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Calculation of optical properties and density of states for systems with huge unit cells

H.-Ch. Weissker, J. Furthmu¨ller, and F. Bechstedt
Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller-Universita¨t, D-07743 Jena, Germany

~Received 3 January 2001; published 27 June 2001!

We present a method for theab initio calculation of spectral properties of systems with huge unit cells.
Translationally invariant systems with elementary cells containing several hundred atoms in the unit cell are
characterized by a large number of bands in a very small Brillouin zone. This makes the allocation of energies
at differentk points to one band impossible. For that reason a quadratic extrapolation of the band energies is
performed starting from a singlek point k0. The band energies and momentum operator matrix elements are
calculated atk0 using the projector augmented wave method. The Brillouin-zone integration is carried out by
means of the linear tetrahedron method following a resampling procedure. The viability of the method is
demonstrated for nonprimitive large supercells by reproducing the absorption coefficient and the density of
states of an ideal crystal. The method is applied to 216- and 512-atom simple-cubic supercells. A germanium
cluster embedded in a host material is treated as an example of a perturbed system.
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I. INTRODUCTION

Spectral properties of solids are related to the single
two-particle density of states~DOS!. Examples are the opti
cal absorption, the electronic contribution to the heat cap
ity, and two-phonon Raman spectra. In the crystalline c
the corresponding sums over electronic states involve i
grations over the Brillouin zone~BZ! which are commonly
carried out by means of tetrahedron methods1–3 or special-
point techniques.4–6 They use the desired quantities on
dense mesh ofk points. The computational effort is directl
related to the number ofk points. Calculations of optica
properties in crystalline semiconductors with a primiti
two-atom unit cell by means of the tetrahedron method sh
that the number of grid points ink space can be reduced b
a factor of 10 as compared to special-point technique7,8

Nevertheless, even within the tetrahedron method a r
tively high number ofk points is desirable to obtain con
verged results.

In its basic version, the linear analytic tetrahedron meth
~LATM !, the BZ is divided into tetrahedra and the band e
ergies at the tetrahedron corners are linearly interpolated9,10

Consequently, the method is influenced by the band-cros
problem9,11,12 that impedes the correct band allocation a
rapid convergence. This problem is increased for syste
with several hundred atoms within the unit cell. Such s
tems may be single crystals of complicated compoun
Typical examples are high-temperature superconductors
YbBa2Cu3O72x . On the other hand, it is possible to intro
duce an artificial translational symmetry by choosing a la
unit cell and repeating it periodically in space. The result
supercell method is a powerful tool to treat a variety of s
tems without translational symmetry even within parame
free methods of electronic structure and total-energy ca
lations. Supercells containing up to 216 atoms have b
used in the case of defects.13 Surfaces are modeled within th
slab supercell method where a slab is repeated periodical
the direction perpendicular to the surface. The slabs are s
rated by vacuum. While the firstab initio surface calcula-
tions have been done with about 16 atoms in the unit ce14
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today supercells of more than 100 atoms have beco
tractable.15 Novel artificial materials like superlattices ma
be treated in much the same way. Alloys with chemical a
structural disorder are described within the cluster-expans
method by studying supercells of 64 atoms fully quantu
mechanically.16 Clusters, nanocrystals, and quantum d
may also be studied using the supercell method. At pres
the size of the supercells is limited to about 512 atom17

This limitation is due to the huge numerical effort which al
necessitates a reduction of the number ofk points within the
BZ. The systems with the largest cells can be treated rest
ing the calculation to only onek point.

In calculating spectral properties of supercell system
number of issues become important. First of all, the t
contradicting objectives of a high number ofk points for the
tetrahedron method and a smallest-possible number for
electronic-structure calculations have to be reconciled. F
thermore, according to the size of the supercell and
smallness of the BZ, a large number of bands lies in a v
small energy interval. Therefore, band allocation at differ
k points is rendered utterly impossible. Additionally, spu
ous optical transitions occur.

In this paper we develop an extrapolative version of
tetrahedron method which can do with a singlek point in the
irreducible part of the BZ~IBZ!. The problems and the effi
ciency of the method are demonstrated studying simp
cubic supercells of 216 and 512 atoms. As an example
spectral property we calculate the optical absorption o
bulk semiconductor as well as of a nanocrystal embedde
this semiconductor. Moreover, we present results for the d
sity of states and discuss the joint density of states~JDOS!.

