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One-dimensional electron gas interacting with a Heisenberg spinf2 chain
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We analyze a model of a one-dimensional electron-gas interacting with an antiferromagnetic Heisenberg
spin-1/2 chain via the spin-exchange interactions. Using a solution at a special limit, we characterize the
gapless modes of the spin-gap fixed point at weak couglingdy ,Ex . We show that the only gapless pairing
mode with divergent susceptibility is a composite odd-parity/odd-frequency singlet-pairing order parameter,
while the ordinary BCS even-parity singlet-pairing mode is incoherent. For two-leg ladder systems, we note
that it is possible to have a range of doping where the chemical potential cuts only the antibonding band while
the bonding band remains half filled. We propose that in such a state the two-leg ladder is effectively realizing
the one-dimensional Kondo-Heisenberg model.
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The one-dimensional Kondo-Heisenberg mod®-H  netic Heisenberg chain of localized spins 1{2;}. The
mode) describes an incommensurate —one-dimensionathains interact via a spin-exchange interaction with an anti-
electron-gag1DEG) interacting with a Heisenberg chain of ferromagnetic coupling constad>0.
spins 1/2 via spin-exchange interaction. For the K-H model,
we show that thenly gapless pairing mode with divergent H=H!PEC L yHeisy H, | (1)
susceptibility is a composite odd-parity/odd-frequency
singlet-pairing order parameter, while the ordinary BCS , - = - -
evegn-p:rity s?nglet-pai?ing mode is incoherent. In a?j/dition, HHeIs:‘]H; T T+ HK:‘]K; 7-8(xp), (2
we find that the generalized Luttinger's theorem of Ya-
manaka_et allis satisfied_ only by the introduction of a new Whereg(xj) = %(Xj)(gaﬁ/z) ¥4(X;) is the electron-gas spin-
composite-charge density waviCDW). The composite yansiry operator at positio; of the local spin; of the

CDW has power-law correlations with a “large-Fermi-sea” Heisenberg chain. We focus on the low-energy and long-
characteristics, while conventional CDW correlations decaydiStance behavior of the electron’s correlation functions by

exponentlally. N . taking the continuum limit of the electron gas and linearizing
We discuss the significance of our results in several cong,. 1peg dispersion relation about the fermi pointske

texts: First, our analysis sheds light on the relations betweew : ; : .
. . . th corresponding right and left going electron fieldg,
previous treatments of the one-dimensional Kondo- tarI]d L Z (X)I:gR I?X)e+ikFx+L g(XI)egfik,:x whelre o

Heisenberg model. Second, we discuss the possibility of e =11

fective realization of K-H model physics in two-leg ladder 'I"he 1DEG spin currents are decomposed into forward-
systemg(This possibility was missed in all previous studies and back-scattering parts:

of doped two-leg laddefs Third, we criticize previous sug- '

gestions regarding the relevance of K-H model to “stripes e

theories™ of high-Tc superconductors. o s(x) = lﬂZ(Xj)—aB (%)) = [Jsr(X) + IsL(X) ]+ Ng(X),
The core of our analysis is based on the derivation of a 2

special solvable limit of the K-H model, and the meaning of (©)

such a solution within the renormalization-groyRG) s _ ¥ s ¥

framework. The previous perturbative RG analysis of thewhereJR—(1./2)|30 Too'Ror s =)L, 0454:L, are the
K-H modef has shown that the spin-exchange imeractionferromagnetlc(]—_0) spin currents of right- and left-moving
flows to some strong-coupling fixed point suggesting the for_electrons respeciively, and
mation of a spin-gap phase with enhanced pairing correla- R +i2KeX;

. : : = + F

tions. For particular value of parameters we obtain a well- ns(x)=e INR(x)+e (), “

controlled analytical solution that enables us to enumeratgere Nr= R*(& 2L, nL=L+(5 J2)R,. are the
ag o,0 g g o,0 (o8

and characterize quantum _numbers apﬁtf gap'?ss m_odes. staggered magnetizatiog € 2kg) components of the 1DEG.
Gapless modes are properties of the fixed point. This means We work in theweak interchain coupling limit

that the same gapless modes characterize all models that flow

to the same fixed point. In particular, if there is only one Je<Jdy Ee. (5)
fixed point to which all weak coupling K-H models flow,
then our analysis is valid for all of them. In this case, one is allowed to makerther approximation

