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Predicted lattice relaxation around point defects in zinc selenide
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There is great interest in altering the electronic and consequent optical properties of wide-band-gap semi-
conductors through the use of selected additives~dopants!. These effects depend on the way in which the
impurity enters the lattice structure, and the resulting possible lattice relaxation effects and their repercussions.
There have been several calculations for the point defects in ZnSe based on pseudopotential approaches, with
some differences in results among these; and, in the case of nitrogen substitution for the selenium, there is a
difference with experiment as to the expected size of relaxation effects around the defect. Thus it is useful to
have calculations by a quite different technique. For that reason, as benchmark calculations, we have studied
lattice relaxation around Zn and Se vacancies, and around N-for-Se substitution sites in ZnSe@VSe, (VSe)

11,
VZn , (VZn)

22, NSe, and (NSe)
2], using a full-potential, linear combination of muffin-tin orbitals total energy

calculation including an atomic force routine. We have obtained results for the lattice response of ZnSe in
various configurations, and discuss these in comparison to the pseudopotential results and experiment. For the
case of nitrogen substitution for selenium, we also present an independent experimental verification of previ-
ously reported results for the unusually large lattice relaxation surrounding this defect.

DOI: 10.1103/PhysRevB.64.035206 PACS number~s!: 61.72.Bb, 61.72.Vv, 61.72.Ji
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I. INTRODUCTION

The wide-band-gap semiconductor ZnSe and its all
provide one of the most promising materials systems
blue-green-light-emitting diodes and lasers. Although fea
bility has been demonstrated1 device degradation occurs i
an unacceptably short time, with analysis indicating deg
dation is due to a high concentration of as-yet unidentifi
point defects.2 Considerable effort has focused on both th
oretical and experimental methods for identifying the defe
responsible. Several recent experimental studies3–7 indicate
the presence of selenium vacancies as the most likely p
defect to explain the observed data in molecular be
epitaxy–grown ZnSe. However, theoretical treatments h
led to conflicting views on the role of the selenium vacan
or for that matter, of a number of other point defects. F
example, the pseudopotential calculations of Lakset al.8,9

concluded that the formation energy of the various ionizat
states of the Se vacancy was too large to play a signific
role in ZnSe; whereas the pseudopotential calculations
Garcia and Northrup10 found that lattice relaxation could a
low a doubly ionized Se vacancy as the most abundant na
point defect inp-type ZnSe. The importance of lattice rela
ation has also been demonstrated in our prelimin
reports.11

From a theoretical point of view, ZnSe presents compu
tional problems due to the existence of Zn 3d semicore
states. Although treating these states as core states si
cantly simplifies calculations, such a treatment results i
poor description of the bulk properties of zinc-based bin
semiconductors.12 Consequently, in several more rece
calculations8,9,13,14 the Zn 3d electrons were treated as v
lence electrons. However, the fact that these states are
well localized as core states, but still are not normal vale
0163-1829/2001/64~3!/035206~9!/$20.00 64 0352
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states, presents a challenge for the pseudopotential t
nique. Conventional pseudopotential calculations with
plane-wave basis set require too many waves, and that
cumstance significantly reduces the computational ben
of pseudopotential calculations versus all-electron calcu
tions. To overcome this complication, Lakset al.8,9 aug-
mented the plane-wave basis by tight-binding orbitals. T
approach allowed them significantly to improve the agr
ment between calculated and experimental values for the
tice constant and bulk modulus of ZnSe. Consequently, t
applied this approach for their study of defects, and we d
cuss this below.

Alternatively, in several publications10,15–19 the Zn 3d
electrons were left in the core shell, but a nonlinear co
valence ~NCV! correction20 was used to account for th
overlap between the Zn 3d and the valence electrons. Use
the NCV correction provided a significant computation
gain in comparison to calculations treating 3d electrons as
valence electrons, and therefore allowed consideration
larger defect systems. However, in the derivation20 of this
correction a pseudopotential density rather than the
charge density was used inside the core region.~The pseudo-
potential approach allows electron density to deviate fr
the all-electron density in the core region.! Therefore, a care-
ful comparison of these calculations utilizing the NCV co
rection with ab initio all-electron full-potential calculations
is desirable. Such a comparison is also needed to ve
transferability of the pseudopotentials.

Although there are two such comparisons in t
literature,13,17 they seem to provide contradictory result
Lee, Lee, and Ihm13 calculated several bulk properties, su
as lattice constant, cohesive energy, and bulk modulus
ZnSe ~and two other Zn-based semiconductors! using all
three methods listed above (3d electrons in the core shell, in
©2001 The American Physical Society06-1
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the core shells with the NCV correction, and 3d electrons in
the valence band! and made comparisons between the res
obtained and corresponding experimental values. T
concluded that the NCV correction provides only an ins
nificant improvement over the straightforwa
3d-electron-in-core scheme. In contrast, their pseudopo
tial calculations with the Zn 3d electrons in the valence ban
were in good agreement with experiment. On the other ha
Pöykkö, Puska, Korhonen, and Nieminen,17 in order to jus-
tify their pseudopotential approach based on the NCV c
rection, also performed all-electron full-potential~FP! calcu-
lations. They found good agreement between NCV-correc
pseudopotential and FP results not only for the bulk prop
ties of pure ZnSe, but also for two test cases of systems
defects—the doubly-positive Se vacancy and the dou
positive Zn interstitial.~References 13 and 17 do not provid
sufficient details of the calculations to allow us to discuss
source of the disagreement between these two sets o
sults.! The existence of a difference between the format
energies of these two defects also means that the resul
the 3d-in-valence calculations of Ref. 9 also deviated fro
all-electron calculations. However, we note that in their t
all-electron FP calculations, Po¨ykkö et al. did not calculate
lattice relaxation, but rather compared FP total energies
atomic configurations obtained by pseudopotential lattice
laxation calculations.

