PHYSICAL REVIEW B, VOLUME 64, 035307

Conductance and density of states from the Kramers-Kronig dispersion relation
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By applying the Kramers-Kronig dispersion relation to the transmission amplitude, a direct connection of the
conductance with the density of states is given in quantum scattering systems connected to two one-channel
leads. Using this method we show that in the Fano resonance the peak position of the density of states is
generally different from the position of the corresponding conductance peak, whereas in the Breit-Wigner
resonance those peak positions coincide. The line shapes of the density of states are well described by a
Lorentz type in both the resonances. These results are verified by another approach using a specific form of the
scattering matrix to describe the scattering resonances.
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I. INTRODUCTION Wigner resonance and the Fano resonance. The Breit-Wigner
resonance is characterized by the conductance line shape
The developments of nano-scale fabrication technique
made possible confining electrons in a small region so that 1
the system shows a discrete-energy spectrum. Such an elec- Go(B)= b(E— Ey)2+A2 (1)
tron system is called the quantum dot, whose characteristics 0
have been investigated in many theoretical and experiment&f a Lorentz type around a resonant enefgyas a function
works 1?2 of energyE, whereA , is a positive constarif. Here the real
One way by which characteristics of a quantum dot can b&onstaniA represents a coupling strength of the quantum dot
investigated is to connect leads to it and to measure its coWith leads, and takes a small value compared with energy-
ductance. Many such experiments have actually been carridgV€l spacings of the quantum dot in a weak coupling case
out and have shown sharp peaks of the conductance asWith leads. This resonance Img shape agreed with experi-
function of the gate voltage or source-drain voltdgeThese ~ Mental results for conductance in some quantum ¥6ig-
experimental results about conductance peaks have been € 1 shows this conductance line shape with the parameter
terpreted on the hypothesis that the electric current through@luesEq=100, A=1, andA,=1. On the other hand, the
the quantum dot occurs if there is at least one of the energ?ano resonance is characterized by the conductance line
levels of the quantum dot between chemical potentials of th&hape
reservoirs connected to the quantum dot via leads. This hy- 9
pothesis is justified if the peak position of the conductance G{(E)=A; (E-Eo+Q) ,
coincides with the corresponding peak position of the density (E—Eg)?+A?
of states in the quantum dot. ] »
In this paper we investigate this hypothesis about the peaRfound a resonant energlfo, where A is a positive
positions of the conductance and the density of states. weonstant® Here the paramete@ determines asymmetry in
consider a quantum dot connected to two one-channel lead€!e conductance line shape of the Fano resonance. The Fano-
and assume that the system has a time-reversal symmetry. [gSonance line shapes are drawn in Fig. 2 with the parameter
this system, from the scattering matrix the conductance an¥aluesEq=100 andA=1. Here, we choose the parameter

the density of states are calculated by using the Landauekr as A%(A%+Q?) so that the peak value of the conduc-
conductance formufla'! and the Friedel sum rufé 4 re- tance is one. The Fano resonance is caused by coupling dis-

spectively. Moreover, as will be shown in this paper, we carfrete states with continuous states, and exhibits conductance
use the Kramers-Kronig dispersion relation in order to con-

2

nect the conductance with the density of states. The G
Kramers-Kronig dispersion relation connects the real part of 1
a function with its imaginary part by the Hilbert transforma- 0.8

tion, based on the analyticity of the function. By applying
- - " : - 0.6

this relation to the logarithm of a scattering-matrix element

we obtain formulas allowing us to calculate the conductance 0.4

from the density of states and to calculate the density of 0.2

states from the conductance. These formulas are used to in-

vestigate a relation of peak positions of the conductance and

the density of states. FIG. 1. Conductance line shape of the Breit-Wigner resonance
We consider two kinds of resonances called the Breit-as a function of energy.
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G leads. We neglect the effect of a magnetic field so that the
1 system has the time-reversal symmetry. For such a system
""" - the scattering matriS(E) =[S/ (E)] is represented as a 2
0.8 X 2 symmetric and unitary matrix at any energyThe con-
0.6 ductanceG(E) is given by the Landauer conductance for-
0.4 A mula
0.2 N, @ .
g5 100 105  E G(E)=5 = [tE), ®

