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Electronic structure of a quantum ring in a lateral electric field

J. M. Llorens, C. Trallero-Giner,* A. Garcı́a-Cristóbal, and A. Cantarero
Material Science Institute, University of Valencia, P.O. Box 2085, E-46071 Valencia, Spain

~Received 30 November 2000; published 20 June 2001!

The electronic states of novel semiconductor quantum rings~QR’s! under applied lateral electric fields are
theoretically investigated for different values of the ratior 2 /r 1, wherer 2 (r 1) is the outer~inner! radius of the
ring. The eigenstates and eigenvalues of the Hamiltonian are obtained from a direct matrix diagonalization
scheme. Numerical calculations are performed for a hard-wall confinement potential and the electronic states
are obtained as a function of the electric field and the ratior 2 /r 1. An anomalous behavior in the energy vs.
electric-field fan plot due to the break of symmetry is predicted. Analytical expressions for the energy levels,
valid in the weak-field limit, are presented and compared with the exact numerical solutions. The effects of
decreasing symmetry and mixing on the energy levels and wave functions of the QR due to the applied electric
field are also studied. The oscillator strengths of optical transitions between valence and conduction levels are
reported as a function of the electric field.
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I. INTRODUCTION

Semiconductor zero-dimensional systems obtained by
assembly during epitaxial growth are the subject of extens
experimental studies.1 The spectroscopic techniques used
these investigations are often combined with the applica
of external perturbations, such as electric and magnetic fi
or hydrostatic pressure,2–5 which contribute to a better un
derstanding of the observed features because they ca
move degeneracies and split or shift the electronic lev
One of the most appealing aspects of the self-assem
nanostructures is given by the enormous possibilities of
loring their properties by controlling the growth paramete
In view of this, several experimental groups now dedic
their efforts to generate more exotic nanostructures. Thus
example, vertical ordering in the growth of stacked quant
dot layers has been achieved,6,7 which opens the possibility
to create quantum dot molecules and superlattices. More
cently, the self-assembled growth of flat nanoscopic In
islands with ringlike shape has been reported.8–10 The study
of the electronic structure of these novel semiconduc
quantum rings~QR’s! is particularly interesting due to the
nonsimply connected geometry. The preliminary experim
tal studies on these samples claim for a suitable theore
modeling of their electronic structure.9,10 Though there exists
a voluminous body of theoretical work on persistent curre
in quantum rings, those studies have been carried out in
mesoscopic regime, where a large number of quantum s
is filled.11 Little work has been published so far on the ele
tronic structure of quantum rings in the true quantum lim
The usual approach to date has been to assume a para
confinement with an effective radius in the plane of t
ring,12 and several studies of the many-electron problem
magnetic field have been carried out with this mode13

Though giving valuable qualitative results, this approach
far from realistic for the available quantum ring structure
for which the confinement potential is originated from
abrupt material discontinuity.

From the point of view of applications in optoelectron
and tunneling devices, it is essential to investigate the eff
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of an electric field on the electronic structure.14 These sort of
studies have been very helpful in the understanding of
electronic properties of bulk and quantum well systems15

We believe that experiments performed under the action
electric fields, combined with suitable theoretical modelin
can provide a quantitative way of determining the confin
ment environment associated with the quantum rings. W
the effects of an electric field perpendicular to the ring pla
are dominated by the quantum confined Stark effect, as h
pens in quantum wells,16 a richer phenomenology is ex
pected when the field is applied in the plane of the ring, sin
in this case the symmetry of the problem is reduced. In
dition, the competence between the field influence and
nontrivial in-plane confinement can lead to new interest
features in the electronic structure. Furthermore, the sens
ity of the electronic structure to a lateral electric field,
opposed to the robustness found for electric fields along
growth direction, can be useful for applications in electr
optical modulation and switching devices. In order to explo
these possibilities, we present in this paper a theoretical
proach to the electronic states in self-assembled quan
rings under a lateral electric field. A square-shaped confi
ment potential with infinite barriers is assumed in the cal
lations.

