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Friedel oscillations in a Luttinger liquid with long-range interactions
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We introduce a path-integral approach that allows us to compute charge-density oscillations in a Luttinger
liquid with impurities. We obtain an explicit expression for the envelope of Friedel oscillations in the presence
of arbitrary electron-electron potentials. As examples, in order to illustrate the procedure, we show how to use
our formula for contact and Coulomb potentials.
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In the last few years there has been much activity adsizing the equivalence between the TL model in the presence
dressed to the study of condensed matter and statistical mef a single nonmagnetic impurity and a boundary Sine-
chanics problems through field-theoretical methbttspar- ~ Gordon model.
ticular, the physics of one-dimensionélD) systems of In this report, we present an alternative approach to this
strongly correlated particles has become a very interestingroblem based on a path-integral bosonization technique pre-
subject since one can take advantage of the simplicity of th&iously developed in the context of nonlocal quantum field
models at hand and, at the same time, expect to make contdeories'® This method seems to be specially adequate to

with experiments. For instance, the recently built quantunfonsider LR interactions. Indeed, it has recently provided a
straightforward derivation of the electronic Green’s function

wire? is a good realization of a 1D electron gas. From the' ) ,
in the presence of noncontact potentidlsThen, our main

theoretical side, the simplest formulation of a 1D electronic here is to Show how t tend this f lation to th
system is given by the Tomonaga-Lutting@) model® purpose here 1S to show how to extend this formuiation to the
computation of Friedel oscillations.

which has been successful in describing some qualitative fea- - L

tures of a Luttinger liquid such as spin-charge separation ang We start from a modified nonlocal Thirring moa‘_éble-
. : . scribed by the following Euclidean Lagrangian density:

nonuniversal exponents in the decay law of correlation

functions? There are, however, two crucial issues that are — —

not considered in the original versions of this model: the £L=1¥ (#+ VokF)‘I“rf d?yJ, () U (,y(%,y) I, (y) + ¥ CW

presence of a nontrivial interaction between electrons and o

impurities and the effect of long-rangéLR) electron- —M(X)¥V¥, 1)

electron interaction&’ As is well known, the former leads to —

the occurrence of Friedel oscillations in the charge-densityvherex=(7y,X)=(Xo.X;), andJ,=¥y,¥. The functions

profile, at least for Fermi liquid$.On the other hand, as the U (X,y) are forward-scattering potentials. Setting )

dimensionality of a system decreases, charge screening f:U(1)=— 8°(x—y), one gets the covariant and local ver-

fects become less important and the LR interaction betwee{on of the Thirring model usually studied in the context of

electrons is expected to play a central role in determining thé1 ~ 1) quantum field theorie€QFT's). _

properties of the system. In fact, from a theoretical point of ©On  the ~ other  hand, the  choice U (x.y)

view, the effects of LR interactions have been recently dis—Y(X=¥) ~ 8(7—7) andUy)(x,y)=0, yields the sim-

cussed in connetion to several problems such as the FemflZ8 100 o FEmARRIR TR BIOCE T et
edge singularity, the insulator-metal transitiof?, and the P P

role of the lattice through umklapp scattering and size-Current fluctuations. The last two terms in Eq) corre-

dependent effects. Thus, it is quite interesting to study the spond tp forward and backward electron-impurity scattering,
. . . . . ~ respectively.
interplay between impurities and LR interactions by consid- ; .

The main purpose of the present paper is to evaluate the

ering Friedel oscillations in a 1D system. Some time ago . o
Egger and Grabéft analyzed this phenomenon. By combin- vacuum expectation valu/EV) of the charge density:

ing the techniques_of standa_rd bpsonizdr?omith the self- <p(x)>:<\1,hl,+e72ikFx\PTR\PL+e2ikqu,I\PR>’ 2
consistent harmonic approximatidnand quantum Monte