FIG. 2. Conductance line shapes of the Fano resonance as fungith the chargeg of the particle, the Planck constantr2,
tions of energy. The graphia), (b), anFj(c) are corresponding to the and the transmission amplitudeE)=S,(E)[ = Sy(E)].
cases 0Q=10, 1, and 0.1, respectively. The density of statep(E) is given by the Friedel sum rule

zero points like the energy poifit=E,— Q in Eq. (2).1""*°It 1 96,(E)
should be noted that the Fano resonance is attributed to the p(E)=— t= (4)
Breit-Wigner type in the case dQ/A|>1 [See Fig. 29)]. ™ JE

The conductance line shape of the Fano resonance is actualljhich 6;(E) is the Friedel-phase defined by

observed goxggrimentally by using thi% 2icanning-tunneling

microscopy” ““and in the quantum dots:“* These experi- 1

mental results show that even the caséQ@fA|<1 like Fig. 01(E)=5; InDe{S(E)}. ®)

2(c), can happen. L )

By applying our formula using the Kramers-Kronig dis- It is |m_portant to n_ote that the Friedel phaggE) and the
persion relation to these two kinds of resonances we obtaiffansmission-amplitude phasg(E)[=Arg{t(E)}] are not
the following results{(i) In the Breit-Wigner resonance, the cOmPpletely independent. Actually, if the conductance is not
peak position of the density of states coincides with the poZ€r0 in any value of energy, then the transmission-amplitude
sition E=E, of the conductance peaki) In the Fano reso- Phasedi(E) is simply given by6;(E)+ w/2. On the other
nance, the density of states are independent of value of tH%!a”d'(n')f the conductance takes zero in some energy points
asymmetric parametd in a weak coupling case with leads, E=E""» n=1,2; - -, then the transmission-amplitude phase
and the peak position of the density of states i€atE,. can have dlsconF|nU|t|es of 7 in those points, and is con-
Equation(2) shows that the peak position of the conductance'ected to the Friedel phasg(E) as 0,(E) = 61(E) + 7(E)
depends on the asymmetric paramegeand is given by~ With 7(E)=v+72,,0(E— EM). Here v is an energy-
—E,+A2/Q. Therefore, in the case ¢0/A|>1, the peak !ndependent constar(ﬂ(x) is the step function ox, gndyn
position of the density of states is close to the position of thdS @ constant taking the valuel, 0, or 1 only. In this paper
conductance peak. On the other hand, in the cad@ubsk| we treat the conductance like Eg), so we shquld make up
<1, the peak position of the density of states is rather clos@Ur forn_1u|a based on the case where there is a conductance
to the energyE,— Q, at which the conductance takes a local 2670 point. o _ _
minimum value. We also show that in both the resonance Since the transmission-amplitude pha@gE) has discon-
types the line shapes of the density of states are a Lorenfiuities in the conductance zero points, we should not as-
type. These results are correct even in the case where &yMe that the logarithm of the transmission amplite(te)
electron-electron interaction like the charging effect insideltself is an analytic function of energy. Therefore, in order to
the quantum dot plays an important role, because the Fried@PPly the Kramers-Kronig dispersion relation in which the
sum rule is correct even in presence of electron-electrognalyticity of function plays an essential role, we must care-
interactions3 fully remove the singularity caused by the conductance zero

We verify the above results by another approach that doeReints from the logarithm of the transmission amplitude
not use the Kramers-Kronig dispersion relation. It is an ap(E). For this purpose we represent the transmission ampli-
proach using a specific form of the scattering matrix to defudet(E) as
scribe the scattering resonances. We show that only the
Breit-Wigner and the Fano resonances are derived from this
scattering matrix. By applying the Landauer conductance
formula and the Friedel sum rule to this specific scatteringThe limit e —+ 0 is introduced to avoid the divergences of
matrix we calculate the density of states and the conducthe function Ift(E)|? of E in the conductance zero points. In
tance, and obtain the same results as with the dispersiomddition, the functionds(E) of E is a continuous function

t(E)= lim & 7(E) g2 In[s +[t(E)|?] +i65(E) (6)
g—+0

relation approach. because its derivative gives the density of states) mul-
tiplied by 7r, which should be a continuous function of en-
[l. KRAMERS-KRONIG DISPERSION RELATION ergy. Therefore we get the function2In(e+[t(E)]?)
IN THE TRANSMISSION AMPLITUDE +i6¢(E), which can be assumed to be a continuous function
of energy.

