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Electronic structure of a quantum ring in a lateral electric field

J. M. Llorens, C. Trallero-Ginef¥,A. Garca-Cristdal, and A. Cantarero
Material Science Institute, University of Valencia, P.O. Box 2085, E-46071 Valencia, Spain
(Received 30 November 2000; published 20 June 2001

The electronic states of novel semiconductor quantum riQdg®'s) under applied lateral electric fields are
theoretically investigated for different values of the ratjdr ,, wherer, (r,) is the outerinnen radius of the
ring. The eigenstates and eigenvalues of the Hamiltonian are obtained from a direct matrix diagonalization
scheme. Numerical calculations are performed for a hard-wall confinement potential and the electronic states
are obtained as a function of the electric field and the natis;. An anomalous behavior in the energy vs.
electric-field fan plot due to the break of symmetry is predicted. Analytical expressions for the energy levels,
valid in the weak-field limit, are presented and compared with the exact numerical solutions. The effects of
decreasing symmetry and mixing on the energy levels and wave functions of the QR due to the applied electric
field are also studied. The oscillator strengths of optical transitions between valence and conduction levels are
reported as a function of the electric field.
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[. INTRODUCTION of an electric field on the electronic structdfeThese sort of
studies have been very helpful in the understanding of the
Semiconductor zero-dimensional systems obtained by se#lectronic properties of bulk and quantum well systéms.
assembly during epitaxial growth are the subject of extensivdVe believe that experiments performed under the action of
experimental studiesThe spectroscopic techniques used inelectric fields, combined with suitable theoretical modeling,
these investigations are often combined with the applicatioican provide a quantitative way of determining the confine-
of external perturbations, such as electric and magnetic fieldsient environment associated with the quantum rings. While
or hydrostatic pressure? which contribute to a better un- the effects of an electric field perpendicular to the ring plane
derstanding of the observed features because they can rare dominated by the quantum confined Stark effect, as hap-
move degeneracies and split or shift the electronic levelspens in gquantum well¥® a richer phenomenology is ex-
One of the most appealing aspects of the self-assembleeected when the field is applied in the plane of the ring, since
nanostructures is given by the enormous possibilities of taiin this case the symmetry of the problem is reduced. In ad-
loring their properties by controlling the growth parameters.dition, the competence between the field influence and the
In view of this, several experimental groups now dedicatenontrivial in-plane confinement can lead to new interesting
their efforts to generate more exotic nanostructures. Thus, fdeatures in the electronic structure. Furthermore, the sensitiv-
example, vertical ordering in the growth of stacked quantunity of the electronic structure to a lateral electric field, as
dot layers has been achievRfwhich opens the possibility opposed to the robustness found for electric fields along the
to create quantum dot molecules and superlattices. More rgowth direction, can be useful for applications in electro-
cently, the self-assembled growth of flat nanoscopic InAsoptical modulation and switching devices. In order to explore
islands with ringlike shape has been repofted.The study these possibilities, we present in this paper a theoretical ap-
of the electronic structure of these novel semiconductoproach to the electronic states in self-assembled quantum
guantum ringgQR’s) is particularly interesting due to their rings under a lateral electric field. A square-shaped confine-
nonsimply connected geometry. The preliminary experimenment potential with infinite barriers is assumed in the calcu-
tal studies on these samples claim for a suitable theoreticddtions.
modeling of their electronic structuPd? Though there exists
a voluminous body of theoretical work on persistent currents
in quantum rings, those studies have been carried out in the Il. THEORETICAL MODEL
.me.sosclc;pu.: regime, where a large -number of quantum states Typical self-assembled ringlike structures present an inner
is f|I_Ied. Little work has bee|_’1 pubﬁshed so far on the ‘?'ef:'radiusrl of about 10 nm, while the outer radius ranges
tronic structure of quantum rings in the true quantum limit. between 30 and 70 nm, and their height is around 2
The usual approach to date has been to assume a parabgii, 910 \we consider an electron confined to the circular
confinement with an effective radius in the plane of theqyantum ring shown in Fig. 1, under the action of an electric
ring,”* and several studies of the many-electron problem in gig|g F perpendicular to th& axis. The characteristic values
magnetic field have been carried out with this model. of the height-to-radius ratio found in the experiments make
Though giving valuable qualitative results, this approach isne toroid of rectangular cross section a good model for the

