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Transverse-optical Josephson plasmons: Equations of motion
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A detailed calculation is presented of the dielectric function in superconductors consisting of two Josephson
coupled superconducting layers per unit cell, taking into account the effect of finite compressibility of the
electron fluid. From the model, it follows that two longitudinal and one transverse-optical Josephson plasma
resonance exist in these materials for electric-field polarization perpendicular to the planes. The latter mode
appears as a resonance in the transverse dielectric function, and it couples directly to the electrical-field vector
of infrared radiation. A shift of all plasma frequencies and a reduction of the intensity of the transverse-optical
Josephson plasmon is shown to result from the finite compressibility of the electron fluid.
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[. INTRODUCTION plane. In this case the electric fields are perpendicular to the
planes. The electric field of a single plane with an akeand
In recent years the “second” Josephson plasma<harged with a positive char@gis constant in space, and the
resonancéJPR phenomenon has been studied theoreticallyfield lines are directed away from the plane. As a result the
and has been observed experimentaflyin double layer potential energy of a positive test charge with chaggie
high-T.. cuprates. Originally the prediction of a transverse-this field decreasedinearly as a function of the distanck
optical Josephson resonance and the associated secdndm the planeE,,(z)=—4mqQZA. The potential energy
JPR in layered superconductors with two layers per unistored in the field of the charge fluctuatio@g, andQ,, of a
cell appeared in a short conference papexxplaining pair of planes at a distanaix,,—x,| is half this amount,
briefly the main theoretical ingredients and results. One of
the reasons for revisiting this problem is that experiment- [Xm—Xn| QmQn
ally the transverse-optical JPR was obseffedin Ve(Qm,Qn)=— — 2c, @
SmlLg ¢Srh ,Cu0, s with an oscillator strength much
smaller than expected on the basis of the simple expressiomhere Cy=A/(4d) is the capacitance of two planes at a
derived in Ref. 2. Following a suggestion by Bulaevskii, thedistance corresponding to the lattice parameltefhe total
expressions for the dielectric function will be rederived in potential energy stored in the fields of the charge fluctuations
this manuscript, while taking into account an extra term repis just the linear superposition of the contributions from all
resenting the finite compressibility of the electron fluid. Thepairs of planes in the crystal. In this context it is important to

central result is that the dielectric function is point out that the planes considered here are truly two-
dimensional2D) in the electrodynamical sense: Because the
1 702 Zw? charge has no spatial degrees of freedom perp(.and.ic_ular to the
== > =7 planes(other than tunneling between planethe individual
€(0) w-of w’-og planes provide no channel for metallic screening for fields

o . ] along thec axis. This is quite different from the situation
which is the same expression as in Ref. 2, except that thencountered in classical Josephson junctions between thick
volume fractionss; andxy have been replaced wigffective  metallic layers. In the latter case individual plamzsscreen
weight factorsz, andz,=1-z;, which depend on the vol- the electric fields polarized along tleedirection.
ume fractions, the plasma frequencies and wy , and the The second source of potential energy is the electronic
compressibility. compressibility. This is due to the fact thatdN electrons

Let us consider the optical response function for a mateare added to a plane, the free energy increases with an
rial with two superconducting layers per unit cell. The latticeamountsF = u N+ 6N?/(2Kon?), whereu, Ko, andn are
constant along the direction, perpendicular to the planes, is the chemical potential, the electronic compressibility, and the
d. The layers are grouped in pairs, with interlayer distanceglectron density, respectively. For a Fermi gadé;n®

x,d andxkd alternating &, + xx=1). Hence the coordinate  =4n/du corresponds to the density of states at the Fermi
of the mth plane normalized by the lattice constantxjs  level. In the context of “excitons” in two-band supercon-
=m/2 if mis even, an&,,=(m—1)/2+x, if mis odd. ductors, the compressibility term was first considered in