The K-H model(1) consists of twanequivalentinteract- by taking the continuum limit also for the Heisenberg spin
ing chains; one is a one-dimensional electron @&scribed  chairf (such approximation is not valid in the opposite limit
by the HamiltoniarH'P&®%), and the other an antiferromag- J«>Jy,, which is discussed elsewhéfe The local spin-
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chain field is then also decomposed into the smdthro-
magneti¢ and staggerethntiferromagneticcomponents;

7= [IR0X) +IL(x) ]+ (= 1)In(x;). (6)

(Note: we will consistently use the subscripts,8” to dis-
tinguish the spin-chain fields from the 1DEG fields

The effective Fermi wave numbefs the sense of the
generalized Luttinger’'s theoré1)n‘or the 1DEG and the spin
chain are Xr and XpF°®°=m/b respectively (where b

=Xj+1—X; Is the distance between the local spins of the

Heisenberg chajn It is assumed that the two systems are
relatively incommensurate, and that2is incommensurate
with any underlying ionic lattice. In order to distinguish con-
tributions coming from various interaction terms, we intro-
duce distinct Kondo coupling coefficients for forward scat-
tering (Js), back scattering J,), and mixed interactions

(Im);
Hi=31(Ip+3D) - (JR+ 3+ In(— 1IN (J2+ 3)
+3p7(x)) - [67 HFingg(x;) + e KFing ()] (7)

The back-scattering terd), and the mixed interactiody, are
made irrelevant by the oscillatory factoes"'2kFXi and
(—1)! respectively. Therefore, at incommensurate filling in

the weak coupling limit, the K-H Hamiltonial) reduces to

H:HO+Jff dx(Jx+J7) - (Jx+30), (8)

whereH,=HPEC+HMeiS Dye to the incommensurate elec-
tron filling, after dropping terms that are irrelevant in the RG
sense, the spin- and charge-sectors decouptedx H,

+Hspinl- The charge sector is described by a Gaussian HSZ:%f dx

modeP

Uc

He= >

2 i 2
KelT200 + = (dxb)? . ©

The subsequent analysis and manipulations deal only wit
the spin-sector fields. The spin partidf, can be written as
the sum of two levek=1 SUWU2) Wess-Zumino-Novikov-
Witten models. The corresponding Hamiltonian density is

. 27
HE™"= 2 S ECIRIR I (0
M=S,T
wherev ,,vg are the spin-wave velocities of the Heisenberg
chain and 1DEG respectively (= 7J,,/2).
For J;>0, the noninteracting fixed poifit0) is unstablé,

and the low-energy physics is governed by some ‘“strong-

coupling” fixed point. Nothing more can be deduced from
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We use the bosonized representation of the spin-1/2 fer-
mionic  fields® L (x)=(F,/\2ma)e 0+ .1
R,(X)=(F,/\2ma)e ™00~ ¢l \where  6,(X)
=X dX'TI(x"), and [T ,(X'),¢,(X)]=—i8(X'—X), o
=1,]. The Klein factors{F, ,F,}=46, ., enforce proper
anticommutation of fermions with different spin. As com-
monly done, we re-express the operators in terms of bosonic
spin fields¢s(x)=1/\/§[¢T—¢L], and charge fieldgh.(x)
= 1/\/§[¢T+ ¢, 1, and correspondingly defined momeihia
and I1.. Similarly, the spin-chain fields are bosonized. In
particular, the bosonized expression for the staggered mag-
netization is

n,~[sin(y2m8,),—cod\2me,),sinN\2m¢,)]. (11)

In what follows we shall also need the bosonized expression
for the triplet-superconducting order parameter:

(—1D[RI(007) gl ]~ 2 sin(\2765),

—cog\2mb), —sin(\2meg)].
(12

The model(8) is exactly solvable by the Bethe ansatz
for generalvg,v,. However, for the purpose of calculating
correlation functions, we take advantage &peecial pointin
parameter space where the spin velocities are equal, i.e.,
Avg=vs—v,=0.

Using a transformation to composite spin field9..
=1/\2(6s* 6,) and ¢. =1/\2(dhs* ¢,), the spin sector of
the Kondo-Heisenberg Hamiltonian is simplified to the form;
H=H&*+AHE*+H, ;

2 +
vs
+?f dx

AngzAT”Sj AX{IT, T+ (3 ) (e )}, (14

Jf
1+ i)(amn?]

