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One-dimensional electron gas interacting with a Heisenberg spin-1Õ2 chain
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We analyze a model of a one-dimensional electron-gas interacting with an antiferromagnetic Heisenberg
spin-1/2 chain via the spin-exchange interactions. Using a solution at a special limit, we characterize the
gapless modes of the spin-gap fixed point at weak couplingJK!JH ,EF . We show that the only gapless pairing
mode with divergent susceptibility is a composite odd-parity/odd-frequency singlet-pairing order parameter,
while the ordinary BCS even-parity singlet-pairing mode is incoherent. For two-leg ladder systems, we note
that it is possible to have a range of doping where the chemical potential cuts only the antibonding band while
the bonding band remains half filled. We propose that in such a state the two-leg ladder is effectively realizing
the one-dimensional Kondo-Heisenberg model.
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The one-dimensional Kondo-Heisenberg model~K-H
model! describes an incommensurate one-dimensio
electron-gas~1DEG! interacting with a Heisenberg chain o
spins 1/2 via spin-exchange interaction. For the K-H mod
we show that theonly gapless pairing mode with divergen
susceptibility is a composite odd-parity/odd-frequen
singlet-pairing order parameter, while the ordinary BC
even-parity singlet-pairing mode is incoherent. In additio
we find that the generalized Luttinger’s theorem of Y
manakaet al.1 is satisfied only by the introduction of a ne
composite-charge density wave~CDW!. The composite
CDW has power-law correlations with a ‘‘large-Fermi-sea
characteristics, while conventional CDW correlations dec
exponentially.

We discuss the significance of our results in several c
texts: First, our analysis sheds light on the relations betw
previous treatments2,3 of the one-dimensional Kondo
Heisenberg model. Second, we discuss the possibility of
fective realization of K-H model physics in two-leg ladd
systems~This possibility was missed in all previous studi
of doped two-leg ladders4!. Third, we criticize previous sug
gestions regarding the relevance of K-H model to ‘‘strip
theories’’ of high-Tc superconductors.

The core of our analysis is based on the derivation o
special solvable limit of the K-H model, and the meaning
such a solution within the renormalization-group~RG!
framework. The previous perturbative RG analysis of
K-H model2 has shown that the spin-exchange interact
flows to some strong-coupling fixed point suggesting the f
mation of a spin-gap phase with enhanced pairing corr
tions. For particular value of parameters we obtain a w
controlled analytical solution that enables us to enume
and characterize quantum numbers ofall gapless modes
Gapless modes are properties of the fixed point. This me
that the same gapless modes characterize all models that
to the same fixed point. In particular, if there is only o
fixed point to which all weak coupling K-H models flow
then our analysis is valid for all of them.

The K-H model~1! consists of twoinequivalentinteract-
ing chains; one is a one-dimensional electron gas~described
by the HamiltonianH1DEG5!, and the other an antiferromag
0163-1829/2001/64~3!/033103~4!/$20.00 64 0331
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netic Heisenberg chain of localized spins 1/2,$tW j%. The
chains interact via a spin-exchange interaction with an a
ferromagnetic coupling constantJK.0.

H5H1DEG1HHeis1HK , ~1!

HHeis5JH(
j

t¢ j•t¢ j 11 , HK5JK(
j

t¢ j•sW~xj !, ~2!

wheres¢(xj )5ca
†(xj )(sab/2)cb(xj ) is the electron-gas spin

density operator at positionxj of the local spint¢ j of the
Heisenberg chain. We focus on the low-energy and lo
distance behavior of the electron’s correlation functions
taking the continuum limit of the electron gas and linearizi
the 1DEG dispersion relation about the fermi points,6kF ,
with corresponding right and left going electron fields,Rs

and Ls ; cs(x)5Rs(x)e1 ikFx1Ls(x)e2 ikFx, where s
5↑,↓.