The paper is organized as follows. Section II begins w
the description of theab initio method used for the
electronic-structure calculations and the pecularities of
use of large supercells. Then the method to describe
spectral properties of systems with huge unit cells
presented. It is based on the supercell approach, the li
analytic tetrahedron method, and a quadratic expansion
the bands. Spectral properties like optical absorption
density of states of a crystal with two atoms in the primiti
©2001 The American Physical Society05-1
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cell are considered in Sec. III to test the method. In Sec.
it is applied to calculate the spectral properties of a Ge c
ter embedded in a SiC matrix. Finally, a summary is given
Sec. V.

II. COMPUTATIONAL METHODS

A. Electronic structure calculation

The electronic band structures entering the calculation
the optical properties within the independent-parti
approximation7,8 follow from a parameter-free treatment o
the supercell system within the density-functional theo
~DFT! and the local density approximation~LDA !. We apply
the Viennaab initio simulation package18 ~VASP! which
employs ultrasoft~US! non-norm-conserving pseudopote
tials ~PP’s! of the Vanderbilt type. They allow the treatme
of several hundred atoms in one unit cell, even in the cas
first-row elements.19 However, for the calculation of optica
properties these PP’s require an augmentation of the pse
wave-functions in the region of the atomic cores. The form
relationship of the US-PP method20 and the frozen-core
projector-augmented wave method21,22 ~PAW! suggests the
calculation of all-electron valence wave functions in t
framework of the latter from the very beginning. The succ
of this approach for optical properties has been demonstr
recently.23 Here we apply this method to calculate the sing
particle Kohn-Sham eigenvaluesEn(k) of Bloch statesunk&
and interband (nÞn8) as well as intraband (n5n8) matrix
elements^nkupun8k& of the momentum operatorp. These
states are characterized by the band indexn and a Bloch
wave vectorkPBZ. Since the quanties$unk&% represent all-
electron wave functions the optical transition operator is
longer nonlocal and can be replaced by the momentum
erator, at least within the Coulomb gauge of the electrom
netic field.7,23

The quality of the calculations depends sensitively on
accuracy of the optical transition matrix elements and
intraband and interband momentum matrix elements u
within the extrapolation procedure. In order to demonstr
the precision of the calculations within the PAW method20,23

we study the numerical fulfillment of the relation betwe
the intraband momentum matrix elements and the grad
of the corresponding Bloch band ink space,^nkupaunk&
5(m/\)(]/]ka)En(k). A comparison of derivatives ob
tained from these gradients to derivatives from energy
ferences at twok points in close vicinity is shown in Fig. 1
The test has been performed for the center of gravity
the tetrahedron,k05(0.25, 0.125, 0.375), lying betwee
k15(0.250 73, 0.125 14, 0.375 36! and k25(0.249 27,
0.124 86, 0.374 64), in units of the reciprocal basis vector
the 8-atom simple-cubic cell which has been used. Obviou
the quality of the intraband matrix-element calculation is e
cellent.

Throughout the paper we consider cubic SiC as an
ample of a zinc-blende semiconductor crystal. It is
group-IV material but occurs as a compound with par
ionic bonds. Despite the inclusion of the first-row eleme
carbon, the plane-wave expansion cutoff can be chose
03510
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low as 14.7 Ry.19 This cutoff can be kept when embedde
nanocrystals are treated. The nanocrystal we consider a
example consists of germanium. The core radius of Ge at
is larger than that of Si or C atoms. The optical absorpt
and the DOS as well as the JDOS used as reference
been calculated for a SiC crystal with a two-atom cell a
100 conduction bands. In the IBZ a grid of 2456k points and
12 685 tetrahedra have been used within the standard in
polative LATM.10 The resulting spectra are referred to
‘‘reference’’ in the text.