II. THEORETICAL MODEL

Typical self-assembled ringlike structures present an in
radius r 1 of about 10 nm, while the outer radiusr 2 ranges
between 30 and 70 nm, and their heightLz is around 2
nm.9,10 We consider an electron confined to the circu
quantum ring shown in Fig. 1, under the action of an elec
field F perpendicular to theZ axis. The characteristic value
of the height-to-radius ratio found in the experiments ma
the toroid of rectangular cross section a good model for
quantum confinement. Within the effective mass approxim
tion, the single-particle Hamiltonian is

H5H01e F•r , ~1!
©2001 The American Physical Society09-1
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H05pz

1

2mz
pz1p'

1

2m'

p'1V~r ,z!, ~2!

wheremz (m') is the effective mass along theZ axis ~in the
XY plane!, e (.0) is the magnitude of the electron charg
andV(r ,z) is the confinement potential. Here,r is the radius
vector in theXY plane, r5(x,y). For the case considere
here of flat QR’s, in which the condition (r 22r 1)@Lz is
fulfilled, we can use the adiabatic approximation where
motion along theZ axis is decoupled from theXY one, dis-
regarding the anisotropic effects due to the corners.17,18

Thus, we treat theXY motion as an independent two
dimensional problem and the total wave functions can
factorized as

C~r ,z!5Q~r !F0~z!. ~3!

The functionF0(z) and the energyEz represent the lower
confined state of the electron by the band profile along thZ
axis.18 As the ring widthr 22r 1 ranges between 20 and 6
nm, an infinite barrier in the ring plane can be safely
sumed. Therefore, the eigenfunctions of the in-plane mo
for zero electric field can be cast as

Qn,m
(0) ~r !5

eimw

A2p
Rn,m~r !, ~4!

Rn,m~r !5An,mFNumu~mn
(m)!JumuS mn

(m) r

r 1
D

2Jumu~mn
(m)!NumuS mn

(m) r

r 1
D G . ~5!

The normalization constantAn,m is given by

An,m5A 2

S r 2

r 1
D 2

CmS mn
(m) ,

r 2

r 1
D 2

2Cm~mn
(m),1!2

, ~6!

with

Cm~m,a!5Numu~m!Jumu21~ma!2Jumu~m!Numu21~ma!.
~7!

FIG. 1. Schematic picture of a self-assembled quantum
with dimensionsr 1510 nm,r 2550 nm, andLz52 nm. The exter-
nal electric fieldF is applied along theX axis.
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In these expressions,Jl(a) @Nl(a)# is the Bessel~Neumann!
function of l th order,19 m50,61, . . . , thez component of
the angular momentum andn51,2, . . . , theradial quantum
number. The purely two-dimensional~2D! electron energy is
En,m5E0 mn

(m)2, whereE05\2/2m'r 1
2 andmn

(m) are obtained
by solving the following secular equation:

Numu~mn
(m)!JumuS mn

(m) r 2

r 1
D2Jumu~mn

(m)!NumuS mn
(m) r 2

r 1
D50.

~8!

The states (n,m) and (n,2m) are degenerate owing to th
cylindrical symmetry of the problem. The eigenvaluesmn

(m)

solution of Eq.~8! are plotted as a function ofr 2 /r 1 in Fig.
2. They decrease approximately as (r 2 /r 1)21 and accidental
degeneracies are predicted when two states with diffe
angular momentumm cross for certain values ofr 2 /r 1.

The Hamiltonian~1! for a QR under an in-plane electri
field F5Fex does not allow for explicit analytical solution
for the wave functionQ(r ). The electric field breaks the
axial symmetry and (n,m) are not good quantum numbe
anymore. Nevertheless, it is still possible to classify the el
tron states according to the parity of their wave functio
under inversion with respect to the axis of the field (X axis!.
In other words, there are two disconnected subspaces ofeven
@Q(r ,2w)5Q(r ,w)# and odd @Q(r ,2w)52Q(r ,w)#
eigenstates. These subspaces can be obtained separat
expandingQ(r ) in terms of the corresponding even and o
zero-field eigenstates:

even states→QN~r !5 (
n,m>0

An,m
(N) cos~mf!

A~11dm,0!p
Rn,m~r !,

~9a!

odd states→QN~r !5 (
n,m.0

Bn,m
(N) sin~mf!