The 1DEG spin currents are decomposed into forwa
and back-scattering parts;

s~x!5ca
†~xj !

s¢ ab

2
cb~xj !5@JsR~x!1JsL~x!#1ns~x!,

~3!

whereJR
s 5(1/2)Rs

1sW ss8Rs8 ; JL
s5(1/2)Ls

1sW ss8Ls8 are the
ferromagnetic (q50) spin currents of right- and left-moving
electrons respectively, and

ns~x!5e2 i2kFxjnR~x!1e1 i2kFxjnL~x!, ~4!

where nR5Rs
1(sW s,s8/2)Ls8 ; nL5Ls

1(sW s,s8/2)Rs8 are the
staggered magnetization (q52kF) components of the 1DEG

We work in theweak interchain coupling limit

JK!JH ,EF . ~5!

In this case, one is allowed to makefurther approximation
by taking the continuum limit also for the Heisenberg sp
chain2 ~such approximation is not valid in the opposite lim
JK@JH , which is discussed elsewhere3,6!. The local spin-
©2001 The American Physical Society03-1
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chain field is then also decomposed into the smooth~ferro-
magnetic! and staggered~antiferromagnetic! components;

t¢ j5@JR
t ~xj !1JL

t ~xj !#1~21! jnt~xj !. ~6!

~Note: we will consistently use the subscripts ‘‘t,s’’ to dis-
tinguish the spin-chain fields from the 1DEG fields!.

The effective Fermi wave numbers~in the sense of the
generalized Luttinger’s theorem1! for the 1DEG and the spin
chain are 2kF and 2kF

Heis5p/b respectively ~where b
5xj 112xj is the distance between the local spins of t
Heisenberg chain!. It is assumed that the two systems a
relatively incommensurate, and that 2kF is incommensurate
with any underlying ionic lattice. In order to distinguish co
tributions coming from various interaction terms, we intr
duce distinct Kondo coupling coefficients for forward sc
tering (Jf), back scattering (Jb), and mixed interactions
(Jm);

HK5Jf~JR
t 1JL

t !•~JR
s 1JL

s !1Jm~21! jnt•~JR
s 1JL

s !

1Jbt¢~xj !•@e2 i2kFxjnsR~xj !1e1 i2kFxjnsL~x!#. ~7!

The back-scattering termJb and the mixed interactionJm are
made irrelevant by the oscillatory factorse6 i2kFxj and
(21) j respectively. Therefore, at incommensurate filling
the weak coupling limit, the K-H Hamiltonian~1! reduces to

H5H01JfE dx~JR
t 1JL

t !•~JR
s 1JL

s !, ~8!

whereH05H1DEG1HHeis. Due to the incommensurate ele
tron filling, after dropping terms that are irrelevant in the R
sense, the spin- and charge-sectors decouple,H5*dx@Hc
1Hspin#. The charge sector is described by a Gauss
model5

Hc5
vc

2 FKcPc
2~x!1

1

Kc
~]xfc!

2G . ~9!

The subsequent analysis and manipulations deal only
the spin-sector fields. The spin part ofH0 can be written as
the sum of two levelk51 SU~2! Wess-Zumino-Novikov-
Witten models. The corresponding Hamiltonian density is

H 0
spin5 (

m5s,t

2pvm

3
~ :JR

mJR
m :1:JL

mJL
m : ! ~10!

wherevt ,vs are the spin-wave velocities of the Heisenbe
chain and 1DEG respectively (vt5pJH/2).

For Jf.0, the noninteracting fixed point~10! is unstable,2

and the low-energy physics is governed by some ‘‘stro
coupling’’ fixed point. Nothing more can be deduced fro
perturbative RG analysis, and the character of the stro
coupling fixed point should be studied by means of nonp
turbative methods. Sikkema-Affleck-White2 noticed that the
relevant spin sector of the K-H Hamiltonian at incommen
rate filling is equivalent to that of the two-leg zigzag sp
ladder. In turn, the zigzag ladder was shown to possess a
gap by means of exact numerical simulations.
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We use the bosonized representation of the spin-1/2
mionic fields;5 Ls(x)5(Fs /A2pa)e2 iAp[us(x)1fs(x)] ,
Rs(x)5(Fs /A2pa)e2 iAp[us(x)2fs(x)] , where us(x)
5*2`