Thus, there are remaining methodological questions ab
calculations involving point-defect configurations in ZnS
let alone calculations involving defect complexes. To stu
these questions and independently test the core corre
used in pseudopotential calculations we have employed
ab initio, full-potential linear combination of muffin-tin-
orbitals ~FP-LMTO! method21 including a force routine.22

This variant of the LMTO method provides results of hig
quality by including interstitial potentials and multiple e
ergy windows. Thus, comparison of the results for point
fect configurations obtained by this technique with the va
ous results obtained in pseudopotential approaches
validate one of the prior calculations. Alternatively, such
comparison might indicate that additional critical thoug
must be given to the difference between pseudopotential~in-
cluding those with NCV corrections! and full potential all-
electron methods~such as LMTO!, especially as to any un
derlying assumptions and approximations.

II. METHODOLOGY

Our approach allows a direct treatment of semicore e
trons within a reasonably small number of basis states w
out the need for various corrections such as the pseud
tential calculations performed previously require. The det
of this FP-LMTO method are described in Refs. 21 and
Here we summarize some of the features of the pre
method. Our FP-LMTO method of solving the bulk dens
functional problem includes a true interstitial region~with no
atomic sphere approximation! and has a full potential, both
in the muffin-tin and interstitial regions. In addition, th
muffin-tin orbitals are not constrained to have zero kine
energy in the interstitial. Use of both the full potential a
03520
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the ability to optimize the parameters describing the ba
states are essential in accurately calculating, within a LM
approach, the total energies and electronic structure in l
symmetry, open structures. Multiple kappas and energy w
dows provide basis enrichment that allows us the flexibi
to capture the behavior of the zinc 3d electrons. The kappa
are energy parameters~in the case of valence electrons, the
correspond to the square root of the average kinetic ener!;
so we have the ability to allow different types of electrons
a material to be characterized by their own kappas ra
than being restricted to one kappa for all noncore electro
By an ‘‘energy window,’’ we mean a portion of the overa
energy range over which the linearized electronic struct
calculation is being done. There is a choice of basis functi
to optimize the quality of calculation in the individual energ
window. The multiple energy windows allow us to break t
range of energy appropriate for each kappa into smaller,
haps overlapping, more computationally manageable pie
We also note that relativistic corrections are included in
calculations.

This self-consistent FP-LMTO method allows one to c
culate the electronic band structure and corresponding ch
density, total energy, and interatomic forces. It has been s
cessfully applied to many systems. Both metallic and hig
covalent materials have been studied. Lattice relaxa
around defects and additives, surface and cleavage ener
and surface relaxations are a few examples of quantities
have been investigated.

To characterize ZnSe adequately required full use of
enhancements available in this method. The best results w
obtained using four kappas~five for the case of nitrogen
substitution! distributed in three separate energy windows.
choosing this way of organizing calculations we were i
tially guided by the results for systems where the differen
between the energy of the highest core states and the en
of the lowest valence states is relatively large~more than 2
Ry!. In such systems the core states are well localized wit
the muffin-tin sphere and do not hybridize with valen
states. In such cases it has proven sufficient to have
kappas for the valence electrons. Therefore we allowed
kappas for the valence states in ZnSe. In addition, semic
zinc 3d electrons were isolated by giving them their ow
kappa and energy window. Finally, it was found that thes
and 4p electrons from the selenium atoms were participat
in some covalent bonding with the zinc 3d electrons; and so
another kappa and energy window was allotted for the
With this choice of bases in the various energy windows,
ZnSe in the absence of defects we computed the lattice
stant and found that it was less than 1% smaller than exp
ment, as expected for high-quality local density approxim
tion calculations. We obtained a value of 64.9 GPa for
bulk modulus that compares well with the typical values
various pseudopotential calculations and the experime
value of 62.5 GPa. Table I lists our results along with e
periment and previously calculated numbers for the latt
constant and bulk modulus. Also, the band structure and d
sity of states were obtained and gave excellent agreem
with previous results.23

To perform the defect calculations we used a super
6-2
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TABLE I. Lattice constant and bulk modulus for ZnSe.