Ap
Rn,m~r !,

~9b!

g

FIG. 2. Eigenvaluesmn
(m) of Eq. ~8! as a function of the ratio

r 2 /r 1. Solid and dashed lines correspond to the radial quan
numbersn51 andn52, respectively. The angular momentumm
runs from 0 to 5 forn51 and from 0 to 2 forn52. For any value
of r 2 /r 1 and for a fixedn, mn

(m) increases withm.
9-2
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ELECTRONIC STRUCTURE OF A QUANTUM RING IN A . . . PHYSICAL REVIEW B64 035309
whereN labels the new electronic states in increasing or
of the energyEN , andAn,m

(N) andBn,m
(N) are coefficients to be

determined which ones depend onF and the ratior 2 /r 1.
Substitution of Eq.~9! into Eq. ~1! yields two independen
systems of dimensionless equations

(
n,m>0

F S mn
(m)22

EN

E0
D dn,n8dm,m8

1
1

2

F

F0
~dm,m8111dm,m821!Rn8,m8

n,m GAn,m
(N) 50,

~10a!

(
n,m.0

F S mn
(m)22

EN

E0
D dn,n8dm,m81

A~11dm,0!

2

3
F

F0
~dm,m8111dm,m821! Rn8,m8

n,m GBn,m
(N) 50,

~10b!

whereF05E0 /er1. The matrix elements

Rn8,m8
n,m

5
1

r 1
E

r 1

r 2
r 2dr Rn8,m8~r ! Rn,m~r !, ~11!

are dimensionless numbers that are evaluated numericall
every value ofr 2 /r 1. Equation~10! shows that the electroni
states withDm561 are mixed due to the uniaxial directio
introduced by the applied electric field. The eigenstates
obtained by using standard numerical diagonalization te
niques to solve Eq.~10!.20 In the next section we presen
numerical results that illustrate the influence of the elec
field on the electronic structure of quantum rings of differe
sizes.

III. NUMERICAL RESULTS

A. Energies and wave functions

In Fig. 3 we plot the calculated energiesEN as a function
of the dimensionless electric fieldF/F0 for two values of the
ratio r 2 /r 153 @Fig. 3~a!# and 7 @Fig. 3~b!#, representing the
smaller and larger rings reported in the experiments.9,10 The
obtained eigenvaluesEN /E0 for a given ratior 2 /r 1 are gen-
eral results that can be particularized to electrons or h
simply by adjusting the value of the effective massm' .
Figures 3~a! and 3~b! show that the effect of the field on th
energy increases asr 2 /r 1 increases. Otherwise stated, t
stronger the confinement, the smaller the electric-field eff
Thus, for ther 2 /r 153 case the dispersion of all eigenene
gies is very weak, while for the ring withr 2 /r 157 the en-
ergy dispersion is far more pronounced and exhibits a c
plex structure with crossings between and anticrossing
the energy levels.

For low electric fields in comparison with the ‘‘unit field’
F0 (F/F0!1), it is possible to obtain approximate analytic
expressions for the energies by applying perturbation the
The energy shifts are found to be quadratic with the field
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the lowest order of approximation. Thus, the energies of
first three levels can be expressed as:

E1~F !5E1,022
h2,1

2

E1,12E1,0
S F

F0
D 2

, ~12a!

E2~F !5E1,12
h2,1

2

E1,22E1,1
S F

F0
D 2

, ~12b!

E3~F !5E1,11F2
h1,0

2

E1,12E1,0
2

h2,1
2

E1,22E1,1
G S F

F0
D 2

,

~12c!

wherehi , j5
1
2 ^R1,i ur uR1,j& E0. These energies are also plo

ted as dotted lines in Fig. 3~a!. For very low fieldsF/F0
&0.1 they agree very well with the exact calculations. Ne
ertheless, for sufficiently high fields the dispersion of t

FIG. 3. Energy levelsEN /E0 of a quantum ring with ratio
r 2 /r 153 ~a! and r 2 /r 157 ~b!, as a function of the dimensionles
electric fieldF/F0. The labels on the left of each curve indicate t
quantum numbers (n,m) at F50. Solid and dashed lines refer t
states with even or odd parity, respectively. The dotted curve
panel~a! represent the approximate results obtained by perturba
theory through Eqs.~12a!–~12c!.
9-3



pr
f
it
lo

r

.

