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Conductance and density of states from the Kramers-Kronig dispersion relation

Tooru Taniguchi
Département de Physique The´orique, Universite´ de Gene`ve, CH-1211, Gene`ve 4, Switzerland

~Received 15 December 2000; published 18 June 2001!

By applying the Kramers-Kronig dispersion relation to the transmission amplitude, a direct connection of the
conductance with the density of states is given in quantum scattering systems connected to two one-channel
leads. Using this method we show that in the Fano resonance the peak position of the density of states is
generally different from the position of the corresponding conductance peak, whereas in the Breit-Wigner
resonance those peak positions coincide. The line shapes of the density of states are well described by a
Lorentz type in both the resonances. These results are verified by another approach using a specific form of the
scattering matrix to describe the scattering resonances.
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I. INTRODUCTION

The developments of nano-scale fabrication techni
made possible confining electrons in a small region so
the system shows a discrete-energy spectrum. Such an
tron system is called the quantum dot, whose characteris
have been investigated in many theoretical and experime
works.1,2

One way by which characteristics of a quantum dot can
investigated is to connect leads to it and to measure its c
ductance. Many such experiments have actually been ca
out and have shown sharp peaks of the conductance
function of the gate voltage or source-drain voltage.1–6 These
experimental results about conductance peaks have bee
terpreted on the hypothesis that the electric current thro
the quantum dot occurs if there is at least one of the ene
levels of the quantum dot between chemical potentials of
reservoirs connected to the quantum dot via leads. This
pothesis is justified if the peak position of the conductan
coincides with the corresponding peak position of the den
of states in the quantum dot.

In this paper we investigate this hypothesis about the p
positions of the conductance and the density of states.
consider a quantum dot connected to two one-channel le
and assume that the system has a time-reversal symmet
this system, from the scattering matrix the conductance
the density of states are calculated by using the Landa
conductance formula7–11 and the Friedel sum rule,12–14 re-
spectively. Moreover, as will be shown in this paper, we c
use the Kramers-Kronig dispersion relation in order to c
nect the conductance with the density of states. T
Kramers-Kronig dispersion relation connects the real par
a function with its imaginary part by the Hilbert transform
tion, based on the analyticity of the function. By applyin
this relation to the logarithm of a scattering-matrix eleme
we obtain formulas allowing us to calculate the conducta
from the density of states and to calculate the density
states from the conductance. These formulas are used t
vestigate a relation of peak positions of the conductance
the density of states.

We consider two kinds of resonances called the Br
0163-1829/2001/64~3!/035307~9!/$20.00 64 0353
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Wigner resonance and the Fano resonance. The Breit-Wi
resonance is characterized by the conductance line shap

Gb~E!5Lb

1

~E2E0!21D2
~1!

of a Lorentz type around a resonant energyE0 as a function
of energyE, whereLb is a positive constant.15 Here the real
constantD represents a coupling strength of the quantum
with leads, and takes a small value compared with ener
level spacings of the quantum dot in a weak coupling c
with leads. This resonance line shape agreed with exp
mental results for conductance in some quantum dots.6 Fig-
ure 1 shows this conductance line shape with the param
valuesE05100, D51, andLb51. On the other hand, the
Fano resonance is characterized by the conductance
shape

Gf~E!5L f

~E2E01Q!2

~E2E0!21D2
, ~2!

around a resonant energyE0, where L f is a positive
constant.16 Here the parameterQ determines asymmetry in
the conductance line shape of the Fano resonance. The F
resonance line shapes are drawn in Fig. 2 with the param
valuesE05100 andD51. Here, we choose the paramet
L f as D2/(D21Q2) so that the peak value of the condu
tance is one. The Fano resonance is caused by coupling
crete states with continuous states, and exhibits conduct

FIG. 1. Conductance line shape of the Breit-Wigner resona
as a function of energy.
©2001 The American Physical Society07-1
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zero points like the energy pointE5E02Q in Eq. ~2!.17–19It
should be noted that the Fano resonance is attributed to
Breit-Wigner type in the case ofuQ/Du@1 @See Fig. 2~a!#.
The conductance line shape of the Fano resonance is act
observed experimentally by using the scanning-tunne
microscopy20–22 and in the quantum dots.23,24 These experi-
mental results show that even the case ofuQ/Du!1 like Fig.
2~c!, can happen.