far from realistic for the available quantum ring structures,quantum confinement. Within the effective mass approxima-
for which the confinement potential is originated from antion, the single-particle Hamiltonian is

abrupt material discontinuity.
From the point of view of applications in optoelectronic
and tunneling devices, it is essential to investigate the effects H=Hy+eF-r, (1)
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FIG. 1. Schematic picture of a self-assembled quantum ring Y e U S Y S
with dimensiong ;=10 nm,r,=50 nm, and_,=2 nm. The exter- 2 : ¢ s ¢ ’ : : 10
nal electric fieldF is applied along th& axis. i,
FIG. 2. Eigenvalues.{™ of Eq. (8) as a function of the ratio
H.= 1 " 1 HV(r,2) @) r,/r,. Solid and dashed lines correspond to the radial quantum
0= Pz 2m, Pz plzmL Pe Ve numbersn=1 andn=2, respectively. The angular momentum

runs from 0 to 5 fom=1 and from 0 to 2 fon=2. For any value
wherem, (m,) is the effective mass along tiZeaxis (in the  of r,/r, and for a fixedn, (™ increases witm.

XY plane, e (>0) is the magnitude of the electron charge,

andV(r,z) is the confinement potential. Herejs the radius  |n these expressiong,(a) [N,(«)] is the BesseiNeumann
vector in theXY plane,r=(x,y). For the case considered function of Ith order'® m=0,+1, ..., thez component of
here of flat QR’s, in which the conditionr{—r)>L, is  the angular momentum ang=1,2, . . ., theradial quantum

fulfilled, we can use the adiabatic approximation where thenumber. The purely two-dimension@D) electron energy is

motion along theZ axis is decoupled from th¥Y one, dis- g =E, Mgm)Z, whereE0=h2/2mir§ and,ugm) are obtained
regarding the anisotropic effects due to the com&f§. py'solving the following secular equation:

Thus, we treat theXY motion as an independent two-

dimensional problem and the total wave functions can be

. ) )
factorized as Nm(,uﬁm))J|m|( wlm a) —J|m|(,uf1m))Nm|< wlm E) =0.

8
V(r,2)=0(1Pg(2). 3 ®
The statesrf,m) and (h,—m) are degenerate owing to the

The function®y(z) and the energ¥, represent the lower- cylindrical symmetry of the problem. The eigenvalueg”)

confined state of the electron by the band profile alongzthe X . S
axis’® As the ring widthr,—r, ranges between 20 and 60 solution of Eq.(8) are plotted as a function af,/r, in Fig.

. _1 -
nm, an infinite barrier in the ring plane can be safely as2: 1€y decrease approximately as/f,) - and accidental

sumed. Therefore, the eigenfunctions of the in-plane motio'qegenerames are predicted when .tWO states with different
for zero electric field can be cast as angular momenturnm cross for certain values aof, /r .

The Hamiltonian(1) for a QR under an in-plane electric

aime field F=Fe, does not allow for explicit analytical solutions
00 (r)= R, m(r), (4)  for the wave function®(r). The electric field breaks the
‘ N2 axial symmetry andr(,m) are not good quantum numbers

anymore. Nevertheless, it is still possible to classify the elec-
r tron states according to the parity of their wave functions
Rn,m(r):An,m[ Nm(Mﬁm))J|m|( i r_) under inversion with respect to the axis of the fieXtigxis).
! In other words, there are two disconnected subspacegesf

(m) m " [O(r,—¢)=0(r,¢)] and odd [O(r,—¢)=—-0(r,¢)]
= Jjm/ (0 INjm| 11 E ' () eigenstates. These subspaces can be obtained separately by
expanding® (r) in terms of the corresponding even and odd
The normalization constamt, ., is given by zero-field eigenstates:
2 cogme)
A, = , (6 even states O (r)= AN _——— " R (1),
n,m ry 2 ) r, 2 - ) ( ) N( ) n’;}O n,mm n,m( )
—| Cml tn s —] —Cm(ap 1) '
r r (93
with .
sin(m
odd states—@y(r)= >, BQ‘%MRn,m(r),
Cm(/uaa):N\m\(ﬂ)‘]\m\fl(ﬂa)_‘]\m|(/U«)N|m|fl(lua)-( : n,m>0 e o
7 9
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whereN labels the new electronic states in increasing order 11 e

of the energyEy, andA{}), andB()) are coefficients to be A (@)
determined which ones depend &nhand the ratior,/r. ol T T ]
Substitution of Eq.(9) into Eq. (1) yields two independent
systems of dimensionless equations

