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Spin-dependent transport in a Luttinger liquid
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We develop a detailed theory for spin transport in a one-dimensional quantum wire described by Luttinger-
liquid theory. A hydrodynamic description of the quantum wire is supplemented by boundary conditions,
taking into account the exchange coupling between the magnetization of ferromagnetic reservoirs and the
boundary magnetization in the wire. Spin-charge separation is shown to imply drastic and qualitative conse-
quences for spin-dependent transport. In particular, the spin accumulation effect is quenched except for fine-
tuned parameter regimes. We propose several feasible setups involving an external magnetic field to detect this
phenomenon in transport experiments on single-wall carbon nanotubes. In addition, electron-electron back-
scattering processes, which do not have an important effect on thermodynamic properties or charge transport,
are shown to modify spin-dependent transport through long quantum wires in a crucial way.
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I. INTRODUCTION

Spin-polarized transport represents an interesting bra
of mesoscopic physics, in which both the charge andspinof
the electron are actively manipulated.1–5 In different setups,
the spin may be employed as an information storage or tr
port element, where the advantage over charge trans
stems from the very long spin lifetimes in many materia
and the smallness of the dissipated power. These advan
have already resulted in many technological applicatio
and among the most popular future perpectives of spintro
is the field of quantum computation.6 Spin-dependent trans
port also offers insights into fundamental physics. In t
paper we shall address in detail how spin transport proce
in strongly interacting non-Fermi-liquid metals, taking th
behavior of one-dimensional~1D! metals as a paradigm i
which electron-electron interactions lead to a breakdown
Fermi-liquid theory. The 1D non-Fermi-liquid behavior
often described byLuttinger-liquid ~LL ! theory.7

The primary motivation for this study comes from rece
transport experiments8 on carbon nanotubes,9 which demon-
strated the breakdown of Fermi-liquid theory in these nea
ideal 1D quantum wires~QW’s!. In fact, when studying
charge transport in single-wall nanotubes~SWNT’s!, the ob-
served power-law behaviors in the tunneling density of sta
are consistent with their theoretical description10 in terms of
a LL. The LL describes metals in the 1D limit where on
one or very few bands intersect the Fermi energy. This n
Fermi liquid exhibits fractionalization of electrons into qu
siparticles, comprising a diverse set carrying spin separa
from charge, and charge in fractions of the electron cha
e.11 Furthermore, the LL is the simplest model showing t
remarkable phenomenon ofspin-charge separationwhich
has been postulated by many to underly the cup
superconductors.12–15 In a LL, spin and charge degrees
freedom are completely decoupled, and are moreover c
acterized by different velocities. As Landau quasipartic
are unstable, an electron will spontaneously decay
charge- and spin-density-wave packets which then propa
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with different velocities. Thereby a spatial separation of s
and charge of the electron results. Unfortunately, this h
mark behavior of strongly correlated 1D fermions remains
be observed experimentally~at least in an unambiguousl
accepted way!. Elaborating on our short paper,16 we propose
several feasible setups that would allow one unambiguou
to detect spin-charge separation via spin-transport exp
ments on an individual SWNT. For related but rather diffe
ent proposals to detect spin-charge separation in a LL
spin transport, also see Refs. 17 and 18.

As will be described at length below, this can be achiev
by attachingferromagneticleads to the QW, and possibly a
additional magnetic field; see Fig. 1. For simplicity, identic
contact parameters are assumed below, with straightforw
generalizations possible. By measuring the variations of
current-voltage (I -V) characteristics with either the angleu
between the ferromagnetic magnetizations in the leads, o
magnetic fieldBW , one can indeed directly probe spin-char
separation. A related spin-transport experiment was car
out recently for multiwall nanotubes, where the angleu was
fixed to either zero oru5p.19 The experiment proposed her
for SWNT’s should either allow for arbitraryu, or employ an
additional magnetic field. We note that spin transport in su
a setup is well understood for Fermi liquids. In particular, t
I -V characteristics~including a magnetic field! were recently
computed using a semiclassical description.20

In our theory, we assume that tunneling across the
contacts proceeds incoherently, i.e., the lengthL of the QW
must be longer than either the thermal length scale\v/kBT

FIG. 1. Proposed experimental setup~schematic!. An individual
SWNT or quantum wire is connected via low-conductance conta
to two ferromagnetic reservoirs, andI -V curves should be measure
either in an additional magnetic field or for various angles betw
the magnetization directions in the leads.
©2001 The American Physical Society10-1
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or the scale\v/eV set by the applied voltageV. We then
consider, in general, systems composed of 1D interac
quantum wires and bulk ferromagnets. With the exception
Sec. VI, where the additional flavor degree of freedo
present in SWNT’s will be addressed, we focus on sing
mode QW’s.

Another interesting aspect of spin transport concerns
role of electron-electron backscattering interactions. In
spin-12 QW, these interactions are~marginally! irrelevant un-
der the renormalization group~RG! flow, and therefore only
cause a renormalization of interaction parameters in the l
energy LL theory.7 However, this essentially thermodynam
~equilibrium! argument must be re-examined when deal
with spin transport. In fact, such interactions, despite be
irrelevant, can result in nonlinear and sometimes dram
effects, e.g., a nonsinusoidal oscillatoryI -V characteristics.

We pause for some guidance for focused readers. Exp
mentally minded readers will find two proposed experime
~and analytical predictions for transport properties in th
experiments! in Sec. V. Those looking for the principle ana
lytic results will find them in two parts. First, the constitutiv
relations for the charge and spin currents through each
tact are given in Eqs.~3.28!, ~3.31!, and~3.32! . To complete
the transport problem, one needs only the charge cur
continuity condition, and its less familiar analog for sp
which is given in Eq.~4.14!.

The structure of this paper is as follows. In Sec. II, w
introduce the basic model, and outline the computation of
nonequilibrium spin current. In Sec. III, the physics arisi
at a contact between a ferromagnetic reservoir and a
tinger liquid is addressed at length. Two processes are sh
to be of importance, namely, electron tunneling and bou
ary exchange. Exchange leads to conformally-invari
boundary conditions which are derived here. In Sec. IV
hydrodynamic description of spin transport in the 1D QW
developed. In Sec. V, we derive theI -V characteristics in a
magnetic field for the simplest spin-transport device~see Fig.
1!, first for a short-to-intermediate length of the QW. Und
the latter condition, backscattering can be neglected. The
fects of backscattering are then addressed in detail in S
V C and V D, where we focus on zero magnetic field f
clarity. Finally, several extensions and possible concerns
addressed in Sec. VI. We conclude in Sec. VII by discuss
an analogy to ballistic superconductor-norm
superconductor~SNS! junctions, summarizing some ope
questions and providing an outlook. Details of our calcu
tions in Sec. V can be found in three appendixes. In in
mediate steps of the calculations, we pute5\51, but re-
store units in experimentally relevant results.

II. MODEL AND FORMULATION

The low-energy description of a single-mode QW is
markably universal,7 and a sufficient Hamiltonian for ou
purposes is

HQW5E
0

L

dx$2 ic†vtz]xc1u~c†c!2%, ~2.1!
03531
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wherec5caa is a four-component spinor. Herea5R/L in-
dexes the chirality that differentiates right- and left-movi
modes, anda5↑/↓ indexes the spin. We suppress the ind
ces whenever possible, employing Pauli matricestW and sW
acting in the chirality and spin spaces, respectively. Furth
more,v denotes the Fermi velocity, or, more generally, t
spin velocity of the interacting theory. If the QW is isolate
the zero-current condition at the end points requires that
impose the boundary conditionscR(0)5cL(0) andcR(L)
5cL(L). Only the forward-scattering interactionu is kept in
Eq. ~2.1!. Alternatively, we will use the exponenta.0 for
tunneling into the end of the LL, e.g., atx50, as a measure
of the interaction strength. Equation~2.1! is not completely
general. It contains two parametersv andu, while a general
single-mode LL has three parameters: a charge velocityvc ,
a spin velocityv, and a dimensionless ‘‘Luttinger param
eter,’’ often denotedKr or g, wherea5(Kr

2121)/2. In Eq.
~2.1!, we have assumed full~Galilean! translational invari-
ance, leading toKr5v/vc . This relation is expected to b
well satisfied in many experimentally relevant QW’s, a
moreover the manipulations to follow relax this conditio
and thus can be applied even whenKrÞv/vc .

In some circumstances, Eq.~2.1! should be supplemente
by the electron-electronbackscatteringinteraction,

Hbs52bvE dx JWL•JWR , ~2.2!

with the chiral spin currents

JWR/L~x!5
1

2
:cR/L

† ~x!sW cR/L~x!:, ~2.3!

where the colons denote normal ordering. These chiral s
currents obey Kac-Moody commutation relations (m,n
5x,y,z)

@JL/R
m ~x!,JL/R

n ~x8!#56 id8~x2x8!dmn

1 i emnlJL/R
l ~x!d~x2x8!, ~2.4!

where the1 (2) sign is associated with theL ~R! current.
We note that in a spin-1

2 QW, the backscattering interactio
@Eq. ~2.2!# is marginally irrelevant in the RG sense, an
hence can be neglected at low energies in many equilibr
properties. In a SWNT, the generalization ofHbs causes ex-
ponentially small gaps that can be neglected at energies
are not too low. Furthermore, the dimensionless backsca
ing coupling constantb is generally small, and scales as 1R
with the tube radiusR. Importantly, as will be discusse
below in detail, a precession effect encoded in Eq.~2.2! is
crucial for understanding spin transport in long QW’s.

For energies well below the electronic bandwidthD, a
ferromagnetic~FM! lead can be described using an effe
tively noninteracting Stoner-like picture,21 with a constant
density of states. It is then sufficient to employ a nonint
acting 1D model, e.g., for the left lead (x,0),

HFM5 (
s561

E
2`

0

dx f†~2 ivsûst
z]x! f , ~2.5!
0-2
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SPIN-DEPENDENT TRANSPORT IN A LUTTINGER LIQUID PHYSICAL REVIEW B64 035310
wheref is again a four-component spinor. Comparing to E
~2.1!, different spin quantization axes have been used,
therefore the projection operator

ûs5~16m̂•sW !/2, ~2.6!

projecting the spin quantization axis of the QW onto t
magnetizationm̂, is needed. This description of the sem
infinite lead must be supplemented by an appropriate bou
ary condition, f R(0)5 f L(0). In Eq. ~2.5!, the two Fermi
velocities v6 parametrize the different densities of state
rs51/(2pvs), for the majority and minority carriers. Fol
lowing Ref. 20, we choose a suitable rescaling of thef op-
erators to setv15v251, thereby incorporating the differ
ence in the density of states into a redefinition of the hopp
matrix elements,ts→ts /rs , employed in the tunneling
Hamiltonian; see Eq.~2.7! below. Formally this is done by
choosing eigenstatesf s of m̂•sW with eigenvalues56, and
then rescalingf s(x)→vs

21f s(x/vs), the spatial rescaling be
ing allowed because the different spin polarizations are n
interacting, and tunneling acts only atx50.

The LL’s and ferromagnets in question will be consider
coupled by low-conductance contacts with identical prop
ties. Processes in which electrons are transferred across
a contact can be described by thetunneling Hamiltonian
H tun. Provided this contact occurs at one of the ends of
LL, say, atx50, this has the form

H tun5F†WC1C†W†F, ~2.7!

where F5 f (02) and C5c(01) are fermion annihilation
operators at the ends of the ferromagnet and QW, res
tively. The 232 tunneling matrixW reads, with Eq.~2.6!,

W5 (
s561

tsûs . ~2.8!