The charge fluctuation of each plane is characterized by @966 by Leggett’ In neutral fluids the compressibility
charge amplitud®),,, and a phase,,, wherem s the layer  causes propagation of sound, whereas for electrons it causes
index, andd is the length of the unit cell along the the dispersion of plasmons. Plasma dispersion of the JPR in
direction? The discussion in this paper will be restricted to the cuprates has been described by Koyama and TacHhiki.
the charge fluctuations perpendicular to the planes, correpart the compressibility can be motivated by calculations
sponding to a homogeneous charge distribution within eachased on the random-phase approximation, showing a finite
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dispersion of the charge-density fluctuations in single fgyer Il. EQUATIONS OF MOTION

. 3 . . _
and bilayet® cuprates and of spin, amplitude, and phase col Working in the linear-response regime, we obtain the

lective modesg? It has been shown by Artemenko and . . . .
Kobel'’kov that the frequency of the resonance, its disper—egu‘?‘t'onzS of _mot|on for _thenternal c_harge acceleration
sion, and its damping are strongly influenced by the presenc @m/dt” subject to the fields of the internahd external
of quasiparticles at finite temperatdfeAlthough this type ~ Charges

of calculation demonstrates that the Pauli exclusion principle

causes a finite compressibility of the electron fluid leading to ) _
a finite dispersion of the collective modes, weak-coupling i | “d%Q,,
approaches are not well supported due to the strong elec-<“~0 de2
tronic correlations in these materials. We therefore treat the

gl(atcr:]t_ronic compressibility as a phenomenological parameter  —J™"%|x . — . 1| — I |Xy— Xm— 1|} QL+ 2yo(IM Tt
in this paper. . . :

The terms in the free energy proportionald only shift +JIm-1) Q=270 Qs 1= 2709 1Qu1 - 5
the equilibrium density. In harmonic approximation, the
charge fluctuations around equilibrium follow from the qua-
dratic terms

*

= _; {[‘]m+1+‘]m—1]|xn_xm|

Due to the lattice periodicity, the solutions have to be plane
waves with a wave vectok= ¢/d. Therefore we can use

(Qule)? v, generalized charge coordinaté& and S defined asQ;n,
VkQm =5~ 5~ 2 (2) =SéM, Q,m+1=ReM? to describe the charge fluctuations
2Kon?A  2Co in the even and odd planes. The Josephson coupling energies
Jam+1l=| andJ5M_,=K characterize the two types of junc-

For later convenience the dimensionless constagt
=1/(47wde’Kyn?), proportional to the 2D bulk modulus, is
introduced here to characterize the compressibility. In Ref. %
we left these terms out of consideration.

We calculate the longitudinal dielectric function follow-
ing the usual procedure of adding external char@ésto
each layer, distributed such as to provide an external electri
field D (the displacement fieJdbf the plane-wave form with . I
wave vfactork. Tphedefinitiongf the diglectric constattim-  capacitance;y= 630/(477dse2Ks°n2) for the compressibility,
plies that the internal and external charge distributions inter? = I €au/ € @nd Zx =Xk €5,/ € (together satisfying+2,
act only via the electromagnetic field. Hence, the interactiori- 1) for the weight factors, and &, =x / ex +x, / €} for the
between internal and external charge is described by th@verage dielectric constant. We are now ready to formulate
Coulomb term, Eq(1), but the external charge does not enterthe equations of motion for the generalized coordin&tasd
the compressibility term, Eq2). The charge dynamics en- Rfor each wave numbe= ¢/d.
ters via the Josephson couplidd ! between each set of
nearest-neighbor planes

tions.

It is quite easy to extend this to the situation where we
ave a lattice polarizability characterized by dielectric con-
stantse; and e; for each type of Josephson junction. This
corresponds to the transformatiddy—C,,, Yo— 7, X
—2z,, andxx—2zx in Egs.(4) and (5). Here the following
Gefinitions have been use@,, =Ae;, /4md for the average