By applying our formula using the Kramers-Kronig di
persion relation to these two kinds of resonances we ob
the following results:~i! In the Breit-Wigner resonance, th
peak position of the density of states coincides with the
sition E5E0 of the conductance peak.~ii ! In the Fano reso-
nance, the density of states are independent of value o
asymmetric parameterQ in a weak coupling case with lead
and the peak position of the density of states is atE5E0.
Equation~2! shows that the peak position of the conductan
depends on the asymmetric parameterQ and is given byE
5E01D2/Q. Therefore, in the case ofuQ/Du@1, the peak
position of the density of states is close to the position of
conductance peak. On the other hand, in the case ofuQ/Du
!1, the peak position of the density of states is rather cl
to the energyE02Q, at which the conductance takes a loc
minimum value. We also show that in both the resona
types the line shapes of the density of states are a Lor
type. These results are correct even in the case wher
electron-electron interaction like the charging effect ins
the quantum dot plays an important role, because the Fri
sum rule is correct even in presence of electron-elec
interactions.13

We verify the above results by another approach that d
not use the Kramers-Kronig dispersion relation. It is an
proach using a specific form of the scattering matrix to
scribe the scattering resonances. We show that only
Breit-Wigner and the Fano resonances are derived from
scattering matrix. By applying the Landauer conductan
formula and the Friedel sum rule to this specific scatter
matrix we calculate the density of states and the cond
tance, and obtain the same results as with the dispers
relation approach.

II. KRAMERS-KRONIG DISPERSION RELATION
IN THE TRANSMISSION AMPLITUDE

The system that we consider in this paper is the quan
dot connected to the particle reservoirs via two one-chan

FIG. 2. Conductance line shapes of the Fano resonance as
tions of energy. The graphs~a!, ~b!, and~c! are corresponding to the
cases ofQ510, 1, and 0.1, respectively.
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leads. We neglect the effect of a magnetic field so that
system has the time-reversal symmetry. For such a sys
the scattering matrixS(E)5@Sll 8(E)# is represented as a 2
32 symmetric and unitary matrix at any energyE. The con-
ductanceG(E) is given by the Landauer conductance fo
mula

G~E!5
q2

2p\
ut~E!u2, ~3!

with the chargeq of the particle, the Planck constant 2p\,
and the transmission amplitudet(E)[S12(E)@5S21(E)#.
The density of statesr(E) is given by the Friedel sum rule

r~E!5
1

p

]u f~E!

]E
, ~4!

which u f(E) is the Friedel-phase defined by

u f~E![
1

2i
ln Det$S~E!%. ~5!

It is important to note that the Friedel phaseu f(E) and the
transmission-amplitude phaseu t(E)@[Arg$t(E)%# are not
completely independent. Actually, if the conductance is
zero in any value of energy, then the transmission-amplit
phaseu t(E) is simply given byu f(E)1p/2. On the other
hand, if the conductance takes zero in some energy po
E5E(n), n51,2,•••, then the transmission-amplitude pha
can have discontinuities of6p in those points, and is con
nected to the Friedel phaseu f(E) as u t(E)5u f(E)1h(E)
with h(E)[n1p(ngnQ(E2E(n)).25 Heren is an energy-
independent constant,Q(x) is the step function ofx, andgn
is a constant taking the value21, 0, or 1 only. In this paper
we treat the conductance like Eq.~2!, so we should make up
our formula based on the case where there is a conduct
zero point.

Since the transmission-amplitude phaseu t(E) has discon-
tinuities in the conductance zero points, we should not
sume that the logarithm of the transmission amplitudet(E)
itself is an analytic function of energy. Therefore, in order
apply the Kramers-Kronig dispersion relation in which t
analyticity of function plays an essential role, we must ca
fully remove the singularity caused by the conductance z
points from the logarithm of the transmission amplitu
t(E). For this purpose we represent the transmission am
tude t(E) as

t~E!5 lim
«→10

eih(E)e221 ln[«1ut(E)u2] 1 iu f (E). ~6!

The limit «→10 is introduced to avoid the divergences
the function lnut(E)u2 of E in the conductance zero points. I
addition, the functionu f(E) of E is a continuous function
because its derivative gives the density of statesr(E) mul-
tiplied by p, which should be a continuous function of e
ergy. Therefore we get the function 221 ln(«1ut(E)u2)
1iuf(E), which can be assumed to be a continuous funct
of energy.