Experiment Present calculations Other calculations

Lattice constant~Å! 5.669 5.636 5.680,a 5.677,b 4.916,c 5.198,d 5.592,e 5.638,f 5.61,g

Bulk modulus~GPa! 62.5 64.9 63.2,a 68.9,b 131.7,c 98.9,d 70.1,e 65.2,f 81,g

aReference 15 with partial core correction for Zn potentials.
bReference 15 with 3d electrons treated as valence electrons.
cReference 13 Zn-3d-in-core.
dReference 13 with NCV corrections.
eReference 13 Zn-3d-in-valence.
f
Reference 13 Zn-3d-in-valence and Se-3d-in-valence.

gReference 17.
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methodology. In this approach, the defect is surrounded
the host atoms in a simulation cell that is periodically
peated to fill all space. There are two problems associa
with this approach:~1! the artifact of having an interactio
between defects belonging to adjacent simulation cells,
~2! the presence of symmetry constraints that restrict lat
relaxation around the defects. To assess and deal with t
problems, we have found the relaxed lattice structure
vacancies in both 16- and 32-atom unit cells and compa
the results.

We start from the ideal lattice for ZnSe and remove o
atom from either the zinc or selenium location to consid
vacancies, or replace one selenium atom with nitrogen. T
we self-consistently solve, using our LMTO code, for the f
potential and total energy. Once convergence is obtained
force routine is applied, which gives us the interatom
forces on each atom in the cell. The result is a force vec
whose components correspond to the available degree
freedom allowed by the particular system being studied. T
atoms are then moved in the direction given by the fo
vector. A distance along that vector is determined by a c
jugate gradient scheme using previous positions and for
Then the procedure is repeated, self-consistently solving
the total energy for this new configuration, obtaining t
force vector and moving the atoms. The process is repe
until the total energy stabilizes at its lowest value.

When we considered charged defects, a neutralizing
form background charge was added to avoid Coulomb in
action between supercells. We will show that a 16-atom u
cell is not sufficient to describe point defects in ZnSe ev
for a charge neutral case. Therefore we consider cha
defects only with a 32-atom unit cell.

III. RESULTS AND DISCUSSION: Se AND Zn VACANCIES,
N SUBSTITUTED FOR Se

We have found the relaxed lattice structure for vacanc
and nitrogen substitution for selenium in both 16- and 3
atom unit cells. We first consider the case of a Se vacanc
illustrate the details of 16- and 32-atom cells in terms
symmetry and degrees of freedom, and why the larger su
cell is necessary. The same symmetry considerations a
for the Zn vacancy and nitrogen substitution described la
in the text.
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A. Selenium vacancy

The conventional 8-atom ZnSe unit cell is shown in F
1. There we see the zinc blende structure with the selen
atoms occupying the eight corners and face centers of the
faces of the cell forming a face-centered-cubic~fcc! lattice.
@From the computational point of view, it is convenient
have the origin coincide with the site marked ‘‘1’’ in Fig. 1
In this case removing the atom and creating a vacancy
this site does not change the overall symmetry of the sim
lation cell. ~Below we will use the terms ‘‘supercell’’ and
‘‘simulation cell’’ interchangeably!.# The simplest way to
begin our discussion is to consider the conventional super
shown in Fig. 1. Such a 7-atom-plus-a-single-vacancy su
cell has a convenient cubic symmetry. All corner atom
shown in Fig. 1 belong to neighboring supercells, exc
‘‘1,’’ which is chosen as the vacancy site. Therefore, wh
this eight-atom supercell is repeated periodically to fill
space,all corner atoms in Fig. 1~i.e., sites numbered 5, 6
and 7 as well as 1! are substituted by vacancies, total
changing the initial zinc blende structure. To go to a larg
size supercell, we considered 16- and 32-atom superc
which can be generated by including one or three cells a
cent to the one containing the four Se and four Zn atoms
shown in Fig. 1.

Removing one of the selenium atoms in the 16-atom u
cell results in four corner atoms disappearing from the or
nal 8-atom cell. In Fig. 1 these are atom ‘‘1’’ and the thr
atoms marked as ‘‘5.’’ It can be seen that this arrangem
has the vacancies form a fcc lattice with basis vectors tw
as long as those for the original fcc Se sublattice. Wh
repeated periodically to fill all space, the remaining corn
Se atoms~atoms 6 and 7 in Fig. 1! are surrounded equidis
tantly by the vacancies in 12 different supercells, and th
are constrained to be fixed. Examining the zinc atoms in
configuration, it can be seen that all four zinc atoms in Fig
~atoms marked 2 and 4! are adjacent to vacancy sites an
consequently, are equivalent by symmetry. The other f
zinc atoms for the 16-atom supercell belong to one of
neighboring conventional 8-atom cells~e.g., the one on top
of the cube shown in Fig. 1!, and these atoms are not adj
cent to the vacancy.

When describing the relaxation motion of the atoms b
longing to the two nearest shells, it is more convenient
consider a different projection for the figures. In Figs. 2,
6-3
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LEONID MURATOV et al. PHYSICAL REVIEW B 64 035206
and 4 we show the vacancy site in the center, surrounde
two atomic shells. For the second shell we show only n
out of the 12 selenium atoms, with three selenium ato
removed in order to provide a better view. All four zin
atoms from the first nearest-neighbor shell can only m
directly toward or away from the nearest vacancy as depic
in Fig. 2. The face-centered selenium atoms~i.e., atoms ‘‘3’’
in Fig. 1! form the second neighbor shell. The motion
atoms in this shell is shown in Fig. 3. This motion is r
stricted by their neighboring Zn atoms~i.e., atoms marked
‘‘2’’ and ‘‘4’’ in Fig. 1 ! being identical by symmetry. Henc
selenium atoms ‘‘3’’ can move only perpendicular to t
plane of cubic faces~see Fig. 1! and, therefore, cannot follow
zinc atoms from the first shell when they move toward~or
away! from the vacancy.