2
hw ) .
2C,, 1 —1 S'=—2, €*|n|(1+K)—|n—z]I

Hkin:_‘]m+l COS(¢m— ¢m+1)- (3) av‘ o ] En: {| |( ) | I|
Our aim is to determine the dielectric constant and collective . in
modes in the absence of external dc magnetic fields. For this —[n+z(K}S _; e’™n+z[(1+K)—=[n]l
purpose we will need the equations of motion for ifiternal ‘ _ _
charge acceleratiod®Q;,/dt? subject to the fields of the in- —|n+1|K}IR+2y(1 +K)S—2y(1+e '?K)R,

ternal and external chargeg;)}ﬂzQimnL Q:,. These follow
from the Hamiltonian

2
hw . )
ZCaU{e—*] R'=—; e'P™|n|(1+K)—|n+z]l

|Xm_xn| i e i e Yo i
H=~ 2 5 (Qn+Qm(Qht QD+ 2 55 (Qn*
—|ln— t_ iongln_— —
-3 a0 cos b dmir)- @ In= 2 KIR' =2 &"{|n—z|(1+K)~n]i

m
, —|n=1|K}S'+2y(1 +K)R = 2y(1 +€'?K)S.
Here the phaseg,, and the internal charge3;, are conju- ©6)
gate variables, which are subject to the Hamilton-Josephson
equations of motion: f{le*)d ¢, /dt=9H/4Q;,, and
(hle*)dQ,/dt=—dH/d¢,,, wheree* =2e is the charge of The convergent lattice sums overcan be replaced with the
a Cooper pair. identities
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A (1-eT)x—1 the voltages at the positions of the planes. Now, using Eg.
2 In+ ptxle'”‘ﬁ:e"p"sw- (7) (1) we observe that the voltages in each plane are

Before we continue it is convenient to partly diagonalize
Eq. (6), by transforming the expressions to new generalized
charge coordinate® and P, defined asQ=S+R and P
=€'?S+R, with identical transformations for the internal -1
and external charges. We will see later tigaind P corre- V2m+1=C— > (Qapln—m—2z,|+Qppsq/n—m)).
spond to charge fluctuations across the barriers of iypad av. n
I, respectively. The reverse transformations &e(Q
—P)/(1-¢ ). andR=(P—_e'¢Q)/(_1—e'¢). In addition it \ye consider a charge oscillation with wave vedter $/d.
will turn out to be convenient to introduce the Josephson]-he charges in the alternating layers @gn:eim/)st and

plasma-resonance frequencies characteristic of the twcz) typ%f‘zﬂ+1=ei”¢’Rt. After summation over the index the volt-

of junctions wﬁzzKK(e*/ﬁ)ZCayl, and o ages in the zeroth and first plane are
=z,|(e*/ﬁ)2CaU1 and the corresponding local charge re-
sponse functiongy=1— w3/ w?, and ¢, =1— w?/ w?. With
the help of the identities, Eq7), the equations of motion of
the external and total generalized charge coordinates become

Q°=exQ'—2yz¢ 'wiw [Q'—P'e™'*? cog 4/2)], vie 1
-

-1
V2m:C_ En: (QznIn=m[+Qzp41|n—mM+7]),
av

11

Vo= otcosg—1) (5 T Rz ze ),

W{S‘(anLz,ei‘/’)JrR‘}, (12)

Pe=€P'-2yz 'wfw [P~ Q'e'?? cog ¢/2)]. (8)
. . . with similar expressions for the external charges for which
We see that if the compressibility terg=0, these equations ¢ st be replaced wittS,. The electric fields integrated
of motion are already diagonal, corresponding to two nonycnveen the nearest-neighbor planes are

dispersing longitudinal plasmons at frequencigsand o, .

It is also immediately clear from this th& and P corre- md
spond to the charge fluctuations across junctions of tpe f
andl, respectively. Ify is finite, the equations of motion are -~ (
coupled, and the plasma frequencies will have a finite dis-
persion as a function dé= ¢/d.

E(2)dz=Vyn—Von-1=Cqle™?(e "*—1)z.Q",

m—z)d

O E(2)d2= Vg 3~ Vam=Co (e 14— 1),
§ (2)dz=Voms 1~ Vo=CyeM(e )z, P,
m

IIl. CALCULATION OF THE DIELECTRIC FUNCTION (13

We are interested in the response of the total electric fielgyjth similar expressions fob, for which C,, must be re-
E to an external field, which is polarized along theaxis,  placed withC,. In the limit k—0 the macroscopic electric
and which varies harmonically in time and space alongethe field is just the sum of the two integrals divided by the lattice
direction, i.e., parameted. We conclude from this that fdc— 0 the dielec-
N n tric function is
D(r,t)=Dyze'kz= b, 9)