27ug

Jf
M2+ 1—- ——

)(Wﬁ—)zl, (13

27mvg

h

f

J
H =— Zf dxcog \4mo_)

()

X[cog VA, )+cog\amg )], (15)

wherev =3 (vs+v,). Note that thel, part of the interaction
has been completely absorbed into the kinetic-energy part
(13) of the Hamiltonian in terms of the new fieldg;-. .
Intuitively, a spin gap can be established due tonmter-

perturbative RG analysis, and the character of the stroncgCtion term cos(4m6_)cos(y4m¢.) in Eq. (15), where a
coupling fixed point should be studied by means of nonperSelf-consistent expectation value can be obtained for the

turbative methods. Sikkema-Affleck-Whiteoticed that the

relevant spin sector of the K-H Hamiltonian at incommensu-n contrast to{cos/476_)cos/4m$_))=0 (sincee'

rate filling is equivalent to that of the two-leg zigzag spin

composite fieldgcos(/4m0_))#0 and(cos/4m¢.))#0.
Two_

iV _

and €' are respective disorder/order parametérs

ladder. In turn, the zigzag ladder was shown to possess a spitherefore, for determining spin-gap physics of the fixed

gap by means of exact numerical simulations.

point, we rigorously need to keep only the
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cos(y4m6_)cos(4me ) interaction term. An additional

—i
. B £ - S
simplification (which we justify later oh is obtained if we Oc-sp¥)= T[Ra(“‘TZ)aﬁLB]'“
neglect the velocity renormalization in E@.3) (i.e., equiva- o _
lent to the anisotropid,= 0 limit). Thus, we obtain a decou- ~e*emle(cog 2P )cog V2T d,))(— 1))

pling of the spin sector into two commuting sine-Gordon-

type Hamiltonians, (18)
and a composite CDWa charge-0 spin-0 operajor
v Av R . .
H= dxi;m [g[wx@i)%(a@iﬁ]ﬂ—1>' 7 (0:P) Oc_cow(X) =Nipec: 7
5 ~e"2m(cog 2D 1) cog 27 D,))
X(3,0;)+ ———.cod Bad)) I, (16) o @+ (2kex+ ) (19
2(Ta) ’

where it is the staggered component of the impurity spin
chain,7— (—1)/n,, which is contributing the gapless modes
with power-law correlations.

The staggering factor{1)' in the corresponding corre-

_ lation functions is effectively modulating the usual correla-
bito_ b= 0 . . ; : :
b=———; O=———; tions by the reciprocal lattice vectar/b of the spin chain.
V2 V2 As a result, the composite gapless modes are found at un-
usual finite momentum values: the composite singlet pairs
0.+ 0, W?th momentums/b (and there is nk=0 _singlet pairing
1:;; 2:;_ with charge 2), and the gapless composite CDW mode at
2 V2 momentum X =2ke+ (7/b) (and not at ¢ of the bare
1DEG). The pure charge sector is not affected, as is evi-
In the limit Av¢=0, the Hamiltoniar(16) is equivalent to the ~denced by the fact that the gaplegs-pairing mode (7r
spin sector of the S@) Thirring model that is known to =R[R[ and 5 =LIL]) remains at momentumkz. The
have an exponentially small gdms anticipated by the RG gapless modes are inter-related by the commutation relation
argument$The spin-gap fixed point is perturbatively stable [O. cpw, 7r— 7./v2]=20,_sp. An extended discussion
with respect to all the interactions that were neglected forof these order parameters can be found in Ref. 6.
arriving at Eq. (16) In the ground stata/ﬂd)i:wn,where To summarize, we developed a solution of the one-
nis an integer. Thus dimensional Kondo-Heisenberg model at weak exchange
coupling Jy<<Jy ,Eg, for a special value of parameterg
. _ =v,. We were able to explicitly demonstrate the spin gap
{cog ‘/ECDJ»#O’ (sin( ‘/ECDJ»_O 17) and characterized the gapless modes properties of the fixed
point previously alluded to by perturbative RG arguments.
and there is an additional discretg>ZZ, symmetry corre- The spin-wave velocitiess and v, in general are not
sponding to the signs ¢tos(/27®;)) that is spontaneously identical. What then are the limits of validitand hence the
broken in the ground state, and to thé,(,d®,) separation significance of our solution? First, the spin gap guarantiees
(the later is only an approximate symmetry that is broken bythat our fixed-point solution is perturbatively stable fioy
J,#0 coupling terms =vs—v,#0. Moreover, unless there is a phase transition

A spin-gapped one-dimensional system is expected tadriven by largeAv anisotropy(to a yet another unknown
manifest enhanced pairing and CDW correlations. Furtherphase, our resultsgapless modes identificatipm the limit
more, the generalized Luttinger’s theoremandates the ex- Av,=0 areuniversalfor all Avg so long as the weak cou-
istence of a gapless CDW mode at wave vectkf 22k pling condition Jx<uv,,v is maintained. The same argu-
+(m/b). As we shall see, these intuitive expectations arement applies to all other approximations we undertook for
satisfied in a rather nontrivial manner. arriving at Eq.(16).