B. Supercell approach

We consider only simple-cubic supercells, both for si
plicity and because in this case the number of near
neighbor supercells is the smallest one. When no symm
is broken the IBZ, being one 48th part of the whole BZ,
itself a tetrahedron. A simple-cubic supercell is construc
by basis vectorsa15Na0(1,0,0), a25Na0(0,1,0), anda3
5Na0(0,0,1). HereN gives the length of the supercell i
multiples of the cubic lattice constanta0 of the underlying
fcc crystal. Correspondingly, the reciprocal lattice vecto
are shortened by a factor ofN. Applying N51,2,3, and 4 in
each of the three Cartesian directions, one obtains super
of 8, 64, 216, and 512 atoms, respectively.

The representation of a bulk material by a superc
system of artificial translation symmetry has consequen
for the Bloch wave vector and the number of bands
energy interval. Instead of the reciprocal-lattice vecto
b15(2p/a0)(1,1,21), b25(2p/a0)(1,21,1), and b3
5(2p/a0)(21,1,1) the shorter ones b1
5(2p/Na0)(1,0,0), b25(2p/Na0)~0,1,0!, and b3
5(2p/Na0)(0,0,1) have to be considered. Correspondin
the bands in the larger BZ are folded onto the smaller o
For instance, the originalX points are folded onto theG
point. Consequently the band structure of the indirect se
conductor SiC with the conduction-band minima atX be-
comes apparently direct. However, the optical matrix e
ments of such direct~more precisely: quasidirect! transitions
at G vanish.

FIG. 1. Band energy derivative plotted versus the band ind
Solid line: derivative derived from the momentum matrix elemen
dotted line: derivative calculated geometrically from band energ
An 8-atom simple-cubic supercell is used in order to make b
allocation possible. The material is SiC.
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CALCULATION OF OPTICAL PROPERTIES AND . . . PHYSICAL REVIEW B64 035105
In general, as a consequence of the fact that states be
ing to differentk points in the BZ of the initial structure ar
folded onto the samek point, spurious optical transition
occur. These transitions are, however, strictly forbidden
the BZ of the ideal crystal. The numbernspuriousof spurious
transitions in relation to the real onesnreal is easily seen to
be nspurious/nreal5ncbnvb16N3, wherencb and nvb54 are
the numbers of conduction bands and valence bands re
to the initial primitive cell of the fcc structure. Although th
respective transition probabilities vanish exactly, the qu
tion arises whether the numerically nonzero transition pr
abilities due to inaccuracies create a computational probl
We found that the values of the transition matrix elements
a typical spurious transition is smaller by a factor of 1026

than those representing real transitions. Thus, for the su
cells considered in the present work one can ignore the
fluence of spurious transitions. However, it should be kep
mind for the future application of the method to even larg
supercells.

Another problem closely related to the band-struct
folding is the practical impossibility of band allocation
different k points. While from an analytic point of view
bands are fairly well defined entities and continuous,
computational reality provides just stacks of energetica
ordered values at differentk points. The tiny separations o
the energy values due to the huge number of bands wi
the supercell description and the occurrence of band cr
ings and anticrossings make apparent that the ideas of
allocation at differentk points and, hence, also any interp
lative methods have to be abandoned.

C. Tetrahedron method

Within the tetrahedron method2,3 one has to treat sums o
integrals over all tetrahedrag of the form

F~v!5(
g
E

g
d3k f ~k,v!, ~1!

wherek is restricted to the tetrahedrong. Examples for the
integrands are the density of states withf (k,v)
5(4p3)21(nd„En(k)2\v…, the n-sum running over all
bands, the joint density of states withf (k,v)
5(4p3)21(cvd„Ec(k)2Ev(k)2\v…, and the imaginary
part of the dielectric function. Within the independen
particle approximation the latter one follows from th
Ehrenreich-Cohen formula7,8
t
th
t
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z^ckupauvk& z2

„Ec~k!2Ev~k!…2

3d„Ec~k!2Ev~k!2\v…. ~2!

For both the JDOS and the dielectric function the dou
sum runs over all pairs of occupied valence bands and em
conduction bands.

