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Calculation of optical properties and density of states for systems with huge unit cells
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We present a method for theb initio calculation of spectral properties of systems with huge unit cells.
Translationally invariant systems with elementary cells containing several hundred atoms in the unit cell are
characterized by a large number of bands in a very small Brillouin zone. This makes the allocation of energies
at differentk points to one band impossible. For that reason a quadratic extrapolation of the band energies is
performed starting from a single point k. The band energies and momentum operator matrix elements are
calculated akq using the projector augmented wave method. The Brillouin-zone integration is carried out by
means of the linear tetrahedron method following a resampling procedure. The viability of the method is
demonstrated for nonprimitive large supercells by reproducing the absorption coefficient and the density of
states of an ideal crystal. The method is applied to 216- and 512-atom simple-cubic supercells. A germanium
cluster embedded in a host material is treated as an example of a perturbed system.
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[. INTRODUCTION today supercells of more than 100 atoms have become
tractablet® Novel artificial materials like superlattices may
Spectral properties of solids are related to the single- obe treated in much the same way. Alloys with chemical and
two-particle density of state®0S). Examples are the opti- structural disorder are described within the cluster-expansion
cal absorption, the electronic contribution to the heat capaamethod by studying supercells of 64 atoms fully quantum
ity, and two-phonon Raman spectra. In the crystalline casenechanically:® Clusters, nanocrystals, and quantum dots
the corresponding sums over electronic states involve intemay also be studied using the supercell method. At present,
grations over the Brillouin zonéBZ) which are commonly the size of the supercells is limited to about 512 atdfms.
carried out by means of tetrahedron metHod®r special-  This limitation is due to the huge numerical effort which also
point technique4-® They use the desired quantities on anecessitates a reduction of the numbek gfoints within the
dense mesh df points. The computational effort is directly BZ. The systems with the largest cells can be treated restrict-
related to the number df points. Calculations of optical ing the calculation to only onk point.
properties in crystalline semiconductors with a primitive In calculating spectral properties of supercell systems a
two-atom unit cell by means of the tetrahedron method shomumber of issues become important. First of all, the two
that the number of grid points ik space can be reduced by contradicting objectives of a high numberlopoints for the
a factor of 10 as compared to special-point techniddes. tetrahedron method and a smallest-possible number for the
Nevertheless, even within the tetrahedron method a releelectronic-structure calculations have to be reconciled. Fur-
tively high number ofk points is desirable to obtain con- thermore, according to the size of the supercell and the
verged results. smallness of the BZ, a large number of bands lies in a very
In its basic version, the linear analytic tetrahedron methogmall energy interval. Therefore, band allocation at different
(LATM), the BZ is divided into tetrahedra and the band en-k points is rendered utterly impossible. Additionally, spuri-
ergies at the tetrahedron corners are linearly interpofat®d. ous optical transitions occur.
Consequently, the method is influenced by the band-crossing In this paper we develop an extrapolative version of the
problen?':12 that impedes the correct band allocation andtetrahedron method which can do with a sinkllpoint in the
rapid convergence. This problem is increased for systemsreducible part of the BZIBZ). The problems and the effi-
with several hundred atoms within the unit cell. Such sysciency of the method are demonstrated studying simple-
tems may be single crystals of complicated compoundscubic supercells of 216 and 512 atoms. As an example of a
Typical examples are high-temperature superconductors likepectral property we calculate the optical absorption of a
YbBa,Cu;O;_,. On the other hand, it is possible to intro- bulk semiconductor as well as of a nanocrystal embedded in
duce an artificial translational symmetry by choosing a largehis semiconductor. Moreover, we present results for the den-
unit cell and repeating it periodically in space. The resultingsity of states and discuss the joint density of stad&0S.
supercell method is a powerful tool to treat a variety of sys- The paper is organized as follows. Section Il begins with
tems without translational symmetry even within parameterthe description of theab initio method used for the
free methods of electronic structure and total-energy calcuelectronic-structure calculations and the pecularities of the
lations. Supercells containing up to 216 atoms have beeunse of large supercells. Then the method to describe the
used in the case of defectSSurfaces are modeled within the spectral properties of systems with huge unit cells is
slab supercell method where a slab is repeated periodically ipresented. It is based on the supercell approach, the linear
the direction perpendicular to the surface. The slabs are sepanalytic tetrahedron method, and a quadratic expansion of
rated by vacuum. While the firgtb initio surface calcula- the bands. Spectral properties like optical absorption and
tions have been done with about 16 atoms in the unit*€ell, density of states of a crystal with two atoms in the primitive
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cell are considered in Sec. Il to test the method. In Sec. IV 10
it is applied to calculate the spectral properties of a Ge clus-
ter embedded in a SiC matrix. Finally, a summary is given in
Sec. V.

