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Friedel oscillations in a Luttinger liquid with long-range interactions
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We introduce a path-integral approach that allows us to compute charge-density oscillations in a Luttinger
liquid with impurities. We obtain an explicit expression for the envelope of Friedel oscillations in the presence
of arbitrary electron-electron potentials. As examples, in order to illustrate the procedure, we show how to use
our formula for contact and Coulomb potentials.
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In the last few years there has been much activity
dressed to the study of condensed matter and statistical
chanics problems through field-theoretical methods.1 In par-
ticular, the physics of one-dimensional~1D! systems of
strongly correlated particles has become a very interes
subject since one can take advantage of the simplicity of
models at hand and, at the same time, expect to make co
with experiments. For instance, the recently built quant
wire2 is a good realization of a 1D electron gas. From t
theoretical side, the simplest formulation of a 1D electro
system is given by the Tomonaga-Luttinger~TL! model,3

which has been successful in describing some qualitative
tures of a Luttinger liquid such as spin-charge separation
nonuniversal exponents in the decay law of correlat
functions.4 There are, however, two crucial issues that
not considered in the original versions of this model: t
presence of a nontrivial interaction between electrons
impurities5 and the effect of long-range~LR! electron-
electron interactions.6,7 As is well known, the former leads to
the occurrence of Friedel oscillations in the charge-den
profile, at least for Fermi liquids.8 On the other hand, as th
dimensionality of a system decreases, charge screenin
fects become less important and the LR interaction betw
electrons is expected to play a central role in determining
properties of the system. In fact, from a theoretical point
view, the effects of LR interactions have been recently d
cussed in connection to several problems such as the Fe
edge singularity,9 the insulator-metal transition,10 and the
role of the lattice through umklapp scattering and si
dependent effects.11 Thus, it is quite interesting to study th
interplay between impurities and LR interactions by cons
ering Friedel oscillations in a 1D system. Some time a
Egger and Grabert12 analyzed this phenomenon. By combi
ing the techniques of standard bosonization13 with the self-
consistent harmonic approximation14 and quantum Monte
Carlo simulations,15 they were able to get explicit results fo
both weak and strong impurity scattering regimes. Later
the authors of Ref. 16 used bosonization and a scatte
description to get some exact results for the short-range
and for a special value of the coupling constant, equivalen
the so called ‘‘Toulouse point’’ in the anisotropic Kond
problem. More recently, the authors of Ref. 17 again u
standard bosonization to address the same problem em
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sizing the equivalence between the TL model in the prese
of a single nonmagnetic impurity and a boundary Sin
Gordon model.

In this report, we present an alternative approach to
problem based on a path-integral bosonization technique
viously developed in the context of nonlocal quantum fie
theories.18 This method seems to be specially adequate
consider LR interactions. Indeed, it has recently provide
straightforward derivation of the electronic Green’s functi
in the presence of noncontact potentials.19 Then, our main
purpose here is to show how to extend this formulation to
computation of Friedel oscillations.

We start from a modified nonlocal Thirring model20 de-
scribed by the following~Euclidean! Lagrangian density:

L5 i C̄~]”1g0kF!C1E d2yJm~x!U (m)~x,y!Jm~y!1C̄C” C

2M ~x!C̄C, ~1!

wherex5(tx ,x)5(x0 ,x1), andJm5C̄gmC. The functions
U (m)(x,y) are forward2scattering potentials. SettingU (0)
5U (1)52d2(x2y), one gets the covariant and local ve
sion of the Thirring model usually studied in the context
(111) quantum field theories~QFT8s!.

On the other hand, the choice U (0)(x,y)
5U(ux2yu) d(tx2ty) andU (1)(x,y)50, yields the sim-
plest version of the Tomonaga-Luttinger~TL! model with an
instantaneous distance-dependent potential and no cur
current fluctuations. The last two terms in Eq.~1! corre-
spond to forward and backward electron-impurity scatteri
respectively.