in

gy

cor-

-

e-
e

e
s
Fig.

y
e

of
u-

is
tate

g to
re-

b-
ti-
d in
n
e-
flat
ring

of

zero

a
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energies starts to deviate from the quadratic behavior
dicted by Eq.~12!, indicating the increasing importance o
the nonperturbative field effect. The admixture of states w
Dm561 causes a nontrivial behavior in the energy fan p
as a function ofF. A given stateN can be shifted to lower o
higher energy according to the coupling with the (m61)-th
component of the neighboring states with the same parity
this process the state is forced to reject them61 level at
certainF leading to the reported anomalous oscillations
the energy spectrum seen in Fig. 3~b!. The strength of the
interlevel coupling is inversely proportional to the ener
level separation.

Figure 4 shows the probability densityuQN(r )u2 for the

FIG. 4. Contour plots ofuQN(r )u2 (N51 and 3! for a QR with
r 2 /r 153, and for three values of the applied electric field,F/F0

50, 0.18, and 0.72. The corresponding 3D plots ofuQN53(rW)u2 are
also shown at the top of the figure. The states represented
marked with dots in Fig. 3~a!.
03530
e-

h
t

In

first two even states (N51 and 3) of a ring withr 2 /r 153,
for three different electric fields. The states represented
respond to those marked with dots in Fig. 3~a!. At zero elec-
tric field, the density of probability presents full axial sym
metry. When the field is increased toF/F050.18, the
function uQN(r )u2 becomes anisotropic indicating a displac
ment~polarization! of the electron under the influence of th
field: The electron in the ground stateN51 moves, as it
could be expected, opposite to the direction of the field~that
points to the right!, but strikingly enough, the electron in th
excited stateN53 moves in the direction of the field. Thi
fact can be correlated to the energy dispersion shown in
3~a!: The field-induced coupling between the statesN51
andN53 shifts up theN53 energy level, while the energ
of theN51 state follows a nearly parabolic redshift with th
field @see also Eq.~12!#. The upwards dispersion of theN
53 state translates into the anomalous polarization
uQN53(r )u2 reflected in Fig. 4. According to these arg
ments, one expects that the maximum ofuQN53(r )u2 will
cease to move right and start moving left when the field
further increased and the coupling with the next even s
N55 forces the energyE3(F) to recover the downwards
dispersion, as shown in Fig. 3~a!. This behavior can be in-
deed recognized in the last panel of Fig. 4, correspondin
F/F050.72, where it is apparent that the electron has
versed the direction of its motion.

It is also interesting to explore the evolution of the pro
ability density in the electric-field range around the an
crossing between two energy levels: The region enclose
the square of Fig. 3~b!, in which two electronic states of eve
parity anticross, is shown in Fig. 5. Incidentally, in this r
gion there is also a state of odd parity whose almost
dispersion is unaffected by the presence of the neighbo
even states, illustrating the independence of both sets
states. The corresponding functionsuQN(r )u2 are also dis-
played in Fig. 5 for various values of the electric fieldF/F0
around the anticrossing between the two even states. At

re
-

he
he
FIG. 5. Enlarged picture of the region en
closed by a square in Fig. 3~b!. 3D plots of the
probability density for selected states around t
anticrossing region are displayed around t
graph.
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electric field ~not shown!, the density of probability of all
states exhibits full axial symmetry: The two degener
states are (n51,m563) ~with no radial nodes inside th
ring! and the other, higher in energy, is (n52,m50) ~with
one radial node!. As F/F0 increases to the value 0.084, th
degenerate states of definite~even and odd! parity split in
energy. AsF/F0 is further increased, the two even stat
tend to cross with each other, but this crossing is preven
by their mutual coupling. Instead, there is a strong mixing
both states. This is illustrated in Fig. 5 by the probabil
densities atF/F050.094. Finally, for a value of the field
F/F050.109, beyond the anticrossing region, it is clea
seen that the functionsuQN(r )u2 of the two even states hav
completely exchanged their properties.