Al

II. COMPUTATIONAL METHODS
A. Electronic structure calculation

The electronic band structures entering the calculations of
the optical properties within the independent-particle
approximatio® follow from a parameter-free treatment of ,
the supercell system within the density-functional theory 20 40
(DFT) and the local density approximati¢hDA). We apply Band index v
the Viennaab initio simulation packad@_(VASP) which FIG. 1. Band energy derivative plotted versus the band index.
e_mploys ultrasoft(US) non-norm-conserving pseudopoten- Solid line: derivative derived from the momentum matrix elements;
tials (PP'9 of the Vanderbilt type. They allow the treatment yte jine: derivative calculated geometrically from band energies.
of several hundred atoms in one unit cell, even in the case ofy g-atom simple-cubic supercell is used in order to make band
first-row elements? However, for the calculation of optical ajiocation possible. The material is SiC.
properties these PP’s require an augmentation of the pseudo-
wave-functions in the region of the atomic cores. The formalow as 14.7 Ry? This cutoff can be kept when embedded
relationship of the US-PP methddand the frozen-core nanocrystals are treated. The nanocrystal we consider as an
projector-augmented wave metiidé (PAW) suggests the €xample consists of germanium. The core radius of Ge atoms
calculation of all-electron valence wave functions in theis larger than that of Si or C atoms. The optical absorption
framework of the latter from the very beginning. The succes@nd the DOS as well as the JDOS used as reference have
of this approach for optical properties has been demonstratdeeen calculated for a SiC crystal with a two-atom cell and
recently?® Here we apply this method to calculate the single-100 conduction bands. In the IBZ a grid of 246@oints and
particle Kohn-Sham eigenvalu&s,(k) of Bloch stategvk) 12 635 tetrahedlroa have been used within the standard inter-
and interband ¢+ ') as well as intrabandu=»') matrix E)olatlve LéT.M. The resulting spectra are referred to as
elements(vk|p|»'k) of the momentum operatgy. These  reference” in the text.
states are characterized by the band indeand a Bloch
wave vectork e BZ. Since the quantief vk)} represent all-
electron wave functions the optical transition operator is no We consider only simple-cubic supercells, both for sim-
longer nonlocal and can be replaced by the momentum opplicity and because in this case the number of nearest-
erator, at least within the Coulomb gauge of the electromagneighbor supercells is the smallest one. When no symmetry
netic field”%3 is broken the IBZ, being one 48th part of the whole BZ, is

The quality of the calculations depends sensitively on thatself a tetrahedron. A simple-cubic supercell is constructed
accuracy of the optical transition matrix elements and thésy basis vectorsa;=Nay(1,0,0), a,=Nay(0,1,0), andas
intraband and interband momentum matrix elements useéNay(0,0,1). HereN gives the length of the supercell in
within the extrapolation procedure. In order to demonstratemultiples of the cubic lattice constaat of the underlying
the precision of the calculations within the PAW metft"d  fcc crystal. Correspondingly, the reciprocal lattice vectors
we study the numerical fulfillment of the relation betweenare shortened by a factor df Applying N=1,2,3, and 4 in
the intraband momentum matrix elements and the gradierdach of the three Cartesian directions, one obtains supercells
of the corresponding Bloch band i space,(vk|p,/vk)  of 8, 64, 216, and 512 atoms, respectively.
=(m/h)(dldk,)E,(K). A comparison of derivatives ob- The representation of a bulk material by a supercell
tained from these gradients to derivatives from energy difsystem of artificial translation symmetry has consequences
ferences at twdx points in close vicinity is shown in Fig. 1. for the Bloch wave vector and the number of bands per
The test has been performed for the center of gravity oknergy interval. Instead of the reciprocal-lattice vectors
the tetrahedronky=(0.25, 0.125, 0.375), lying between b;=(2w/ay)(1,1-1), b,=(27/ay)(1,—1,1), and bs
k,=(0.25073, 0.12514, 0.375B6and k,=(0.24927, =(2wlagy)(—1,1,1) the shorter ones b,
0.124 86, 0.374 64), in units of the reciprocal basis vectors o= (27/Nay)(1,0,0), b,=(27/Nay)(0,1,0, and b,
the 8-atom simple-cubic cell which has been used. Obviously=(27/Nay)(0,0,1) have to be considered. Correspondingly
the quality of the intraband matrix-element calculation is ex-the bands in the larger BZ are folded onto the smaller one.
cellent. For instance, the originakK points are folded onto thé&