x dx8Ps(x8), and @Ps(x8),fs(x)#52 id(x82x), s
5↑,↓. The Klein factors,$Fs ,Fs8%5ds,s8 , enforce proper
anticommutation of fermions with different spin. As com
monly done, we re-express the operators in terms of bos
spin fieldsfs(x)51/A2@f↑2f↓#, and charge fieldsfc(x)
51/A2@f↑1f↓#, and correspondingly defined momentaPs
and Pc . Similarly, the spin-chain fields are bosonized.
particular, the bosonized expression for the staggered m
netization is

nt;@sin~A2put!,2cos~A2put!,sin~A2pft!#. ~11!

In what follows we shall also need the bosonized express
for the triplet-superconducting order parameter:

~2 i /2!@Ra
†~sWs2!abLb

† #;eiA2puc@sin~A2pus!,

2cos~A2pus!,2sin~A2pfs!#.

~12!

The model~8! is exactly solvable by the Bethe ansatz7,8

for generalvs ,vt . However, for the purpose of calculatin
correlation functions, we take advantage of aspecial pointin
parameter space where the spin velocities are equal,
Dvs5vs2vt50.

Using a transformation to composite spin fields; u6

51/A2(us6ut) andf651/A2(fs6ft), the spin sector of
the Kondo-Heisenberg Hamiltonian is simplified to the for
H5H0

ZZ1DH0
ZZ1H' ;

H0
ZZ5

v̄s

2 E dxFP1
2 1S 11

Jz
f

2p v̄s
D ~]xf1!2G

1
v̄s

2 E dxFP2
2 1S 12

Jz
f

2p v̄s
D ~]xf2!2G , ~13!

DH0
ZZ5

Dvs

4 E dx$P1P21~]xf1!~]xf2!%, ~14!

H'5
J'

f

~pa!2E dx cos~A4pu2!

3@cos~A4pf1!1cos~A4pf2!#, ~15!

wherev̄5 1
2 (vs1vt). Note that theJz part of the interaction

has been completely absorbed into the kinetic-energy
~13! of the Hamiltonian in terms of the new fields,f6 .
Intuitively, a spin gap can be established due to theJ'

f inter-
action term cos(A4pu2)cos(A4pf1) in Eq. ~15!, where a
self-consistent expectation value can be obtained for
composite fieldŝcos(A4pu2)&Þ0 and^cos(A4pf1)&Þ0.
In contrast tô cos(A4pu2)cos(A4pf2)&50 ~sinceeiA4pu2

and eiA4pf2 are respective disorder/order parameters!.9

Therefore, for determining spin-gap physics of the fix
point, we rigorously need to keep only th
3-2
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BRIEF REPORTS PHYSICAL REVIEW B 64 033103
cos(A4pu2)cos(A4pf1) interaction term. An additiona
simplification ~which we justify later on! is obtained if we
neglect the velocity renormalization in Eq.~13! ~i.e., equiva-
lent to the anisotropicJz50 limit!. Thus, we obtain a decou
pling of the spin sector into two commuting sine-Gordo
type Hamiltonians,

H5E dx (
i 51,2

H vs

2
@~]xQ i !

21~]xF i !
2#1~21! i

Dvs

4
~]xF i !

3~]xQ i !1
J'

f

2~pa!2
.cos~A8pF i !J , ~16!

where, F i are newnonchiral fields combining the chira
components offs andft as follows:

F15
f11u2

A2
; F25

f12u2

A2
;

Q15
u11f2

A2
; Q25

u12f2

A2
.