(1,14)

En
(Mswm)z_ E_O) 5n,n’ 5m,m’

n,m=0

(1,£3)

E/E,

F (N)
(5mmr+1+5mmr 1)R An’m=0, 3k

n’,m’

(10a (L

V(1+ 6mo)

En
(Mgm)z_ E_O) 5n,n’5m,m’ + 2

n,m>0

F (N)
(5 m’+1+5 ,m’ — 1)Rn m’ Bn,m:()’

(10b)

whereFy,=Eg/er,. The matrix elements

E/E,

1 (r2
Rz;mm,=r—J r2dr Ry e (1) Ry m(r), (11)
’ 1Jrg

are dimensionless numbers that are evaluated numerically fo o
every value of ,/r,. Equation(10) shows that the electronic
states withAm= =1 are mixed due to the uniaxial direction
introduced by the applied electric field. The eigenstates are SR
obtained by using standard numerical diagonalization tech- B e—— Py S ——
niques to solve Eq(10).%° In the next section we present FIF
numerical results that illustrate the influence of the electric

field on the electronic structure of quantum rings of different  FiG. 3. Energy levelsEy/E, of a quantum ring with ratio

0

sizes. r,/ry;=3 (&) andr,/r;=7 (b), as a function of the dimensionless
electric fieldF/Fg. The labels on the left of each curve indicate the
IIl. NUMERICAL RESULTS guantum numbersn(m) at F=0. Solid and dashed lines refer to

states with even or odd parity, respectively. The dotted curves in

A. Energies and wave functions panel(a) represent the approximate results obtained by perturbation

In Fig. 3 we plot the calculated energiEg as a function €0y through Eqsl123—(120.

of the dimensionless electric fiekl F for two values of the
ratior,/r,=3 [Fig. 3(@] and 7[Fig. 3(b)], representing the
smaller and larger rings reported in the experiménfsThe
obtained eigenvaludsy /E, for a given ratior,/r, are gen- h2 F\2
eral results that can be particularized to electrons or holes E,(F)=E, 0_2¢(_) , (123
simply by adjusting the value of the effective mass . ' - Eio\F

Figures 3a) and 3b) show that the effect of the field on the

the lowest order of approximation. Thus, the energies of the
first three levels can be expressed as:

energy increases as/r, increases. Otherwise stated, the h%l F\2
- fald . Ex(F)=Eii—=—=|&| - (12b)
stronger the confinement, the smaller the electric-field effect. 2 t Epo— El‘l( Fo)
Thus, for ther,/r,=3 case the dispersion of all eigenener-
gies is very weak, while for the ring with,/r,=7 the en- h3, h3 , F\2
ergy dispersion is far more pronounced and exhibits a com-  E3(F)=E;;+|2 E _E. E.—E ,J(F_) :
plex structure with crossings between and anticrossings of 11 =10 =12 =LA T (120

the energy levels.

For low electric fields in comparison with the “unit field” Wherehi,J:% (Ry,|r|Ryj) Eo. These energies are also plot-
Fo (F/IFy<1), itis possible to obtain approximate analytical ted as dotted lines in Fig.(8. For very low fieldsF/Fq
expressions for the energies by applying perturbation theorys=0.1 they agree very well with the exact calculations. Nev-
The energy shifts are found to be quadratic with the field inertheless, for sufficiently high fields the dispersion of the
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F/E, 0 0.18 0.72 first two even statesN=1 and 3) of a ring withr,/r;=3

; for three different electric fields. The states represented cor-
respond to those marked with dots in Figa)3 At zero elec-
tric field, the density of probability presents full axial sym-