Throughout the paper we consider cubic SiC as an expoint. Consequently the band structure of the indirect semi-
ample of a zinc-blende semiconductor crystal. It is aconductor SiC with the conduction-band minima>atbe-
group-1V material but occurs as a compound with partialcomes apparently direct. However, the optical matrix ele-
ionic bonds. Despite the inclusion of the first-row elementments of such direatmore precisely: quasidiréctransitions
carbon, the plane-wave expansion cutoff can be chosen asT" vanish.

energy derivative [eV

<

B. Supercell approach
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In general, as a consequence of the fact that states belong- €242 [(cKlp.|vk)?
ing to differentk points in the BZ of the initial structure are fkw)=——2 > ———
folded onto the samé& point, spurious optical transitions 27 T K (Eo(k)—E,(k))?
occur. These transitions are, however, strictly forbidden in X S(Eo(K)— E, (K) — h ). 2

the BZ of the ideal crystal. The numbeyious Of Spurious _ _ )

be Ngpurious/Nreal= NepNyu16N3, whereng, andn,,—4 are ~ SUM runs over all pairs of occupied valence bands and empty

the numbers of conduction bands and valence bands reIaté’&’r\‘/spﬁFionhbanlqs' i on of th hed

to the initial primitive cell of the fcc structure. Although the thltdll% tthe trllneard_ana ytic vle_rs!{on OI t E t?”.a edron

respective transition probabilities vanish exactly, the quesTetnod.” the three-dimensional integral in ElL) is re-
placed by a surface integral which is analytically performed.

tion arises whether the numerically nonzero transition prob:l_he method requires the knowledge of the energy values at

abilities due to inaccuracies create a computational proble he tetrahedron vertices as well as the optical matrix ele-
We found that the values of the transition matrix elements gLents appearing in expressié2) as input. The latter ones

a typical spurious transition is smaller by a factor of £0 416 taken to be constant over a single tetrahédrancan be
than thosg representing real transitions. Thus, .for the SUPefinearly approximated® The LATM needs dispersive bands,
cells considered in the present work one can ignore the ingr, in the cases of the JDOS and the dielectric function, band
fluence of spurious transitions. However, it should be kept iryifferences varying with th& vector. It will, therefore, not
mind for the future application of the method to even largeryg capable of dealing with nondispersive bands, i.e., local-

supercells. ized states. In such cases the corresponding contribution to

Another problem closely related to the band-structurghe considered spectral quantity has to be related to a
folding is the practical impossibility of band allocation at |ifetime-broadened Dirac’s function.

different k points. While from an analytic point of view
bands are fairly well defined entities and continuous, the D. Extrapolation of energy bands

computational reality provides just stacks of energetically The interpolation of the band or band pair energies be-

ordered values at differet points. The tiny separations of .fween the tetrahedron vertices requires the band allocation at

the energy values due to the huge number of bands within. . o ) ; ;
the supercell description and the occurrence of band cros:@—Ifferent K points. This is practically impossible for large

ings and anticrossings make apparent that the ideas of bar%lpercells. In conjunction with the limitation to the genera-