Within the linear analytic version of the tetrahedro
method,10 the three-dimensional integral in Eq.~1! is re-
placed by a surface integral which is analytically performe
The method requires the knowledge of the energy value
the tetrahedron vertices as well as the optical matrix e
ments appearing in expression~2! as input. The latter ones
are taken to be constant over a single tetrahedron10 or can be
linearly approximated.24 The LATM needs dispersive bands
or, in the cases of the JDOS and the dielectric function, b
differences varying with thek vector. It will, therefore, not
be capable of dealing with nondispersive bands, i.e., lo
ized states. In such cases the corresponding contributio
the considered spectral quantity has to be related t
lifetime-broadened Dirac’sd function.

D. Extrapolation of energy bands

The interpolation of the band or band pair energies
tween the tetrahedron vertices requires the band allocatio
different k points. This is practically impossible for larg
supercells. In conjunction with the limitation to the gener
tion of the electronic structure at onek point, an extrapola-
tive method1,12,25,26is needed. To obtain the energy values
the bands for one tetrahedron we start from somek0 and
extrapolate, essentially by means of thek"p perturbation
theory. Basically the formula we use is

En~k!5En~k0!1
\

m
^nk0upunk0&~k2k0!

1(
a,b

~ka2k0a!~kb2k0b!
]2

]ka]kb
En~k!U

k0

.

~3!

The second derivatives are explicitly related by

]2

]ka]kb
En~k!5

\2

m H 2( 8
n8

f nn8
ab

~k!1dabJ ~4!

to the oscillator strengths
f nn8
ab

~k!5
1

m

^knupaukn8&^kn8upbukn&1^knupbukn8&^kn8upaukn&

En~k!2En8~k!
. ~5!
tes.
so
the
The gradients of the energy bands are represented by
intraband matrix elements of the momentum operator at
chosenk0. From this representation it is clear that we have
he
e

o

use ak0 point that does not give rise to degenerate sta
That means,k0 cannot be a high-symmetry point, and al
cannot lie on a symmetry plane or line. For this reason, in
5-3
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H.-CH. WEISSKER, J. FURTHMU¨ LLER, AND F. BECHSTEDT PHYSICAL REVIEW B64 035105
simple-cubic casek0 should not be identified with the Bal
dereschi point.4 We use the center of gravity of the IBZ
which is itself one tetrahedron, as thek0 point.

III. NUMERICAL DETAILS: IDEAL CRYSTAL

A. Linear versus quadratic extrapolation

Keeping only the gradient term in Eq.~3! one obtains a
linear approximation of the band structure. However, t
approach does not work at critical pointsk. Because of the
symmetry the bands have to be flat there, whereas the li
extrapolation fromk0 remarkably overestimates the band e
ergy correction atk. Thus, as a major drawback of the line
extrapolation, the bands are especially poorly represente
tetrahedron vertices coinciding with critical points.

Despite these limitations the optical absorption of cu
SiC is well represented in Fig. 2 in comparison to the res
of the quadratic extrapolation and the reference spectr
Nevertheless, all band energies at the corresponding tetr
dron vertices have been calculated according to expres
~3! and starting from the single pointk0 in the center of the
IBZ. The restriction to the linear extrapolation gives rise
additional unphysical structures on the low-energy side
the main absorption peak and an onset of the absorp
below the smallest allowed direct transition. On the oth
hand, the quadratic extrapolation~with resampling—see be
low! gives a reliable spectrum. Only the intensity of the ma
absorption peaks would slightly be underestimated.

B. Sum over bands

The quadratic term in Eq.~3! contains the usual second
order perturbation sum over all bands as indicated by
relation to the oscillator strengths in expression~4!. The
truncation of this sum is computationally inevitable. Its e
fect, however, has to be tested carefully. Furthermore, for
large-supercell systems the energies lie so dense that the

FIG. 2. Imaginary part of dielectric function of SiC for linearl
~dotted! and quadratically~solid line! extrapolated energies for
512-atom SiC supercell. 2048 bands are used and the IBZ is div
into 64 tetrahedra. The converged reference result is given
dashed line.
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effectively becomes an integral. In fact, the energy sepa
tions are frequently smaller than the precision of the en
gies. Since an intraband contribution does not occur, the
can be replaced by an integral in the sense of the Riem
definition. The principal value is computed in practice
adding a small imaginary partid to the energy nominato
and considering the real part. It turns out that the metho
fairly insensitive with respect to the choice of the parame
d. Between the two extremes where either the second-o
energy terms scatter strongly due to a too smalld, or the
result starts losing structures due to a too larged, there is a
rather wide region for the broadening parameter over wh
the result does not change appreciably. Our experience i
cates that it is best to choose the parameter as small as
sible but without a singular tail arising towards\v50. Re-
liable values ared50.001–0.1 eV for 216-atom cells an
d50.000 01–0.01 eV for 512-atom cells.