The system that we consider in this paper is the quantum In the next step we separate its asymptotic form from the
dot connected to the particle reservoirs via two one-channdtansmission amplitude and we make a function that goes to
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zero as the energi goes to infinity. For this purpose we (I limg/_ +.|®.(E)|=0 in any energyE satisfying
introduce the asymptotic forms of the functio¢E)|? and  Im{E}=0.
0:(E) as ) & (—g)=d,(E)* in any real numbeE.
It should be noted that the conditidH) is a generaliza-
E— e tion of Eqg. (11). In this paper we choose the valdg(0)
ItE)* ~ TEUE), (7)  —6{(0) as 0, so that the right-hand side and the left-hand
side in the equation of the conditioflll) coincide at the
Eode origin E=0. Known as the Kramers-Kronig dispersion rela-
0(E) ~ 67 (E). (8 tion, by using the conditiond), (1), and(lll), the real part

As an example of the asymptotic transmission amplitude, ir"f‘nd the imaginary part of the functich,(E) are connected

tEhe+ one-dimensional system we may také&E)
~ exp(kl), wherel is the length of the system ardis 2. (+= _ E"Im{® (E")}
the wave vector/2mE/% with the massn of the particle, so Re{®.(E)}= ;Pfo dE E'2_g2 (14

this gives T®™)(E)=1 and 6{*)(E)=kI. The transmission

amplitudet(E) is represented as ERe(®,(E')}

e (19

2. (+=
B Im{®(E =——7Df dE’
tHE)= lim e2 "Me+TOEGHIIE + nE)e?.(E) () {®.(B)==2 0

e—+0 A
) ) ) ) ] where the operatoP means to take the principal integral in
where® (E) is the imaginary-function defined by the following integraf®
Using Eqgs(10), (12), and(13), the relationg14) and(15)
. o lead to a direct connection between the conductance and the
e+TE)(E) +il6(E)=62(B)]. (10 density of states:

2
q)a(E)E%m e +[t(E)|

An important characteristic of the functiah,(E) is that this ~ G(E)=G)(E)
function satisfies the condition

XeXp[ - f;wdE’C(E,E’)[p(E’)—p(“’)(E')] ,

lim ®_(E)=0, (17
E—+w
(16)
and can be assumed to be a continuous function of energy.
The real part of the functio® .(E) gives the conductance +o0 e+G(E")
p(E)=p")E)+ lim f dE'D(E,E")In—~——,
G(E)= lim G*)(E)e?Rd®:(E)} (12) e—+0J0 e+GY¥(E)
e—+0
17)

by using Eq. (3), where G*)(E) is the conductance
[9%/(274)]T™)(E) in the high-energy limit. Using Eq4)  where the function€(x,y) and D(x,y) of x andy are de-
the density of stateg(E) is connected to the imaginary part fined by
of the function® (E) by

Cix,y)= lim In{[(x=y)*+ ][ (x+y)*+ €]}, (18)

p(E)zp(w)(EH_ lim iw, (13) e
e—+0 JE

n N 0 VS 0 Vi
xy)=—Ilim—s; .
oY) e—02m? [[(x—y)2+ €2]?  [(x+Yy)?+ €*]?

wherep(*)(E) is the asymptotic form of the density of states
in the high-energy limit and is given by (#)36{*)(E)/JE.
Now we finish preparing the functio® . (E) to which we (19
apply the Kramers-Kronig dispersion relation.