. . ) : tion of the electronic structure at otkepoint, an extrapola-
allocation at differenk points and, hence, also any interpo- .. 1295 26: ;
) tive method122>?%s needed. To obtain the energy values of
lative methods have to be abandoned.
the bands for one tetrahedron we start from sdpeand
C. Tetrahed hod extrapolate, essentially by means of the perturbation
- Tetrahedron metho theory. Basically the formula we use is

Within the tetrahedron methéd one has to treat sums of

, h
integrals over all tetrahedrg of the form E, (k)= Ey(k0)+a<vk0|p| ko) (K—Ko)
Flo)=2 j ke (k,0), @ 7
7 Iy + 2, (ke koo) (K~ kop) 5 ELK)

wherek is restricted to the tetrahedropn Examples for the Ko
integrands are the density of states with(k,w) 3
=(47%) 12 ,8(E,(k)—#Aw), the v-sum running over all

bands, the joint density of states withf(k,o) The second derivatives are explicitly related by

=(47%) 13, 8(E.(k)—E,(k)—%w), and the imaginary &2 h? e

part of the dielectric function. Within the independent- ook Bk = —2 £95,(K) + 8 (4)

particle approximation the latter one follows from the a"TP v

Ehrenreich-Cohen formuf4 to the oscillator strengths
faﬁ(k)zi<kV|pa|kyl><kyl|pB|kV>+<kV|p,B|kV,><kV/|pa|kv> 5
wm E,(K)~E,i(K) '

The gradients of the energy bands are represented by thge ak, point that does not give rise to degenerate states.
intraband matrix elements of the momentum operator at th&@hat meansk, cannot be a high-symmetry point, and also
choserky. From this representation it is clear that we have tocannot lie on a symmetry plane or line. For this reason, in the
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FIG. 2. Imaginary part of dielectric function of SiC for linearly FIG. 3. Dependence of the dielectric function on the number of
(dotted and quadratically(solid line) extrapolated energies for a bands. Only the effect on the energy extrapolation is shown. The
512-atom SiC supercell. 2048 bands are used and the IBZ is dividegerturbative determination of the vertex energies is carried out with
into 64 tetrahedra. The converged reference result is given as B296(solid line) and 864 bandgdashed ling whereas the calcula-
dashed line. tion of the dielectric function was restricted to 864 bands in both

cases. A 216-atom SiC supercell is used.

simple-cubic casé, should not be identified with the Bal-
dereschi poinf. We use the center of gravity of the IBZ,
which is itself one tetrahedron, as tkg point.

effectively becomes an integral. In fact, the energy separa-
tions are frequently smaller than the precision of the ener-
gies. Since an intraband contribution does not occur, the sum
can be replaced by an integral in the sense of the Riemann

IIl. NUMERICAL DETAILS: IDEAL CRYSTAL definition. The principal value is Computed in practice by
) _ ) adding a small imaginary paitd to the energy nominator
A. Linear versus quadratic extrapolation and considering the real part. It turns out that the method is

Keeping only the gradient term in E¢3) one obtains a fairly insensitive with respect to the choice of the parameter
linear approximation of the band structure. However, thisd. Between the two extremes where either the second-order
approach does not work at critical poirks Because of the €nergy terms scatter strongly due to a too sndalbr the
symmetry the bands have to be flat there, whereas the line&¢sult starts losing structures due to a too lafgéhere is a
extrapolation fromk, remarkably overestimates the band en-rather wide region for the broadening parameter over which
ergy correction ak. Thus, as a major drawback of the linear the result does not change appreciably. Our experience indi-
extrapolation, the bands are especially poorly represented &@tes that it is best to choose the parameter as small as pos-
tetrahedron vertices coinciding with critical points. sible but without a singular tail arising towaréig»=0. Re-