Using the spin-dependent hopping matrix elementsts , we
may define spin-dependent conductancesGs5(e2/h)utsu2,
or, alternatively, the contact parameters

G5G↑1G↓ , P5~G↑2G↓!/G. ~2.9!

HereG is the total conductance associated with the cont
In a slight abuse of terminology, we callP the polarization.
The polarization satisfies 0<P<1, and in fact represents th
asymmetry between thelocal tunneling density of states o
the majority and minority carriers of the ferromagnet. Hen
P is not a bulk property, and depends upon the detailed
ture of the FM-QW contact. In the experiment of Ref. 1
application of our theoretical results, in particular Eq.~5.9!—
which differs slightly from the theory used in Ref. 19—give
a value ofP50.3 for a multi-wall NT to FM~cobalt! contact
at T54.2 K.

From Eq.~2.7!, one may deduce the spin current, defin
by

JW tun5
]

]t S E dx MW D u tun, ~2.10!

where the magnetization density in the QW is
03531
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MW 5JWR1JWL . ~2.11!

Using the continuity equation in the absence of backscat
ing interactions,b50, the steady-state current is thus

JW5v~JWR2JWL!. ~2.12!

Then the tunneling current is

JW tun5
i

2
~F†WsW C2C†sW W†F !. ~2.13!

Of course, a formula similar to Eq.~2.13! is obtained for the
charge current across the contact,

I 5 i ~F†WC2C†W†F !. ~2.14!

In addition to the tunnel coupling in Eq.~2.7!, the FM mag-
netization and the LL boundary magnetization can
coupled by a pureexchangeterm,

Hex52Km̂•C†
sW

2
C. ~2.15!

Even if in a microscopic formulation no bare exchange co
pling K is present, it will be generated in the low-energ
effective Hamiltonian, since tunneling causes virtual p
cesses corresponding to exchange; see below and Ref
Boundary exchange similar to Eq.~2.15! was considered in
the context of spin chains in Ref. 23.

To study transport, we must formulate the nonequilibriu
dynamics of the system. This formulation is more subtle th
in conventional charge transport, due to the complicatio
arising from the noncommuting nature of spin. We therefo
proceed carefully along the lines of a Keldysh approach.
concreteness, we specialize for the moment to a semi-infi
LL contacted atx50. Consider an initial system compose
of two decoupled pieces, described by the HamiltonianH0
5HFM1HQW. The ferromagnetic part, governed byHFM , is
polarized along directionm̂, and located atx,0. The wire,
located atx.0, is governed byHQW, which is assumed to
be SU~2! invariant. The latter condition guarantees the ex
tence of a continuity equation for the spin density and c
rent. Similarly, charge conservation implies a continu
equation for the charge density and current. Att52`, we
assume that each half is at quasiequilibrium at its o
chemical potentialmFM andmQW. Similarly, we assume tha
the LL supports a quasiequilibrium magnetization, which c
be described by a grand canonical distribution with a ‘‘sp
chemical potential’’hW . We stress that neithermQW nor hW are
physical potentials, such as electrostatic or Zeeman fie
but rather characterize the initial nonequilibrium distributio
Then we adiabatically turn on the contact perturbationH8
5H tun1Hex,

H~ t !5H01edtH8, ~2.16!

whered→01 is an infinitesimal inverse time scale contro
ling the slow turning on of the contact interaction.

The above formulation is rather rigorous, but has the lim
tation of being formulated to treatboth the tunneling and
0-3
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L. BALENTS AND R. EGGER PHYSICAL REVIEW B64 035310
boundary exchange terms as perturbations. In practice, th
appropriate in the low-conductance limit, since the bound
exchange is generally determined by virtual tunneling p
cesses, and is hence small. However, it is useful theoretic
to contemplate a situation in which the tunneling is small
the boundary exchange is not. In such a case, it app
natural to includeHex into H0 rather than inH8. This raises
difficult conceptual issues, sinceHex does not commute with
the total spin of the LL, and hence renders its magnetiza
uncertain in directions perpendicular tom̂. On physical
grounds, however, we expect that, becauseHex transfers spin
into and out of the LL only at the boundary, sense can
made of thebulk spin chemical potential in the limit of a
semi-infinite LL. This is fairly clear from the following
thought experiment: imagine preparing the LL with zero tu
neling and zero boundary exchange in a state with a non
magnetization density not parallel tom̂. Then, if Hex is
turned on at some time, its effect will be to scatter le
moving electrons into right-moving ones upon their reach
x50, changing their spin orientation in the process. If t
LL is semi-infinite, however, it would take an infinit
amount of time to modify the mean magnetization of the
in this way. Instead, one expects a steady state to be e
lished, generally with a time-independent spin current. Mo
over, for a finite but long LL, so long as there are som
inelastic processes deep in the LL that can equilibrate
returning electrons, one expects that an equilibrium state
be established which has a mean magnetization very clos
that before turning on the boundary exchange. In fact, a s
tering approach of this type can be directly implemen
using bosonization methods, and will be discussed ana
cally in Sec. III B. Alternatively,Hex can be incorporated
directly into H0, but, in this case, care must be taken
ensure thathW is coupled only to the magnetization outside
neighborhood of the boundary. For the moment, we sim
use the above discussion as motivation to incorporateHex
into H0.

We are interested in the properties of the system at t
t50, when a steady-state transport of charge and spin
tween the two systems has been achieved. Then we can
mally calculate the expectation value of any operator at
time:

^O~0!&5
1

Z
TrFe2b(H02L)T expS i E

2`

0

dt H~ t ! DO

3T expS 2 i E
2`

0

dt H~ t ! D G , ~2.17!

whereT denotes time ordering and

L5mFMNFM1mQWNQW1hW •SW QW
tot . ~2.18!

It will be most convenient to choose the zero of energy inH
such thatmFM5mQW5h50 in equilibrium, i.e., for zero ap-
plied voltage.

Expanding out the time-ordered exponential, to lowest
der one obtains
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^O&52 i E
2`

0

dt
1

Z
Tr$e2bH̃0@O,H8~ t !#%edt, ~2.19!

whereH̃05H02L andH8(t)5eiH 0tH8e2 iH 0t. Owing to the
factor ofL in the Boltzmann weight, not present in the tim
evolution of H8(t), this is a nonequilibrium expectatio
value. We can cast it into a more equilibrium form by wr
ing H05H̃01L. Then

H8~ t !5eiH̃ 0t~eiLtH8e2 iLt!e2 iH̃ 0t. ~2.20!

Equation ~2.20! has the form of the time evolution of th
operator in the brackets evolved by the ‘‘nonequilibrium
HamiltonianH̃0, which is the same as is used in the Bolt
mann weight in Eq.~2.19!. Equation~2.19! can be rewritten
in the slightly more suggestive form

^O&52 i E
2`

0

dt edt^@O,HL8 ~ t !#&H̃0
, ~2.21!

whereHL8 indicates the modified operator

HL8 5eiLtH8e2 iLt, ~2.22!

which evolves according to the fictitious equilibrium tim
evolution dictated byH̃0. The subscriptH̃0 on the expecta-
tion value indicates that it is a standard equilibrium avera
with respect to the HamiltonianH̃0, in which the argument
of the Fermion fields indicates standard Heisenberg pic
time dependence usingH̃0,

^O1•••On&H̃0
5

1

Z
Tr~e2bH̃0O1•••On!,

O~ t !5eiH̃ 0tOe2 iH̃ 0t.

Thereby we can express an intrinsically nonequilibriu
property of the system with HamiltonianH0 in terms of a
fictitious equilibrium average with respect to the shift
HamiltonianH̃0.

III. CONTACTS

In this section, we analyze in detail the physics of a sin
contact between a FM lead and a semi-infinite LL~taken at
x50). We expect that the results apply to finite-length LL
longer than the thermal lengthv/kBT, beyond which trans-
port is incoherent.

A. End contacts: Boundary operators

We first study the properties of the contact in equilibriu
from the RG point of view. It is helpful to view bothH tun
andHex as perturbations to a decoupled fixed point describ
by H0. Standard arguments give the scaling dimension
both ts andK:

D ts
511a/2, DK51. ~3.1!
0-4
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The scaling dimensionDK is not renormalized due to spin
charge separation in the QW. A simple calculation then gi
the RG scaling equations

] l utsu2~ l !52autsu2, ] lK~ l !5c~ ut↑u22ut↓u2!, ~3.2!

where l 5 ln(D/E) is the standard RG flow parameter, andc
denotes a nonuniversal constant. Note thatK is renormalized
by the hopping matrix elements, but the inverse does
occur. The most important property of Eq.~3.2! is that, while
the tunneling isirrelevant for a.0, the exchange coupling
K between the LL and the ferromagnet is exactlymarginal.

Following the RG flow from the ultraviolet cutoffD down
to energy E'max(kBT,eV)!D, we find utsu2(E)
5utsu2(E/D)a and

K~E!5K1a21cGP@12~E/D !a#@utsu2~E!. ~3.3!

Therefore, the effective exchange couplingK(E) does not
pick up the (E/D)a suppression factor, and generally
much larger than the effective hoppingts(E), regardless of
the microscopic ‘‘bare’’ values of these couplings. Pare
thetically, we note that the noninteracting limit,a→0, is not
correctly handled by the simple RG equations~3.2!, as this
limit involves additional marginal operators. In fact, fora
→0, not logarithmic dependencies@as predicted by Eq
~3.3!# but instead a principal parts prescription emerges.

Since the exchange coupling is exactly marginal and
tunneling irrelevant, solving the problem forzero tunneling
but nonzero exchange gives the ‘‘boundary fixed point’’ s
lution. From the viewpoint of low-energy physics, the on
effect of the boundary exchange coupling is then to induc
modified boundary condition at the contact. This modifi
conformally invariant boundary condition comprises
boundary fixed point24 describing the semi-infinite LL close
to a ferromagnet.

B. Zero tunneling boundary fixed point

To gain maximum insight into the physics, we solve t
equilibrium problem with zero tunneling exactly in a numb
of equivalent ways. The most familiar method is Abeli
bosonization.7 Choosing the quantization axis for the spin
basis along them̂ axis, the electron field can be written i
terms of boson fields,

(
s8

m̂•sW ss8cR/L,s85
1

Aa0

e( i /A2)[wr6ur1s(ws6us)] , ~3.4!

where (wr ,ur) and (ws ,us) are charge and spin boson
respectively, that satisfy the algebra

@ur/s~x!,wr/s~x8!#5 ipQ~x2x8!,

with the Heaviside step functionQ(x). The short-distance
cutoff a0 describes a nonuniversal scale factor relating
microscopic Fermion field to the continuum bosonized v
tex operators, and is related to the bandwidtha0.v/D.
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Neglecting the bulk backscattering interaction@Eq. ~2.2!#
for the moment, the LL Hamiltonian splits into spin an
charge components,H5Hr1Hs . We require only the spin
component,

Hs5
v

2pE0

`

dx@~]xus!21~]xws!2#2
K

pA2
]xus~0!.

~3.5!