The rigidity of thecompositebosonic fields, enforced in The smallJk condition manifests itself through the coef-
Eqg. (17), implies that the correlation function of any order ficient (1—J!/27v) of the (9x¢_)? term in the Hamiltonian
parameter for which the spin part cannot be written purely in(13). It indicates that something may indeed breakdown
terms of cos(27®;) is exponentially decaying, i.e., is in- whenJ!>2mv, (Ref. 6. Indeed, we remark in this context
coherent. In particular, the usual one-dimensional e|eCtr0nthatJ;=27TvS is the so-called “Toulouse-point” value on
gas singlet chargeepairing A= (1/y2)(RIL]+LIRT), and  which we further comment below. Therefore, the perturba-
the Xg CDW Ocpw=[(112)(R]L,;+R]L|)+h.c.] arein- tive RG flows to “strong coupling” found in Ref. 2 should

where, ®; are newnonchiral fields combining the chiral
components ofp; and ¢, as follows:

coherent. be understood as being only to some intermediate coupling
Instead, there are gapless modes obmpositenature: A fixed pointJ;<27rvS with a finite basin of attractiorithe
composite odd-parity/odd-frequency singlet true stronglk coupling limit of the K-H model is gapled$.
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We now discuss the significance of our results in variougange, the low-energy physics of the two-leg ladder is effec-
context: In previous papéra spin-gap phase of the Kondo- tively captured by the K-H moddll). The conditions under
Heisenberg mode(1) was found in another region of the which the above scenario is realized require an elaboration
parameters spacel<Jx~Eg); the so-called “Toulouse- beyond the scope of this paper. The exact dependence of
limit” solution. That solution has the same composite ordermodel parameterl,; ,J«} on the original ladder parameters
parameters as the present one, but in addition it also po$t,u,v,t,} is unimportant since, as noted in the introduc-
sesses gapless modes of the conventional CDW and evefigy our analysis addresses general fixed-point properties.
parity singlet-pairingA order parameters. Hence, we con- consequently, we suggest that in the general phase diagram

qlude 2thaF the “Toulouse point’ and the_ “zigzag ladder ¢ doped laddef, the spin-gap regior{labeled C1S0 ify
limit”  spin-gap phases of the Kondo-Heisenberg model a'8hould be divided in two: A certain low-doping region with

distinct. An elaborate comparison and implications for the.only oddw pairing, and a higher-doping region with conven-

general phase diagram of the Kondo-Heisenberg model 'Fonal pair states as discussed, for example, in Ref. 4. Con-
presented elsewhefe. sequently, the same would be true for the putative supercon-
The two-leg ladder system consists of tveguivalent qt' );,t . ; f led t Ip ladd P
Hubbard-model chains that are coupled by single-particléjuc INg state in a system of coupled two-leg fadders.
A model of an incommensurate 1DEG coupled with a

hopping with amplitude, . As is well known, the effect of . o i th £ stri
t, interaction can be treated exactly by introducing “bond-'2dder environment was proposed in the context of stripe

ing” and “antibonding” bands described by fermion fields Phases in HTc cuprates. In the case of a gapless spin-ladder
Was=1N2( b1+ ), where g, Ax) are fermion fields on enwr_onment, if (_)nly spm-excha_nge |ntera_ct|ons are
the legs{1,2} of the ladder. The bonding and antibonding Consideref one arrives at the effective model given by Eq.
bands arénequivalent In particular, there is a chemical po- (1) Combining our analysigwhere only oddw pairing is
tential differencew,—ug~t, . Consequently there could cohert_anl_wﬂh_ the experimental observation that supercon-
exists a range of doping for which, depending on model paductivity in high-T. cuprates is due ta-wave BCS pal%ed
rameters, holes may enter only into the antibonding ban@!€ctron, we conclude thatithin a stripe-state scenarig,
(which becomes gaplesswhile the bonding band remains SPin-exchange interactions are ruled out as a possible source
half filled and retains a Mott-Hubbard gap. In that range of0f the spin gap in high-{ cuprates. While unrelated to cu-
doping, the Fermi energy lies in the gap of the bonding bandPrates, our solution does indicates the possibility of making
and cuts only the antibonding band. As far as the low-energpuré odd-time composite pairing superconductors by con-
physics of such a state is concerned, the half-filled band i§tructing 2D or 3D weakly coupled arrays of the 1D chain

equivalent to a Heisenberg chain of localized spins {]}g model (1).
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