The dielectric functiore(k, w) is calculated from the defini- JdD(z)dz
tion D=€E. We will employ the fact thaD=VV® and E 0

=VV. V, V/, andV® are the total, internal, and the external dE(z)dz
voltages, respectively. Thus we need to arrange the external 0
charges in a such a way as to guarantee that the external field

D(z) has a plane-wave form. Farcoinciding with the co- From Eq.(10) we see thaP®= Q¢ in the limit k—0. We

oidinatez of iztr:be conducting planes, this requires thatan combine this identity with the equations of motion, Eg.
smr1/Vom=€"%1?. We sat|sf_y t?lserequilzriment by gil;/lng the (8), to prove thaIPt/Qtz{eK—Zy(wﬁlzKer,z/z,)w*Z}/{e,
external charges the ratiQR®/S*={e'%?—z,—2ze€'*}/{1 —2y(02/ 24+ 022)) 02} that P/P'= ¢, — {(ex

_ izyp_ —lizg ¢ H H H
zxe'“1?—ze '*k?} For the generalized coordinates this — &)2y02/z ) exw?—2y(w3lz + 0?z)}, and QY/Q!

7« Q%+z,P¢
e(w)= = €4 : - (14)
zcQ'+z P

implies = ex—{(&1— ) 2y0rlzH{ €0~ 2y(wil 2+ wil2)}.
Pe 2 sinz4/2) » The dielectric function is now easily obtained,
oz sz (0 2P
1 _ 1 0w (0 °—wT) 15
For the calculation o€ we need to calculate the macroscopic €(w) €y (w’—0?) (0’ 03)

average ok andD, corresponding to the macroscopic elec-
tric and displacement fields. For this it is sufficient to know with the definitions
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~ (1), (1Y), Together, Eqs(lQ) and_(_20) form the central result of this
Wk=|5 + i Wkt 5 + Z—I) ) paper. From the intensities of~the exp~er|mental loss functions
the effective volume fractiongs and z, can be extracted.
. \/ E+ EAE (}4_ Z) .2 2 (2ywgw)? These can be used to calculateand this in turn can be used
2z K 27 7)™ 2z to determine the density of states
;)Iz:(i k2 w§+(3+1>w|2 omn__t 1 (21)
2 2z I Amxde? Y
2 2
- \/ (1+ l)wﬁ_(l+ Z)wf + M or, usingKon?=an/du, the compressibility. Once, and
2 X 2 2 s wy have been measured, apchas been calculated from the
B 2y\ , 2y| , weight factorsz, andz, using Eq.(20), it becomes possible
=\lz+ Z) o t| 2t Z_|) ;. (16)  to make two further deductions, namely, the determination of

wk and w; using
Here we have adopted the convention for labeling the two

plasma resonances, such thaalways refers to the highest T2 72
| ) 2 ZK WK T W)
plasma-resonance frequency. w2 =
K ZK+ 2’)/ 2
JV. (iENTfAL RESULT Z)ﬁ-Z},Z 4(27)20)%(1)'2
Provided thatw, < wy<wg, it is always possible to ex- = 2 1- (2¢21+27) (92— 2)? '
presswt as a weighted average of the two longitudinal fre- o
guencies o~
~2_T 2,772 w2= Z wK+w|
WT=ZK 0] T2 0k, 17 'z 42y 2
with weight factors satisfyingx+z,=1. The latter are no ~p ~3 2202
longer the volume fractions, andz., as in Ref. 2. Instead Sl S \/ _ (2y)?wgor 22)
they depend on the volume fractioasd on the microscopic 2 (zz)+27) (02— 0d)?)’

electronic parameters characterizing the two types of junc-
tions. The effective fractions can be calculated by invertingfrom which we can calculate directly the Josephson coupling

the above relation, i.e., using energies
s ~2__ "2 ~2_~2
Zx = (wk ~ 07)/ (i~ o). (18) €a | Rk 2 € | W) 2
As a result’ we can write the inverse dielectric function, Eq. K= 4md | e* and | = 4md | ex | @3
(15), as a linear superposition of two plasma resonances
€ 0% Zxw? V. EVOLUTION OF THE OSCILLATOR STRENGTH
(19 AS A FUNCTION OF y