Further investigation reveals that there are only three
grees of freedom for relaxation in the 16-atom supercell. T
remaining, third, degree of freedom allows zinc atoms in

FIG. 1. The conventional eight-atom unit cell~four atoms inside
the cube, plus one-eighth of each of eight corner atoms, plus
half of each of six face-center atoms! of the ZnSe zinc-blende lat
tice with Se~Zn, when Zn vacancy is discussed! atoms represented
by solid circles and Zn~Se! atoms by crosshatched circles. The Se
the origin is labeled 1 and the three Se’s at face centers are lab
3. The corresponding Zn atoms are labeled 2 and 4. Bonds betw
nearest neighbors, as well as cube edges, are shown to guid
eye. The numbering of atoms is done for convenience in descri
the 16- and 32-atom supercells. Atoms of type 5, 6, and 7 are
origins of the adjacent conventional cells. The vacancy is create
removing an atom from site 1. For the 16-atom supercell, vacan
would also occupy sites 5, and for the 32-atom supercell, sit
Atoms of type 2 are always next to the vacancy, while the atom
type 4 has a next-neighbor vacancy in the 16-atom supercell a
next neighbor Se~Zn! atom in the 32-atom supercell. To form
16-atom supercell we need to include atoms from an adjacent
~e.g., the cube on top of the one shown in this figure!, while for a
32-atom supercell, atoms from an additional three adjacent cu
are needed. In practice, in order to reduce computing, these a
are rearranged to bring them closer to the origin and increase
symmetry.
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FIG. 2. Symmetry-allowed relaxation around vacancy for t
first atomic shell~for both 16-atom and 32-atom supercells!. Four
Zn atoms~or Se for the Zn vacancy!, which are shown as cross
hatched circles are allowed to move directly toward or away~as
shown by the arrows! from the vacancy site that is located in th
center. Symmetry demands equal distances between the o
~which coincides with the vacancy site! and each of these atoms
Nine of the 12 atoms from the second atomic shell are shown
filled circles. These are Se atoms in the case of a Se vacancy an
atoms in the case of a Zn vacancy. Three atoms from the sec
shell are removed from the figure to facilitate viewing. Atoms of t
second shell are atoms of type 3 from Fig. 1, and are located a
centers of the cubic faces of the conventional fcc cube.

FIG. 3. Relaxation of atoms around a Se vacancy in a 16-a
supercell. Atoms shown in this figure are the same as in Fig
Arrows demonstrate the only available degree of freedom for re
ation motion of the second atomic shell. This motion is in the
rection perpendicular to the planes of the cubic faces in Fig
~atoms of type 3!. Therefore these atoms cannot follow atoms fro
the first shell in their motion.
6-4
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PREDICTED LATTICE RELAXATION AROUND POINT . . . PHYSICAL REVIEW B 64 035206
8-atom cube just above the one shown in Fig. 1~i.e., making
up the remainder of the 16-atom supercell! to move directly
toward or away from their nearest fixed selenium neighb
This artificially separates the zinc atoms of the third atom
shell into two groups, namely atoms like those marked ‘‘
in the cube shown in Fig. 1 that are adjacent to a vacan
versus zinc atoms from the adjacent cube, such as ne
neighbors of the atom marked ‘‘7’’ in Fig. 1. This built-i
artifact of the symmetry of this 16-atom supercell can th
be seen to partition the zinc atoms into clusters interior
these cubes. These clusters prevent the forming of a s
like arrangement that can more realistically accommod
the lattice relaxation around a defect.

We can compare this to the 32-atom unit cell. Now, wh
a Se vacancy is created, only two of the eight corner
atoms specifying the 8-atom cell need be removed. In Fig
these atoms are labeled as 1 and 6. This generates a b
centered-cubic~bcc! lattice of vacancies with a supercell th
effectively includes four of the conventional zinc-blen
cubes, although in practice these atoms are rearrange

FIG. 4. The same as Fig. 3 for 32-atom supercell. Now, b
‘‘tangential’’ and ‘‘radial’’ motions are available for the atoms o
the second shell. Thus a greater relaxation motion is expected
for 16-atom supercell.
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place them as close to the origin~which is the site of the
vacancy! as possible. This arrangement results in atoms
four distinct symmetry types~plus the vacancy! with five
degrees of freedom to move. It is easy to see thatnow there
are only two types of zinc atoms, namely, those with a
cancy for a nearest neighbor~i.e., atoms of type 2! and those
without ~i.e., of type 4!. Again, all remaining corner Se at
oms~atoms of type 5 and 7! are constrained by symmetry t
remain fixed, but now the face-centered Se atoms have
degrees of freedom as is shown in Fig. 4. Selenium ato
now can follow the motion of zinc atoms from the first she
therefore facilitating their relaxation motion. The zinc atom
nearest to a vacancy are still constrained to move only
rectly toward or away from that vacancy~Fig. 2!, but the
other zinc atoms now have two degrees of freedom;
being again radially toward or away from its nearest fix
selenium neighbor, while the other is an angular compon
allowing the bond to rotate in the~111! plane. In this super-
cell, there is a more physically appropriate division of t
atoms into symmetrically equivalent types that form
roughly shell-like structure around the vacancy, as oppo
to the highly artificial cluster structure imposed by the 1
atom supercell symmetry described above. Hence, it is
sonable to expect that relaxation can be captured more
istically in this 32-atom supercell.