The last term is the boundary exchange term. It can be tra
formed away by the canonical transformation

us~x!→us~x!1
K

vA2
Q~x201!, ~3.6!

which simultaneously encapsulates several physical effe
First, since

SW •m̂.]xus /~pA2!,

a local ‘‘proximity effect’’ magnetization is induced in th
neighborhood of the contact. As this induced magnetizat
decays on the microscopic scale of the Fermi wavelen
the magnetization appears within bosonization as ad func-
tion. Second, thetransverseleft- and right-moving spin cur-
rents also depend onus :

JR
6;e6 iA2(ws1us), JL

6;e6 iA2(ws2us).

Thus the shift in Eq.~3.6! leads to modifications of the trans
verse spin current,

JR
6~x.01!→e6 iq/2JR

6~x.01!, ~3.7!

JL
6~x.01!→e7 iq/2JL

6~x.01!, ~3.8!

where a dimensionless measure of the boundary excha
coupling is provided by theexchange angle,

q52K/v. ~3.9!

This transformation can thus be interpreted physically a
phase shift. Where before the transformation spin conserv
tion requiredJWR(01)5JWL(01), after the change of variable
we have

JR
6~01!5e6 iqJL

6~01!. ~3.10!

Unlike the purely local magnetization parallel tom̂, this
phase shift can have measurable consequences far from
contact.

The phase shift can also be understood directly in term
electrons, which is useful for making contact with earli
noninteracting theories.20 It is simplest to combine the right
and left-moving Fermions of the semi-infinite LL into
single chiral right-moving Fermion for each spin species
the full infinite line. In particular, we let

ca8 ~x!5H cLa~2x! ~x,0!

cRa~x! ~x.0!,
~3.11!
0-5
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which ensures continuity ofc8 at the origin due to the
boundary conditioncR(0)5cL(0). At the boundary where
the original right and left movers have been ‘‘merged’’ t
gether, we haveJWR(0)5JWL(0)5JW8(0), sothat the exchange
Hamiltonian becomes

Hex522Km̂•JW8~x50!, ~3.12!

with JW85(c8)†sW c8/2. We may then write the Dirac equatio
for c8 as

~] t1v]x!c8~x!5 iKd~x!m̂•sW c8~x!. ~3.13!

For low-energy stationary states, the time derivative may
neglected, and Eq.~3.13! then yields

c8~x501!5expS i
q

2
m̂•sW Dc8~x502!. ~3.14!

Thus the boundary exchange simply induces different ph
shifts for ~left-moving! electrons incident upon the conta
from the LL and reflected back into the LL~as right movers!,
dependent upon their polarization relative tom̂.

It is technically most convenient to work directly with th
spin currents. This has the advantage of keeping the
quantization axis arbitrary at all stages. Using the sa
‘‘merged’’ operators as defined above, the Kac-Moody co
mutation relations~2.4! and Eq.~3.12! result in the equation
of motion for the merged chiral spin current,

~] t1v]x!JW852Kd~x!m̂3JW8, ~3.15!

where bulk backscattering is again neglected. In a ste
state,] tJW850, and Eq.~3.15! can be formally solved to ob
tain

JWR~01!5R~q!JWL~01!. ~3.16!

Here the phase shift is encoded in the one-parameter S~3!
matrix,

R~q!5exp~qG!, Gmn5(
l

m̂lelmn , ~3.17!

which describes rotation by an angleq around the rotation
axism̂. Equations~3.16! and~3.17! provide the most genera
formulation of the effects of boundary exchange. Usi
these, we takeq to definethe dimensionless ‘‘exchange cou
pling constant’’ of the low-energy theory. It describes t
angle that an incident spin in the LL precesses around
FM magnetization directionm̂ due to the exchange interac
tion. In principle, since the boundary exchange operato
exactly marginal,q need not be small, but for the case
low-conductance contacts, one hasq!1; see Ref. 22.
Boundary condition ~3.16! describes the zero tunnelin
boundary fixed point in the presence of exchange, an
crucial to the subsequent development of our theory.
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C. General formulation

We now include the effect of tunneling on top of th
boundary exchange above. To do this is slightly subtle, o
ing to an~unphysical! short-distance singularity inherent t
the linearized spectrum of the Luttinger model. To reso
this difficulty, we are required to choose some short-dista
regularization for the microscopic physics of the contact. T
form of the resulting macroscopic equations is independ
of this choice, although the quantitative values of cert
O(1) coefficients can be cutoff dependent. A convenie
method is to employ the combined infinite chiral Fermi
description introduced above, and then assume that the
neling occurs on the right-moving branch slightly after t
exchange coupling acts, i.e., within some distance of the
der of a0. When an electron tunnels into the LL from th
ferromagnet, its spin and charge are propagated to the r
and do not themselves interact with the exchange torque
that

JWL5JWL~01!, JWR5JWR~01!1
1

v
JW tun. ~3.18!

The additional tunneling spin currentJW tun can now be calcu-
lated using the time-dependent perturbation theory treatm
described in Sec. II.

In particular, we considerO5JW tun with Eq. ~2.13!, and
H85H tun. For this case, Eq.~2.22! yields HL8 5A(t)
1A†(t), where

A~ t !5F†WU~ t !C,

with the unitary matrix

U~ t !5expF i S V1
hW •sW

2
D tG , ~3.19!

where V5mQW2mFM . Note thatU(t) is simply a matrix,
and hence does not represent an operator in the Hil
space. It comprises the only explicit time dependence in
integrand in Eq.~2.21!, and can be removed outside th
trace. Applying the above results to Eq.~2.21!, we find ~re-
peated indices are summed!

^JW tun&5ReE
2`

0

dt edt~WsW !ab„U
†~ t !W†

…gl

3^@Fa
†~0!Cb~0!,Cg

†~ t !,Fl~ t !#&H̃0
. ~3.20!

A formula similar to Eq.~3.20! is obtained for the charge
current@Eq. ~2.14!#:

^I &52 ReE
2`

0

dt edtWab„U
†~ t !W†

…gl

3^@Fa
†~0!Cb~0!,Cg

†~ t !Fl~ t !#&H̃0
. ~3.21!

Thereby both the charge and spin currents across the co
can be calculated in terms of equilibrium correlation fun
tions.
0-6
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To calculate these correlation functions, it is more con
nient to switch to a Euclidean Lagrangian approach. N
that we require correlators calculated not with respect toH0,
but to H̃0. Thus we must consider

L̃FM5LFM2E dtE
2`

0

dx mFMf †f ,

L̃QW5LQW2E dtE
0

`

dx S mQWc†c1hW •c†
sW

2
c D .

Fortunately, this modification of the Lagrangians has no
fect on theF and C correlators. Physically, this is becau
the lead and wire correlators are calculated in equilibrium
that the added terms act as potentials. They thus simply
idly shift the spectrum of states on both sides of the cont
and those states, raised or lowered below the~equilibrium!
chemical potential, are filled or emptied, respectively.
general, this would induce some weak change in the corr
tors due to energy dependence of the density of states.
our model, however, the correlators of interest are stric
unaffected. Formally this follows, since the transformatio

f ~x!→exp@ i t zmFMx/v# f ~x!,

c~x!→expF i t zS mQW1hW •
sW

2
D x

vGc~x!,

transform L̃FM→LFM and L̃QW→LQW, leaveF and C in-
variant, and respect the boundary conditions atx50. Note
that calculating expectation values using these transfor
fields ~governed byLFM and LQW) in a functional integral
formalism naturally produces correlators normal-orde
with respect to the shifted fields. This correctly captures
physics of filling and emptying the shifted energy eigensta
discussed above.

From the above discussion, it is apparent that the r
time correlator appearing in Eqs.~3.20! and ~3.21! can be
calculated using the pure, unpolarized LagrangiansLFM and
LQW corresponding to Eqs.~2.5! and ~2.1!, respectively.
Their SU~2! invariance therefore implies

^@Fa
†~0!Cb~0!,Cg

†~ t !Fl~ t !#&H̃0
Q~2t !5daldbgiC~2t !,

~3.22!

where

iC~ t !5Q~ t !^@B~ t !,B†~0!#& ~3.23!

is the standard retarded Green’s function of the operator

B5F↑
†C↑ . ~3.24!

The choice of spin components in Eq.~3.24! is arbitrary.
Substituting Eq.~3.22! into Eqs. ~3.20! and ~3.21!, and

usingU†(2t)5U(t), we find
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^JW tun&52ImE
2`

`

dt Tr„U~ t !W†WsW …C~ t !,

^I &522 ImE
2`

`

dt Tr„U~ t !W†W…C~ t !.

It is helpful to express the matrices appearing in these
pressions in terms of projection operators,

W†W5 (
s561

utsu2ûs ,

U~ t !5 (
s8561

expF i S V1
hs8

2 D t G v̂s8 ,

with v̂s[(11sĥ•sW )/2 defined analogously toûs ; see Eq.
~2.6!. Then it becomes straightforward to compute the av
ages

Tr~ ûsv̂s8!5
1

2
~11ss8m̂•ĥ!,

Tr~ ûsv̂s8s
W !5

1

2
~sm̂1s8ĥ1 iss8m̂3ĥ!,

and hence the tunneling spin current is

^JW tun&52
G

2 (
s

@~Pm̂1sĥ!Im C̃~V1hs/21 id!

2Psm̂3ĥ ReC̃~V1hs/21 id!#. ~3.25!

Similarly, the charge current is

^I &52G(
s

~11Psm̂•ĥ!Im C̃~V1hs/21 id!.

The quantitiesG andP were defined in Eq.~2.9!, and we use
the Fourier convention

C̃~v!5E dt C~ t !eivt. ~3.26!

The terms involving ImC̃ are not surprising, since this i
directly proportional to the spectral function ofB, and hence
has a simple interpretation in terms of tunneling via Ferm
golden rule. For these terms, we can use well-known res
discussed below. However, the terms involving the real p
of C̃ correspond to exchange processes generated by tu
ing; see Refs. 16 and 22. That tunneling indeed causes e
tive exchange couplings~even in the absence of a ‘‘bare
exchange coupling! follows already from the simple RG
equations~3.2!. As the physical effects of exchange are i
cluded via boundary condition~3.16! with the SO~3! rotation
matrix R(q), we drop the terms proportional to ReC̃ in the
spin current@Eq. ~3.25!#.

After some algebra, we then obtain the tunneling s
current as
0-7
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^JW tun&52
1

2 (
s

~Pm̂1sĥ!Ia~V1hs/2,T!, ~3.27!

where we have defined the function

Ia~U,T!5G Im C̃~U1 id!5GkBT~kBT/D !asinhS eU

2kBTD
3UGS 11

a

2
1 i

eU

2pkBTD U2

, ~3.28!

with the bandwidthD and the LL end-tunneling exponen
a.0. We note that in SWNT’sD'1 eV, while a'1.1
according to the experiments reported in Ref. 8. In the li
eU!kBT, function ~3.28! becomes

Ia.
GU

2
~kBT/D !aG2~11a/2!,

while, in the opposite limit,

Ia.
GU

2
~eU/2pD !a.

The LL magnetization away from the contact can now
related to the spin chemical potential using the LL spin s
ceptibility x51/(2pv):

MW 5JWR1JWL5xhW . ~3.29!

Thereby we obtain the spin currentJW injected into the LL
from the ferromagnet at any given contact for arbitrary e
change couplingq. Omitting the expectation values for brev
ity, we find

JW5
1

2p
ShW 1~12S!JW tun, ~3.30!

where S5(R21)/(R11) is a real antisymmetric matrix
Similarly, the injected charge current is

I 52(
s

~11sPm̂•ĥ!Ia~V1hs/2,T!. ~3.31!