So far, the function®,(E) has been defined only in the (See Appendix A about the derivations of these equations.
real-energy region (8;=). (Here we took the origin of en- Here, in order to derive Eq.(16) we assumed
ergy so that the lower bound of the energy is ZeMow, in  limg_ ,..{6:(E)— 6*)(E)}In E=0, which is stronger than
order to apply the Kramers-Kronig dispersion relation to thethe condition(8). Equationg16) and(17) are the key results
function ®_(E), we extend this function so that it is defined of this paper.

in the whole upper-half plane of the imaginary numlger As a general feature of the conductance shown by using
including the real axis. We assume that such an extensioRg. (16) the conductanc&(E) is invariant under the change
can be done under the three conditions: p(E)— p(E) +a [S0 p)(E)— p)(E) + a] of the density

(I) The function®_(E) of E is analytic in the whole of states in any constanrt. Similarly Eq. (17) implies that
upper-half plane and in the real axis in the imaginary numbethe density of stateg(E) is invariant under the change
E. G(E)— BG(E) in any constan.
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Ill. APPLICATION TO THE BREIT-WIGNER
AND FANO RESONANCE

In this section, by using Eq17) we calculate the densi- g
ties of states in the Breit-Wigner resonance and the Fano s
resonance. In the actual calculation we use the equation —c%
1, [t E 9 95 100 105 E
p(E)—p™NE)=— lim —ZPJ’ o
e—+0T 0 E'“—E° JE FIG. 3. Density of stateqgsolid line and the conductance
G.(E") (dashed lingas functions of energy in the Breit-Wigner resonance.
XIn—o—, 20 _
G, (E") with E.(E)=(d/JE)In[G,(E)/G.(—E)]. The functionF(E)

of E is estimated as
with G,(E)=¢+G(E) and G{*)(E)=¢+G*)(E). Equa-
tion (20) is equivalent with Eq(17), as shown in the end of
Appendix A.

Before calculating the density of states, we consider some
problems in applications of the formu(@0) to the conduc-
tances(1) and(2). First, strictly speaking, in order to obtain . ] .
the density of states using the form20) we need to know We consider a weak coupling case of the quantum dot with
the value of the conductance in any enefgyOn the other leads, so that we regard the constanas a small parameter
hand Egs(1) and (2) are correct only around the resonant compared with energy-level spacings of the quantum dot. In
energyE,. However the integral kern@'/(E'2—E?) inthe  this case we can assume that the energy valyés large
formula (20) has a large absolute value only arouRid=E, ~ enough compared with the constgdi|. Noting that it is
so the value of conductance around the endtgys enough ~ €nough for us to calculate the density of stgik&) only
to obtain approximately the density of states around the erground the energ§,, we estimate that the contribution of
ergy Eo. the function /(E) to the density of states is negligible

The second problem in applications of the form(#8) is ~ around the energ§, under the condition that the integral
that we do not know the general asymptotic forms of thelo “dE|E.(E)| has a finite value, because of the small fac-
conductance and the density of states, which is needed tor 1/E=1/E, in the right-hand side of Eq23). The third
calculate the exact form of the density of stajg€) by  term in the right-hand side of E¢21) is a monotonous de-
using Eq.(20). In this section we assume that the energycreasing function of energy, so this part is also negligible in
dependence of the asymptotic form of the transmission ama large energy value=E, and almost does not contribute to
plitude is the same as with the one-dimensional caseshanges of the peak position and the configuration of the

Eote density of states. Therefore the main contribution to the peak
?f the density of states comes only from the first term in the
ight-hand side of Eq(21).