We now compare the relaxation around vacancies fo
in each of these supercells. As a characteristic length
convenient to use the equilibrium length of the shortest bo
i.e., the nearest-neighbor distance~NND!. A summary of cal-
culated results is shown in Table II.

It can be seen that in the 16-atom supercell there i
significant relaxation displacement of zinc atoms nearest
neutral selenium vacancy~around 5% of NND!. Motion of
selenium atoms from the second shell is negligible. In
32-atom supercell, atoms from the first shell move even f
ther~14.8% of NND!, while displacement of the second she
atoms from their initial positions is equal to 3.4% of NND
This displacement is mostly~3.2% of NND! directed toward
the vacancy, taking advantage of the available ‘‘radial’’ d
gree of freedom~see Fig. 4 in comparison to Fig. 3!. Al-
though this relaxation motion is relatively small, there are
atoms of this kind versus only four atoms from the first she
Therefore the cumulative effect of this motion represent

h

an
e

TABLE II. Relaxation around defect site. In this table we used the following notations.N is a number of

atoms in the supercell.Erelax is a relaxation energy. RDf irst is a relative change in the distance from th
vacancy for the first neighboring shell~atom 2 in Fig. 1! as a percentage of NND. RDsecondand TDsecondare
correspondingly radial and tangential displacements of atoms in the second neighboring shell~atom 3 in Fig.
1! as a percentage of NND.

V Se ~V Se)
11 V Zn ~V Zn)

22 NSe ~NSe)
2

N 16 32 32 16 32 32 16 32 32
Erelax ~eV! 20.08 20.44 21.2 20.13 20.21 20.38 22.1 22.7 22.8
RDf irst 24.97% 214.8% 119.4% 24.74% 27.2% 26.6% 29.7% 220.0% 219.0%
RDsecond 0a 23.2% 0.4% 0a 22.6% 22.6% 0a 23.5% 2.0%
TDsecond 0.4% 1.0% 2.6% 3.4% 2.3% 3.6% 2.5% 4.9% 0.2%

aRadial relaxation is not allowed by the symmetry.
6-5
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LEONID MURATOV et al. PHYSICAL REVIEW B 64 035206
significant relaxation in going to the final equilibrium co
figuration.

Other results of our calculations for a neutral Se vaca
are as follows. In the 16-atom supercell, the decrease in
distance from the vacancy to nearest-neighbor Zn ato
forces the remaining Zn-Se bonds to become longer.
bonds between Zn~atoms 2 and 4 in Fig. 1! and corner Se
atoms~atoms 7 in Fig. 1! increase by 0.5%, and the bond
between Zn atoms and face-centered Se atoms~atoms 3 and
8 in Fig. 1! atoms increase by 1.5%. In the 32-atom super
most of the motion is also limited to the first and seco
shells of atoms. The remaining Zn atoms move slightly, e
ing up 1.35% further from their fixed Se neighbor. T
bonds between the nearest-neighbor zinc atoms and
face-centered selenium neighbors~atoms 2 and 3 on Fig. 1!
increase in length by 2.8%.

Because of geometrical differences and additional deg
of freedom in the 32-atom cells as compared to the 16-a
cells, as described above, the relaxation energy for the
atom cell with selenium vacancy is more than five tim
higher than for the 16-atom unit cell (20.44 versus
20.08 eV). We also used the 32-atom supercell to calcu
relaxation around a doubly positively charged Se vacan
There is much stronger lattice relaxation for the charged
cancy than for the neutral vacancy. The relaxation energ
21.2 eV, and the neighboring zinc atoms moveaway from
the vacancy by 19.4% of NND. Thus the direction of t
relaxation of the neighboring atoms reverses its sign
charged versus neutral vacancies.

Garcia and Northrup10 reported relaxation energies for th
same two types of Se vacancies and obtained20.15 eV for
the neutral and21.61 eV for the doubly ionized vacancy
while Pöykkö and co-workers found18 relaxation energies o
20.49 eV and21.58 eV (21.4 eV in Ref. 17! for these
two cases, respectively. Our results for the neutral case
much closer to the results of Refs. 17 and 18. For
charged case our relaxation energy (21.2 eV) is smaller
than in both pseudopotential calculations, but agrees w
with the21.1 eV obtained by the FP-LMTO calculations
Ref. 17. ~The 0.1 eV difference in FP-LMTO calculation
can be understood from the fact that lattice relaxation in R
17 was not calculated in FP-LMTO, but rather the fin
atomic configuration obtained in pseudopotential calcu
tions was used. We also note that the FP-LMTO meth
used in Ref. 17 was not the same as ours, but rather was
of Methfessel24 that has methodological difference fro
ours.! Finally, our predicted 19.4% outward movement f
the nearest-neighbor zinc atoms for the doubly ionized
cancy agrees well with the 20% of Ref. 10 and 24% of R
18. Therefore our overall results are in good quantitat
agreement with results obtained by Po¨ykkö and
co-workers.17,18