Carlo simulations? they were able to get explicit results for for an arbitrary electronelectron potentiall ,y(x,y). Also,
both weak and strong impurity scattering regimes. Later onywe will be especially interested in case the impurity terms
the authors of Ref. 16 used bosonization and a scatteringre Cyo(x) =V é(x—d)=M(x) and C;(x)=0, whereV is a
description to get some exact results for the short-range cas®nstant proportional to the impurity tunneling barrier situ-
and for a special value of the coupling constant, equivalent tated atx=d. Using a suitable representation of the functional
the so called “Toulouse point” in the anisotropic Kondo delta and introducing an auxiliary vector fiefd, (see Ref.
problem. More recently, the authors of Ref. 17 again used8 for detail, the partition function of the model under
standard bosonization to address the same problem empheensideration reads
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3 _sAl ) ) where  we have defined C,=C,+s, and
Z_NJ DA, e deti+ V2 A+ T+ $+iyoke— M(x) A(p),B(p),C(p),D(p),E(p), and F(p) are potential-
_ dependent functionésee Ref. 20 for more detalls
+5,€,,e2 P, () At this point, we see that the generating functional can be
_ _ _ formally expanded in powers ofM—s,e,,e”*!), in
whereS[A] is the free quadratic action fdk,, I'o=1 and  complete analogy with the usual procedure employed in the
rlz Vs. Equat|o_n(2) can be obtained by functional deriva- path-integral bosonization of (11) massive QF 212 |n
tion of Eq. (3) with respect to the sourcg. _ fact, the x dependence of this perturbative parameter, to-
As it is known, the massivelike determinant in E®) ether with the appearance 6f,(x) in the bosonic action

cannot bek ex%ctly solvedf, ﬁvin m;he Local case. Howevegre two of the new features of the present computation. As
we can take advantage of the fact that the vacuum to vacuuig, 45 these functions are well behaved, one can assume the

functional can be written in such a way that nonlocal terms,yictence of every term in the corresponding series.

are not present in the determinant. Therefore, the terms From now on, we will specialize the computation to the
\/§A+¢+$+i_70kF can be decoupled from fermions DY 4556 5,=0. This allows us to defineM. (x)=M(x)
performing chiral and gauge transformations in the fermionic -

, : —so(x)e"2kF* and one can then perform the above-
pf%tltf;jfln'tlegr?jl tmeasure. Indeed, decomposig(x) in lon- mentioned expansion a takingM - (x) as perturbative pa-
gitudinal and transverse pieces

rameters. As explained in Ref. 20, one can show that the
same expansion can be obtained by starting from a purely

ikex bosonic nonlocal extension of the sine-Gordon model given
A, (X)=€,,d, d)(x)—f +3,m(x) by
1 r_ E 2 E 2
—E[CM(X)-FSM(X)], (4) L1=5(0,9)"F5 | d%Y 9,0(X) () (X,Y) 9, (Y)
where ® and » are boson fieldto be associated to the +F, (?,AP—LZ(CH(X) e'Be() 4 o (x) e 1Be(),

normal modes of the systgnand applying, as anticipated,
functional bosonization techniquéso express the fermionic
determinant in terms ob and 7, one finally obtains

®

whereF ,(x) represents a couple of classical functions to be

_ — related to theC)’s andd,)(x,y) are two bilocal functions
Z_Nf DxDxDPP D7 €Xpl— Spos) €XH — Ster) that will be associated to the electron-electron potentials
similar nonlocality in the kinetic term was considered in the
xexpg—SM,s,]), (5) study of the influence of LR correlations in the metal-

_ insulator transitiof?). B is a constant and..(x) are func-
whereS;e, corresponds to free massless fermiogsady)  tions that can be considered as extensions of the parameter
and ay used by Colemaft Indeed, ford,,=0=F, and a,