€(0) w—a? w—w?
For the analysis of experimental data, E(¢<9) and(20)
suffice to deduce the microscopic parametgks, andKon?,
i.e., the two Josephson energies and the compressibility fac-
tor. To predict the plasma-resonance frequenaies ,,
K= 2 2202427+ 477) (22t 27) (02— D)2 and Z)K', we can use Eq(16). The intensities of.the two
KaTeyTay K21+ 27) (wg — o] peaks in the energy-loss function +nl/e(w) are just the
29(z¢z+ ) ;)iJrz)lz weight factorsz, andz . Their dezp.end'ence on the micro-
— (20 scopic parameter®, , wg, andKyn“ is given by the expres-

which is the same expression as in Ref. 2, exceptzhand
zx have been replaced witffectivevolume fractions

5 1 (ZK 2)(zxz +2y) B 4(2y)?wiw?

2¢z+2y+4y? k- o} sions
~ 1 (zx— Z,)(a)K w,) Zy(wK/ZK-I-w'/Z,)
ZK:1_Z|:_+ > 2- (24)
2 2y\ , 7\ LP (2yexe)
2 1+ —|wi—| 1+ —|0?| +4—
Z Z ZxZ
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1.00 UPTTIEEE 10— e(w). From Eq. (15) it follows that S;=(w2— w?)(w?
g — w?)/w%. With the help of this, it follows that the depen-
075k 221 ! dence ofS; on the microscopic parametets,, wy, and
; odo=2 z,/2=1/9 Kon2 |S
Zk o/o=2
z 2 2\2

0.50 50 e-- 2 (g —w)(Z2k+27)

5 0.50 o gT ST: Ky | 14K . (25)

z|+—) wit| ¢+ = | 0?
025 025} 2K 4
In Figs. 1 and 2 the plasmon strengthsandz, and the pole
000 ) . : 000 x.‘ strengthS; are displayed as a function gffor a few differ-
Toa 05 oo L " 010 0.15) 10,20 ent sets ofwy, w,, and the volume fraction .
FIG. 1. Oscillator strengths as a function pf VI. DISPERSION OF THE PLASMA MODES

In the previous section we found for the double layer

The compressibility is characterized by the dimenSionles%upratestwo longitudinal plasma modes with the electric-

paramet§w. The most |mportant effect of this eztral term is field vector polarized along thedirection. The dispersion of
that the intensity of the highest plasma resonasageis re-

_ ! the longitudinal modes can be calculated by realizing that for
duced compared to what it would have beery iivere Zero: longitudinal modesD =0 by virtue of the fact that longitu-
Itis clear from Eq(24) that the effective volume fractiony  dinally polarized free photons don't exist. Hence in E8).
is smaller tharg . the external charge coordinat®@$= P®=0. The correspond-

The oscillator strength of the transverse-optical plasmoring 2x 2 matrix is easily solved, providing the two longitu-
follows directly from the pole strength of the pole neafin dinal branches

2 2
~2 Y 2 1 Y 2 \/ 1 Y 2 1 Y 2 (2’}/(1)K(1)|) kzd
==+ =i+ =+ =] w?+ —+ i+ = 4+ ———"cod—
P71 27 7 ) PK T 2 z|)w' 2z KT \27 g™ 2z, cos’ 2"
. (1Y .Y \/ y 1y LI° Qyoke)®  kd
2 [ oY) o (2 YY) 2 oY) o [2Y) o (EYwkw) KU
o] 2+ZK wgt+ 2—|-ZI o] 2+ZK Wi 2-|-ZI o] 27, 5 (26)

An example of this dispersion is given in Fig. 3. In Fig. 4 the larized pole of the dielectric function ai=0, representing
oscillations of these modes are sketched. The longitudinahe superconducting dielectric response for fields and cur-
modes in the left-hand side of the figure have a finite disperrents polarized along the axis and with the direction of
sion, provided thaty# 0, in other words, if the electron gas propagation parallel to the planes. In the right-hand panel of
has finite compressibility. Fig. 4 the oscillations of these modes are sketched. The
In addition to the two longitudinal plasma modes there istransverse mode is coupled to electromagnetic radiation for
one transverse-optical plasma mode amuk transverse po- long wavelengths, giving rise to coupled plasma-polariton