Some important information can be obtained by study
changes in the charge distribution in the region surround
defects, especially changes inside the muffin-tin sphere
the neighboring atoms. In particular, this can be used
check the adequacy of the size of the defect-containing
percell. If the charges on the outermost~from the point de-
fect! atoms in the supercell deviate significantly from t
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charges in the ideal, defect-free lattice, the size of the su
cell is too small. For such a supercell, an artificial interact
between defects in the adjacent supercells cannot be
glected; and a larger supercell has to be used in orde
describe a single isolated defect.

In FP-LMTO calculations the charges inside the muffi
tin sphere depend on the radii of these spheres. Therefo
is worthwhile to mention here a strategy that we adopt
choosing these radii. The first point in this strategy is th
radii of mufin-tin spreres should remain constant, while ov
lapping between muffin-tin spheres should be avoided du
the entire course of relaxation calculations, i.e., on go
from an initial, undistorted lattice to a completely relaxe
lattice that corresponds to the minimum of the total ene
for a given simulation cell. On the other hand, it is benefic
to have as much volume as possible inside muffin tins, si
a reduction of the interstitial volume decreases the size of
calculations~because of the smaller number of Fourier h
monics required! and increases the accuracy of the calcu
tions. To accommodate these conflicting demands, we a
an empirical rule that the minimum gap between any t
muffin-tin spheres should be between 5% and 15% of
distance between their centers. A touching of muffin-
spheres is avoided in order to prevent large gradients of
potential in these areas. Simultaneously, we maintain
same muffin-tin radius for the same species of atoms in o
to control the accuracy of supercell calculations.~For an
ideal lattice, charges inside muffin-tin spheres should
identical for all atoms of the same species!. As a result of
these considerations, for the present calculations, radii for
and Se muffin-tin spheres were chosen to be 2.2 atomic u
for both types of atoms.

In the case of the neutral selenium vacancy in the fin
relaxed lattice structure, the four zinc atoms surroundin
vacancy lose 0.12 electrons each. Each of 12 selenium a
from the second shell lose 0.02 electrons to the interst
area. It is interesting that in the unrelaxed lattice, atoms
the second shell around the vacancy do not lose any ch
when compared to the selenium atoms in the initial, vacan
free ideal lattice~total loss is less than 0.01 electron for 1
atoms!.

For the doubly positive Se vacancy each of the four ne
est zinc atoms loses 0.03 electrons, while selenium at
from the second shell lose 0.023 electrons each. This num
goes down beyond the second shell to 0.009 for the third
0.008 for the fourth. This relatively fast charge relaxati
indicates that the 32-atom cell is probably sufficient for the
calculations.

B. Zinc vacancy

The same symmetry considerations as we used for
selenium vacancy apply to the relaxation about a zinc
cancy. However, when compared to the selenium vaca
calculations, the movement of the selenium atoms neares
vacancy is smaller for the 32-atom cell~see Table II!. In the
16-atom supercell the nearest-neighbor Se atoms to the
cancy decrease their distance from the vacancy by 4.
6-6
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This forces the bonds between fixed corner Zn atoms an
atoms~e.g., bonds between atoms 7 and 2! to become 0.5%
longer, and bonds between the movable face-centered
atoms and Se atoms~e.g. atoms 3 and 2! to shrink by 0.2%.
In the 32-atom supercell, the nearest-neighbor Se atoms
now 7.2% closer to the vacancy. The remaining Se ato
move little, ending up only 0.5% further from their fixed Z
neighbor. The bonds between the nearest-neighbor Se a
and their face-centered zinc neighbors decrease in lengt
0.9%. The other selenium bonds for the face-centered
atoms increase by 1.1%. The relaxation energies per vac
are20.13 eV for the 16-atom supercell and20.21 eV for
the 32-atom supercell. Thus the difference between 16-
32-atom cells is much smaller than for the Se vacancy
reported above.

For the doubly negative zinc vacancy in the 32-atom
percell the relaxation of the nearest neighbors is simila
the neutral case, unlike the behavior for the seleni
charged vacancy. Neighboring selenium atoms move tow
the vacancy by 6.6% of the NND, and the relaxation ene
is 20.38 eV. This is again reasonably close to the res
reported by Ref. 18,20.54 eV.

The selenium atoms neighboring the neutral zinc vaca
lose about 0.08 electrons each. The charge redistributio
the second shell from the vacancy follows a similar patt
to the case of the selenium vacancy. The 12 zinc atoms f
the second shell do not change their charge prior to re
ation, losing only 0.012 electrons in total, while after rela
ation this number grows to 0.168 electrons. This serves a
indication that the direct influence of the vacancy is limit
only to the atoms of the first shell. The charge redistribut
at the atoms of the second and following shells~for which
the charge changes very little! is not caused directly by the
vacancy itself, but rather by the lattice relaxation, and by
consequent change in distances to neighboring atoms.