Despite these limitations the optical absorption of cubicliable values are5=0.001-0.1 eV for 216-atom cells and
SiC is well represented in Fig. 2 in comparison to the resul=0.000 01-0.01 eV for 512-atom cells.
of the quadratic extrapolation and the reference spectrum. The accuracy of the second-order expansion of the energy
Nevertheless, all band energies at the corresponding tetraheands(3) also depends on the number of conduction bands.
dron vertices have been calculated according to expressiofie number of bands taken into account influences the re-
(3) and starting from the single poikt, in the center of the Sults in two ways. First, one has to include all optical tran-
IBZ. The restriction to the linear extrapolation gives rise tositions which are relevant at a certain photon energy in the
additional unphysical structures on the low-energy side ofpectrum. A test reveals that very few conduction bands are
the main absorption peak and an onset of the absorptioRecessary to represent the main part of the absorption spec-
below the smallest allowed direct transition. On the otheitrum except for the high-energy tail. As few as four conduc-
hand, the quadratic extrapolati¢with resampling—see be- tion bands are able to account correctly for the dielectric
low) gives a reliable spectrum. Only the intensity of the mainfunction up to 12 eV for a system with two atoms in the unit
absorption peaks would slightly be underestimated. cell. In the case of the 512-atom cell this corresponds to the
use of 1024 conduction bands.

Second, the number of bands influences the convergence
of the perturbation series in expressi@). The “repulsion

The quadratic term in Eq3) contains the usual second- of the bands” due to their interaction requires the inclusion
order perturbation sum over all bands as indicated by thef a reasonable number of bands above the considered one.
relation to the oscillator strengths in expressi@). The  Consequently, for the higher bands the second-order energy
truncation of this sum is computationally inevitable. Its ef- correction will be less accurate than for the lower ones, and
fect, however, has to be tested carefully. Furthermore, for théhe resulting error will be systematic. Figure 3 shows that
large-supercell systems the energies lie so dense that the suhis is really the case. The same calculation has been done

B. Sum over bands
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FIG. 4. The second-order energy term bef@detted line, tri- FIG. 5. Imaginary part of the dielectric function for 216-atom

angles and after(solid line, circle$ the kissing correction plotted cell and three resampling densities. Different numbers of tetrahedra
versus the band index. The bands 1659 and 1660 participate in are generated within the irreducible part of the BZ. 1: dotted line; 8:
kissing, indicated by the extreme values of the second-order energyashed line; 512: solid line.

correction. A 512-atom cell is considered.

degenerate bantfsand crossing the bands “by hand” by an

for different numbers of conduction bands taken into theassignment of the new energy values such that smooth,
perturbation sum in Eq4). However, for the calculation of crossed bands are obtained. We found that it is possible to
the absorption in both cases the same number of bands wel@ok for extreme values of the second-order energy terms
used. For the higher number of included bands the highwhich are close in terms of the band indices and similar in
energy absorption peak slightly changes its location towardsize but have different signs. We only check those for the
the reference value. direction of highest curvature and apply the method of

There is another point of importance. Perturbation theoryPickard and Payriéto them. The result of such a treatment
requires the energy corrections to be smaller than the differis also demonstrated in Fig. 4. However, at least in the cases
ence of the involved unperturbed energy levels. For the largee considered, the band-kissing effect on the overall result is
extrapolation distancesk(k,) that we have to deal with, negligible. Within the precision of our calculations the cor-
this condition is poorly fulfilled, at best. In this sense we rection can safely be neglected.
have to state clearly that by means of equa{®nve do not,
strictly speaking, calculate a well-defined perturbative ex-
pansion but rather a geometrical extrapolation from the first
and second derivatives of the energy band&natThereby In principle, the availability of the quadratic representa-
we do heavily rely on the smooth behavior of the bands. Irtion of the band structure around sorkg allows the appli-
other words, viewed as a perturbative calculation the convereation of the analytic quadratic tetrahedron metffoHow-
gence properties could not be assured. However, our resulever, in view of the errors incurred from our extrapolation,
clearly indicate the viability of extrapolation in the face of the effort necessary to implement the quadratic method, and
this problem. the existence of a code and expertise about the linear method