=a_=ag=constant the model above coincides with the
— . _ usual sine-Gordon model. In the present approach, the quan-
S[M’S#]:f d2X X[S,(X) €, €2FTr—M(x)]e” 2075 tities . (x) are related tavl . (x), which are in turn con-
(6) nected to the strength of the scatterer. Let us stress that in our
formulation, it is straightforward to consider a nonpointlike
ConcerningS;,s, it can be more briefly described in mo- impurity [ . (x)#Vé(x—d)]. However, in order to illus-

mentum space: trate our method, in this report we will consider the usual
case of a completely localized impurity. For this particular
d? S, case, Eq.8) contains the same terms that can be derived
Sbos:f S[P(P)7(p)CL(P)] from standard bosonizatioisee, for instance, Ref. 12
(27) Now, going to momentum space and employing standard
C(p) E(p) procedures to evaluate each VEV, the partition func#dn
A(p) > T R corresponding to this generalized sine-Gordon model coin-
d(—p) cides withZ provided that the following three relations hold:
C(p) F(p) ~
X 2 B( p) 2 7]( - p) 2
C.(=p) 2 . R
E F
ER P by = [p301)(p)+ P20 0)(P) ]+ P2
. 2
ikp J dp ., . B
+— | —=04p)C (0)(P)5%(p), 7 = - - : ©
2 | gm0 P P, ) 20p?+ 8oy PIPE+ dray(P)P2]
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@.(X) _ Let us point out that Eq13) has been previously found in
—— =M. (X)=M(x) —sp(x)e™ 2kex, (10 Ref. 17. As shown by these authors, in the short-range case it
B has the solutiori=constant<U whose only effect is to add

~ R a constant phase in the cosine term associated to the Friedel
2iC,(—p)e,p, BF.(—P)P, oscillation. A nontrivial phenomenon takes place for LR po-
:p2+a(0)p§+a(1)prf' tentials, sinc_:e .th.e cosine ceases to be a periodicl function.
This nonperiodicity effect, although weak at large distances,
(11) could eventually be observed in carbon n_anothﬁes.
From now on we shall focus our attention on the compu-
Therefore, we have obtained an equivalence between the pagtion of the envelope of the oscillation. Singg, ., is not
tition functions Z and Z' corresponding to the nonlocal exactly solvable, we shall employ the well-known self-

Thirring and sine-Gordon models with extra interactions deonsistent harmonic approximatiGhyhich amounts to re-
fined above. This means that we can ds¢ogether with the placing £}, ., by
U

above conditions in order to compute the charge-density in
the Luttinger liquid in the presence of impurities. Indeed, as 1 , 1
a result of this bosonization technique, we can evaluate£scra=7(d,®) +;j dy dxe(7x,X) U(X—Y) dye(7y,Y)
(p(x)) through functional derivation &' instead ofZ. In so
doing we obtain: m(V) §(x—d) ,
+f¢ , (15

i
(p(x))= —L?XQD(X)+COS{2\/;¢(X)—2kFX]> (120  wherem(V) is a constant, related to the impurity strength, to
Vm be variationally determined. The precise relationship be-
where the VEV is taken with respect to the Lagrangian dentweenm(V) andV was obtained in Ref. 12. For instance, in
sity £'[s,=0] obtained from Eq(8) after using Eqs(9), the strong-scattering limit, whek is much larger than a
(10), and(11) and settings,=0. Note that we have also set certain bandwidth, one has simply=V (See also, Ref. 37
B=2/m. Let us now consider the computation A{x) using this
Let us remark that there is an additional contribution to@Pproximation. Performing a translation in the fieje(x)
Eq. (12), coming from the functional derivative of the nor- —@(X) +a(x), with a(x) a classical function, we find
malization constanN'[C,] with respect tos, . Since this A(x)=_expi\/Fa(x). _
quantity is a constant, its only effect is to shift the back- Going to momentum space we see that the Fourier trans-
ground value of the charge density. For this reason we hav®rm of a(x) satisfies an integral equation whose solution is
just disregarded it.