1.00 " 14
2,/2=0.5 ]
075} 0.75[ onfo=1.33 ~12r
z, g 1
N T z, o ®,/2rc=8.0 cm
; ——-5; > .
050} 050 1 210+ ®/2rc=6.0 cm !
g 9=0.268
o
o
LC

2,=0.33

0251 0.25

[o 4]
T

0.0 I . . 2 X 0
k,d n
FIG. 2. Oscillator strengths as a function f FIG. 3. Dispersion of the longitudinal JPR’s.
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o | ! o =  E—
I —— “ 30¢ o /2nc=8.0 om’
A A A A A A A A A A . /2rc=6.0 cm”
I ] [ — ™ =
T £ g=0.265
. A A A A A A S 20f 7=0.33
—— >
A A A A A A A A A A g d=6.10° cm
| ! —— 3
k— g 10F
g [ W7 w
A A A A A A A A A A A A
[ ] [ |
VY VY VYV 0 6
— — 0 kd 3.10
TIAAAAAAI ENWWW W "
VOV FIG. 5. Dispersion of the transverse JPR’s for small valudsg of
e EE— (about one millionth of the Brillouin zone

wavelength limit. The lower branch is novel. It corresponds
to a real polarization wave, and these modes can be used to
fluctuation amplitudesindicated by gray scalg®f the two sets of  conyert electromagnetic radiation into microscopic currents,
transverse and longitudinal modes with polarization along ¢he or vice versa.

o_Iirec_tio_n. _On the right-hand side of each plot the voltage distribu- Finally it should be added that in the short-wavelength
tion is indicated. limit, the presence of finite compressibility gives rise to non-

modes instead of separate photons and transverse-opticga:lwJII dependence of(k,«) on the wave vectok, which for

: | . e transverse modes are parallel to the planes. This effect
plasma modes. The plasr_na—po!anton Q|spers_|on .fOHOWS fronE)ecomes prominent on short wavelengths of the order of
Maxwell's equations in dielectric media and is given by theI

. . ; attice spacings. Figure 5 was sketched on the scale aff
Eel;;mon between wave numblexin the solig and frequency the order of a few inverse millimeter. On the scale of a few
w

inverse angstrom thk dependence oé(k,w) will give rise
to finite k dispersion ofw,(k), w(k) , andwg (k).

FIG. 4. Snapshot of the currenfarrows and planar charge

k?c?’= e(w) w?. (27

With the dielectric constant given by E(L5) we get VIl. CONCLUSIONS

i+ wg+kc?
2

_[ superconductors consisting of two Josephson coupled super-
w(k)= X . U
conducting layers per unit cell, taking into account the effect
of finite compressibility of the electron fluid. In this model
\/ two longitudinal and one transverse-optical Josephson
= plasma resonance exist. The latter mode appears as a reso-
nance in the transverse dielectric function, and it couples
(28 directly to the electric-field vector of infrared radiation. A
This dispersion is sketched in Fig. 5. We see that there arglift Of all plasma frequencies and a reduction of the inten-
two plasma-polariton branches. The lowest starts at freSity Of the transverse-optical Josephson plasmon is shown to
quency w, in the long-wavelength limit(small k) and result from the finite compressibility of the electron fluid.
quickly merges with the transverse-opti¢®lO) plasma fre-
guencywr as the wavelength is reduced belofw, which
is of the order of a millimeter ifo/27 is of order 300 GHz. We wish to thank L.N. Bulaevksii for drawing our atten-
At these shorter wavelengths the character is almost purelyon to the dispersion term. This investigation was supported
the TO JPR. The upper branch corresponds to a conventionbl the Netherlands Foundation for Fundamental Research on
transverse Josephson plasrfowithout the adjective “op-  Matter (FOM) with financial aid from the Nederlandse Or-
tical”) as it merges with the light line in the short- ganisatie voor Wetenschappelijk OnderzgbiVvO).

) An expression was derived for the dielectric function of

=~ =~ 2
0+ wz+k3c?
2

1/2
—wlws— kzczw-zr] .
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