Nevertheless, we have to discuss the question of how wellve retain the linear method.
even exact second-order extrapolation can describe the In order to diminish the obvious problem of committing
bands, i.e., how dangerous is it for a particular band to drophe systematic error of linearly interpolating a quadratic
the basic requirement of perturbation theory? This problenfunction between two fairly distant points ik space we
is exemplified by what Pickard and Payne call “bandintroduce a resampling procedure. We subdivide the tetrahe-
kissing,”** also known as anticrossing. The effect occursdron representing the irreducible part of the BZ into smaller
when two bands which would truly intersect each other arenes and calculate the energies at their corners according to
“repelled” by their interaction. This repulsion causes ex- expression(3). We use meshes of 1, 8, 64, 512, and 4096
treme values of the second-order energy derivatives for theetrahedra. Resulting spectra are shown in Fig. 5 for SiC in a
respective two bands which are limited to the immediate216-atom cell. There is clearly an improvement of the ab-
vicinity of the anticrossing. Ik, happens to be very close to sorption spectrum with increasing number of tetrahedra. The
such a point, the second-order energy corrections to the twose of 512 tetrahedra gives already a converged result. Fur-
bands will be much too large, similar in value, and havether subdivision of the tetrahedra does not lead to further
opposite signd? This can be seen in Fig. 4 where the improvement. Apart from the fine structure of the two main
second-order energy correction is plotted as a function of thabsorption peaks, the 512-tetrahedra result already ap-
band index. In the simplest possible case of just two bandgroaches the reference spectrynmot shown in Fig. 5 to
the problem can be solved by usikgp theory for almost avoid confusion

C. Convergence: Resampling and cell size
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FIG. 6. Imaginary part of the dielectric function of SiC calcu-  FIG. 7. Density of states as calculated by means of the 512-atom
lated for different supercell sizes. 8 atoms: dotted line; 64 atomsgypercell(solid line), compared to the referené®ng-dashed ling
dashed line; 216 atoms: dot-dashed line; 512 atoms: solid line.

oscillator strengthfg.*(k) in expression(5). On the other

v

The question arises which supercell sizes our method i§and, the spurious transitions count fully for the JDOS.
applicable to. The larger the real-space cell, the smaller is thEherefore, as long as one does not restrict the treatment to
BZ, and, consequently, the shorter are the extrapolation digfimitive unit cells, one is faced with ambiguity in the JDOS
tances ink space. The SiC results are shown in Fig. 6 forfreatment. The problem persists as long as one considers su-
supercells containing 8, 64, 216, and 512 atoms, respe@ercell arrangements without any disturbance of the ideal
tively. In all cases a 64-tetrahedra resampling has been en§fystal structure. While the physical properties approach
ployed. It is apparent that for the 8-atom cell the extrapolathose of the pure bulk material, the JDOS obviously does
tion distances are as large as to only allow a representation 60t. It is clear from that argument that the JDOS is not to be
the main features of the optical absorption spectrum in &ounted among the observable quantities like the DOS and
crude manner. The method works much better in the 64-atorff1€ dielectric function. .
cell, although in this case it is still rather far from conver- ~ This raises the question if there is a way to recover the
gence. For the two largest cells under consideration thériginal “true” JDOS of the ideal crystal from the supercell
method gives a more or less well converged absorption speélescription. To achieve this one has to disregard those spu-
trum. In the largest cell with 512 atoms the spectrum is infious transitions. As the parameter to decide whether or not a

excellent agreement with the reference result, apart from gontribution of an electron-hole pair at a cert&rpoint is
small underestimate of the heights of the main absorptiogounted for the JDOS we insert the requirement that the os-
peaks. cillator strength of a given transition is larger than some

As a further demonstration of the quality of the extrapo-cutoff strengthf ;. Results for SiC are shown in Fig. 8 where
lation method Starting from On|y Orieo point we calculate the JDOS calculated for a two-atom cell is Compared to that
the DOS of SiC in the 512-atom cell with a 64-tetrahedraffom the 512-atom cell. Evidently the procedure has at least
resampling. This is a very good indicator of the quality of theSome merit. There is a broad region of the cutoff parameter
energy extrapolation because it involves only the energiedor which the spectra do not change remarkably.
not, however, the transition matrix elements. It is clearly Moreover, up to about 8 eV the spectra shown in Fig. 8
demonstrated in Fig. 7 that our method of using only kye are rather insensitive to the particular choice of the cutoff

point in the IBZ is capable of yielding excellent results for @hd, hence, extremely close to the reference one. For the
spectral properties. crystal with two atoms in the primitive cell, on the one hand