For the case of a low-conductance contact, the excha
angle is small,q!1, and Eq.~3.30! can be further simplified
to

JW5
q

4p
hW 3m̂2

1

2 (
s

@Pm̂1sĥ#Ia~V1sh/2,T!.

~3.32!

From Eq.~3.32!, q/4p can recognized as acting as a sort
dimensionless spin conductance—proportional in fact to
‘‘spin mixing conductance’’ of Ref. 20. Relations~3.31! and
~3.32!, together with the results in Sec. IV, provide the ba
for our subsequent discussion of the setup in Fig. 1.
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IV. HYDRODYNAMIC DESCRIPTION
OF BULK PROPERTIES

In Sec. III, we discussed how to determine the charge
spin currents in the neighborhood of a contact in terms of
local charge and spin chemical potentialsm andhW of a LL.
To complete the formulation of the full transport problem
we need to understand how to relate these quantities at
ferent pointswithin the LL. This is the subject of this section
In doing so, we assume that the length of the system is
ways long compared to some characteristic dephasing le
beyond which the behavior is incoherent, and hence cla
cal. For a LL, we expect the dephasing length is set sim
by the thermal length scalev/kBT. At low temperatures, this
length is very long, and thus we are interested in the con
tutive laws governing the LL on long length scales.

On such long length scales, we expect a rather class
description to apply both to charge and spin. For char
classical behavior follows due to dephasing. For spin, m
care must be taken, due to the noncommuting nature of
spin operators. On long length scales, however, the total
\s within any region is large. For larges@1, all three com-
ponents of the spin can in fact be specified with very go
accuracy, the uncertainty being ofO(1/s). Thus the long-
wavelength ‘‘hydrodynamic’’ equations will simultaneous
involve all three components of the magnetization and
corresponding currents.

A. Operator equations of motion

To construct the hydrodynamic equations, first consi
the operator equations of motion for the spin currents. Th
are obtained from the usual Heisenberg equatio
] tJWL/R(x)5 i @H,JWL/R(x)#, with the Sugawara form of the
spin Hamiltonian.7 Writing

HQW5H01Hbs1Hmagn,

the spin part of the LL HamiltonianH0 is

H05
v
2E dx:JWR•JWR1JWL•JWL :. ~4.1!

The backscattering contribution was already specified in
~2.2!, and now we also include an external magnetic fieldBW
acting on the QW. For this purpose, assuming a static
homogeneous field, we add the term

Hmagn52mBE dx BW •MW , ~4.2!

with the LL magnetization@Eq. ~3.29!#. Here we have ab-
sorbed the electrong factor ge into a renormalized Bohr
magnetonmB5gee\/2mc. The equations of motion are

~] t2v]x!JWL5bvJWR3JWL2bv]xJWR2mBJWL3BW , ~4.3!

~] t1v]x!JWR5bvJWL3JWR1bv]xJWL2mBJWR3BW . ~4.4!

Here terms likeJWL3JWL are absent by virtue of normal orde
ing. Their absence also follows by comparing the equati
0-8
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SPIN-DEPENDENT TRANSPORT IN A LUTTINGER LIQUID PHYSICAL REVIEW B64 035310
of motions obtained from the Sugawara form@Eq. ~4.1!# to
the strictly equivalent equations of motion of the correspo
ing SU~2! level k51 Wess-Zumino-Witten action.7

Taking the sum of Eqs.~4.3! and ~4.4!, we find

] tMW 1]xJW52mBMW 3BW , ~4.5!

where

JW5~11b!v~JWR2JWL!. ~4.6!

Comparing Eq.~4.6! to Eq.~2.12!, we see that backscatterin
leads to a renormalization of the spin current. This is
‘‘backflow’’ effect, similar to those in Fermi-liquid theory
For B50, Eq. ~4.5! represents the standard spin continu
equation. Of course, the magnetic field will then spoil sp
current conservation.

Taking the difference of Eqs.~4.3! and ~4.4! gives

] tJW1~12b2!v2]xMW 5bvMW 3JW2mBJW3BW . ~4.7!

For B50, we have a conserved spin currentJW but bulk pre-
cession of the magnetization around the fixed spin curre

B. Hydrodynamics

Note that Eqs.~4.5! and ~4.7! are operator identities, no
equations for the expectation values of these quantities.
will call these expectation valuesclassicalvalues. As argued
at the beginning of this section, to describe the bulk phys
on long length scales, the hydrodynamics should be phra
in terms of equations of motion for these classical variab
In the absence of backscattering,b50, Eqs.~4.5! and ~4.7!
are both linear, and so taking their quantum expectation
mediately gives the correct hydrodynamic description for
classical values. At zero temperature in the linear-respo
limit, moreover, the RG analysis, demonstrating thatb is
marginally irrelevant, implies that thisb50 hydrodynamics
remains qualitatively correct. In general, even in this c
there will also be finite renormalizations of physical quan
ties, but forb!1 these are expected to be small.

However, for T.0, and possibly also in nonlinear re
sponse atT50, the hydrodynamic equations are genera
corrected by dissipative terms. Formally, these exist due
the fact that̂ MW 3JW &Þ^MW &3^JW &. Physically, dissipative cor
rections to Eq.~4.7! describe processes caused by the ba
scattering in which a nonzero spin current can decay. T
the backscattering interaction mediates such processes c
seen by expressing it in terms of fermions:

Hbs52
bv
4 E dx@2cR↑

† cR↓cL↓
† cL↑1~↑↔↓ !

1cR
†szcRcL

†szcL#. ~4.8!

Consider an initial state containing one right-moving F
mion with up-spin and one left-moving Fermion with dow
spin, thereby carrying a net spin currentJz.0 but no mag-
netization. Acting on this state,Hbs flips the spins of right-
and left-moving fermions, thereby conserving the magnet
tion butreversingthe spin currentJz→2Jz. Through a com-
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bination of such processes, it is natural to expect a fin
lifetime for the decay of an initial spin current.

Further, on physical grounds, we can express the rat
such decay processes based on Fermi’s golden rule. In
ticular, we expect the inelastic spin current relaxation r
1/tJ

in to be proportional to an expectation value that is qu
dratic in Hbs. More formally, we can determine the lifetim
using the leading nonconstant correction to the fermion s
energy, which is the usual two-loop bubble in Fig. 2. Eith
way, since 1/tJ

in is quadratic inb, scaling determines the
form of the decay rate,

1/tJ
in5Ab2kBT/\, ~4.9!

where we have usedkBT to provide the energy scale neede
from scaling. In addition, we have neglected more sub
logarithmic corrections expected on general grounds.25 The
order unity numerical prefactorA is not obtained reliably by
this simple argument, but a crude estimate may be obta
using Fermi’s golden rule. From the first term in Eq.~4.8!,
we may consider the rate for a single right-moving electr
with down-spin and momentumk to flip its spin, simulta-
neously creating a left-moving electron-hole pair,

1/t↑↓5S bv
2 D 2E dk8 dq dq8

~2p!3 ~2p!d~vk2vk82vq1vq8!

3~2p!d~k1k82q2q8! f ~vk8!@12 f ~vq!#

3@12 f ~vq8!#,

where f (e)51/(ee/kBT11) is the Fermi function. This can
be evaluated in the low-energy limitvk!kBT, and using
1/tJ

in52/t↑↓ ~since both the electron and hole in the tw
particle current operator may decay!, gives the result in Eq.
~4.9!, but with a surprisingly small prefactorA51/8p.

We proceed at this stage on phenomenological ground
modifying Eq. ~4.7! by hand to include spin current relax
ation,

] tJW1~12b2!v2]xMW 52JW /tJ1bvMW 3JW2mBJW3BW ,
~4.10!

which provides a detailed~but approximate! description of
the crossover between ballistic and diffusive spin transpor
low temperatures. In general, elastic impurity scattering p

FIG. 2. Self-energy diagram to estimate the decay time for
spin current.
0-9
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L. BALENTS AND R. EGGER PHYSICAL REVIEW B64 035310
cesses will also relax the spin current, where in fact no sp
orbit interaction is required. This can be included accord
to Matthiessen’s rule:

1

tJ
5

1

tJ
in

1
1

tJ
el

. ~4.11!

Since the same impurity scattering processes relax both
and charge currents, we expect 1/tJ

el to be comparable to the
elastic scattering rate deduced from charge transport.

Taken together, Eqs.~4.5! and ~4.10! provide a starting
point for the investigation of the spin hydrodynamics of a L
in the presence of electron-electron backscattering. A us
check is that these equations correctly recover the Land
Lifshitz dynamics26 of classical ferromagnets at nonze
temperatures. ConsideringB50 for simplicity, in the low-
frequency, linear-response limit, the nonlinearity in E
~4.10! is small, and the time derivative ofJW can also be
neglected. Then one can solve forJW perturbatively in the
nonlinearity to obtain, to leading order,

JW52Ds]xMW 2bvtJDsMW 3]xMW , ~4.12!

where the spin diffusion constant is

Ds5~v8!2tJ5
\v2

Ab2kBT
. ~4.13!

For SWNT’s, b!1, and it is appropriate to approximate
2b2'1. In addition, the golden-rule estimate is at best va
for b!1, and we therefore ignore the tiny renormalizati
v→v85(12b2)v. Inserting Eq.~4.12! into Eq. ~4.5! then
indeed gives the usual Landau-Lifshitz equation.26

We are predominantly interested in steady-state situat
in which both MW and JW are time independent. Using Eq
~3.29! and ~4.10!, we find

]xhW 1
1

ss
JW5~b/v !S hW 1

2pmB

b
BW D3JW , ~4.14!

where the linear-response spin conductivity is given by
Einstein relation

ss5xDs5vtJ/2p5
\v

2pAb2kBT
. ~4.15!

Note that the spin conductivity has dimensions of length
expected in one dimension, and is essentially given by
mean free path for decay of spin currents,l J5vtJ .

V. APPLICATIONS

As an application of our general formalism, we now co
sider transport for a LL connected to two FM reservoirs w
magnetization directionsm̂1 and m̂2 for applied voltageV;
see Fig. 1. The FM magnetization unit vectorsm̂1,2 are tilted
by the angle 0<u<p, so thatm̂1•m̂25cosu. For simplicity,
we assume identical low-conductance contacts on both s
such thatmQW50 and the exchange angle is small,q!1.
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Furthermore, we assumeP!1 for algebraic simplicity, al-
though our results actually hold somewhat more generall27

The latter condition is probably fulfilled in any practical a
plication, and ensures that the spin chemical potentia
small, h/V!1. The validity of the latter condition is then
self-consistently checked below. Forh/V!1, we can use the
following expansion for Eq.~3.28!:

Ia@~V2sh!/2,T#5I a~V,T!2shGa~V,T!. ~5.1!

Here the current~per spin channel! for nonmagnetic leads is

I a~V,T!5Ia~V/2,T!, ~5.2!

such that for parallel FM magnetizations~u50! the charge
current I (0)52I a results in the absence of backscatterin
Furthermore, the respective conductance is

Ga~V,T!5dIa /dV5~e2/2p\!ga . ~5.3!

Similarly we define a dimensionless contact conductancg
via G5(e2/2p\)g.