FE li ! 1f+wdE/H E’ 23
| AE)|< lim S ZEJ, |EL(EN. (23

e—+0&T

namely,t(E) ~ expG\VE) using a constant. Therefore
the asymptotic form of the conductance and the density o
states are given byG™)(E)=q%(2#%) and p*)(E)
=N/ (27\JE), respectively. We do not have to care whether
the conductances(l) and (2) satisfy the condition A. Breit-Wigner resonance

”mEHmG(E):q_Z/(,Z?Tﬁ)' because these forms of the con- g re 3 is the Breit-Wigner resonance line shépeand
ductances are justified only around the resonant enéggy  ihe corresponding density of states that is calculated by using
It is valuable to extract an essential part giving a peak Ol=q. (20). Here we choose the parametershas1, and the
the density of states from the right-hand side of @). For  qiher narameter values are the same as in Fig. 1. Figure 3
this purpose we rewrite EG20) as shows that the peak position of the density of states coin-
cides with the peak position of the conductance in the Breit-

+ 1 9InG.(E") N Wigner resonance.

dE’

1 .
p(E)=— lim —P

o2 . E'—E JE’ HE) Now we check this result by the analytical consideration
o based on Eq21) neglecting its second and third terms. Sub-
A stituting Eq.(1) into Eq.(21) we obtain the density of states
+ . 21 as
2 (E (21
Here we used the specific asymptotic form of the conduc- 1. f+ood 1 E'—E,
i i i E)=—P E’'
tance and the density of states, af(E) is defined by p(E) 2 ) e TE B ey a
1 (= E(E) 1 |A|
FE)=— Iim — dE’ (22 = (24)
er02m?Jo E'+E T (E—Eg)?+A?
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obtainp(E)=(1/7)|A|/{(E—Ey)2+ A?}, which is a Lorentz
type with the peak at the enerdsy and is the same as with
the case of the Breit-Wigner resonance. It should be empha-
sized that this form of the density of states is independent of
the value of the asymmetric paramet@rand the prefactor

Ay in the conductance line shaf2).

[arb. units]

IV. ANOTHER APPROACH USING A SPECIFIC
SCATTERING MATRIX

In this section, by using another approach that does not
use the Kramers-Kronig dispersion relation, we verify our
results obtained in the previous section.

The specific form of the scattering matrix

S(E)=A| I +iB (25

[arb. units]

E—Eo+iA)’

E around a resonant ener@gy has been proposed to describe
the scattering resonanc&s® Here, the 22 matrix A
=(A») is introduced as an energy-independent scattering

P, G \l/ matrix in the high-energy limit, so that it is a unitary matrix

in itself: AAT=ATA=I. The matrixB=(B,,) is also an

energy-independent>22 matrix and satisfies the conditions

(c) BT=B and B(B+2IA)=0, (26)

[arb. units]
(@]
o)

so that the scattering matr§(E) given by Eq.(25) becomes
E a unitary matrix in any energk. It may be noted that either
B=—2IA or B=0 satisfies the conditio(26), but this gives
FIG. 4. Density of stategsolid line) and the conductance an energy-independent conductance that is not pertinent to
(dashed ling as functions of energy in the Fano resonance. Thethe subject of this paper. Therefore in this section we assume

graphs(a), (b), and(c) are corresponding to the cases®#10, 1, B+ —2|A andB+0, which lead to the parametrized repre-
and 0.1, respectively. The arrow in each graph shows the position agfentation

the conductance peak.

J
95 100 105 110

—1+sing €'“cose
This implies that the density of states is a Lorentz type B=Al _i, P (27)
whose peak position is &=E, and is independent of the e cosg 1-siné
value of the prefacton, in the conductance line shap®).  of the matrixB with real parameterg and ¢.
By applying the Friedel sum rulé4) to the scattering
B. Fano resonance matrix (25), the density of stateg(E) is given by

The conductanc€) in the Fano resonance is an example
in which a conductance zero occurs, so the infinitesimal con-
stante in Eq. (20) plays an important role in calculating the
density of states.