In the next step we separate its asymptotic form from
transmission amplitude and we make a function that goe

nc-
7-2
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zero as the energyE goes to infinity. For this purpose w
introduce the asymptotic forms of the functionsut(E)u2 and
u f(E) as

ut~E!u2 ;
E→1`

T(`)~E!, ~7!

u f~E! ;
E→1`

u f
(`)~E!. ~8!

As an example of the asymptotic transmission amplitude
the one-dimensional system we may taket(E)

;
E→1`

exp(ikl), where l is the length of the system andk is
the wave vectorA2mE/\ with the massm of the particle, so
this gives T(`)(E)51 and u f

(`)(E)5kl. The transmission
amplitudet(E) is represented as

t~E!5 lim
«→10

e221 ln[«1T(`)(E)]ei $u f
(`)(E)1h(E)%eF«(E), ~9!

whereF«(E) is the imaginary-function defined by

F«~E![
1

2
ln

«1ut~E!u2

«1T(`)~E!
1 i @u f~E!2u f

(`)~E!#. ~10!

An important characteristic of the functionF«(E) is that this
function satisfies the condition

lim
E→1`

F«~E!50, ~11!

and can be assumed to be a continuous function of ene
The real part of the functionF«(E) gives the conductance

G~E!5 lim
«→10

G(`)~E!e2Re$F«(E)%, ~12!

by using Eq. ~3!, where G(`)(E) is the conductance
@q2/(2p\)#T(`)(E) in the high-energy limit. Using Eq.~4!
the density of statesr(E) is connected to the imaginary pa
of the functionF«(E) by

r~E!5r (`)~E!1 lim
«→10

1

p

] Im$F«~E!%

]E
, ~13!

wherer (`)(E) is the asymptotic form of the density of stat
in the high-energy limit and is given by (1/p)]u f

(`)(E)/]E.
Now we finish preparing the functionF«(E) to which we
apply the Kramers-Kronig dispersion relation.

So far, the functionF«(E) has been defined only in th
real-energy region (0,1`). ~Here we took the origin of en
ergy so that the lower bound of the energy is zero.! Now, in
order to apply the Kramers-Kronig dispersion relation to
functionF«(E), we extend this function so that it is define
in the whole upper-half plane of the imaginary numberE
including the real axis. We assume that such an exten
can be done under the three conditions:

~I! The function F«(E) of E is analytic in the whole
upper-half plane and in the real axis in the imaginary num
E.
03530
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~II ! limuEu→1`uF«(E)u50 in any energyE satisfying
Im$E%>0.

~III ! F«(2E)5F«(E)* in any real numberE.
It should be noted that the condition~II ! is a generaliza-

tion of Eq. ~11!. In this paper we choose the valueu f(0)
2u f

(`)(0) as 0, so that the right-hand side and the left-ha
side in the equation of the condition~III ! coincide at the
origin E50. Known as the Kramers-Kronig dispersion rel
tion, by using the conditions~I!, ~II !, and~III !, the real part
and the imaginary part of the functionF«(E) are connected
as

Re$F«~E!%5
2

p
P̂E

0

1`

dE8
E8 Im$F«~E8!%

E822E2
, ~14!

Im$F«~E!%52
2

p
P̂E

0

1`

dE8
E Re$F«~E8!%

E822E2
, ~15!

where the operatorP̂ means to take the principal integral i
the following integral.26

Using Eqs.~10!, ~12!, and~13!, the relations~14! and~15!
lead to a direct connection between the conductance and
density of states:

G~E!5G(`)~E!

3expH 2E
0

1`

dE8C~E,E8!@r~E8!2r (`)~E8!#J ,

~16!

r~E!5r (`)~E!1 lim
«→10

E
0

1`

dE8D~E,E8!ln
«1G~E8!

«1G(`)~E8!
,

~17!

where the functionsC(x,y) and D(x,y) of x and y are de-
fined by

C~x,y![ lim
e→10

ln$@~x2y!21e2#@~x1y!21e2#%, ~18!

D~x,y![2 lim
e→0

1

2p2 H ~x2y!22e2

@~x2y!21e2#2
1

~x1y!22e2

@~x1y!21e2#2J .

~19!

~See Appendix A about the derivations of these equatio!
Here, in order to derive Eq. ~16! we assumed
limE→1`$u f(E)2u f

(`)(E)% ln E50, which is stronger than
the condition~8!. Equations~16! and~17! are the key results
of this paper.