From Eq.~3.32!, we can then write down the spin curre
JW1 through the left contact, taken atx50 with the local spin
chemical potentialhW 15hW (0), and likewise JW2 through the
right contact atx5L with hW 25hW (L):

JW15
q

4p
hW 13m̂11PIam̂12GahW 1 , ~5.4!

JW252
q

4p
hW 23m̂21PIam̂21GahW 2 . ~5.5!

The signs are chosen such that currents are oriented from
to right. Similarly, from Eq.~3.31!, the charge current flow-
ing through the device follows,

I ~u!

2I a
512

PGa

I a
hW 1•m̂1 , ~5.6!

where we have exploited current conservation:

hW 1•m̂11hW 2•m̂250. ~5.7!

Next these relations describing the spin chemical poten
and the spin current at the boundaries need to be relate
virtue of the hydrodynamic description of Sec. IV. In th
steady state, the basic hydrodynamic equations are Eq.~4.14!
and

]xJW52
mB

2pv
hW 3BW ; ~5.8!

see Eq.~4.5!. We first consider transport in zero magne
field, and later on extend the analysis to finite fields in S
V B. In Secs. V A and V B, the effects of the backscatteri
interaction are neglected,b→0, so that the spin resistivity
vanishes. This is expected to be appropriate for a short
intermediate lengthL. The effects ofbÞ0 will then be ad-
dressed in Secs. V C~without dissipation! and V D ~includ-
ing spin diffusion!.
0-10
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SPIN-DEPENDENT TRANSPORT IN A LUTTINGER LIQUID PHYSICAL REVIEW B64 035310
A. Effects of spin-charge separation

We start with the simplest cases ofb50 andB50, where
the steady-state equations~4.14! and ~5.8! are solved by a
constant magnetization and hence spin chemical poten
hW 15hW 25hW , and conserved spin currentJW . To compute the
charge current@Eq. ~5.6!#, we then need to findhW which in
turn is determined from spin current conservation,JW15JW2.
Using Eqs.~5.4! and ~5.5!, we then obtain three equation
namely, Eq.~5.7! and

q

4p
hW •~m̂13m̂2!1GahW •~m̂12m̂2!22PIa sin2~u/2!50,

q

4p
cos2~u/2!hW •~m̂12m̂2!2GahW •~m̂13m̂2!50.

From these relations, withI (0)52I a , the current results in
the form

I ~u!

I ~0!
512P2

tan2~u/2!

tan2~u/2!1Ya

. ~5.9!

Here the quantityYa reads

Ya~V,T!511S q

2ga
D 2

. ~5.10!

For eV!kBT!D, using Eq.~5.3!, this becomes

Ya.
~2q/g!2

G4~11a/2!
~kBT/D !22a,

while, for kBT!eV!D,

Ya.
~2q/g!2

~11a!2
~eV/4pD !22a.

For a Fermi liquid,Y0511(2q/g)2 is related to the dimen
sionless spin mixing conductanceh of Ref. 20 by Y0
5uhu2/Re(h), and Eq.~5.9! correctly recovers the curren
voltage relation of a Fermi liquid20 in the limit a→0.

In the interacting case,a.0, however, foreV,kBT!D,
Eq. ~5.9! describes a drastically different behavior. SinceYa
becomes very large for low energies, thespin accumulation
effect is completely destroyedfor anyuÞp. This remarkable
phenomenon is entirely due to spin-charge separation, s
only then the exchange coupling is so efficient at relaxing
injected polarized tunneling spin current. The absence
spin accumulation is then a direct signature of the prese
of spin-charge separation, and would allow one to exp
mentally establish this phenomenon in a spin transp
experiment.16 Only for u5p, does one obtain the standa
12P2 suppression in the current. At low applied voltag
eV!kBT, the jump inI (u)/I (0) from unity for u,p down
to 12P2 at u5p is only smeared out by thermal fluctua
tions @see Eq.~5.10!#, and therefore becomes very sharp
low temperatures.

Next we self-consistently check on the magnitude ofh/V.
Multiplying JW12JW250 by hW yields, with Eqs.~5.4! and~5.5!,
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PIa

2VGa
S tan2~u/2!

tan2~u/2!1Ya
D 1/2

. ~5.11!

Note that M5xh5h/(2pv), so that Eq.~5.11! also de-
scribes thespin accumulationin the QW. Now I a /VGa
equals 1 at high temperatures, and 1/(11a) for kBT!eV.
Therefore,h/V<P/2, and, forP!1, the assumed smallnes
of h/V is self-consistently verified.27 Finally, we explicitly
write down the spin current:

JW5
PIa

4
~m̂11m̂2!H 11~Ya21!

tan2~u/2!

tan2~u/2!1Ya
J .

~5.12!

Note that, from Eq.~5.7!, this implies thathW and JW are or-
thogonal.

B. Magnetic field dependence

Next we consider a different and probably more feasi
experimental setup aimed at revealing spin-charge sep
tion. Instead of changing the angleu between the FM mag-
netizations, a simpler setup could work with a fixed angleu

but employ the additional magnetic fieldBW 5BB̂. We assume
that the bulk FM magnetizationsm̂1,2 are not affected by this
magnetic field, and considerb50. Under these conditions
the steady-state hydrodynamics in Eqs.~4.14! and ~5.8! de-
scribes a precession of both right- and left-moving spin c
rents aroundBW . Therefore, when moving from the left to th
right contact, the magnetic-field-dependent precession ph

g5mBBL/\v ~5.13!

accumulates, so thatg/2p is essentially the ratio of the Zee
man energy to the level spacing. Since a field of 1 T corre-
sponds to 0.058 meV, a sizable precession phase can e
be achieved for tube lengths in the micron range and s
dard magnetic-field strengths.

From Eqs.~4.14! and~5.8!, we can relatehW 2 andJW2 at the
right contact to the respective quantities at the left conta
Some algebra leads to

hW 25cosghW 11~12cosg!~B̂•hW 1!B̂2singJW13B̂,
~5.14!

and, similarly

JW25cosgJW11~12cosg!~B̂•JW1!B̂2singhW 13B̂.
~5.15!

To compute the current, we then have to computehW 1•m̂1 as
outlined in Appendix A. This is in general cumbersome, a
requires a numerical analysis. We thus restrict our atten
to the special caseu5p, where the FM magnetizationsm̂1

52m̂2 are antiparallel. Note that foru,p, the spin accu-
mulation effect is quenched by spin-charge separation,
then the magnetic field should have virtually no effect f
a.0. The caseu5p is therefore also of most interest.
0-11
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L. BALENTS AND R. EGGER PHYSICAL REVIEW B64 035310
First we consider afixed field strength B. Let us suppose
that B has been adjusted such that the precession pha
g5p, but one allows for an arbitrary field directionB̂. In
this case, the equation in Appendix A can be solved ana
cally, and the current is

I ~b!/2I a512P2
1

11Ya tan2b
, ~5.16!

whereYa(V,T) is defined in Eq.~5.10! andB̂•m̂15cosb. If
the magnetic field is parallel to the FM magnetizations,b
→0, a maximum spin accumulation effect is recover
I (b)/2I a512P2. Upon tilting the magnetic field, howeve
since the quantityYa diverges at low energies, spin accum
lation is quenched again. This is in effect very similar
varying the angleu between the FM magnetizations, but m
be easier to implement experimentally. Forb50, there is no
precession sincehW 1 is parallel tom̂1,2 and hence toB̂. There-
fore, spin accumulation is not affected by the magnetic fie
From this observation, we then expect that the suppressio
spin accumulation atbÞ0 holds in fact for a broad regim
of magnetic-field strengths, and no special fine tuning tog
5p should be necessary. The behavior ofI (b) is qualita-
tively different depending on whether spin-charge separa
is realized or not.

Another possibility consists of fixing thefield direction B̂
and then measuring theI -V characteristics for a differen
magnetic field strengthB or, equivalently, a precession pha
g; see Eq.~5.13!. For simplicity, let us assume thatB̂ is
adjusted perpendicularly tom̂1. Under this condition, the
current can be found in closed form again, with the resu

I ~g!

2I a
512P2

1

11F~g!
, ~5.17!

where we use

F~g!5
~2p/ga!2211Ya cos22~g/2!

~ga/2p!2Ya1cot2~g/2!
. ~5.18!

Note that Eq.~5.17! predicts a sharpnegative transverse
magnetoresistancepeak nearB50 ~and again at periodic
intervals!. In particular, at low temperatures, and in the line
bias regime,Ya ,ga

21@1, and one can estimate the full widt
half maximum of this feature inI (B) by

~Dg!FWHM5
2ga

p F11S q

4p D 2G21/2

, ~5.19!

which therefore decreases asTa asT→0. Theheightof the
peak is, however, temperature independent. More gener
the current@Eq. ~5.17!# is a periodic function of the preces
sion phaseg, with F(g)50 for g equal to an integer mul
tiple of 2p. In that case, the spin accumulation effect
maximal, and thus the current minimal,I (g)/2I a512P2.
On the other hand, forg being an odd multiple ofp, F(g)
→` and thus a complete suppression of spin accumula
obtains.
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Remarkably, the way that one interpolates between th
two limiting cases by varyingg strongly depends on the
correlation strengtha; see Fig. 3. Theg dependence of the
current-voltage relation can therefore again reveal sp
charge separation. While fora50, the current is a smooth
periodic function ing, for a.0 and low energies, the peri
odicity is turned into a series of very sharp dips atg equal to
integer multiples of 2p. This can be seen from Eq.~5.18!,
yielding, for T50 andeV!D,

F~g!;V24a
11~q/4p!2cos22~g/2!

~q/4p!21cot2~g/2!
.

Therefore the spin accumulation effect is quenched un
cot(g/2) diverges. Measuring the magnetic field differen
corresponding to the distanceDg52p between two dips can
also provide a direct estimate of the contacted lengthL from
Eq. ~5.13!.

C. Backscattering: dissipationless precession

For the remainder of this section, we address the con
quences of a finite backscattering couplingb, taking for sim-
plicity B50. We start with the zero-temperature limit, whe
the spin resistivity vanishes and Eq.~4.14! predicts bulk pre-
cession ofĥ(x) around the fixed spin current:

]xĥ5~b/v !ĥ3JW . ~5.20!

Clearly, ĥ• Ĵ is also conserved. It is then useful to introdu
the quantities

Cb5
bgPLD

4\v
, ~5.21!

Cq5S 2q

~11a!gD 2

, ~5.22!

which provide dimensionless measures of the backscatte
strength (Cb) and of exchange (Cq). The problem is then
fully specified in terms of four dimensionless paramete
namely, the LL exponenta, the tilting angleu, and of course
Cb andCq .

FIG. 3. Magnetic-field dependence of theT50 current foru
5p, G50.08e2/h, eV/D50.1, andq50.5, both for a Fermi liq-

uid (a50) and for a LL witha51.1, whereBW'm̂1. The precession
phaseg;B is given in Eq.~5.13!.
0-12
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SPIN-DEPENDENT TRANSPORT IN A LUTTINGER LIQUID PHYSICAL REVIEW B64 035310
Similar to Sec. V B, precession ofĥ(x) around the con-
served spin current implies a precession phase when g
from the left to the right contact,

Dw5bJL/v. ~5.23!