Figure 4 is the density of states corresponding to thevhich satisfies lim_. , op(E) = 8(E—E,).*° [See Appendix
Fano-resonance line shaf@®, which is calculated by using C about the derivation of Eq28).] Therefore the resonance
Eq. (20).2” Here, we chose the parametershas1 and the line shape of the density of states is always a Lorentz type
other parameter values are the same as in Fig. 2. In the casdth a peak at the energg,. This agrees with the result
of |Q/A|>1 [see Fig. 4(a)], where the conductance line concerning the line shape of the density of states in the pre-
shape is close to the Breit-Wigner type, the peak position o¥ious section.
the density of states is close to the peak position of the con- Now we check that the scattering matii®5) gives the
ductance. On the other hand, in the casé@fA|<1 [see conductance line shape of the Breit-Wigner or the Fano reso-
Fig. 4 (c)], where the conductance line shape is a gulf rathenance, and consider a relation between the peak positions of
than a peak, the peak position of the density of states ithe conductance and the density of states. First we consider
rather close to the gulf of the conductance. the case ofA;,=0. In this case, by using Eqe3), (25), and

Now we calculate the density of state€E) by using Eq.  |A11|=1 the conductanc&(E) is represented as the Breit-
(21) neglecting its second and third terms. After a small cal-Wigner type(1) with Ay=0q?|B,%/(27#), and the density
culation(see Appendix B for the detail of the calculatjome  of states is connected to the conductance simply @s)

1 A

™ (e EgPr A 9

p(E)=
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=AGy(E)/(7Ap). In this case the peak position of the con- sum rule we have discussed a method to calculate the density
ductance is aE = E and coincides with the peak position of of states from conductance and to calculate conductance
the density of states. from the density of states in quantum scattering systems con-
Second we consider the casef,#0. In this case, by nected to two one-channel leads. We considered the case of
applying the Landauer conductance form(®ato the scat- no magnetic field, so that the system had the time-reversal
tering matrix(25) we obtain the conductance symmetry. Our formula was applied to the Breit-Wigner
5 resonance and the Fano resonance, and led to their profiles of
(E-EotQ) (29)  the density of states. In the Breit-Wigner resonance the peak
(E—Eg)2+A?’ positions of the conductance and the density of states coin-
. cide. On the other hand, in the Fano resonance, a relation of
of the Fano type with parameter values the peak positions of the conductance and the density of
q? states depends on the paramé@fA | that determines asym-
=——|A1J°K, (30 metry of the conductance line shape. In the cas¢Qif\|
2mh >1 the peak position of the density of states is close to the
2 position of the conductance peak, like the Breit-Wigner reso-
:q_|A12|2(1_;C)’ (31) nance. However in the case|@/A|<1 the peak position of
2mh the density of states is rather close to the energy at which the
conductance takes a local minimum value. We also showed
Q=- ) (32) that the line shape of the density of states is a Lorentz type in
1-K both the resonances. These results are model independent,
Here K is defined by and are correct even if electron-electron interaction inside the
quantum dot plays an important role. These results were
A2+ d§+ d%— \/(A2+d§—d§)2+4d§d§ verified by another consideration that does not use the
> (33 Kramers-Kronig dispersion relation but uses a specific form
24 of the scattering matrix to describe the scattering resonances.
andd;,j=1,2 are introduced as The relation between the peak positions of the conduc-
tance and the density of states is important to explain an
in-phase characteristic of the transmission-amplitude phase
[see Eq(13) in Ref. 25, which has been measured actually
in an experiment! Some works indicated that the Fano reso-
d=A+ Byt Rﬁ’—llBlz] . (35 hance property is important to cause this p_henomé?r@?in
A, Ref. 25 it has already been shown that in a simple model
consisting of a branch connected to a one-dimensional per-

It is important to note that the constaki satisfies the in- ot wire the peak positions of the density of states are in the
equality 0< /<1 so the constant/; and A; given by Egs. gulfs of the conductance.

(30) and(31) are not negative(In Appendix C we give out- The advantage of our approach using the Kramers-Kronig