For the doubly negative zinc vacancy, there is no noti
able change in the charge inside muffin-tin spheres for
atoms in the supercell when compared to the correspon
values of the ideal lattice. The change in charge is 0.
electrons loss per sphere in the first shell and a gain of a
0.01 electrons per sphere in other shells.

C. Low-symmetry supercell for zinc vacancy

Note that the high-symmetry configuration for the Zn
Se vacancy systems, as described above, constrains all
nearest-neighbor Se atoms~or Zn atoms in the case of the S
vacancy! to be the same distance from the Zn vacancy. Si
our calculation takes advantage of the symmetry to red
the amount of computation needed, the forces are c
strained to be in only those directions that will not lower t
symmetry of the supercell, as illustrated in Fig. 2. Therefo
to reach any lower symmetry as a final relaxed state,
symmetry must be broken ‘‘by hand’’ in the original con
struction of the supercell. We were experimenta
motivated25 to release this constraint while considering
zinc vacancy. Therefore we considered a lower-symme
~trigonal! configuration in which only three of the fou
nearest-neighbors were at the same distance from the
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cancy, while the remaining Se nearest-neighbor atom
free to move independently. As shown in Fig. 5 this resul
in very much greater relaxation for the asymmetric ato
The asymmetric nearest-neighbor atom~marked ‘‘a’’ in Fig.
5! is 12.4% closer to the vacancy, while the remaining th
nearest neighbor atoms~marked ‘‘b’’ in Fig. 5! end up 7.7%
closer to the vacancy. These three atoms no longer m
only toward the vacancy as in the symmetric supercell
scribed above. Reduced symmetry allows them to relax a
from each other by changing their bond angle with respec
each other and the single nearest-neighbor atom. Most o
remaining bond lengths change slightly as in the higher sy
metry case, but now we have a great deal of change in
direction of the bonds relative to the original configuratio
The 32-atom unit cell contains nine~plus vacancy! different
types of atoms with 19 different degrees of freedom to mo
This results in much greater relaxation energy than pre
ously, more than20.36 eV compared to about20.21 eV.
These results indicate that the low-symmetry configurat
around the zinc vacancy is highly preferable. However, c
culations using low-symmetry supercells are extremely co
puter extensive in comparison to calculations using hi
symmetry supercells. For the high-symmetry 32-atom c
~see Fig. 4!, there are only five types of atoms with a total
five degrees of freedom, i.e., some with no degree to m
and some with more than one degree of freedom. For

FIG. 5. Relaxation of atoms around a Zn vacancy in the lo
symmetry 32-atom supercell. Calculated positions of atoms
shown in this figure. In the lower symmetry~trigonal! configuration
only three of the four nearest neighbors~type b) are required to be
at the same distance from the vacancy, while the remaining
nearest-neighbor atom~type a) is free to move independently. Th
asymmetric nearest-neighbor atom is 12.4% closer to the vaca
while the remaining three nearest-neighbor atoms are 7.7% clos
the original position of the vacancy. These three atoms no lon
move only toward the vacancy; reduced symmetry allows them
relax away from each other by changing their angle with respec
each other and the single nearest-neighbor atom. Zinc atoms o
second shell follow atoms of typeb in their relaxation motion to-
ward the vacancy. The additional flexibility of low-symmetry rela
ation results in much greater relaxation energy than in the cas
high symmetry, more than20.36 eV compared to abou
20.21 eV for the high-symmetry 32-atom supercell.
6-7
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reason we performed low-symmetry calculations only for
case of the neutral Zn vacancy.

D. Nitrogen substitution for selenium

Both experimental results by Petruzzelloet al.26 and our
present measurements show that incorporated nitrogen
matically changes the structure of the local ZnSe lattice. T
experimental dependence of the lattice constant on the n
gen concentration is shown in Fig. 6. Both, the measu
ments in Ref. 26 and our measurements relied on conv
tional x-ray diffraction determination of the lattice consta
using multiple diffraction spots to eliminate strain effec
with the nitrogen concentration determined using second
mass spectrometry. The measured values and trends o
present and prior measurements agree within experime
uncertainty.

A simple experimental estimate of the equilibrium bo
length between Zn atoms and N substitutional atoms can
obtained by assuming a linear change in the average la
constant as measured by x-ray diffraction with increas
molar fraction of substitutional nitrogen. Such use of th
so-called ‘‘Vegard’s law’’ approximation results in the line
fit shown in Fig. 6, and indicates an effective lattice const
of 4.24 Å for zinc-blende ZnN. This is 75% of the expe
mental lattice constant for ZnSe~see Table I!. This suggests
that the zinc atoms nearest to the diluted substitutional ni
gen would be more inward by about 25% of the initial Zn-
distance. Our FP-LMTO calculations for zinc-blende Zn
which does not exist experimentally, give a lattice const
of 4.5 Å. Agreement with the experimental extrapolation
excellent, considering that measurements exist only for v
low concentrations of nitrogen~about 0.1% molar concentra
tion! and that we have extrapolated to 50% concentratio

For the substitution of a single selenium atom by a nit
gen in ZnSe we have obtained results for the high-symm
16-atom and high-symmetry 32-atom unit cells, i.e.,
same cells as used in the Se vacancy calculations. Our re
show a stronger relaxation around the nitrogen atom tha
case of the selenium vacancy. As shown in Table II, for

FIG. 6. Plot of lattice constant~Å! vs nitrogen concentration
substituted for Se in the ZnSe crystal from prior work~Ref. 26! and
our present measurements. The solid line is a fit to the data f
Ref. 26.
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32-atom cell, the relaxation energy is22.7 eV, while the
nearest zinc bonds become 20% shorter, and the first-s
zinc-selenium bonds shrink by 4%. For a negatively charg
nitrogen substitution, results are very similar to the neu
case, with a relaxation energy of22.8 eV and the neares
zinc bonds becoming 19% shorter.