As a general feature of the conductance shown by us
Eq. ~16! the conductanceG(E) is invariant under the chang
r(E)→r(E)1a @So r (`)(E)→r (`)(E)1a] of the density
of states in any constanta. Similarly Eq. ~17! implies that
the density of statesr(E) is invariant under the chang
G(E)→bG(E) in any constantb.
7-3
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III. APPLICATION TO THE BREIT-WIGNER
AND FANO RESONANCE

In this section, by using Eq.~17! we calculate the densi
ties of states in the Breit-Wigner resonance and the F
resonance. In the actual calculation we use the equation

r~E!2r (`)~E!52 lim
«→10

1

p2
P̂E

0

1`

dE8
E8

E822E2

]

]E8

3 ln
G«~E8!

G«
(`)~E8!

, ~20!

with G«(E)[«1G(E) and G«
(`)(E)[«1G(`)(E). Equa-

tion ~20! is equivalent with Eq.~17!, as shown in the end o
Appendix A.

Before calculating the density of states, we consider so
problems in applications of the formula~20! to the conduc-
tances~1! and ~2!. First, strictly speaking, in order to obtai
the density of states using the formula~20! we need to know
the value of the conductance in any energyE. On the other
hand Eqs.~1! and ~2! are correct only around the resona
energyE0. However the integral kernelE8/(E822E2) in the
formula ~20! has a large absolute value only aroundE85E,
so the value of conductance around the energyE0 is enough
to obtain approximately the density of states around the
ergy E0.

The second problem in applications of the formula~20! is
that we do not know the general asymptotic forms of
conductance and the density of states, which is neede
calculate the exact form of the density of statesr(E) by
using Eq.~20!. In this section we assume that the ener
dependence of the asymptotic form of the transmission
plitude is the same as with the one-dimensional ca

namely,t(E) ;
E→1`

exp(ilAE) using a constantl. Therefore
the asymptotic form of the conductance and the density
states are given byG(`)(E)5q2/(2p\) and r (`)(E)
5l/(2pAE), respectively. We do not have to care wheth
the conductances~1! and ~2! satisfy the condition
limE→`G(E)5q2/(2p\), because these forms of the co
ductances are justified only around the resonant energyE0.

It is valuable to extract an essential part giving a peak
the density of states from the right-hand side of Eq.~20!. For
this purpose we rewrite Eq.~20! as

r~E!52 lim
«→10

1

2p2
P̂E

2`

1`

dE8
1

E82E

] ln G«~E8!

]E8
1F~E!

1
l

2pAE
. ~21!

Here we used the specific asymptotic form of the cond
tance and the density of states, andF(E) is defined by

F~E![2 lim
«→10

1

2p2E0

1`

dE8
J«~E8!

E81E
~22!
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with J«(E)[(]/]E)ln@G«(E)/G«(2E)#. The functionF(E)
of E is estimated as

uF~E!u, lim
«→10

1

2p2

1

EE0

1`

dE8uJ«~E8!u. ~23!

We consider a weak coupling case of the quantum dot w
leads, so that we regard the constantD as a small paramete
compared with energy-level spacings of the quantum dot
this case we can assume that the energy valueE0 is large
enough compared with the constantuDu. Noting that it is
enough for us to calculate the density of statesr(E) only
around the energyE0, we estimate that the contribution o
the function F(E) to the density of states is negligibl
around the energyE0 under the condition that the integra
*0

1`dEuJ«(E)u has a finite value, because of the small fa
tor 1/E.1/E0 in the right-hand side of Eq.~23!. The third
term in the right-hand side of Eq.~21! is a monotonous de
creasing function of energy, so this part is also negligible
a large energy valueE.E0 and almost does not contribute t
changes of the peak position and the configuration of
density of states. Therefore the main contribution to the p
of the density of states comes only from the first term in
right-hand side of Eq.~21!.

A. Breit-Wigner resonance

Figure 3 is the Breit-Wigner resonance line shape~1! and
the corresponding density of states that is calculated by u
Eq. ~20!. Here we choose the parameters asl51, and the
other parameter values are the same as in Fig. 1. Figu
shows that the peak position of the density of states co
cides with the peak position of the conductance in the Br
Wigner resonance.

Now we check this result by the analytical considerati
based on Eq.~21! neglecting its second and third terms. Su
stituting Eq.~1! into Eq. ~21! we obtain the density of state
as

r~E!.
1

p2
P̂E

2`

1`

dE8
1

E82E

E82E0

~E82E0!21D2

5
1

p

uDu

~E2E0!21D2
. ~24!