The accuracy of the second-order expansion of the ene
bands~3! also depends on the number of conduction ban
The number of bands taken into account influences the
sults in two ways. First, one has to include all optical tra
sitions which are relevant at a certain photon energy in
spectrum. A test reveals that very few conduction bands
necessary to represent the main part of the absorption s
trum except for the high-energy tail. As few as four condu
tion bands are able to account correctly for the dielec
function up to 12 eV for a system with two atoms in the u
cell. In the case of the 512-atom cell this corresponds to
use of 1024 conduction bands.

Second, the number of bands influences the converge
of the perturbation series in expression~4!. The ‘‘repulsion
of the bands’’ due to their interaction requires the inclusi
of a reasonable number of bands above the considered
Consequently, for the higher bands the second-order en
correction will be less accurate than for the lower ones, a
the resulting error will be systematic. Figure 3 shows th
this is really the case. The same calculation has been d

ed
a

FIG. 3. Dependence of the dielectric function on the number
bands. Only the effect on the energy extrapolation is shown.
perturbative determination of the vertex energies is carried out w
1296~solid line! and 864 bands~dashed line!, whereas the calcula
tion of the dielectric function was restricted to 864 bands in b
cases. A 216-atom SiC supercell is used.
5-4
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for different numbers of conduction bands taken into
perturbation sum in Eq.~4!. However, for the calculation o
the absorption in both cases the same number of bands
used. For the higher number of included bands the hi
energy absorption peak slightly changes its location towa
the reference value.

There is another point of importance. Perturbation the
requires the energy corrections to be smaller than the dif
ence of the involved unperturbed energy levels. For the la
extrapolation distances (k2k0) that we have to deal with
this condition is poorly fulfilled, at best. In this sense w
have to state clearly that by means of equation~3! we do not,
strictly speaking, calculate a well-defined perturbative
pansion but rather a geometrical extrapolation from the fi
and second derivatives of the energy bands atk0. Thereby
we do heavily rely on the smooth behavior of the bands
other words, viewed as a perturbative calculation the con
gence properties could not be assured. However, our re
clearly indicate the viability of extrapolation in the face
this problem.

Nevertheless, we have to discuss the question of how
even exact second-order extrapolation can describe
bands, i.e., how dangerous is it for a particular band to d
the basic requirement of perturbation theory? This prob
is exemplified by what Pickard and Payne call ‘‘ba
kissing,’’12 also known as anticrossing. The effect occu
when two bands which would truly intersect each other
‘‘repelled’’ by their interaction. This repulsion causes e
treme values of the second-order energy derivatives for
respective two bands which are limited to the immedi
vicinity of the anticrossing. Ifk0 happens to be very close t
such a point, the second-order energy corrections to the
bands will be much too large, similar in value, and ha
opposite signs.12 This can be seen in Fig. 4 where th
second-order energy correction is plotted as a function of
band index. In the simplest possible case of just two ban
the problem can be solved by usingk"p theory for almost

FIG. 4. The second-order energy term before~dotted line, tri-
angles! and after~solid line, circles! the kissing correction plotted
versus the band index. The bands 1659 and 1660 participate
kissing, indicated by the extreme values of the second-order en
correction. A 512-atom cell is considered.
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degenerate bands27 and crossing the bands ‘‘by hand’’ by a
assignment of the new energy values such that smo
crossed bands are obtained. We found that it is possibl
look for extreme values of the second-order energy te
which are close in terms of the band indices and similar
size but have different signs. We only check those for
direction of highest curvature and apply the method
Pickard and Payne12 to them. The result of such a treatme
is also demonstrated in Fig. 4. However, at least in the ca
we considered, the band-kissing effect on the overall resu
negligible. Within the precision of our calculations the co
rection can safely be neglected.