These results show somewhat greater relaxation than
viously calculated results obtained using pseudopoten
methods,14,15,18 which found 14–18 % nearest-neighbor r
laxation compared with our result of 19–20 % and the res
from extrapolation of experiment 25%.26 Alternatively we
can compare results of the lattice relaxation around the
trogen impurity with the zinc-nitrogen bond length in Zn3N2
compound that exists in a cubic Bixbyte structure.27 This
bond length is 2.08 that is 15% shorter than calculated 2
zinc-selenium bond length in zinc-blende lattice structure
our calculated lattice constant~see Table I!. Thus, our pre-
dicted lattice relaxation is in very good agreement with e
periment since it is exactly halfway between the two expe
mentally defined expectations~25% and 15%!. We note that
the pseudopotential results fall more toward the lower of
experimentally indicated limits.

Analysis of the charge redistribution shows that in t
case of neutral nitrogen substitution for selenium even
32-atom unit cell size might not be sufficient. Since even
that case, for atoms further away from the nitrogen,
charge was not restored to its value in the ideal lattice.
trogen attracts too much negative charge, and selenium
oms of the second and the fourth shell ended up losing ab
0.035 electrons each, and zinc atoms of the first and t
shells lose 0.01 and 0.02 electrons each. However, for
negatively charged nitrogen substitution for seleniu
changes in charge are localized to the first~loss of 0.02 elec-
trons per atom! and to the third~gain of 0.02 electrons pe
atom! shells; while changes in the charge of other atoms
the supercell are less than 0.004 electrons per atom.

IV. CONCLUSIONS

The LMTO method is an all-electron method that has
lowed us to execute a straightforward treatment of sta
with small negative energy~‘‘semicore’’ states! as valence
states. The full charge of the core states enters into the
culated charge density and so may influence such quant
as the equilibrium lattice constant through affecting the
lence electrons. However, the core states are calculated
spherically symmetric potential and are not allowed to h
bridize with neighboring core states or valence orbitals.
cases where some core states substantially leak outside o
muffin-tin spheres and overlap with valence electrons, i
essential for accurate results to move the core states in q
tion, i.e., ‘‘semicore’’ states, into the valence set of stat
This allows accurate calculation of the physical effects of
‘‘semicore’’ states within the full-potential methodology an
enables their participation in hybridization. In practice this
accomplished through the flexibility available in enrichin
the basis provided by having additional energy windows. W
found that for ZnSe, the zinc 3d and selenium 4s and 4p

m

6-8
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states do participate in some covalent bonding and hyb
ization. Pseudopotential calculations for Zn or Cd materi
which do not include Zn or Cdd levels in any way, obtain
substantial errors.12 Those pseudopotential calculations8,9

that providecompleteinclusion of the semicore levels shou
be expected to have the same levels of accuracy and reli
ity as those of a full-potential, all-electron calculation. Ho
ever, as noted, we do find differences. Some of the calc
tions based on nonlinear core-valence correction in the f
developed in Ref. 20 provide much better results. We fou
good quantitative agreement with Ref. 18. However, th
are significant differences with results of another group13 us-
ing the same corrections.~References 13 and 18 do not pr
vide sufficient details of the calculations to allow us to re
ognize the origin of the differences in their results.!

In contrast to the pseudopotential calculations of Ref.
in our LMTO calculation we include theselenium4s states
as well as the zinc 3d states in the valence set of states.
addition there is a not-very-well-studied question of transf
ability of pseudopotentials to calculations of non-neutral
fects. These points, in conjunction with other differences
treating core and semicore electrons, may explain the
maining difference between our results and the pseudopo
tial calculations of Ref. 18 that do correct for semicore le
els. Additionally, this difference may be related to the way
A.
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which nonlinear core corrections account for the large ov
lap of the zinc 3d semicore electrons with the other comp
nents of the valence charge density; whereas our f
potential LMTO methodology treats these electrons in
same manner as it treats valence electrons in other en
windows.

In conclusion, we emphasize that 16-atom supercells
not large enough to capture the relaxation around a p
defect for ZnSe, but 32-atom results give evidence of be
quite reliable. This is because of the shell-like division
atoms in the 32-atom supercell, and the almost neglig
movement of those atoms forming the shell furthest from
defect. It seems clear that atoms adjacent to the defect m
be separated by more than one common atom in orde
allow sufficient freedom of motion to adequately capture
lattice relaxation. We also have shown in the case of the
vacancy that better agreement with experiment, as comp
to the high-symmetry supercell calculations, may be o
tained by allowing the possibility of lowering the symmet
around the defect.
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