FIG. 3. Density of states~solid line! and the conductance
~dashed line! as functions of energy in the Breit-Wigner resonanc
7-4
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This implies that the density of states is a Lorentz ty
whose peak position is atE5E0 and is independent of th
value of the prefactorLb in the conductance line shape~1!.

B. Fano resonance

The conductance~2! in the Fano resonance is an examp
in which a conductance zero occurs, so the infinitesimal c
stant« in Eq. ~20! plays an important role in calculating th
density of states.

Figure 4 is the density of states corresponding to
Fano-resonance line shape~2!, which is calculated by using
Eq. ~20!.27 Here, we chose the parameters asl51 and the
other parameter values are the same as in Fig. 2. In the
of uQ/Du@1 @see Fig. 4~a!#, where the conductance lin
shape is close to the Breit-Wigner type, the peak position
the density of states is close to the peak position of the c
ductance. On the other hand, in the case ofuQ/Du!1 @see
Fig. 4 ~c!#, where the conductance line shape is a gulf rat
than a peak, the peak position of the density of state
rather close to the gulf of the conductance.

Now we calculate the density of statesr(E) by using Eq.
~21! neglecting its second and third terms. After a small c
culation~see Appendix B for the detail of the calculation! we

FIG. 4. Density of states~solid line! and the conductance
~dashed line! as functions of energy in the Fano resonance. T
graphs~a!, ~b!, and~c! are corresponding to the cases ofQ510, 1,
and 0.1, respectively. The arrow in each graph shows the positio
the conductance peak.
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obtainr(E).(1/p)uDu/$(E2E0)21D2%, which is a Lorentz
type with the peak at the energyE0 and is the same as with
the case of the Breit-Wigner resonance. It should be emp
sized that this form of the density of states is independen
the value of the asymmetric parameterQ and the prefactor
L f in the conductance line shape~2!.

IV. ANOTHER APPROACH USING A SPECIFIC
SCATTERING MATRIX

In this section, by using another approach that does
use the Kramers-Kronig dispersion relation, we verify o
results obtained in the previous section.

The specific form of the scattering matrix

S~E!5AS I 1 iB
1

E2E01 iD D , ~25!

around a resonant energyE0 has been proposed to describ
the scattering resonances.28,29 Here, the 232 matrix A
[(All 8) is introduced as an energy-independent scatte
matrix in the high-energy limit, so that it is a unitary matr
in itself: AA†5A†A5I . The matrix B[(Bll 8) is also an
energy-independent 232 matrix and satisfies the condition

B†5B and B~B12ID!50, ~26!

so that the scattering matrixS(E) given by Eq.~25! becomes
a unitary matrix in any energyE. It may be noted that eithe
B522ID or B50 satisfies the condition~26!, but this gives
an energy-independent conductance that is not pertinen
the subject of this paper. Therefore in this section we assu
BÞ22ID andBÞ0, which lead to the parametrized repr
sentation

B5DS 211 sinf eiw cosf

e2 iw cosf 212 sinf D ~27!

of the matrixB with real parametersf andw.
By applying the Friedel sum rule~4! to the scattering

matrix ~25!, the density of statesr(E) is given by

r~E!5
1

p

D

~E2E0!21D2
, ~28!

which satisfies limD→10r(E)5d(E2E0).30 @See Appendix
C about the derivation of Eq.~28!.# Therefore the resonanc
line shape of the density of states is always a Lorentz t
with a peak at the energyE0. This agrees with the resul
concerning the line shape of the density of states in the
vious section.

Now we check that the scattering matrix~25! gives the
conductance line shape of the Breit-Wigner or the Fano re
nance, and consider a relation between the peak position
the conductance and the density of states. First we cons
the case ofA1250. In this case, by using Eqs.~3!, ~25!, and
uA11u51 the conductanceG(E) is represented as the Brei
Wigner type~1! with Lb5q2uB12u2/(2p\), and the density
of states is connected to the conductance simply asr(E)

e

of
7-5
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TOORU TANIGUCHI PHYSICAL REVIEW B 64 035307
5DGb(E)/(pLb). In this case the peak position of the co
ductance is atE5E0 and coincides with the peak position o
the density of states.

Second we consider the case ofA12Þ0. In this case, by
applying the Landauer conductance formula~3! to the scat-
tering matrix~25! we obtain the conductance

G~E!5Wf1L f

~E2E01Q!2

~E2E0!21D2
, ~29!

of the Fano type with parameter values

Wf5
q2

2p\
uA12u2K, ~30!

