=PI,(1—X?) gives,
after some massaging,

2_ %GIQCTSM(A@) — 4 sir( 012)sinA (A @/2)

+|cogAg)+ VEV(l—XZ)sin(Acp)

G,C
= T co(Apl2)(1+272)|Q?

C
— |;I T co(Apl2)cog 8)(1+22X?)=0.

The second relation, allowing us to elimina@?, comes

o from h- J2 WC;J/2, and reads
which follows from J,-J=J. Straightforward algebra then
leads to the self-consistency equat|dy. (5.27)]. ZWG,Cr
1+ Tcot(A<p/2) Q2%+ cogA¢)X?

APPENDIX C: SPIN DIFFUSION

In this appendix, the technical steps in the derivation of

the |-V characteristics in the presence of spin diffusieae

Sec. V D are given. The charge current can be written as Eq.

(5.25, but with a modified quantity,

G,
Pl,

X?= hl my. (Cy

In addition, we use&C;=PI L/og, with the spin conductiv-

|ty (4.19. To compute the current, we first need to express

hz in terms of hl—h via the steady-state diffusion-
precession relatiofEq. (4.14)]. For symmetry reasons,?

= ﬁlz, since we consider identical contacts. This directly im-
plies from Egs.(5.4) and (5.5 that

h-J=—h,-J=WC/2, (C2)

where we use agaiw=J/PI,. With the precession phase
A defined in Eq.(5.23, we then obtain, instead of Eq.
(Bz)!

h,=cogAg@)h—sin(Ae)hxI—WC; cof(Ag/2)J.
(C3

Combined with Eq.(C2), this allows us to expresB? in
terms ofX? alone:

(hG,/Pl,)?=X>—W?G _C+/2PI,,. (C4
HereJ,?=J? yields, withZ=9/7G,,,
1—X?)(1+2%X2

o ) ) c5)

1+G,Cr(1+2Z3)/(2P1,)
Then Eq.(B3) still holds.

- Esin(A )(1—X?)X?
W ¢

G,Ct .Cr )
T ( + 557 )co§(Ago/2)W
ZWG,
+ 2P, “cot( A ¢/2)| X2+ 2 sirf(A ¢/2)

- ;ICTco§(A<p/2)](1—x2)

Eliminating Q? from these two relations gives the self-
consistency equation fot? for arbitary temperature and ap-
plied voltage. The solutions to this equation directly give the
current via Eq(5.25. One checks easily that this reproduces
the T=0 self-consistency equatid.27).

We shall now evaluate the self-consistency equation in
the spin-diffusion-dominated regime characterized Dy
>T*, with the scaleT* defined in Eq(5.32. This tempera-
ture results fromf(T)=2G,C+/Pl,=1 for T=T*. Since
f(T)>1 for T>T*, the above equations can be drastically
simplified in this regime.

For T>T*, the self-consistency equation is again solved
by the discrete valueEgs. (5.28)] of the precession phase
A ¢ indexed by the winding numbam. Since under these
conditions, from Eq(C5), the precession phase can be writ-

ten as
( 2P|a)
Ap=

G,.Ct
it is then straightforward to derive E¢5.33 in Sec. V D.

Y2pLPI

v

IX\1-X2,
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