metry. When the field is increased t®/F,=0.18, the
function|®(r)|? becomes anisotropic indicating a displace-
ment(polarizatior) of the electron under the influence of the
field: The electron in the ground staté=1 moves, as it
could be expected, opposite to the direction of the figiat
points to the right but strikingly enough, the electron in the
excited statetN=3 moves in the direction of the field. This
fact can be correlated to the energy dispersion shown in Fig.
3(a): The field-induced coupling between the staiés 1
andN=3 shifts up theN=3 energy level, while the energy
of theN=1 state follows a nearly parabolic redshift with the
field [see also Eq(12)]. The upwards dispersion of thé
=3 state translates into the anomalous polarization of
|®n-3(r)|? reflected in Fig. 4. According to these argu-
FIG. 4. Contour plots of®(r)|? (N=1 and 3 for a QR with  ments, one expects that the maximum|@ky_s(r)|? will
ra/r,=3, and for three values of the applied electric figldFy  cease to move right and start moving left when the field is
=0, 0.18, and 0.72. The corresponding 3D plot$@f_5(r)|? are  further increased and the coupling with the next even state
also shown at the top of the figure. The states represented alg—=5 forces the energ¥,(F) to recover the downwards
marked with dots in Fig. @). dispersion, as shown in Fig(&. This behavior can be in-
deed recognized in the last panel of Fig. 4, corresponding to
energies starts to deviate from the quadratic behavior pre=/F;=0.72, where it is apparent that the electron has re-
dicted by Eq.(12), indicating the increasing importance of versed the direction of its motion.
the nonperturbative field effect. The admixture of states with It is also interesting to explore the evolution of the prob-
Am= *1 causes a nontrivial behavior in the energy fan plotability density in the electric-field range around the anti-
as a function of-. A given stateN can be shifted to lower or crossing between two energy levels: The region enclosed in
higher energy according to the coupling with te{1)-th  the square of Fig.®), in which two electronic states of even
component of the neighboring states with the same parity. Iparity anticross, is shown in Fig. 5. Incidentally, in this re-
this process the state is forced to reject thec1 level at  gion there is also a state of odd parity whose almost flat
certain F leading to the reported anomalous oscillations indispersion is unaffected by the presence of the neighboring
the energy spectrum seen in FighB The strength of the even states, illustrating the independence of both sets of
interlevel coupling is inversely proportional to the energystates. The corresponding functiof®(r)|? are also dis-
level separation. played in Fig. 5 for various values of the electric fi€ldF
Figure 4 shows the probability densit®)\(r)|? for the  around the anticrossing between the two even states. At zero

0.90 - \ 4
FIG. 5. Enlarged picture of the region en-

i closed by a square in Fig(l3. 3D plots of the

State N=3

/@(

Density of probability (arb. units)

f
(@,
=
-

o 0.85
E probability density for selected states around the
anticrossing region are displayed around the
e g reg play

graph.

./
0.80 -
0. 09
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electric field (not shown, the density of probability of all

states exhibits full axial symmetry: The two degenerate

states arer{=1m= *=3) (with no radial nodes inside the
ring) and the other, higher in energy, ie€2m=0) (with
one radial node As F/F, increases to the value 0.084, the
degenerate states of definifeven and oddparity split in

energy. AsF/F, is further increased, the two even states € g |
tend to cross with each other, but this crossing is preventecg
by their mutual coupling. Instead, there is a strong mixing of §
both states. This is illustrated in Fig. 5 by the probability 5 . [

densities at~/Fy=0.094. Finally, for a value of the field

F/Fy=0.109, beyond the anticrossing region, it is clearly

seen that the functior® y(r)|? of the two even states have
completely exchanged their properties.

The electronic states calculated so far apply to experimen:

tal situations in which there is only one electri@n hole per

guantum ring. An interesting question concerns the modifi-

PHYSICAL REVIEW B4 035309
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FIG. 6. In-plane oscillator strength for the lowest electron-hole

cation of those results when the ring is populated with fewfransitions in a quantum ring with,/r,=3, as a function of the

electrons. The main effect of the repulsive electron-electro
interaction will be a blueshift of the energy levels. This ef-
fect will become more pronounced when there is a lateral

|1§Iectric field. The different transitions are labeledNhy- Ny, . Solid

and dashed lines correspond to even-even and odd-odd transitions,
iespectively.

electric field applied, since then the one-electron wave func-

tions are more localized on one side of the risge Fig. 4.