2 217 21" 2
—L[PaU)(P) +p1Uq)(P) ]+ P

Now we return to our main goal, that is to use the path- A(p)= 27 eipﬂxu( 1_me'plr|(p01f))
integral framework depicted above in order to obtain an ex- » . 22U(p1) 7+ml(py,0) )’
plicit formula for the charge density in a Luttinger liquid +plT
with arbitrary electron-electron and electron-impurity inter- (16)

actions. When one imposes these condition€ifs,=0], )
one gets a Lagrangian density that has an undefined parity ydth

a function ofe. However it is much simpler to work with an .

even Lagrangian since, in this case, all VEV’s of odd func- 1(Po r)zf day cosdar) (17)
tions of ¢ will vanish. It is easy to see that the translation ' 0 2U(qy) |’
o(X)—@(x)+f(x) yields an even Lagrangiag,,., pro- T
vided that the classical functiof(x) is 7, independent and
its gradient satisfies:

p+ail 1+

where we defined =|x—d|.
The envelope of the Friedel oscillation then reads

A f(x)+ Ef dyU(x—y)o"yf(TX,y)+i—V S(x—d)=0. A(r)=exp— if‘” dpol 1(p O)_M
™ ar m) o O\ PO m+ml(pg,0))’
(13 (18)
We then get which is our main formal result. Indeed, formulék?) and

i (18) give an analytical expressidgexact within the Gaussian
X)) = — g f+ cos VA mf(X) — 2KeX approximation for A(r) as a function of both the electron-
(p(0) N ) $Vamt() ] electron potential and the variational paramet€k/). Since
the self-consistent harmonic approximation seems to fail for
X(cog Vame(X))z: (14 weak impurity strength, due to the neglect of interwell

, ) . tunneling?? we restrict our analysis to the strong impurity
where copy4mf(x) = 2kex] is called the Friedel oscillation  egime. We also consider a large distance approximation of

andA(x) =(cog J4me(x)]), _is the corresponding enve- gq. (17) which consists of inserting fi/as infrared cutoff.
lope. Let us calll,(pg,r) the integral(17) regulated in this way.
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We will examine, as examples, two specific short-range and - 4U b 4U DbA

Coulomb potentials. This, in turn will allow us to illustrate T(r)=— > 1-—In—/—-\/1-—In—|, (22
2U T 2r T 2

how to use our general formul@) for other cases. More-

over, since these problems were previously considered in

Refs. 12 and 17 by using standafmperational bosoniza-  which yields

tion, our computation will give an independent confirmation

by means of a different approach. First of all, we note that it

is convenient to split out the two terms of the exponential [ 1
A(r)=C’(g,b,A)ex;{— UInB)'

factor on Eq.(18), such thatA(r) =expT-+W)(r). (23

For the simple contact potentibli(q;) = U = constantwe
get

T(r)=In(Ar)9, (19

and
W(r)=gexpmg?) E;(—mg?r)—gexp29) E;(—29),
(20)

whereA is an ultraviolet cutoff. We have also introduced the
interaction constarg= (1+2U/ ) ~ Y2 Taking into account

the asymptotic behavior of the exponential integral function

E; for mg?r>1, one obtains

(21)

|

A()=C(9,A) (29 r>-gexp( T

Again, this behavior is equal to the one previously found in
Refs. 12 and 17.

In summary, we have described an alternative bosoniza-
tion approach to the computation of charge-density fluctua-
tions. This technique, previously originated in the context of
QFT’s, parallels, in the path-integral framework, the opera-
tional schemes usually employed in condensed-matter appli-
cations. In particular, we have computed the envelope of
Friedel oscillations in a simple version of the TL model with
a nonmagnetic impurity. By combining that bosonization
procedure and the self-consistent harmonic approximation,
we were able to express the envelope of the oscillations as a
function of the electron-electron interactipsee Eqs(17)
and(18)]. Finally, as a consistency check of this formal re-

which coincides with Refs. 12 and 17 under the same result, and in order to illustrate our method, we considered the

gime.
In the Coulombian case, one heg|x|)=U/\|x|>+b?,
whose Fourier transform i8(q;)=2UKy(b g;), whereb

long-distance regime for contact interactions and Coulomb
potentials. Our results are in agreement with Refs. 12 and 17.
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