this means that the spurious transitions are well taken off the
summation. On the other hand, the influence of “real” tran-
D. Spurious transitions sitions, i.e., transitions also occurring in the primitive-cell
We turn back to the discussion of the spurious opticapescription, but havir)g vanishing transition propabilities, is
transition. While the meaning of the DOS is and remaing/€rY Weak. For energies above 8 eV the ambiguity cannot be
clear, the JDOS incurs arbitrariness in the case of large sigompensated for by the cutoff anymore. This may be related
percells, i.e., a nonprimitive unit cell. Depending upon how!© the free-electron-like behavior of the higher conduction
often the BZ has been folded, the JDOS fully counts thdbands giving rise to sma!l oscillator strengths which can
spurious transitions, i.e., seemingly direct transitions whichhardly be classified by a simple cutoff parameter.
however, represent transitions between states at different
points of the BZ before folding. They do not influence the
computation of the dielectric function because the contribu- For the calculation of the dielectric functig®) not only
tion of each optical transition in Eq2) is weighted by the the energy bands but also the transition matrix elements are

E. Matrix element extrapolation
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FIG. 8. Joint density of states for different cutoff paramefgrs FIG. 9. Imaginary p_art qf th? d_ielectric function of a 41-§tom
of the oscillator strengths. The calculation has been carried out fo?e cluster embedded in Siolid ling. Results of a Lorentzian

SiC in a nonprimitive 512-atom supercell. The solid line gives the_broadenmg of they function with ten Monkhorst-Pack grid points

reference resultf,=10"8: dot-dashed linef,=10"%: solid line: in the IBZ (dashed lingas well as of the same method using only
f —0.1: dashed I(i)nef —0.5: dotted line 0 ' " the Baldereschi pointdotted ling are also given. A broadening
o o ' parametel’=0.2 eV and a 216-atom cell are used.

needed. These are the same matrix elements as those neeq.gegiven introducing a cutoff in the calculation of the JDOS
to calculate thek-p expansion(3). According to the pertur- 55 described above. In the case of embedded clusters there is
bative representation of the wave functionskathe optical  ng clear-cut separation between real and spurious transitions
matrix elements can be extrapolated using only the momergs in the bulk case. Instead, all transitions are real in this
tum matrix elements &ty which have been calculated any- sense as soon as the supercell contains a perturbation of the
way. Explicitly the matrix elements of the momentum opera-translational symmetry of the lattice of the matrix. Conse-
tor at the tetrahedron corners are computed using the firsgyently, the interval over which the cutoff can be varied
orderk-p-perturbed states. In this way the first-order matrixyithout changing the JDOS appreciably is much smaller
elements at the corners are expressed as sums of momenté@mpared to the ideal crystal case.
matrix elements ak. As examples we consider a spherical Ge cluster of 41
As in the case mentioned above, cf. £4), the sum over  atoms embedded in cubic SiC in a 216-atom or 512-atom
bands has to be treated as a principal value integral. Theimple-cubic supercell. The Ge atoms are kept at the former
variation of the matrix elements can now be included into th%ost material sites. The parame@rfor the principa| value
method using the formulas of Ren and Harrfoor by using integral of the energy perturbation sum has to be chosen
different averaged values for the different tetrahedra after thggmewnhat biggefabout 5=0.1 eV) than in the bulk SiC
resampling procedure. Otherwise, the advantage of the bettgpse, presumably because the truncated basis of the pertur-
description at the corners is lost because the linear inclusioation expansion does not represent the localized states at the
of matrix-element variations amounts to averaging in theg|yster as well as the delocalized bulk states.
case wherk, lies at the center of the region under consider-  The resulting imaginary part of the dielectric function is
ation. The extrapolation of the matrix elements does nopjotted in Fig. 9. It shows the well-known main absorption
change the optical absorption appreciably. Since it is verpeaks of SiC around 7 and 8.6 éWithin DFT-LDA) as well
time ConSUminqdue to the trlple sum over all bar)dﬂnd in as a Strong Change Compared to the pure SiC result. The
view of the quality of the results without it, we conclude that germanium dot induces a shoulder at about 6.0 eV and an
for practical purposes it is reasonable to dispense with thextended tail below 5 eV. In Fig. 9 we also show how the
extrapolation of the matrix elements. Any further effort to spectrum computed within the extrapolation method using
refine the method Should be directed at the band StrUCturQ),my Oneko point Compares to a meth%d/here Lorentzian_
not at the matrix elements. broadened Dirac’sd functions calculated for a dense
Monkhorst-Pack mesh of tek points are summed up. We
suppose the tek-point result to be converged with respect
to the number ofk points. While this can be taken as a
We apply the method to the calculation of the opticalreference for the optical properties of the artificial dot-host
properties of embedded nanocrystals. To keep translation&ttice system, it is also possible to compare to Baldereschi-
symmetry, a three-dimensional periodic arrangement opoint sampling, i.e., sampling at only okepoint. This spec-
nanocrystals embedded in a matrix material is considered. ltrum is also included in Fig. 9. Obviously our method does
this case the supercell is the primitive unit cell of the systemnot fare too badly, even though the 216-atom cell is not yet
Therefore the concepts of band folding and spurious transiguite of the preferred size. However, due to the much larger
tions are only of approximate validity. An indication of that requirements of computational resources it was not possible