The spin chemical potentialshW 1 and hW 2 can now be deter-
mined from spin conservation,JW15JW2, and the precession
equation ~5.20!. In addition, a self-consistency conditio
arises sinceJ appears itself in the precession phase@Eq.
~5.23!#. This self-consistency implies that we are deali
with a nonlinear transport problem forb.0, and has far-
reaching consequences. For convenience, we use the a
viation

X5
hGa

PIa
, ~5.24!

with 0<X<1, which provides a dimensionless measure
the absolute value of the spin chemical potential. Then
charge current@Eq. ~5.6!# is

I 52I a~12P2X2!. ~5.25!

From Eq.~5.4!, the absolute value of the spin current can
expressed in terms ofX as well,

J25~PIa!2F11S qX

2ga
D 2G~12X2!, ~5.26!

wherega is given in Eq.~5.3!. In Appendix B, we derive the
following self-consistency equation determining the curre

sin2~u/2!5
X21~qX/2ga!2

11~qX/2ga!2
cos2~Dw/2!. ~5.27!

Using the precession phase@Eq. ~5.23!# with Eq. ~5.26!, one
can then solve forX, and thereby obtain theI -V relation@Eq.
~5.25!#.

Remarkably, solution of Eq.~5.27! predicts amultivalued
I -V relation. This is a direct consequence of the nonlinea
of this spin-transport problem in the presence of backsca
ing. Under an exact calculation, we would in fact expec
unique answer for the current, since thermal or quantal fl
tuations around Eq.~5.27! should stabilize just one solutio
out of the multiple branches. Such a calculation could
performed in principle following a Keldysh approach or em
ploying Langevin-type equations, but seems difficult to p
sue in practice. A simpler approach based on an~approxi-
mate! free energy principle could obtain from the analogy
SNS junctions in Sec. VII A or the related ‘‘tilted wash
board’’ picture of Josephson junctions above the critical c
rent. In the latter system, a free-energy principle is w
known to apply and to correctly resolve multistability que
tions posed by the equations of motion alone.28 The difficulty
with this approach for the spin-transport problem at hand
to describe the dissipative terms in such a free energy. W
the bulk energy is known, the boundary terms are l
straightforward to handle, and, unfortunately, a rigoro
03531
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resolution of this question has to remain open. Below
shall argue on intuitive grounds as to which of the multip
branches is realized.

In general, one needs to numerically find the solutions
Eq. ~5.27!, e.g., using a Newton-Raphson root-findin
algorithm.29 Numerical results accurately confirm an analy
cal solution possible for low energies,eV!D, anda.0. In
the following, we focus on this regime of most intere
whereYa@1 @see Eq.~5.10!#, and search for solutions tha
also fulfill YaX2@1. Note that otherwise the effect of back
scattering is negligible in any case. Under these conditio
the self-consistency equation~5.27! is solved by the preces
sion phase taking only one of the discrete values,

Dw5~2n11!p2u, ~5.28!

wheren50,1,2, . . . is awinding numbercounting the num-
ber of full precession cycles of the steady-state bulk mag
tization as one proceeds from the left to the right contact
principle, there is also a set of solutions obtained from
substitutionu→2u in Eq. ~5.28!. For u50 andu5p, both
sets coincide, and for 0,u,p we expect that only Eq.
~5.28! gives stable solutions.

Then the following general picture emerges. Focusing
concreteness on the caseu50, the self-consistency equatio
~5.27! is solved either byX50 or by Dw5(2n11)p. As
the voltageV is increased, first we have an arbitrary prece
sion phaseDw,p that increases withV. At the same time,
Eq. ~5.27! enforcesX50, leading to the standardb50 cur-
rent I 52I a . As the precession phase hitsDw5p at the
voltageV5V0(u) ~see below!, the spin currentJ is locked at
a fixed value such thatDw remains constant when furthe
increasing the voltage. To keepJ constant, however, the
charge currentI ~or, equivalently, the quantityX) has to
adjust from Eq.~5.26!. Since this leads to a quadratic equ
tion for I, there are two possible solutions forI. However,
one of them would lead to unphysical currents exceed
2I a , and is disregarded in what follows. As the voltage
now increased up toV1(u), the precession phaseDw53p
becomes possible, and the above picture is re-iterated.

For arbitrary u, Eq. ~5.28! then predicts the following
current-voltage relation. ForV,V0(u), the b50 current
@Eq. ~5.9!# is realized. Upon increasing the voltage above
thresholdV0(u), however,sawtoothlike oscillationsappear.
In the windowVn(u),V,Vn11(u), we obtain

I ~V!

2I a
512

P2

2 H 12
~eV/4pD !2a

Cq
1F S 11

~eV/4pD !2a

Cq
D 2

2
1

Cq
S ~2n11!p2u

Cb~eV/4pD ! D
2G1/2J . ~5.29!

In the low-energy limit, the voltagesVn(u) are given by

eVn~u!

4pD
5

~2n11!p2u

CbACq

, ~5.30!

and theI -V relation forVn(u),V,Vn11(u) simplifies to
0-13
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I ~V!

2I a
512

P2

2
@11A12„Vn~u!/V…2#. ~5.31!

Note that theVn(u);1/L and hence can in principle be mad
arbitrarily small simply by increasing the QW lengthL.
Therefore the effects of backscattering become very imp
tant in sufficiently long QW’s. Estimating the periodDV
5Vn112Vn corresponding to a full precession cycle fro
Eq. ~5.30! for typical SWNT parameters, we findDV'10 to
100 mV. Measuring the oscillation periodDV could provide
useful information about the backscattering interactions
the exchange angle.

The nonsinusoidal oscillatoryI -V relation @Eq. ~5.31!# is
depicted in Fig. 4 for typical SWNT parameters andu
50,p. Apparently, backscattering has a dramatic influen
on spin transport not anticipated from thermodynamical c
siderations. To experimentally observe the predic
sawtooth-like oscillatoryI -V relation, however, it will prob-
ably be necessary to measure at very low temperatures u
rather long and clean QW’s. Note that these oscillatory
haviors are a nonequilibrium effect not present in the te
perature dependence of the linear conductance.

D. Finite-temperature dynamics

As outlined in Sec. IV B, for finite temperature, bac
scattering causes spin diffusion, and we now address th
fects of spin diffusion on the current-voltage relation, focu
ing on zero magnetic field,B50, where the spin is still
conserved. The self-consistency equation in this case is
rived in detail in Appendix C. To solve this lengthy equatio
we again restrict ourselves to the low-energy regim
kBT,eV!D, with a.0.

For T!T* , we then basically recover the results of Se
V C, while for T@T* , with the crossover temperature

T* 5
\v

2p2kBAb2Lq
;1/L, ~5.32!

a spin-diffusion-dominated regime emerges. This tempe
ture is defined bypqL5ss(T* ) ~see Appendix C!, with the
spin conductivity~4.15!. In the following, we focus on the
regimeT@T* , for which theI -V relation can be written as

FIG. 4. Current-voltage relation in the presence of backsca
ing for T50 and u50,p. The scales are set byI 052I a and V0

5V0(u50).
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I ~V!

2I a
512

P2

2
~11A12An!, ~5.33!

where

An5
2\Ga

ssL
S @~2n11!p2u#ev

bPIa
D 2

. ~5.34!

Remarkably, sincess;1/b2, any dependence on the bac
scattering couplingb drops out in this temperature regime.
principle, the current is then again multivalued and index
by a winding numbern. Here the appropriate threshold vol
ages, above which the respective current can be reali
follow from the conditionAn<1. On physical grounds, in
this spin-diffusion-limited transport regime, we expect th
only the lowest winding numbern50 is realized, leading,
for V.V0(u), to the current

I ~V!

2I a
512

P2

2
~11A12„V0~u!/V!21a

…, ~5.35!

where we assumekBT!eV and use the voltage scale

S eV0~u!

4pD D 21a

5
~11a!\e2v2~12u/p!2

2ssLb2P2GD2
. ~5.36!

Note that the right-hand side of Eq.~5.36! is proportional to
(kBT/D)(\v/LD), with a prefactor of order unity. Henc
this spin-diffusion-limited regime should be accessible to
periments.

VI. EXTENSIONS

The approach developed in this paper is very flexible, a
can be straightforwardly extended to describe a variety
other physically relevant situations. We sketch some of th
extensions in this section.

A. Bulk contacts

In many cases, particularly in experiments on carb
nanotubes, contacts are made not to the ends of the qua
wire but to points in the ‘‘bulk.’’ Much of the preceding
theory applies to this case as well, but there are some a
tional complications. First, let us reconsider the problem o
single contact atx5x1, this time in the bulk (0,x1,L)
rather than at the boundary. Because there is no boun
condition relating right- and left-moving fields, there a
more independent couplings. In general, the contact Ha
tonianHc has three distinct contributions, neglecting redu
dant forward-scattering terms which give spin-independ
phase shifts,

Hc5H tun1Hex1Hbs1.

Tunneling is described by the tunneling Hamiltonian@Eq.
~2.7!#, whereC5c(x1), and we allow for different hopping
matrix elements for right- and left-moving states of each s
polarization,ts

(a5R/L) . There are also two distinct exchang
terms:

r-
0-14
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Hex52 (
a5R/L

Kam̂•Ca
† sW

2
Ca . ~6.1!

Finally, there are local single-particle backscattering p
cesses described by

Hbs15(
s

jsCR
† ûs•sW CL1H.c., ~6.2!

where the projection operatorûs is given in Eq.~2.6!. These
terms arise since the presence of a contact inevitably lead
local disorder within the QW.

For a noninteracting QW, all three contributions are on
equal footing, as they all involve fermion bilinears. Wh
interactions are present in the QW, however, this is no lon
the case. In fact, in the boundary RG framework, they sc
completely differently. In particular, the tunneling Ham
tonianH tun is irrelevant, the boundary exchangeHex is mar-
ginal, and the single-particle backscatteringHbs1 is relevant.
Thus provided all terms inHc are comparable,Hbs1 will
dominate at low energies, where the distance to another
tact, the inverse temperature, and any inverse voltage ar
sufficiently large. The effect of such relevant backscatter
terms was studied extensively.30 We expect that the fina
result in the low-energy limit is to completely sever the L
into two halves atx5x1. In this case, one can effectivel
ignore at very low-energy half of the LL, namely, the one n
connected to a closed circuit, and treat the other half us
the end-contact phenomenology of the previous sections

The latter discussion presumes that thejs are substantial.
In many cases, however, it is natural to expect that in f
ujsu!uKau,uts

(a)u. For nanotubes, if the characteristic scale
the contacts is substantially larger than the interatomic
mensions of the nanotube, thejs , involving matrix elements
that oscillate on the atomic scale, are considerably s
pressed. Similarly, in contacts to semiconductor quan
wires with widths large compared to the Fermi waveleng
js can be suppressed due to the smoothness of the effe
potential at the contact. It is therefore of interest to descr
the problem in the absence of single-particle backscatter
js50. The equation-of-motion methods of Secs. III and
can then be straightforwardly extended to describe bulk c
tacts. For illustration purposes, consider in particular the c
of multiple tunneling contacts at points 0,xi,L, neglect-
ing, for simplicity, bulk backscattering. Then the equatio
of motion for the chiral currents are

~] t1av]x!JWa52mBJWa3BW 1(
i

d~x2xi !@JWa
tun~xi !