lines of the proof of this inequality and the derivation of EQ. gispersion relation is that we can know the density of states
(29).] Thezpeak pqsition of the condgctange in this case i5_ a&irecuy from the conductance that can be measured in the
E=Eo+A/Q, which does not coincide with the peak posi- gyperiments. We can also calculate the density of states from
tion E=E, of the density of states shown by E@8). The  he scattering matrix itself, but it is extremely difficult for the
Fano conductance9) takes a local minimum value at the gcattering matrix itself to be measured in the experiments.
energy Eo— Q. Therefore the peak positioB=E, of the  op the other hand, one of the disadvantages of the dispersion
density of states is close to the peak position of the conduGgation approach is that this approach is justified only under
tance in the case ofQ/A[>1, but as the quantityQ/A|  some restrictive conditions, for example, two one-channel
goes to 0 it moves closer to the energy at which the conduggags, no magnetic field, the conditiof (11), and(lll), etc.
tance takes a local minimum value. This is the same result af/e would get a wrong result if we neglect these conditions.
in the previous section. _ _ For example, the approach in Sec. IV predicts a nonzero
The above results in this section are independent of th%onstant\Nf in presence of a magnetic field, and if we were
time-reversal symmetry of the system and are correct even i, apply the formulg17) to such a nonzerw; case then the
presence of a magnetic field. However |_f_the system has th@ensity of states would take a negative value in an energy
time-reversal symmetry and the conditioSs,=Sy and  regjon, which is not correct. To reduce the number of these
A=A, are satisfied, then we obtailV;=0, A:  congitions in our dispersion relation approach is one of the
=[q%/(27h)]|A14?% andQ= —d, (see Appendix D for their important future problems.
proofs. Therefore the conductan¢29) becomes exactly the

same form as Eq2) in the time-reversal symmetric system.

G(E):Wf+Af

Wi

A

K

a B12] , (34

d;=Im
! A1z
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APPENDIX A: DERIVATION OF THE CONNECTION
BETWEEN THE CONDUCTANCE AND THE DENSITY
OF STATES

In this appendix we give the derivation of Eq&6), (17),

and(20).
First we should notice the equation

.1 1 (. 1 .1
P =—I|P +P
E'°-E? 2E'\ E'-E E'+E
1 E'—E E'+E
=lim— +
«-02E" | (E'—E)2+€®> (E'+E)?+¢€?
(AL)
Similarly we obtain
S 1 1 E'-E E'+E
=T (E'~E)?+e? (E'+E)*+¢?
(A2)

It follows from Egs.(10), (12), (14), (18), and(Al) that

G(E) lim 2Rg®,(E)}
n———= lim R
G)NE) «-+0
4, (+= _E'Im{®(E’
= im 2p g B MPED)
8_>+ho 0 E!Z_EZ
2 [+ E'-E
= lim lim— dE/| ———
e—+0e—0TJ0 (E’_E)2+62
b EE e
—_— m e
(E'+E)%+¢€?
JC(E,E’
__f & (a o) - 6E)]
AL 6:(E")— 6 ) (E
f dEC(EE)—[f( ) )]
JE’

—- | TaEaEEnnE) - pEN),
(3)

where we used the condition#;(0)— 6{(0)=0 and

lime_ +..C(E,E")[ 6¢(E")— 6{)(E’)]=0. This leads to Eq.

(16). Similarly, by using Eqgs(10), (13), (15), (19), and(A2)
we obtain
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p(E)—p(E)= lim 1 JIm{®,(B)}

e—+0T JE
2 9. (+> ERE®,(E
=— |lim _2_’P E’M
et OTT JE E/2_E2
lim li L7 +de’
=—1m |m——
e—+0e—0T 2 JE
« E'—E
(E'—E)*+ ¢
SR RdeaE) A
(E'+E)?+ € ’
[ &+G(E')
= nmf dE'D(E,E')In—————
e—+0J0 8+G(x)(E’)
(AS)

This leads to Eq(17).
Using the expressiofA4) we obtain another expression

for a relation between the density of states and the conduc-

tance:
1 [+
p(E)—p)(E)= lim lim— | dE’
e—+0e—0mT J0
9 E'—-E
>< _
JE' [ (E'—E)*+é€?
o ETE e, )
(E' +E)%+ €2 °

+o - J
-~ IimJ dE'D(E,E")—
e—+0J0 JE’
e+ G(E")
XIN———— (AB)
e+G)N(E")

whereD(E,E') is defined by

E'-E
E)2+¢?