L f5
q2

2p\
uA12u2~12K!, ~31!

Q52
d1

12K . ~32!

HereK is defined by

K[
D21d1

21d2
22A~D21d1

22d2
2!214d1

2d2
2

2D2
~33!

anddj , j 51,2 are introduced as

d1[ImH A11

A12
B12J , ~34!

d2[D1B221ReH A11

A12
B12J . ~35!

It is important to note that the constantK satisfies the in-
equality 0<K<1 so the constantsWf andL f given by Eqs.
~30! and~31! are not negative.@In Appendix C we give out-
lines of the proof of this inequality and the derivation of E
~29!.# The peak position of the conductance in this case i
E5E01D2/Q, which does not coincide with the peak pos
tion E5E0 of the density of states shown by Eq.~28!. The
Fano conductance~29! takes a local minimum value at th
energyE02Q. Therefore the peak positionE5E0 of the
density of states is close to the peak position of the cond
tance in the case ofuQ/Du@1, but as the quantityuQ/Du
goes to 0 it moves closer to the energy at which the cond
tance takes a local minimum value. This is the same resu
in the previous section.

The above results in this section are independent of
time-reversal symmetry of the system and are correct eve
presence of a magnetic field. However if the system has
time-reversal symmetry and the conditionsS125S21 and
A125A21 are satisfied, then we obtainWf50, L f
5@q2/(2p\)#uA12u2, andQ52d1 ~see Appendix D for their
proofs!. Therefore the conductance~29! becomes exactly the
same form as Eq.~2! in the time-reversal symmetric system

V. CONCLUSION AND REMARKS

In this paper by using the Kramers-Kronig dispersion
lation, the Landauer conductance formula and the Frie
03530
.
at

c-

c-
as

e
in
e

-
el

sum rule we have discussed a method to calculate the de
of states from conductance and to calculate conducta
from the density of states in quantum scattering systems c
nected to two one-channel leads. We considered the cas
no magnetic field, so that the system had the time-reve
symmetry. Our formula was applied to the Breit-Wign
resonance and the Fano resonance, and led to their profil
the density of states. In the Breit-Wigner resonance the p
positions of the conductance and the density of states c
cide. On the other hand, in the Fano resonance, a relatio
the peak positions of the conductance and the density
states depends on the parameteruQ/Du that determines asym
metry of the conductance line shape. In the case ofuQ/Du
@1 the peak position of the density of states is close to
position of the conductance peak, like the Breit-Wigner re
nance. However in the case ofuQ/Du!1 the peak position of
the density of states is rather close to the energy at which
conductance takes a local minimum value. We also show
that the line shape of the density of states is a Lorentz typ
both the resonances. These results are model indepen
and are correct even if electron-electron interaction inside
quantum dot plays an important role. These results w
verified by another consideration that does not use
Kramers-Kronig dispersion relation but uses a specific fo
of the scattering matrix to describe the scattering resonan

The relation between the peak positions of the cond
tance and the density of states is important to explain
in-phase characteristic of the transmission-amplitude ph
@see Eq.~13! in Ref. 25#, which has been measured actua
in an experiment.31 Some works indicated that the Fano res
nance property is important to cause this phenomenon.32,33In
Ref. 25 it has already been shown that in a simple mo
consisting of a branch connected to a one-dimensional
fect wire the peak positions of the density of states are in
gulfs of the conductance.

The advantage of our approach using the Kramers-Kro
dispersion relation is that we can know the density of sta
directly from the conductance that can be measured in
experiments. We can also calculate the density of states f
the scattering matrix itself, but it is extremely difficult for th
scattering matrix itself to be measured in the experime
On the other hand, one of the disadvantages of the disper
relation approach is that this approach is justified only un
some restrictive conditions, for example, two one-chan
leads, no magnetic field, the conditions~I!, ~II !, and~III !, etc.
We would get a wrong result if we neglect these conditio
For example, the approach in Sec. IV predicts a nonz
constantWf in presence of a magnetic field, and if we we
to apply the formula~17! to such a nonzeroWf case then the
density of states would take a negative value in an ene
region, which is not correct. To reduce the number of th
conditions in our dispersion relation approach is one of
important future problems.
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APPENDIX A: DERIVATION OF THE CONNECTION
BETWEEN THE CONDUCTANCE AND THE DENSITY

OF STATES

In this appendix we give the derivation of Eqs.~16!, ~17!,
and ~20!.