The electronic states calculated so far apply to experim
tal situations in which there is only one electron~or hole! per
quantum ring. An interesting question concerns the mod
cation of those results when the ring is populated with f
electrons. The main effect of the repulsive electron-elect
interaction will be a blueshift of the energy levels. This e
fect will become more pronounced when there is a late
electric field applied, since then the one-electron wave fu
tions are more localized on one side of the ring~see Fig. 4!.
One therefore expects that in this case the electronic st
ture will be determined by the interplay of two opposite e
fects, i.e.,~a! the reported redshift of the one-electron ener
levels induced by the electric field~see Fig. 3! and ~b! the
above-mentioned field-dependent blueshift produced by
electron-electron interaction. In addition, the balance of th
two trends will depend on the dimensions of the ringr 1 and
r 2. Detailed calculations are nevertheless needed for a q
titative analysis.

B. Oscillator strengths

An important magnitude for the study of the optical pro
erties is the oscillator strength of the transitions between
valence and conduction states. In our case, it is given by

E dr dzCNe
* ~r ,z!CNh

~r ,z!5 f Ne ,Nh
E dzF0

(e)~z! F0
(h)~z!.

~13!

The in-plane oscillator strengthf Ne ,Nh
is easily evaluated

from:

f Ne ,Nh
5E dr QNe

* ~r !QNh
~r !5U(

n,m
An,m

(Ne)An,m
(Nh)U2

, ~14!

whereAn,m
(N) are the coefficients in the expansion~9!. At zero

electric field, due to the orthogonality of the wave functio
~4!, we recover the selection ruleNe5Nh typical of the mod-
els with infinite barriers: The oscillator strength matrix
diagonal (f Ne ,Nh

5dNe ,Nh
) and transitions between electro

and hole states with differentN are forbidden. When the field
is applied, this condition is relaxed and the new symme
discussed above provides a different selection rule: tra
tions between even and odd states are forbidden. S
f Ne ,Nh

involves the field-dependent electron and hole sta
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it depends on the electric field, the ratior 2 /r 1, and the ratio
between electron and hole masses. Figure 6 shows the
pendence off Ne ,Nh

on the electric field for the transition

involving the statesNe ,Nh5125 in a quantum ring with
r 2 /r 153.21 The oscillator strengths of even-even and od
odd transitions are represented with solid and dashed li
respectively. The transitions 1e25h and 5e21h have negli-
gible oscillator strength and are not displayed. As the elec
field increases, the diagonal transitions (Ne5Nh) lose oscil-
lator strength, since it is transferred to the nondiagonal o
(NeÞNh), which become weakly allowed. This fact is aga
explained by the field-induced mixing of the various (n,m)
components within every state. In general, the field tend
reduce the overlap between electron and hole wave fu
tions. This accounts for the overall reduction of the diago
oscillator strengths. However, we have seen that the po
ization of the wave functions can present anomalies rela
to the coupling among different states~see Fig. 4!. This ex-
plains the nonmonotonous field dependence of the oscill
strengths. It should be noticed that the above oscilla
strengths correspond to optical transitions neglecting
electron-hole correlation. The inclusion of this interacti
will produce a redshift of the transition energies and an
crease of the oscillator strengths, which will be a linear co
bination of f Ne ,Nh

with differentNe andNh . Calculations of
excitons in quantum rings under an electric field are
progress.

IV. CONCLUSIONS

We have studied theoretically the effects of an elec
field applied in the plane of the novel quantum ring stru
tures grown by self-assembly techniques. The electron e
gies and wave functions have been calculated within
envelope-function approximation. The results are expres
very generally in terms of only two dimensionless para
eters, the ratior 2 /r 1 and the normalized fieldF/F0, and

FIG. 6. In-plane oscillator strength for the lowest electron-h
transitions in a quantum ring withr 2 /r 153, as a function of the
electric field. The different transitions are labeled byNe2Nh . Solid
and dashed lines correspond to even-even and odd-odd transi
respectively.
9-5
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represent a first step for further investigations of seve
physical magnitudes. We find that due to the break of a
symmetry by the field, the energy levels of large quant
rings exhibit a complex dispersion as a function of the el
tric field. We have also studied the field-induced polarizat
of the electron wave functions and found an anomalous
havior that can be correlated with the energy dispersion.
have also calculated and analyzed the field dependence o
oscillator strength for a number of optical transitio
between valence and conduction states. The geome
03530
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dependent features identified in our calculations can be u
to estimate the size of the available quantum rings structu
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