1Kam̂i3JWa#, ~6.3!

wherea5L/R57, and the tunneling currentJWa
tun(xi) is de-

termined from Eq.~3.27!, with chemical potentialsV andhW
appropriate to that contact and chirality. Furthermore, in
~3.27!, one has to replace the end-tunneling exponenta by
the bulk-tunneling exponentabulk,a.7 Similarly, the chiral
charge currentsI R/L obey the equations of motion
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~] t1avc]x!I a5(
i

d~x2xi !I a
tun~xi !, ~6.4!

wherevc is the charge velocity. Each pair of equations c
be combined to give equations for the spin and charge d
sities and currents, which can be solved in the steady s
knowing the tunneling spin and charge currents at each c
tact ~determined by the voltages! and the boundary condi
tions I R5I L andJWR5JWL at x50 andx5L. Precession, dif-
fusion, and spin-orbit scattering~see below! can also be
included simply by adding the appropriate terms to the rig
hand sides of Eqs.~6.3! and ~6.4!.

B. Nanotubes and flavor

While the general methodology and physical results
plied above pertain to any interacting QW, some differen
exist that should be taken into account in applying the f
malism in detail to nanotubes. In particular, a ‘‘pristine
SWNT has not one but two 1D bands crossing the Fe
energy, arising from the sublattice reflection symmetry of
graphene lattice. Thus in fact the low-energy description
SWNTs requires an additional ‘‘flavor’’ indexA51 and 2
on all electron fields,caa→caAa . Moreover, the low-energy
Hamiltonian describing the nanotube in the absence of ba
scattering and magnetic fields respects the full chiral U(
3U(4) symmetry of arbitrary separate U~4! rotations of
right and left movers in the combined spin-flavor space. T
symmetry implies that, to a good approximation~since back-
scattering terms are weak!, not only the SU~2! spin currents
JWR/L but the full SU~4! spin-flavor currents,

Ja
AaBb5:caAa

† caBb :, ~6.5!

are conserved. In the ballistic limit, these currents sati
chiral wave equations away from the contacts,

~] t7v]x!Ja
AaBb50, ~6.6!

and a full solution of the transport problem in the steady st
requires imposing constant values of each of these (16116
532) chiral currents between contacts and/or ends of
nanotube. Moreover, SU~4! generalizations of the contact ex
changeHex can be expected.

As we have seen in the simpler single-channel case ab
backscattering terms, even when weak, can lead to sig
cant effects in long tubes. Because the backscattering in
actions do not respect the~accidental! SU~4! symmetry but
only the physical symmetries, there is in fact a variety
independent backscattering couplings. Thus, in general,
extension ofHbs to include flavor is rather complicated—th
interested reader will find the~eight or 11, depending upon
whether the nanotube is undoped or doped! diverse back-
scattering terms enumerated in Refs. 10 and 31. These i
actions lead to a variety of generalized ‘‘precession’’ ter
in the operator equation of motion, which must be added
Eq. ~6.6!. These have the general form

~] t7v]x!Ja
AaBb5 f BDEF

(a) JR
AaDnJL

EbFn2 f CAEF
(a) JR

CmBbJL
EmFa ,
0-15
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where f ABCD
(a) ;bv are related to the detailed form of th

backscattering terms, and repeated indices are summed
In the hydrodynamic equations for the classical values

these fields, we expect damping terms similar to that in
~4.10!. In fact, there are two distinct sorts of damping pr
cesses which need be considered. First, as for the flavo
problem, backscattering terms lead to decay of the~non-
chiral! SU~4! currents,JWAaBb5v(JWR

AaBb2JWL
AaBb), which can

be included via a lifetimetJ . Second, however, unlike in th
SU~2! case, the flavor densities themselves can decay
backscattering. Only the true spin magnetization

MW 5~JWR
AaAb1JWL

AaAb!sW ab/2

and charge density

n52e~JWR
AaAa1JWL

AaAa!,

are required to obey continuity equations, namely Eq.~4.5!
and the usual charge continuity equation, by spin-rotatio
and U~1! invariance. The remaining orthogonal linear com
binations of the spin-flavor densities can themselves de
with some ‘‘flavor decay rate’’ 1/t f;1/tJ . For sufficiently
long nanotubes and low energies,Vt f!1, these flavor den-
sities become negligible between contacts, and we expe
be able to simply ignore the flavor currents. Given the sm
ness of the backscattering couplings in nanotubes, howe
this may occur only at very low voltages and temperatur
and for very long tubes.

A proper treatment of these effects at intermediate len
scales is technically rather complicated, and beyond
scope of this paper. Nevertheless, the extension is in p
ciple straightforwardly based on the techniques develo
here. It is amusing to note that the issue of flavor current
actually a concern even when all the leads are ordinary p
magnetic metals, since even such contacts generically do
respect flavor.

C. Spin-flip scattering

Up to this point, we have assumed that the QW is its
spin rotationally invariant. In general, quantum-mechani
spin-orbit coupling mixes spin and orbital angular mome
tum, leading to a small violation of spin conservation. Th
can occur both as bulk and boundary effects. For semic
ductor QW’s, the spin-orbit effects are well understood. F
SWNT’s, they are expected to be extremely small. Indeed
an ideal flat sheet of graphene, spin-orbit effects are ne
gible due to the high symmetry of the zone-boundary wa
vector, thepz nature of the electronically active carbon o
bitals, and the small atomic number of carbon. From
simple tight-binding treatment~not shown here!, we indeed
find a vanishing effect for ideal graphene. In SWNT’s, bu
spin-orbit effects can then in principle occur solely due to
curvature of the nanotube, to phonon distortions, and to
fects in the tube. The first two factors are probably neg
gible, as they are suppressed both by the smallness o
relativistic nature of spin-orbit coupling and by the smallne
of the nanotube curvature and the electron-phonon coup
respectively. Tube defects generally destroy the local s
03531
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metry of the lattice, and allow some spin-orbit scatterin
However, these same defects also elastically scatter ordi
momentum, so that one may estimate the spin-orbit sca
ing rate as 1/tso5e/tJ

el , wheree!1 reflects the relativistic
nature of the microscopic spin-orbit coupling. Since the el
tic mean-free-path of SWNT’s is known to be of the order
microns, the corresponding spin-orbit scattering length m
be orders of magnitude larger, and hence also of no imp
tance for current tubes which are at best a few tens of
crons long. Parenthetically, we note that in multiwall nan
tubes, disorder is more important, and hence spin-o
scattering may be of more relevance. In any case, i
straightforward to include the effect of spin nonconservat
theoretically by modifying Eq.~4.5! to

] tMW 1]xJW52MW /tso2mBMW 3BW . ~6.7!

Probably more significant is spin-flip scattering at the bou
aries of the QW and contacts, which are often much m
disordered than the bulk of the QW. Such processes ca
incorporated by a renormalization of the contact parame
P, G, andq; see Ref. 20.

D. Dipolar fields

A uniform magnetic field was already included in E
~4.2!. In general, magnetic contacts give rise to a spatia
varying dipolar field acting on the electron spin in the QW
Provided the variation of this field is smooth on the scale
the Fermi wavelength of the QW, however, the hydrod
namic treatment of the magnetic field can be applied to
case as well, simply lettingB→B(x) in Eqs. ~4.5! and
~4.10!. Because the characteristic spatial scale of variation
the magnetic field is the size of the leads themselves,
condition should be amply satisfied for nanotubes and m
semiconductor QW’s.

One can obtain an idea of the magnitude of the effec
dipolar fields by considering an idealized uniformly pola
ized spherical ferromagnet of radiusr c and magnetization
mW 0, end contacting the QW atx50. The external magnetic
field of such a sphere is a pure magnetic dipole, and he
B;umW 0u/(11x/r c)

3, with the usual dipolar dependence o
the orientation ofmW 0. To maximize the effects of the dipola
interactions, assume an Fe contact~which has a larger mag
netization than Co or Ni!, and a radiusr c comparable to the
lengthL of the QW, so thatB;umW 0u over the whole length.
For low-temperature iron,umW 0u'0.17 T, and thus Eq.~5.13!
leads to the typical phase change, estimated for a SWNT

gdipolar
Fe

2p
'0.003S L

1m D . ~6.8!

Thus the effect of dipolar fields is probably negligible.

VII. DISCUSSION

We conclude this paper by establishing a connection
Andreev currents in superconductor-normal-supercondu
junctions and by pointing out some open questions.
0-16
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A. Analogies to superconductors

An interesting view on many of the above results follow
through an analogy to Andreev processes in ballistic S
junctions. A very similar relation was considered previou
in Ref. 32. Consider, for example, the device depicted in F
1. Without loss of generality, we choose the magnetization
the left FM lead asm̂15 x̂, and that of the right lead in the
x-y plane,m̂25cos(u)x̂2sin(u)ŷ. Neglecting electron tunnel
ing, magnetic fields, and backscattering, the Hamilton
fully decouples into spin and charge components. Beca
the spin Hamiltonian is independent of electron-electron
teractions, we are free to model it using effectively nonint
acting fermionsc. Note that this in no way implies that th
QW is noninteracting, but simply represents the physics
spin-charge separation. With boundary exchange coupl
K1 andK2, we thus have

Hs52 ivE
0

L

dx c†tz]xc2
K1

2
@c↑

†~0!c↓~0!1H.c.#

2
K2

2
@eiuc↑

†~L !c↓~L !1H.c.#. ~7.1!

Equation~7.1! must be supplemented by the boundary co
ditions cR5cL at x50 andx5L. Now consider the~spin-
down! particle-hole transformation,

c̃↑5c↑ , c̃↓5c↓
† , ~7.2!

which retains canonical anticommutators forc̃, and pre-
serves the boundary conditions. Under this transformat
the kinetic terms inHs are invariant, but the boundary term
become anomalous,

Hs52 ivE
0

L

dx c̃†tz]xc̃2@K1D̃~0!1K2eiuD̃~L !1H.c.#,

~7.3!

where the pair field is

D̃5
1

2
~ c̃R↑

† c̃L↓
† 2c̃R↓

† c̃L↑
† !, ~7.4!

and we used the boundary conditions to remove the facto
2 in the magnetic exchange. Equation~7.3! is the
Bogoliubov-deGennes Hamiltonian for a SNS junction in t
limit of large normal reflection. The latter limit is implied b
the boundary conditionsc̃R5c̃L at the ends.

The presence of the pair-field terms leads to Andreev
flection at the boundaries. As is well known, such a S
junction carries anequilibrium current I˜ for any u which is
not a multiple of 2p. In particular, we expect,33 for u of
order 1,

Ĩ 5ev^c̃†tzc̃&;S K1K2

v2 D ev
L

, ~7.5!
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in the fully coherent limit,eV,kBT!v/L. To translate this
result back into the spin problem, we can make a diction
relating quantities in the two pictures. Some interesting va
ables in the spin problem are

Jz5
v
2

c†t zszc5 Ĩ /2e,

mz5
1

2
c†s zc5

1

2
:c̃†c̃:5ñ/2,

J15vc↑
†t zc↓5v~ c̃R↑

† c̃R↓
† 2c̃L↑

† c̃L↓
† !,

m15
1

2
c↑

†c↓5c̃R↑
† c̃R↓

† 1c̃L↑
† c̃L↓

† .

We see thatJz andmz correspond to the charge current a
density, respectively, in the transformed variables. Thus
FM-LL-FM device indeed carries a nonvanishingz-axis spin
current. Note, however, that the in-plane magnetization c
responds to strange ‘‘large-momentum’’ pair fields in t
analog SNS system.