C. Convergence: Resampling and cell size

In principle, the availability of the quadratic represent
tion of the band structure around somek0 allows the appli-
cation of the analytic quadratic tetrahedron method.28 How-
ever, in view of the errors incurred from our extrapolatio
the effort necessary to implement the quadratic method,
the existence of a code and expertise about the linear me
we retain the linear method.

In order to diminish the obvious problem of committin
the systematic error of linearly interpolating a quadra
function between two fairly distant points ink space we
introduce a resampling procedure. We subdivide the tetra
dron representing the irreducible part of the BZ into sma
ones and calculate the energies at their corners accordin
expression~3!. We use meshes of 1, 8, 64, 512, and 40
tetrahedra. Resulting spectra are shown in Fig. 5 for SiC
216-atom cell. There is clearly an improvement of the a
sorption spectrum with increasing number of tetrahedra. T
use of 512 tetrahedra gives already a converged result.
ther subdivision of the tetrahedra does not lead to furt
improvement. Apart from the fine structure of the two ma
absorption peaks, the 512-tetrahedra result already
proaches the reference spectrum~not shown in Fig. 5 to
avoid confusion!.

a
gy

FIG. 5. Imaginary part of the dielectric function for 216-ato
cell and three resampling densities. Different numbers of tetrahe
are generated within the irreducible part of the BZ. 1: dotted line
dashed line; 512: solid line.
5-5
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The question arises which supercell sizes our metho
applicable to. The larger the real-space cell, the smaller is
BZ, and, consequently, the shorter are the extrapolation
tances ink space. The SiC results are shown in Fig. 6
supercells containing 8, 64, 216, and 512 atoms, res
tively. In all cases a 64-tetrahedra resampling has been
ployed. It is apparent that for the 8-atom cell the extrapo
tion distances are as large as to only allow a representatio
the main features of the optical absorption spectrum i
crude manner. The method works much better in the 64-a
cell, although in this case it is still rather far from conve
gence. For the two largest cells under consideration
method gives a more or less well converged absorption s
trum. In the largest cell with 512 atoms the spectrum is
excellent agreement with the reference result, apart fro
small underestimate of the heights of the main absorp
peaks.

As a further demonstration of the quality of the extrap
lation method starting from only onek0 point we calculate
the DOS of SiC in the 512-atom cell with a 64-tetrahed
resampling. This is a very good indicator of the quality of t
energy extrapolation because it involves only the energ
not, however, the transition matrix elements. It is clea
demonstrated in Fig. 7 that our method of using only onek0
point in the IBZ is capable of yielding excellent results f
spectral properties.

D. Spurious transitions

We turn back to the discussion of the spurious opti
transition. While the meaning of the DOS is and rema
clear, the JDOS incurs arbitrariness in the case of large
percells, i.e., a nonprimitive unit cell. Depending upon ho
often the BZ has been folded, the JDOS fully counts
spurious transitions, i.e., seemingly direct transitions whi
however, represent transitions between states at diffe
points of the BZ before folding. They do not influence t
computation of the dielectric function because the contri
tion of each optical transition in Eq.~2! is weighted by the

FIG. 6. Imaginary part of the dielectric function of SiC calc
lated for different supercell sizes. 8 atoms: dotted line; 64 ato
dashed line; 216 atoms: dot-dashed line; 512 atoms: solid line
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oscillator strengthf cv
aa(k) in expression~5!. On the other

hand, the spurious transitions count fully for the JDO
Therefore, as long as one does not restrict the treatmen
primitive unit cells, one is faced with ambiguity in the JDO
treatment. The problem persists as long as one consider
percell arrangements without any disturbance of the id
crystal structure. While the physical properties approa
those of the pure bulk material, the JDOS obviously do
not. It is clear from that argument that the JDOS is not to
counted among the observable quantities like the DOS
the dielectric function.

This raises the question if there is a way to recover
original ‘‘true’’ JDOS of the ideal crystal from the superce
description. To achieve this one has to disregard those
rious transitions. As the parameter to decide whether or n
contribution of an electron-hole pair at a certaink point is
counted for the JDOS we insert the requirement that the
cillator strength of a given transition is larger than som
cutoff strengthf 0. Results for SiC are shown in Fig. 8 whe
the JDOS calculated for a two-atom cell is compared to t
from the 512-atom cell. Evidently the procedure has at le
some merit. There is a broad region of the cutoff parame
for which the spectra do not change remarkably.