First we should notice the equation

P̂ 1

E822E2
5

1

2E8
S P̂ 1

E82E
1P̂ 1

E81E
D

5 lim
e→0

1

2E8
F E82E

~E82E!21e2
1

E81E

~E81E!21e2G .

~A1!

Similarly we obtain

P̂ 1

E822E2
5 lim

e→0

1

2E F E82E

~E82E!21e2
2

E81E

~E81E!21e2G .

~A2!

It follows from Eqs.~10!, ~12!, ~14!, ~18!, and~A1! that

ln
G~E!

G(`)~E!
5 lim

«→10
2Re$F«~E!%

5 lim
«→10

4

p
P̂E

0

1`

dE8
E8 Im$F«~E8!%

E822E2

5 lim
«→10

lim
e→0

2

pE0

1`

dE8F E82E

~E82E!21e2

1
E81E

~E81E!21e2G Im$F«~E8!%

5
1

pE0

1`

dE8
]C~E,E8!

]E8
@u f~E8!2u f

(`)~E8!#

52E
0

1`

dE8C~E,E8!
1

p

]@u f~E8!2u f
(`)~E8!#

]E8

52E
0

1`

dE8C~E,E8!@r~E8!2r (`)~E8!#,

~A3!

where we used the conditionsu f(0)2u f
(`)(0)50 and

limE8→1`C(E,E8)@u f(E8)2u f
(`)(E8)#50. This leads to Eq.

~16!. Similarly, by using Eqs.~10!, ~13!, ~15!, ~19!, and~A2!
we obtain
03530
r~E!2r (`)~E!5 lim
«→10

1

p

] Im$F«~E!%

]E

52 lim
«→10

2

p2

]

]E
P̂E

0

1`

dE8
E Re$F«~E8!%

E822E2

52 lim
«→10

lim
e→0

1

p2

]

]EE0

1`

dE8

3F E82E

~E82E!21e2

2
E81E

~E81E!21e2GRe$F«~E8!% ~A4!

5 lim
«→10

E
0

1`

dE8D~E,E8!ln
«1G~E8!

«1G(`)~E8!
.

~A5!

This leads to Eq.~17!.
Using the expression~A4! we obtain another expressio

for a relation between the density of states and the cond
tance:

r~E!2r (`)~E!5 lim
«→10

lim
e→0

1

p2E0

1`

dE8

3H ]

]E8
F E82E

~E82E!21e2

1
E81E

~E81E!21e2G J Re$F«~E8!%

5 lim
«→10

E
0

1`

dE8D̃~E,E8!
]

]E8

3 ln
«1G~E8!

«1G(`)~E8!
~A6!

whereD̃(E,E8) is defined by

D̃~E,E8![2 lim
e→0

1

2p2 F E82E

~E82E!21e2
1

E81E

~E81E!21e2G
~A7!

and satisfies the conditionD̃(E,0)50. Equations~A1! and
~A5! lead to Eq.~20!.

APPENDIX B: DENSITY OF STATES
IN THE FANO RESONANCE

In this Appendix we calculate the density of states
using Eqs.~2! and ~21!.
7-7
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Neglecting its second and third term, Eq.~21! leads to the
density of statesr(E):

r~E!.2 lim
«→10

1

2p2
P̂E

2`

1`

dE8
G«~E8!

E81E02E
, ~B1!

where the functionG«(E) of E is introduced as

G«~E![
1

G«L f
~E1E0!

]G«L f
~E1E0!

]E

522
~E1Q!~QE2D2!

~E21D2!@~E1Q!21«~E21D2!#

522
E

E21D2

12

E1
Q

11«

S E1
Q

11« D 2

1«F D2

11«
1S Q

11« D 2G . ~B2!

Using the formula

1

p
P̂E

2`

1`

dy
1

y2x

y

y21a2
5

uau

x21a2
, ~B3!

for a real constanta, it follows from Eqs.~B1! and~B2! that

r~E!.
1

p

uDu

~E2E0!21D2
, ~B4!

in EÞE02Q.

APPENDIX C: DENSITY OF STATES AND
CONDUCTANCE GIVEN BY A SPECIFIC

SCATTERING MATRIX

In this appendix we derive Eqs.~28! and ~29! from Eqs.
~3!, ~4!, and~25!. We also give an outline of the proof of th
inequality 0<K<1.