The main purpose of the present paper is to evaluate
vacuum expectation value~VEV! of the charge density:

^r~x!&5^C†C1e22ikFxCR
†CL1e2ikFxCL

†CR&, ~2!

for an arbitrary electron2electron potentialU (m)(x,y). Also,
we will be especially interested in case the impurity ter
are C0(x)5Vd(x2d)5M (x) and C1(x)50, whereV is a
constant proportional to the impurity tunneling barrier sit
ated atx5d. Using a suitable representation of the function
delta and introducing an auxiliary vector fieldAm ~see Ref.
18 for details!, the partition function of the model unde
consideration reads
©2001 The American Physical Society02-1
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Z5NE DAm e2S[A] det~ i ]”1A2 A” 1C” 1s”1 ig0kF2M ~x!

1smemne2ikFxGn!, ~3!

whereS@A# is the free quadratic action forAm , G05I and
G15g5. Equation~2! can be obtained by functional deriva
tion of Eq. ~3! with respect to the sources0.

As it is known, the massivelike determinant in Eq.~3!
cannot be exactly solved, even in the local case. Howe
we can take advantage of the fact that the vacuum to vac
functional can be written in such a way that nonlocal ter
are not present in the determinant. Therefore, the te
A2 A” 1C” 1s”1 ig0kF can be decoupled from fermions b
performing chiral and gauge transformations in the fermio
path2integral measure. Indeed, decomposingAm(x) in lon-
gitudinal and transverse pieces

Am~x!5emn]nS F~x!2
ikFx

A2
D 1]mh~x!

2
1

A2
@Cm~x!1sm~x!#, ~4!

where F and h are boson fields~to be associated to th
normal modes of the system! and applying, as anticipated
functional bosonization techniques18 to express the fermionic
determinant in terms ofF andh, one finally obtains

Z5NE Dx̄DxDFDh exp~2Sbos!exp~2Sf er!

3exp~2S@M ,sm#!, ~5!

whereSf er corresponds to free massless fermions (x and x̄)
and

S@M ,sm#5E d2x x̄@sm~x! emn e2ikFxGn2M ~x!#e22gg5Fx.

~6!

ConcerningSbos, it can be more briefly described in mo
mentum space:

Sbos5E d2p

~2p!2
@F̂~p!ĥ~p!Ĉm8 ~p!#

3S A~p!
C~p!

2

E~p!

2

C~p!

2
B~p!

F~p!

2

E~p!

2

F~p!

2
D~p!

D S F̂~2p!

ĥ~2p!

Ĉm8 ~2p!

D
1

ikF

2 E d2p

~2p!2
Û (0)

21~p!Ĉ8(0)~p!d2~p!, ~7!
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where we have defined Cm8 5Cm1sm and
A(p),B(p),C(p),D(p),E(p), and F(p) are potential-
dependent functions~see Ref. 20 for more details!.

At this point, we see that the generating functional can
formally expanded in powers of (M2smemne2ikFxGn), in
complete analogy with the usual procedure employed in
path-integral bosonization of (111) massive QFT8s.21,22 In
fact, the x dependence of this perturbative parameter,
gether with the appearance ofCm8 (x) in the bosonic action
are two of the new features of the present computation.
long as these functions are well behaved, one can assum
existence of every term in the corresponding series.

From now on, we will specialize the computation to th
case s150. This allows us to defineM 6(x)5M (x)
2s0(x)e72ikFx and one can then perform the abov
mentioned expansion ofZ taking M 6(x) as perturbative pa-
rameters. As explained in Ref. 20, one can show that
same expansion can be obtained by starting from a pu
bosonic nonlocal extension of the sine-Gordon model giv
by

L85
1

2
~]mw!21

1

2E d2y ]mw~x! d(m)~x,y!]mw~y!

1Fm ]mw2
1

2b2
~a1~x! eibw(x)1a2~x! e2 ibw(x)!,

~8!

whereFm(x) represents a couple of classical functions to
related to theCm8 ’s and d(m)(x,y) are two bilocal functions
that will be associated to the electron-electron potentials~a
similar nonlocality in the kinetic term was considered in t
study of the influence of LR correlations in the meta
insulator transition23!. b is a constant anda6(x) are func-
tions that can be considered as extensions of the param
a0 used by Coleman.24 Indeed, ford(m)505Fm and a1

5a25a05constant, the model above coincides with th
usual sine-Gordon model. In the present approach, the q
tities a6(x) are related toM 6(x), which are in turn con-
nected to the strength of the scatterer. Let us stress that in
formulation, it is straightforward to consider a nonpointlik
impurity @a6(x)ÞVd(x2d)#. However, in order to illus-
trate our method, in this report we will consider the usu
case of a completely localized impurity. For this particu
case, Eq.~8! contains the same terms that can be deriv
from standard bosonization~see, for instance, Ref. 12!.