For comparison to the results of the previous sectio
note that our hydrodynamic treatment gives zero spin cur
at zero applied voltage. This is not inconsistent, because
~7.5!, which is exact in equilibrium, predicts a spin curre
Jz;v/L that vanishes in the thermodynamic limit. More pr
cisely, the hydrodynamic results require incoherent transp
which holds, e.g., foreV@v/L. The hydrodynamic approac
predicts Jz;GPV, which can be crudely matched to th
‘‘Andreev’’ prediction @Eq. ~7.5!#. In particular, the hydro-
dynamic and ‘‘Andreev’’ currents are comparable wheneV
;v/PL, that is essentially at the boundary between the
herent and incoherent regimes. One learns from the S
mapping that the spin current is actually enhanced by co
ence.

In an SNS junction, one expects a proximity-effec
induced pair field within the normal region. Naively, on
might therefore expect some uniform bulk magnetization
the x-y plane. However, this conclusion is false, as can
seen by rewriting the superconducting pair field:

D̃5cR↑
† cL↓1cL↑

† cR↓ . ~7.6!

The pair field thus maps back to the 2kF oscillatory compo-
nent of thex-y magnetization,D̃5m2kF

1 1m2kF

2 , but not to

the uniform one.

B. Outlook and open questions

Let us finally summarize some of the open questions fr
our point of view, and provide an outlook. One rather ob
ous concern might be theincoherentnature of transport as
sumed in our study. For sufficiently long quantum wir
and/or low conductance of the contacts, it certainly is app
priate to assume a two-step sequential transport mecha
through the FM-LL-FM device. What happens if one h
coherent transport? The latter situation could arise f
higher-transparency contacts or at very low energies. H
0-17
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ever, from the analogy to SNS junctions, we expect that
main conclusions are qualitatively unaffected by coheren
and we therefore do not expect a dramatic change. Neve
less, it would be interesting to study this question in det
For noninteracting electrons, this could be done in the fram
work of a Landauer-type approach; also see Refs. 20 and

A related issue concerns the role ofcharging effects,34

where transport through the LL is hindered by Coulom
blockade. For low-transparency contacts, these effects
known to be crucial at energy scales below the charg
energyEc , which can be estimated for a SWNT of lengthL,
radiusR, and background dielectric constantk,

Ec5~e2/kL !ln~L/R!,

and typically is of the order of a few meV. Charging effec
are washed out by intermediate-to-high temperatures,
could in principle be avoided altogether by using high
transparency contacts and/or long tubes. We note that ch
ing effects also tend to destroy spin accumulation,35 and
therefore one has to be careful that they are not present w
experimentally testing for spin-charge separation. Howe
since they manifest themselves through quite pronounced
pendencies on external gate voltages, this issue is not
pected to create serious difficulties in practice. Furtherm
although our present theory does not include charging
fects, this could be accounted for easily via a proper tre
ment of the zero modes in the bosonized version of the L
tinger liquid.7,36

A very interesting extension of the methods of this pa
is to problems involvingmesoscopicferromagnetic contacts
which are sufficiently small so that their magnetization b
comesdynamical. Here the quantum wire/nanotube wou
mediate an effective Ruderman-Kittel-type interaction b
tween the FM magnetizations, and interesting transport p
nomena can be anticipated.

It would now clearly be of great interest to experimenta
study the scenario put forward here. The probably best c
didates for such experiments are single-wall carbon na
tubes, which should offer the unique possibility of observi
spin-charge separation directly on a single 1D quantum w
In addition, the effects of backscattering were shown to
ply rather dramatic consequences for spin transport, such
sawtoothlike oscillatory current-voltage relation. Such sp
tacular consequences of the electron-electron interact
have not been predicted previously, to our knowledge,
should be observable for long nanotubes at very low te
peratures.

Future work should also address in detail the 2D gen
alization of these ideas, which seems particularly interes
in the context of some theories of high-Tc superconductivity.
We hope that our paper has convinced the reader that
transport in strongly correlated mesoscopic systems re
sents an exciting area of research that leads to both fu
mental insights and technologically useful devices.
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APPENDIX A: TRANSPORT IN A MAGNETIC FIELD

Here we outline the main step in the derivation of theI -V
characteristics in a magnetic field forb50; see Sec. V B. To
do so, we first eliminateJW1,2 andhW 2 from spin current con-
servation using the spin currents in Eqs.~5.4! and~5.5!, and
relations~5.14! and~5.15!. We are then left with the follow-
ing bulky relation determininghW 1:

q

4p
cosg~m̂11m̂2!3hW 11

q

4p
~12cosg!@~B̂•hW 1!~m̂23B̂!

2$hW 1•~m̂13B̂!%B̂#1~11Ga
2 !singhW 13B̂

1~q/4p!2 sing@~B̂•hW 1!~m̂13m̂2!1~B̂•m̂1!~m̂23hW 1!#

1
q

4p
Ga sing@hW 1$B̂•~m̂11m̂2!%2~B̂•hW 1!m̂1

2~hW 1•m̂2!B̂#12Ga@cosghW 11~12cosg!~B̂•hW 1!B̂#

5PIaH cosgm̂12m̂21~12cosg!~B̂•m̂1!B̂

1
q

4p
sing@~B̂•m̂2!m̂12cosuB̂#1Ga singm̂13B̂J .

This equation is then analyzed foru5p and special choices
for BW in Sec. V B.

APPENDIX B: DISSIPATIONLESS PRECESSION

The algebraic manipulations necessary to obtain the s
consistency equation~5.27! in Sec. V C are provided in this
appendix. With (ĥ12ĥ2)• Ĵ50, we can write

ĥ1•ĥ25@12~ ĥ• Ĵ!2#cos~Dw!1~ ĥ• Ĵ!2. ~B1!

SincehW 1•JW15hW 2•JW2 is conserved, by multiplying Eq.~5.4!
by hW 1 and Eq. ~5.5! by hW 2, and exploiting Eq.~5.7!, we
obtain ĥ1,2• Ĵ50. This in turn implies directly that we can
relateĥ2 to ĥ1. With hW 5hW 1, we obtain

ĥ25cos~Dw!ĥ2sin~Dw!ĥ3 Ĵ. ~B2!

The unknown spin chemical potentialhW can then be obtained
from spin current conservation,JW15JW2, with the currents
specified in Eqs.~5.4! and ~5.5!.

Using the abbreviations Eq.~5.24!, W5J/PIa.0 andZ

5q/(4pGa), the relationhW •JW150 givesĥ•m̂15X. Further-
more, from Eqs.~5.4! and ~5.5!,

m̂1• Ĵ15m̂2• Ĵ25~12X2!/W. ~B3!

Next we use thatĥ•JW250 implies

ĥ•m̂25XZ sin~Dw!m̂• Ĵ2X cos~Dw!,
0-18
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where m̂• Ĵ is determined by Eq.~B3!. In addition, m̂2•JW1

5m̂•JW @see Eq.~B3!# gives

ĥ•~m̂13m̂2!5~2/XZ!@sin2~u/2!2X2 cos2~Dw/2!#

1X sin~Dw!m̂• Ĵ.

Finally, we may employ the relationm̂1•JW25m̂•JW , which
yields

XZ cos~Dw!ĥ•~m̂13m̂2!2XZ sin~Dw!~m̂• Ĵ!ĥ•~m̂12m̂2!

22 sin2~u/2!12X2 cos2~Dw/2!2X sin~Dw!m̂1•~ ĥ3 Ĵ!

50. ~B4!

Alternatively, one could use spin conservation ofJW•(m̂1

3m̂2), which produces the same answer. When simplify
Eq. ~B4!, it is helpful to use the relation

m̂1•~ ĥ3 Ĵ!52ZX~12X2!/W52ZXm̂• Ĵ,

which follows from JW1• Ĵ5J. Straightforward algebra the
leads to the self-consistency equation@Eq. ~5.27!#.

APPENDIX C: SPIN DIFFUSION

In this appendix, the technical steps in the derivation
the I -V characteristics in the presence of spin diffusion~see
Sec. V D! are given. The charge current can be written as
~5.25!, but with a modified quantityX,

X25
Ga

PIa
hW 1•m̂1 . ~C1!

In addition, we useCT5PIaL/ss , with the spin conductiv-
ity ~4.15!. To compute the current, we first need to expre
hW 2 in terms of hW 15hW via the steady-state diffusion
precession relation@Eq. ~4.14!#. For symmetry reasons,hW 2

2

5hW 1
2, since we consider identical contacts. This directly i

plies from Eqs.~5.4! and ~5.5! that

hW • Ĵ52hW 2• Ĵ5WCT/2, ~C2!

where we use againW5J/PIa . With the precession phas
Dw defined in Eq.~5.23!, we then obtain, instead of Eq
~B2!,

hW 25cos~Dw!hW 2sin~Dw!hW 3 Ĵ2WCT cos2~Dw/2!Ĵ.
~C3!

Combined with Eq.~C2!, this allows us to expressh2 in
terms ofX2 alone:

~hGa /PIa!25X22W2GaCT/2PIa . ~C4!

HereJW1
25J2 yields, withZ5q/pGa ,

W25
~12X2!~11Z2X2!

11GaCT~11Z2!/~2PIa!
. ~C5!

Then Eq.~B3! still holds.
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We now employ spin-current conservation to obtain
closed nonlinear self-consistency equation for findingX2,
and thereby the current-voltage relation. WithQ2

5(Ga /PIa)hW •m̂2, the relationm̂1•JW25PIa(12X2) gives,
after some massaging,

X22
ZWGaCT

2PIa
sin~Dw!24 sin2~u/2!sin2~Dw/2!

1Fcos~Dw!1
Z

W
~12X2!sin~Dw!

1
GaCT

PIa
cos2~Dw/2!~11Z2!GQ2

2
GaCT

PIa
cos2~Dw/2!cos~u!~11Z2X2!50.

The second relation, allowing us to eliminateQ2, comes
from hW •JW25WCTJ/2, and reads

F11
ZWGaCT

2PIa
cot~Dw/2!GQ21cos~Dw!X2

2
Z

W
sin~Dw!~12X2!X2

2
GaCT

PIa
S 11

GaCT

2PIa
D cos2~Dw/2!W2

1
ZWGa

2PIa
cot~Dw/2!FX21H 2 sin2~Dw/2!

2
GaCT

PIa
cos2~Dw/2!J ~12X2!G50.

Eliminating Q2 from these two relations gives the sel
consistency equation forX2 for arbitary temperature and ap
plied voltage. The solutions to this equation directly give t
current via Eq.~5.25!. One checks easily that this reproduc
the T50 self-consistency equation~5.27!.

We shall now evaluate the self-consistency equation
the spin-diffusion-dominated regime characterized byT
@T* , with the scaleT* defined in Eq.~5.32!. This tempera-
ture results fromf (T)5ZGaCT /PIa51 for T5T* . Since
f (T)@1 for T@T* , the above equations can be drastica
simplified in this regime.

For T@T* , the self-consistency equation is again solv
by the discrete values@Eqs. ~5.28!# of the precession phas
Dw indexed by the winding numbern. Since under these
conditions, from Eq.~C5!, the precession phase can be wr
ten as

Dw5S 2PIa

GaCT
D 1/2bLPIa

v
XA12X2,

it is then straightforward to derive Eq.~5.33! in Sec. V D.
0-19
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