In the limit Dvs50, the Hamiltonian~16! is equivalent to the
spin sector of the SU~2! Thirring model that is known to
have an exponentially small gap,5 as anticipated by the RG
arguments.2The spin-gap fixed point is perturbatively stab
with respect to all the interactions that were neglected
arriving at Eq. (16). In the ground stateA2pF j5pn, where
n is an integer. Thus

^cos~A2pF j !&Þ0, ^sin~A2pF j !&50 ~17!

and there is an additional discrete Z23Z2 symmetry corre-
sponding to the signs of^cos(A2pF j )& that is spontaneously
broken in the ground state, and to the (F1 ,F2) separation
~the later is only an approximate symmetry that is broken
JzÞ0 coupling terms!.

A spin-gapped one-dimensional system is expected
manifest enhanced pairing and CDW correlations. Furth
more, the generalized Luttinger’s theorem1 mandates the ex
istence of a gapless CDW mode at wave vector 2kF* 52kF

1(p/b). As we shall see, these intuitive expectations
satisfied in a rather nontrivial manner.

The rigidity of thecompositebosonic fields, enforced in
Eq. ~17!, implies that the correlation function of any ord
parameter for which the spin part cannot be written purely
terms of cos(A2pF j ) is exponentially decaying, i.e., is in
coherent. In particular, the usual one-dimensional electr
gas singlet charge-2e pairingD5(1/A2)(R↑

†L↓
†1L↑

†R↓
†), and

the 2kF CDW ÔCDW5@(1/A2)(R↑
†L↑1R↓

†L↓)1h.c.# are in-
coherent.

Instead, there are gapless modes of acompositenature: A
composite odd-parity/odd-frequency singlet
03310
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Ôc2SP~x!5
2 i

2
@Ra

†~s¢ s2!abLb
† #•t¢,

;e1 iA2puc^cos~A2pF1!cos~A2pF2!&~21! j

~18!

and a composite CDW~a charge-0 spin-0 operator!

Ôc2CDW~x!5nW 1DEG•t¢

;e1 iA2pfc^cos~A2pF1!cos~A2pF2!&

3e1 i (2kFx1p j ), ~19!

where it is the staggered component of the impurity s
chain,t¢→(21) jn¢t , which is contributing the gapless mode
with power-law correlations.

The staggering factor (21) j in the corresponding corre
lation functions is effectively modulating the usual corre
tions by the reciprocal lattice vectorp/b of the spin chain.
As a result, the composite gapless modes are found at
usual finite momentum values: the composite singlet p
with momentump/b ~and there is nok50 singlet pairing
with charge 2e), and the gapless composite CDW mode
momentum 2kF* 52kF1(p/b) ~and not at 2kF of the bare
1DEG!. The pure charge sector is not affected, as is e
denced by the fact that the gaplessh2pairing mode (hR

5R↑
†R↓

† and hL5L↑
†L↓

†) remains at momentum 2kF . The
gapless modes are inter-related by the commutation rela

@Ôc2CDW ,hR2hL /A2#52Ôc2SP. An extended discussion
of these order parameters can be found in Ref. 6.

To summarize, we developed a solution of the on
dimensional Kondo-Heisenberg model at weak excha
coupling JK!JH ,EF , for a special value of parametersvs
5vt . We were able to explicitly demonstrate the spin g
and characterized the gapless modes properties of the
point previously alluded to by perturbative RG arguments

The spin-wave velocitiesvs and vt in general are not
identical. What then are the limits of validity~and hence the
significance! of our solution? First, the spin gap guarantie
that our fixed-point solution is perturbatively stable forDvs
5vs2vtÞ0. Moreover, unless there is a phase transit
driven by largeDvs anisotropy~to a yet another unknown
phase!, our results~gapless modes identification! in the limit
Dvs50 areuniversal for all Dvs so long as the weak cou
pling condition JK!vt ,vs is maintained. The same argu
ment applies to all other approximations we undertook
arriving at Eq.~16!.