Now, going to momentum space and employing stand
procedures to evaluate each VEV, the partition functionZ8
corresponding to this generalized sine-Gordon model co
cides withZ provided that the following three relations hold

2p

2

p
@p0

2Û (1)~p!1p1
2Û (0)~p!#1p2

5
b2

2@p21d̂(0)~p!p0
21d̂(1)~p!p1

2#
, ~9!
2-2



p
l

de

y
a
a

en

t

to
r-

k
a

th
ex
d
r-

ty

c
n

-

se it

iedel
o-
tion.
es,

u-

lf-

to
be-
in

ns-
is

-

for
ell
ty

of

BRIEF REPORTS PHYSICAL REVIEW B 64 033402
a6~x!

b2
5M 6~x!5M ~x!2s0~x!e72ikFx, ~10!

2iĈm8 ~2p!emnpn

2

p
@p0

2Û (1)~p!1p1
2Û (0)~p!#1p2

5
bF̂m~2p!pm

p21d̂(0)p0
21d̂(1)p1

2
.

~11!

Therefore, we have obtained an equivalence between the
tition functions Z and Z8 corresponding to the nonloca
Thirring and sine-Gordon models with extra interactions
fined above. This means that we can useZ8 together with the
above conditions in order to compute the charge-densit
the Luttinger liquid in the presence of impurities. Indeed,
a result of this bosonization technique, we can evalu
^r(x)& through functional derivation ofZ8 instead ofZ. In so
doing we obtain:

^r~x!&5K i

Ap
]xw~x!1cos@2Apw~x!22kFx#L ~12!

where the VEV is taken with respect to the Lagrangian d
sity L8@s050# obtained from Eq.~8! after using Eqs.~9!,
~10!, and~11! and settings050. Note that we have also se
b52Ap.

Let us remark that there is an additional contribution
Eq. ~12!, coming from the functional derivative of the no
malization constantN8@Cm8 # with respect tosm . Since this
quantity is a constant, its only effect is to shift the bac
ground value of the charge density. For this reason we h
just disregarded it.

Now we return to our main goal, that is to use the pa
integral framework depicted above in order to obtain an
plicit formula for the charge density in a Luttinger liqui
with arbitrary electron-electron and electron-impurity inte
actions. When one imposes these conditions inL8@s050#,
one gets a Lagrangian density that has an undefined pari
a function ofw. However it is much simpler to work with an
even Lagrangian since, in this case, all VEV’s of odd fun
tions of w will vanish. It is easy to see that the translatio
w(x)→w(x)1 f (x) yields an even LagrangianLeven8 pro-
vided that the classical functionf (x) is tx independent and
its gradient satisfies:

]xf ~x!1
2

pE dy U~x2y!]yf ~tx ,y!1
i

Ap
V d~x2d!50.

~13!

We then get

^r~x!&5
i

Ap
]x f 1cos@A4p f ~x!22kFx#

3^cos@A4pw~x!#&L
even8 , ~14!

where cos@A4p f (x)22kFx# is called the Friedel oscillation
andA(x)5^cos@A4pw(x)#&L

even8 is the corresponding enve

lope.
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Let us point out that Eq.~13! has been previously found in
Ref. 17. As shown by these authors, in the short-range ca
has the solutionf 5constant}U whose only effect is to add
a constant phase in the cosine term associated to the Fr
oscillation. A nontrivial phenomenon takes place for LR p
tentials, since the cosine ceases to be a periodic func
This nonperiodicity effect, although weak at large distanc
could eventually be observed in carbon nanotubes.25

From now on we shall focus our attention on the comp
tation of the envelope of the oscillation. SinceLeven8 is not
exactly solvable, we shall employ the well-known se
consistent harmonic approximation,14 which amounts to re-
placingLeven8 by

LSCHA5
1

2
~]mw!21

1

pE dy ]xw~tx ,x! U~x2y! ]yw~tx ,y!