E'+E

1
D(E,E’ =-—lim— +
(&8 (E'+E)%+ €2

E—>02’7T

(E'—

(A7)
and satisfies the conditioP(E,0)=0. Equations(A1) and
(A5) lead to Eq.(20).

APPENDIX B: DENSITY OF STATES
IN THE FANO RESONANCE

In this Appendix we calculate the density of states by
using Egs(2) and(21).
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Neglecting its second and third term, E81) leads to the
density of statep(E):

1t I'.(E")
p(E)=— lim —P| dE———,

(B1)
er02 E'+E,—E

where the functiod” (E) of E is introduced as
1 aGeAf(E_l— EO)
Gea(E+Ep) JE

B (E+Q)(QE—A?)
(E2+A?)[(E+Q)?+e(E?+A?)]

I.(E)=

E
E2+A2

Q

+
1+e
AZ
1+e

+2

, . (B2)

+e

Q 2
4+ =
E 1+e

Q

1+e

—+

Using the formula
1.+ y El
L[ ay _ el
for a real constard, it follows from Egs.(B1) and(B2) that

(B3)

1 A
p(BE)=—

T (E—Eg)2+A%’ (B4

in E£Ey—Q.

APPENDIX C: DENSITY OF STATES AND
CONDUCTANCE GIVEN BY A SPECIFIC
SCATTERING MATRIX

In this appendix we derive Eq§28) and (29) from Egs.
(3), (4), and(25). We also give an outline of the proof of the
inequality O</K<1.

It follows from Eq. (27) that

Tr{B}=—2A, (Cy

De{B}=0. (C2

Using Egs.(C1) and (C2) the determinant of the scattering
matrix (25) is given by

E-Eq—iA
Det{S(E)} =Def{A} X =

By substituting Eq(C3) into Eq.(5) and by using Eq(4) we
obtain Eq.(28).

Now, we consider the case &,#0 in order to derive
Eq. (29) from Egs.(3) and(25). In such a case we obtain
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It(E)|*=[S1AE)|?

_|a E—Eo—d;+id,|?
T2 E—EptiA
(E-Eo+Q)?
=|A 2ICJrl—IC—, C4)
A\ K (1=K )
where we used the relation
A?K2—(A%+d2+d3)K+d3=0 (C5)

satisfied by the constait. By substituting Eq(C4) into Eq.
(3) and by noting Eqs(30) and(31) we obtain Eq.(29).

The inequality GsKX=<1 is shown as follows. First we
should notice that

(A%+di—dj)?+4dTds= (A?+d3+d3)?—4A%d3

<(A?+d3+dd)2 (C6)
By noting this fact and the form of the constdétgiven by
Eqg. (33 the inequality G=K is obtained. Second we can
show that if we were to assume the inequalkity> 1 then we
would obtain the inequalityXd,;)2<0, which is incompat-
ible with the real constankd;. This means that the inequal-
ity =<1 must be satisfied.

APPENDIX D: TIME-REVERSAL SYMMETRY
IN THE FANO RESONANCE

In this Appendix we showd,=0 under the conditions
A;o=A,#0 and S;,=S,;. This resultd,=0 leads toK
=0, so we obtaintV;=0, A;=[q%(27h)]|A15?, andQ=
—d; by using Eqs(30), (31), and(32).

The matrixA, which is a unitary matrix, is represented as

iel("edsing (P ¢dcosd
= o e ==, (D1)
e'(?=¢2dcosgp ie'(?"¢Jsing

with real parameter®, ¢,, ¢,, and¢. The conditionA;,
=A,, imposes

(D2)

The conditionS,,=S,; under Eq.(D2) implies that the mul-
tiplied matrix AB is also symmetric. This leads to the con-
dition

©,=0 or .

sife+ey)  ~
tan¢=—n(('p—~¢ltan¢.
CoS¢@,

(D3)

On the other hand the constaiy given by Eq.(35) is rep-
resented as

d,=—A cosg[tand+ sin(¢+ ¢, — go)tand]. (D4)
Using Egs.(D2), (D3), and(D4) we obtaind,=0.
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