Moreover, up to about 8 eV the spectra shown in Fig
are rather insensitive to the particular choice of the cut
and, hence, extremely close to the reference one. For
crystal with two atoms in the primitive cell, on the one ha
this means that the spurious transitions are well taken off
summation. On the other hand, the influence of ‘‘real’’ tra
sitions, i.e., transitions also occurring in the primitive-c
description, but having vanishing transition probabilities,
very weak. For energies above 8 eV the ambiguity canno
compensated for by the cutoff anymore. This may be rela
to the free-electron-like behavior of the higher conducti
bands giving rise to small oscillator strengths which c
hardly be classified by a simple cutoff parameter.

E. Matrix element extrapolation

For the calculation of the dielectric function~2! not only
the energy bands but also the transition matrix elements

s:
FIG. 7. Density of states as calculated by means of the 512-a

supercell~solid line!, compared to the reference~long-dashed line!.
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CALCULATION OF OPTICAL PROPERTIES AND . . . PHYSICAL REVIEW B64 035105
needed. These are the same matrix elements as those n
to calculate thek•p expansion~3!. According to the pertur-
bative representation of the wave functions atk, the optical
matrix elements can be extrapolated using only the mom
tum matrix elements atk0 which have been calculated an
way. Explicitly the matrix elements of the momentum ope
tor at the tetrahedron corners are computed using the fi
orderk•p-perturbed states. In this way the first-order mat
elements at the corners are expressed as sums of mome
matrix elements atk0.

As in the case mentioned above, cf. Eq.~4!, the sum over
bands has to be treated as a principal value integral.
variation of the matrix elements can now be included into
method using the formulas of Ren and Harrison24 or by using
different averaged values for the different tetrahedra after
resampling procedure. Otherwise, the advantage of the b
description at the corners is lost because the linear inclu
of matrix-element variations amounts to averaging in
case whenk0 lies at the center of the region under consid
ation. The extrapolation of the matrix elements does
change the optical absorption appreciably. Since it is v
time consuming~due to the triple sum over all bands!, and in
view of the quality of the results without it, we conclude th
for practical purposes it is reasonable to dispense with
extrapolation of the matrix elements. Any further effort
refine the method should be directed at the band struct
not at the matrix elements.

IV. APPLICATION: EMBEDDED NANOCRYSTAL

We apply the method to the calculation of the optic
properties of embedded nanocrystals. To keep translati
symmetry, a three-dimensional periodic arrangement
nanocrystals embedded in a matrix material is considered
this case the supercell is the primitive unit cell of the syste
Therefore the concepts of band folding and spurious tra
tions are only of approximate validity. An indication of th

FIG. 8. Joint density of states for different cutoff parametersf 0

of the oscillator strengths. The calculation has been carried ou
SiC in a nonprimitive 512-atom supercell. The solid line gives
reference result.f 051028: dot-dashed line;f 051024: solid line;
f 050.1: dashed line;f 050.5: dotted line.
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is given introducing a cutoff in the calculation of the JDO
as described above. In the case of embedded clusters the
no clear-cut separation between real and spurious transit
as in the bulk case. Instead, all transitions are real in
sense as soon as the supercell contains a perturbation o
translational symmetry of the lattice of the matrix. Cons
quently, the interval over which the cutoff can be vari
without changing the JDOS appreciably is much sma
compared to the ideal crystal case.

As examples we consider a spherical Ge cluster of
atoms embedded in cubic SiC in a 216-atom or 512-at
simple-cubic supercell. The Ge atoms are kept at the for
host material sites. The parameterd for the principal value
integral of the energy perturbation sum has to be cho
somewhat bigger~about d50.1 eV) than in the bulk SiC
case, presumably because the truncated basis of the pe
bation expansion does not represent the localized states a
cluster as well as the delocalized bulk states.