1
m~V! d~x2d!

2
w2, ~15!

wherem(V) is a constant, related to the impurity strength,
be variationally determined. The precise relationship
tweenm(V) andV was obtained in Ref. 12. For instance,
the strong-scattering limit, whenV is much larger than a
certain bandwidth, one has simplym5V ~See also, Ref. 17!.

Let us now consider the computation ofA(x) using this
approximation. Performing a translation in the fieldw(x)
→w(x)1a(x), with a(x) a classical function, we find
A(x)5expiApa(x).

Going to momentum space we see that the Fourier tra
form of a(x) satisfies an integral equation whose solution

â~p!5
2iAp

p21p1
2 2U~p1!

p

e2 ipmxmS 12
meip1r I ~p0 ,r !

p1mI~p0 ,0! D ,

~16!

with

I ~p0 ,r !5E
0

`

dq1

cos~q1r !

p0
21q1

2S 11
2U~q1!

p D , ~17!

where we definedr 5ux2du.
The envelope of the Friedel oscillation then reads

A~r !5exp2
1

pE2`

`

dp0S I ~p0 ,0!2
mI2~p0 ,r !

p1mI~p0 ,0! D ,

~18!

which is our main formal result. Indeed, formulas~17! and
~18! give an analytical expression~exact within the Gaussian
approximation! for A(r ) as a function of both the electron
electron potential and the variational parameterm(V). Since
the self-consistent harmonic approximation seems to fail
weak impurity strength, due to the neglect of interw
tunneling,12 we restrict our analysis to the strong impuri
regime. We also consider a large distance approximation
Eq. ~17! which consists of inserting 1/r as infrared cutoff.
Let us call I r(p0 ,r ) the integral~17! regulated in this way.
2-3
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We will examine, as examples, two specific short-range
Coulomb potentials. This, in turn will allow us to illustra
how to use our general formula~2! for other cases. More
over, since these problems were previously considere
Refs. 12 and 17 by using standard~operational! bosoniza-
tion, our computation will give an independent confirmat
by means of a different approach. First of all, we note tha
is convenient to split out the two terms of the exponen
factor on Eq.~18!, such thatA(r )5exp(T1W)(r).

For the simple contact potentialU(q1)5U5constant, we
get

T~r !5 ln~Lr !2g, ~19!

and

W~r !5g exp~mg2r ! Ei~2mg2r !2g exp~2g! Ei~22g!,
~20!

whereL is an ultraviolet cutoff. We have also introduced t
interaction constantg5(112U/p)21/2. Taking into accoun
the asymptotic behavior of the exponential integral funct
Ei for mg2r @1, one obtains

A~r !5C~g,L! ~2g r !2g expS 2
1

m g rD , ~21!

which coincides with Refs. 12 and 17 under the same
gime.

In the Coulombian case, one hasU(uxu)5U/Auxu21b2,
whose Fourier transform isU(q1)52UK0(b q1), where b
plays the role of a lattice spacing. Inserting this expressio
T andW, and considering the same regime as before we
that W vanishes and
03340
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T~r !52
p

2U SA12
4U

p
ln

b

2r
2A12

4U

p
ln

bL

2 D , ~22!

which yields

A~r !5C8~g,b,L!expS 2Ap

U
ln

r

b D . ~23!

Again, this behavior is equal to the one previously found
Refs. 12 and 17.

In summary, we have described an alternative boson
tion approach to the computation of charge-density fluct
tions. This technique, previously originated in the context
QFT’s, parallels, in the path-integral framework, the ope
tional schemes usually employed in condensed-matter a
cations. In particular, we have computed the envelope
Friedel oscillations in a simple version of the TL model wi
a nonmagnetic impurity. By combining that bosonizati
procedure and the self-consistent harmonic approximat
we were able to express the envelope of the oscillations
function of the electron-electron interaction@see Eqs.~17!
and ~18!#. Finally, as a consistency check of this formal r
sult, and in order to illustrate our method, we considered
long-distance regime for contact interactions and Coulo
potentials. Our results are in agreement with Refs. 12 and
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