One therefore expects that in this case the electronic stru
ture will be determined by the interplay of two opposite ef-

it depends on the electric field, the ratig/r ;, and the ratio

(p_etween electron and hole masses. Figure 6 shows the de-

pendence oifNe,Nh on the electric field for the transitions

fects, i.e.(a) the reported redshift of the one-electron energyinvolving the statedNg,N,=1-5 in a quantum ring with

levels induced by the electric fieldee Fig. 3 and (b) the

r,/r;=321 The oscillator strengths of even-even and odd-

above-mentioned field-dependent blueshift produced by thedd transitions are represented with solid and dashed lines,
electron-electron interaction. In addition, the balance of thesgespectively. The transitions,+ 5, and §— 1, have negli-

two trends will depend on the dimensions of the ringand

gible oscillator strength and are not displayed. As the electric

r,. Detailed calculations are nevertheless needed for a quafield increases, the diagonal transitiomé, & Nyp,) lose oscil-

titative analysis.

B. Oscillator strengths

lator strength, since it is transferred to the nondiagonal ones
(Ne#Np), which become weakly allowed. This fact is again
explained by the field-induced mixing of the various, i)
components within every state. In general, the field tends to

An important magnitude for the study of the optical prop-reduce the overlap between electron and hole wave func-
erties is the oscillator strength of the transitions between th@ons. This accounts for the overall reduction of the diagonal

valence and conduction states. In our case, it is given by:

f dr dz\If’,Qe(r,z)\Iho(r,z)=fNe‘Nhjdztbge)(z)@gh)(z).
(13

The in-plane oscillator strengthNe,Nh is easily evaluated
from:

2

fng Ny = f dr@ﬁem@Nh(r):‘nEm AlIAN (14

N)

whereAM) are the coefficients in the expansitg). At zero

electric field, due to the orthogonality of the wave functions

(4), we recover the selection rul.= N,, typical of the mod-
els with infinite barriers: The oscillator strength matrix is

oscillator strengths. However, we have seen that the polar-
ization of the wave functions can present anomalies related
to the coupling among different statésee Fig. 4. This ex-
plains the nonmonotonous field dependence of the oscillator
strengths. It should be noticed that the above oscillator
strengths correspond to optical transitions neglecting the
electron-hole correlation. The inclusion of this interaction
will produce a redshift of the transition energies and an in-
crease of the oscillator strengths, which will be a linear com-
bination offy_ n, with differentN. andNy,. Calculations of

excitons in quantum rings under an electric field are in
progress.

IV. CONCLUSIONS

We have studied theoretically the effects of an electric

diagonal €y, n,=dn,.n,) @nd transitions between electron field applied in the plane of the novel quantum ring struc-
and hole states with differeit are forbidden. When the field tures grown by self-assembly techniques. The electron ener-
is applied, this condition is relaxed and the new symmetrygies and wave functions have been calculated within the
discussed above provides a different selection rule: transienvelope-function approximation. The results are expressed
tions between even and odd states are forbidden. Sinoeery generally in terms of only two dimensionless param-
fn, n, involves the field-dependent electron and hole statesgters, the ratior,/r; and the normalized field/F,, and
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represent a first step for further investigations of severatlependent features identified in our calculations can be used
physical magnitudes. We find that due to the break of axiato estimate the size of the available quantum rings structures.
symmetry by the field, the energy levels of large quantum
rings exhibit a complex dispersion as a function of the elec-
tric field. We have also studied the field-induced polarization
of the electron wave functions and found an anomalous be- One of us(C.T.-G) acknowledges the financial support of

havior that can be correlated with the energy dispersion. Wéhe University of Valencia. The work has been partially fi-

have also calculated and analyzed the field dependence of thenced by Grant No. GV00-080-15 of the Generalitat Valen-
oscillator strength for a number of optical transitionsciana and Grant No. MAT2000-0772-C02-01 of the Minis-

between valence and conduction states. The geometryerio de Ciencia y Tecnologi(Spain.

ACKNOWLEDGMENTS

*Permanent address: Department of Theoretical Physics, Havana Ribeiro, J. M. Gar@, and P. M. Petroff, Microelectron. Engyz,

University, Vedado, 10400, Havana, Cuba. 95 (1999; H. Pettersson, R. J. Warburton, A. Lorke, K. Karrai,

ip. Bimberg, M. Grundmann, and N. N. Ledents@uantum Dot J. P. Kotthaus, J. M. Gamj and P. M. Petroff, Physica @m-
HetrostructuregWiley, Chichester, 1998 sterdam 6, 510 (2000.

?A. Babinski, A. Wysmolek, T. Tomaszewicz, J. M. Baranowski, 1A | orke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M.
R. Lem, C. Lobo, and C. Jagadish, Appl. Phys. L&, 2811 Garcm, and P. M. Petroff, Phys. Rev. Le®4, 2223(2000; R.