The smallJK condition manifests itself through the coe
ficient (12Jz

f /2pvs) of the (]xf2)2 term in the Hamiltonian
~13!. It indicates that something may indeed breakdo
whenJz

f.2pvs ~Ref. 6!. Indeed, we remark in this contex
that Jz

f52pvs is the so-called ‘‘Toulouse-point’’ value on
which we further comment below. Therefore, the perturb
tive RG flows to ‘‘strong coupling’’ found in Ref. 2 should
be understood as being only to some intermediate coup
fixed point Jz

f,2pvs with a finite basin of attraction~the
true strongJK coupling limit of the K-H model is gapless10!.
3-3
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We now discuss the significance of our results in vario
context: In previous paper,3 a spin-gap phase of the Kondo
Heisenberg model~1! was found in another region of th
parameters space (JH!JK;EF); the so-called ‘‘Toulouse-
limit’’ solution. That solution has the same composite ord
parameters as the present one, but in addition it also
sesses gapless modes of the conventional CDW and e
parity singlet-pairingD order parameters. Hence, we co
clude that the ‘‘Toulouse point’’3 and the ‘‘zigzag ladder
limit’’ 2 spin-gap phases of the Kondo-Heisenberg model
distinct. An elaborate comparison and implications for t
general phase diagram of the Kondo-Heisenberg mode
presented elsewhere.6

The two-leg ladder system consists of twoequivalent
Hubbard-model chains that are coupled by single-part
hopping with amplitudet' . As is well known, the effect of
t' interaction can be treated exactly by introducing ‘‘bon
ing’’ and ‘‘antibonding’’ bands described by fermion field
cA,B51/A2(c16c2), wherec1,2(x) are fermion fields on
the legs$1,2% of the ladder. The bonding and antibondin
bands areinequivalent. In particular, there is a chemical po
tential differencemA2mB;t' . Consequently there coul
exists a range of doping for which, depending on model
rameters, holes may enter only into the antibonding b
~which becomes gapless!, while the bonding band remain
half filled and retains a Mott-Hubbard gap. In that range
doping, the Fermi energy lies in the gap of the bonding ba
and cuts only the antibonding band. As far as the low-ene
physics of such a state is concerned, the half-filled ban
equivalent to a Heisenberg chain of localized spins 1/2,$tW j%,
with effective antiferromagnetic couplingJH . On the other
hand, the gapless band represents a one-dimensional ele
gas~described by the HamiltonianH1DEG!,5 with an incom-
mensurate Fermi momentumkF . Hence, the only relevan
interaction between the two bands is spin-exchange inte
tion, JK.0. We conclude that in this particular dopin
nd

-
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range, the low-energy physics of the two-leg ladder is eff
tively captured by the K-H model~1!. The conditions under
which the above scenario is realized require an elabora
beyond the scope of this paper. The exact dependenc
model parameters$JH ,JK% on the original ladder parameter
$t,U,V,t'% is unimportant since, as noted in the introdu
tion, our analysis addresses general fixed-point proper
Consequently, we suggest that in the general phase diag
of doped ladder,4 the spin-gap region~labeled C1S0 in4!
should be divided in two: A certain low-doping region wit
only odd-w pairing, and a higher-doping region with conve
tional pair states as discussed, for example, in Ref. 4. C
sequently, the same would be true for the putative superc
ducting state in a system of coupled two-leg ladders.

A model of an incommensurate 1DEG coupled with
ladder environment11 was proposed in the context of strip
phases in HTc cuprates. In the case of a gapless spin-la
environment, if only spin-exchange interactions a
considered12 one arrives at the effective model given by E
~1!. Combining our analysis~where only odd-v pairing is
coherent! with the experimental observation that superco
ductivity in high-Tc cuprates is due tod-wave BCS paired
electron, we conclude that,within a stripe-state scenario,12

spin-exchange interactions are ruled out as a possible so
of the spin gap in high-Tc cuprates. While unrelated to cu
prates, our solution does indicates the possibility of mak
pure odd-time composite pairing superconductors by c
structing 2D or 3D weakly coupled arrays of the 1D cha
model ~1!.
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