The resulting imaginary part of the dielectric function
plotted in Fig. 9. It shows the well-known main absorptio
peaks of SiC around 7 and 8.6 eV~within DFT-LDA! as well
as a strong change compared to the pure SiC result.
germanium dot induces a shoulder at about 6.0 eV and
extended tail below 5 eV. In Fig. 9 we also show how t
spectrum computed within the extrapolation method us
only onek0 point compares to a method8 where Lorentzian-
broadened Dirac’sd functions calculated for a dens
Monkhorst-Pack mesh of tenk points are summed up. W
suppose the tenk-point result to be converged with respe
to the number ofk points. While this can be taken as
reference for the optical properties of the artificial dot-ho
lattice system, it is also possible to compare to Balderes
point sampling, i.e., sampling at only onek point. This spec-
trum is also included in Fig. 9. Obviously our method do
not fare too badly, even though the 216-atom cell is not
quite of the preferred size. However, due to the much lar
requirements of computational resources it was not poss

or

FIG. 9. Imaginary part of the dielectric function of a 41-ato
Ge cluster embedded in SiC~solid line!. Results of a Lorentzian
broadening of thed function with ten Monkhorst-Pack grid point
in the IBZ ~dashed line! as well as of the same method using on
the Baldereschi point~dotted line! are also given. A broadening
parameterG50.2 eV and a 216-atom cell are used.
5-7
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to obtain results using a similar high-density Monkhor
Pack sampling for the 512-atom case.

Despite the reasonable results for Ge nanocrystals em
ded in a SiC matrix, a word of caution is in order. Th
success of the application of the extrapolative tetrahed
method relies on the type-II heterostructure behavior of
Ge-SiC system.17 Embedding Ge in a cubic SiC matrix give
rise only to a confinement of the holes in the nanocrystals
spite of the small interaction between neighboring superc
the corresponding bands are fairly flat, rather like quant
levels. On the other hand, there are no confined empty st
In other words, all conduction bands exhibit dispersion. C
sequently, the resulting interband energies also exhibit
persion. In the case of type-I heterostructure systems
expects level-like lowest conduction bands. For optical tr
sitions between such flat bands we recommend a spe
treatment simply by taking the respective transitions out
the tetrahedron method and applying a certain broadenin
the energy-conservingd function.

V. SUMMARY

We have developed an extrapolative method for the
culation of optical response functions, the density of sta
and the joint density of states for large-supercell syste
The method is based upon the tetrahedron method. It o
needs the electronic-structure calculations to be done at
k point k0 in the irreducible part of the Brillouin zone of th
supercell arrangement. The transition energies at the ver
of the tetrahedron are computed using a quadratic extrap
tion based onk•p perturbation theory. Both the linear an
the quadratic term are related to matrix elements of the
mentum operator. Hence, the same matrix elements that
been computed for the optical part of the calculations
used for the band-structure representation. The results
R

h,

n,
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substantially more accurate than those restricted to a lin
extrapolation of band energies. Our method allows the tre
ment of systems represented by arrangements of extrem
large supercells. Due to the use of only onek point the
optical calculations remain tractable for systems for wh
several thousands of bands have to be taken into accou

The influences of the different effects on the spect
properties have been investigated. The tests showed tha
quality of the intraband momentum-matrix elements is hig
This allows us to judge the wave functions and the interba
matrix elements themselves, both being calculated by me
of the PAW method. The influence of the kissing correctio
after Pickard and Payne12 was found to be negligible at th
present level of precision, much as the linear extrapolation
the matrix elements which we introduced. We have sho
the possiblity of recovering the original joint density of stat
of bulk material by inserting a cutoff parameter in order
disregard spurious transitions. The lower part, up to 10
of the JDOS of the ideal SiC crystal has proven rather ins
sitive to this parameter.

The effect of the cell size and, therefore, the extrapolat
distances, has been tested, as has been the resampling p
dure. In the case of nanocrystals embedded in a semicon
tor matrix we have compared the results of our method w
those obtained by sampling methods. The extrapola
method is rather powerful to describe the spectral proper
of composite supercell systems with a minimum set ofk
points.
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19J. Furthmu¨ller, P. Käckell, F. Bechstedt, and G. Kresse, Phy

Rev. B61, 4576~2000!.
20G. Kresse and D. Joubert, Phys. Rev. B59, 1758~1999!.
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