IV. APPLICATION: EMBEDDED NANOCRYSTAL
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to obtain results using a similar high-density Monkhorst-substantially more accurate than those restricted to a linear
Pack sampling for the 512-atom case. extrapolation of band energies. Our method allows the treat-
Despite the reasonable results for Ge nanocrystals embedient of systems represented by arrangements of extremely
ded in a SiC matrix, a word of caution is in order. The large supercells. Due to the use of only okepoint the
success of the application of the extrapolative tetrahedrooptical calculations remain tractable for systems for which
method relies on the type-Il heterostructure behavior of theseveral thousands of bands have to be taken into account.
Ge-SiC systeml’ Embedding Ge in a cubic SiC matrix gives ~ The influences of the different effects on the spectral
rise only to a confinement of the holes in the nanocrystals. Iproperties have been investigated. The tests showed that the
spite of the small interaction between neighboring supercellguality of the intraband momentum-matrix elements is high.
the corresponding bands are fairly flat, rather like quantunThis allows us to judge the wave functions and the interband
levels. On the other hand, there are no confined empty statesiatrix elements themselves, both being calculated by means
In other words, all conduction bands exhibit dispersion. Con-of the PAW method. The influence of the kissing corrections
sequently, the resulting interband energies also exhibit disafter Pickard and Payffewas found to be negligible at the
persion. In the case of type-l heterostructure systems ongresent level of precision, much as the linear extrapolation of
expects level-like lowest conduction bands. For optical tranthe matrix elements which we introduced. We have shown
sitions between such flat bands we recommend a specigthe possiblity of recovering the original joint density of states
treatment simply by taking the respective transitions out obf bulk material by inserting a cutoff parameter in order to
the tetrahedron method and applying a certain broadening afisregard spurious transitions. The lower part, up to 10 eV,

the energy-conserving function. of the JDOS of the ideal SiC crystal has proven rather insen-
sitive to this parameter.
V. SUMMARY The effect of the cell size and, therefore, the extrapolation

) distances, has been tested, as has been the resampling proce-
We have developed an extrapolative method for the calyyre, In the case of nanocrystals embedded in a semiconduc-
culation of optical response functions, the density of statesor matrix we have compared the results of our method with
and the joint_density of states for large-supercell systemspose obtained by sampling methods. The extrapolative
The method is based upon the tetrahedron method. It onliethod is rather powerful to describe the spectral properties

needs the electronic-structure calculations to be done at ong composite supercell systems with a minimum setkof
k pointk, in the irreducible part of the Brillouin zone of the gings,

supercell arrangement. The transition energies at the vertices
of the tetrahedron are computed using a quadratic extrapola-
tion based ork-p perturbation theory. Both the linear and
the quadratic term are related to matrix elements of the mo- This work was financially supported by the Deutsche For-
mentum operator. Hence, the same matrix elements that hasehungsgemeinschafonderforschungsbereich 196, Project
been computed for the optical part of the calculations aréNo. A8). We acknowledge interesting discussions with Birgit
used for the band-structure representation. The results asedolph.
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