It follows from Eq. ~27! that

Tr$B%522D, ~C1!

Det$B%50. ~C2!

Using Eqs.~C1! and ~C2! the determinant of the scatterin
matrix ~25! is given by

Det$S~E!%5Det$A%3
E2E02 iD

E2E01 iD
. ~C3!

By substituting Eq.~C3! into Eq.~5! and by using Eq.~4! we
obtain Eq.~28!.

Now, we consider the case ofS12Þ0 in order to derive
Eq. ~29! from Eqs.~3! and ~25!. In such a case we obtain
03530
ut~E!u25uS12~E!u2

5UA12

E2E02d11 id2

E2E01 iD U2

5uA12u2FK1~12K!
~E2E01Q!2

~E2E0!21D2G , ~C4!

where we used the relation

D2K 22~D21d1
21d2

2!K1d2
250 ~C5!

satisfied by the constantK. By substituting Eq.~C4! into Eq.
~3! and by noting Eqs.~30! and ~31! we obtain Eq.~29!.

The inequality 0<K<1 is shown as follows. First we
should notice that

~D21d1
22d2

2!214d1
2d2

25~D21d1
21d2

2!224D2d2
2

<~D21d1
21d2

2!2. ~C6!

By noting this fact and the form of the constantK given by
Eq. ~33! the inequality 0<K is obtained. Second we ca
show that if we were to assume the inequalityK.1 then we
would obtain the inequality (Dd1)2,0, which is incompat-
ible with the real constantDd1. This means that the inequa
ity K<1 must be satisfied.

APPENDIX D: TIME-REVERSAL SYMMETRY
IN THE FANO RESONANCE

In this Appendix we showd250 under the conditions
A125A21Þ0 and S125S21. This resultd250 leads toK
50, so we obtainWf50, L f5@q2/(2p\)#uA12u2, andQ5
2d1 by using Eqs.~30!, ~31!, and~32!.

The matrixA, which is a unitary matrix, is represented

A5S iei ( ũ1w̃1)sinf̃ ei ( ũ1w̃2)cosf̃

ei ( ũ2w̃2)cosf̃ iei ( ũ2w̃1)sinf̃
D , ~D1!

with real parametersũ, w̃1 , w̃2 , and f̃. The conditionA12
5A21 imposes

w̃250 or p. ~D2!

The conditionS125S21 under Eq.~D2! implies that the mul-
tiplied matrix AB is also symmetric. This leads to the co
dition

tanf52
sin~w1w̃1!

cosw̃2

tanf̃. ~D3!

On the other hand the constantd2 given by Eq.~35! is rep-
resented as

d252D cosf@ tanf1 sin~w1w̃12w̃2!tanf̃#. ~D4!

Using Eqs.~D2!, ~D3!, and~D4! we obtaind250.
7-8



, R
-
,

.

th,

W
g,

Y.
,

. B

ev

tt

. S.

H.

er,
,

t-
e

unc-

of

ry

nd

CONDUCTANCE AND DENSITY OF STATES FROM THE . . . PHYSICAL REVIEW B 64 035307
1M. A. Kastner, Phys. Today46, 24 ~1993!.
2L. P. Kouwenhoven, C. M. Marcus, P. L. Mceuen, S. Tarucha

M. Westervelt, and N. S. Wingreen,Mesoscopic Electron Trans
port, edited by L. L. Sohnet al., ~Kluwer Academic Publishers
Dordrecht, Hingham, MA, 1997!, pp. 105–214.

3M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M
Moore, and A. E. Wetsel, Phys. Rev. Lett.60, 535 ~1988!.

4J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smi
and D. A. Antoniadis, Phys. Rev. Lett.62, 583 ~1989!.

5L. P. Kouwenhoven, N. C. van der Vaart, A. T. Johnson,
Kool, C. J. P. M. Harmans, J. G. Williamson, A. A. M. Starin
and C. T. Foxon, Z. Phys. B: Condens. Matter85, 367 ~1991!.

6E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen,
Meir, P. A. Belk, N. R. Belk, M. A. Kastner, and S. J. Wind
Phys. Rev. B47, 10 020~1993!.

7R. Landauer, Philos. Mag.21, 863 ~1970!.
8E. N. Economou and C. M. Soukoulis, Phys. Rev. Lett.46, 618

~1981!.
9D. S. Fisher and P. A. Lee, Phys. Rev. B23, 6851~1981!.
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