(1998; I. E. Itskevich, S. I. Rybchenko, I. I. Tartakovskii, S. T.
Stoddart, A. Levin, P. C. Main, L. Eaves, M. Henini, and S.
Parnell,ibid. 76, 3932(2000.

3M. Sugisaki, H. W. Ren, K. Nishi, S. Sugou, T. Okuno, and Y. 11

Masumoto, Physica B58 169 (1998; A. Garca-Cristdal, V. 12T Chakraborty and P. Piétien, Phys. Rev. B50, 8460(1994;
M. Fomin, and J. T. Devreesihid. 258 190(1998; M. Bayer, ' ' ' ) o '

0. Stern, A. Kuther, and A. Forchel, Phys. Rev.68, 7273 V. Halonen, P. Pietiaen, and T. Chakraborty, Europhys. Lett.
(2000. . 33, 377(1996. . N .
4J. Phillips, A. Bhattacharya, and U. Venkateswaran, Appl. Phys. A. Emperador, M. Barranco, E. Lipparini, M. Pi, and L'_ Serra,
Lett. 74, 1549(1999. Phys. Rev. B59, 15 30}(_1999; A. Emperador A, M. Pi, M.
SM. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. 14 Barranco, and A. Lorkeibid. 62, 4573(2000. )
Wilson, J. A. Barker, E. P. O'Reilly, I. A. Trojan, S. G. Lyapin, ~ A M. Fox, Contemp. Phys37, 111 (1996; J. E. Cunningham,
M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Mater. Sci. Eng. R25, 155(1999.
Clark, Physica HEAmsterdam 6, 348 (2000. F. H. Pollak and H. Shen, Mater. Sci. Eng. B, 275(1993; H.
6Q. Xie, A. Madhukar, P. Chen, and N. Kobayashi, Phys. Rev. Shen and M. Dutta, J. Appl. Phy#8, 2151(1995.
Lett. 75, 2542 (1999: N. N. Ledentsov, V. A. Shchukin, M. °D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W.
Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Bimberg, Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev3B
V. M. Ustinov, A. Y. Egorov, A. E. Zhukov, P. S. Kopev, S. V. 1043(1985.
Zaitsev, N. Y. Gordeev, Z. |. Alferov, A. I. Borovkov, A. O. 7F. M. Peeters and V. A. Schweigert, Phys. Rev.58 1468
Kosogov, S. S. Ruvimov, P. Werner, U. Gosele, and J. Heyden- (1996.
reich, Phys. Rev. B4, 8743(1996. 18, Meneadez-Proupin, C. Trallero-Giner, and S. E. Ulloa, Phys.
"R. Heitz, A. Kalburge, Q. Xie, M. Grundmann, P. Chen, A. Hoff- Rev. B60, 16 747(1999.
man, A. Madhukar, and D. Bimberg, Phys. Rev.58, 9050  '°P. M. Morse and H. Feschbachlethods of Theoretical Physics
(1998; R. Heitz, I. Mukhametzhanov, J. Zeng, P. Chen, A.  (McGraw-Hill, New York, 1953.
Madhukar, and D. Bimberg, Superlattices Microstruzs, 97 20E. Casado and C. Trallero-Giner, Phys. Status SolidioB, 335
(1999. (1996.
83. M. Garca, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, J. L. 2Ln the calculations of the oscillator strengths we have employed
Feng, A. Lorke, J. Kotthaus, and P. M. Petroff, Appl. Phys. Lett.  the InAs effective masses reported limndolt-Banstein Nu-

J. Warburton, C. Schaflein, D. Haft, F. Bickel, A. Lorke, K.
Karrai, J. M. Gara, W. Schoenfeld, and P. M. Petroff, Nature
(London 405, 926 (2000.

U. Eckern and P. Schwab, Adv. Phy®l, 404 (1995.

71, 2014(1997. merical Data and Functional Relationships in Science and Tech-
°A. Lorke and R. J. Luyken, Physica B56-258 424 (1998; A. nology (Springer, New York, 1982 m,=0.023n, and my, |
Lorke, R. J. Luyken, M. Fricke, J. P. Kotthaus, G. Medeiros- =0.036n, (m, is the free-electron mass

035309-6



