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Transverse-optical Josephson plasmons: Equations of motion

D. van der Marel and A. A. Tsvetkov
Materials Science Center, Laboratory of Solid State Physics, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands
~Received 17 November 2000; published 22 June 2001!

A detailed calculation is presented of the dielectric function in superconductors consisting of two Josephson
coupled superconducting layers per unit cell, taking into account the effect of finite compressibility of the
electron fluid. From the model, it follows that two longitudinal and one transverse-optical Josephson plasma
resonance exist in these materials for electric-field polarization perpendicular to the planes. The latter mode
appears as a resonance in the transverse dielectric function, and it couples directly to the electrical-field vector
of infrared radiation. A shift of all plasma frequencies and a reduction of the intensity of the transverse-optical
Josephson plasmon is shown to result from the finite compressibility of the electron fluid.
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I. INTRODUCTION

In recent years the ‘‘second’’ Josephson plasm
resonance~JPR! phenomenon has been studied theoretica
and has been observed experimentally1–8 in double layer
high-Tc cuprates. Originally the prediction of a transvers
optical Josephson resonance and the associated se
JPR in layered superconductors with two layers per u
cell appeared in a short conference paper,2 explaining
briefly the main theoretical ingredients and results. One
the reasons for revisiting this problem is that experime
ally the transverse-optical JPR was observed7,8 in
SmLa0.8Sr0.2CuO42d with an oscillator strength much
smaller than expected on the basis of the simple expres
derived in Ref. 2. Following a suggestion by Bulaevskii, t
expressions for the dielectric function will be rederived
this manuscript, while taking into account an extra term r
resenting the finite compressibility of the electron fluid. T
central result is that the dielectric function is

1

e~v!
5

z̃Iv
2

v22ṽ I
2

1
z̃Kv2

v22ṽK
2

,

which is the same expression as in Ref. 2, except that
volume fractionsxI andxK have been replaced witheffective

weight factorsz̃I and z̃K512 z̃I , which depend on the vol
ume fractions, the plasma frequenciesv I and vK , and the
compressibility.

Let us consider the optical response function for a ma
rial with two superconducting layers per unit cell. The latti
constant along thec direction, perpendicular to the planes,
d. The layers are grouped in pairs, with interlayer distan
xId andxKd alternating (xI1xK51). Hence thez coordinate
of the mth plane normalized by the lattice constant isxm
5m/2 if m is even, andxm5(m21)/21xI if m is odd.

The charge fluctuation of each plane is characterized b
charge amplitudeQm and a phasefm , wherem is the layer
index, and d is the length of the unit cell along thec
direction.9 The discussion in this paper will be restricted
the charge fluctuations perpendicular to the planes, co
sponding to a homogeneous charge distribution within e
0163-1829/2001/64~2!/024530~7!/$20.00 64 0245
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plane. In this case the electric fields are perpendicular to
planes. The electric field of a single plane with an areaA and
charged with a positive chargeQ is constant in space, and th
field lines are directed away from the plane. As a result
potential energy of a positive test charge with chargeq in
this field decreaseslinearly as a function of the distanced
from the plane:Epot(z)524pqQz/A. The potential energy
stored in the field of the charge fluctuationsQm andQn of a
pair of planes at a distanceduxm2xnu is half this amount,

VC~Qm ,Qn!52
uxm2xnuQmQn

2C0
, ~1!

whereC05A/(4pd) is the capacitance of two planes at
distance corresponding to the lattice parameterd. The total
potential energy stored in the fields of the charge fluctuati
is just the linear superposition of the contributions from
pairs of planes in the crystal. In this context it is important
point out that the planes considered here are truly tw
dimensional~2D! in the electrodynamical sense: Because
charge has no spatial degrees of freedom perpendicular to
planes~other than tunneling between planes!, the individual
planes provide no channel for metallic screening for fie
along thec axis. This is quite different from the situatio
encountered in classical Josephson junctions between t
metallic layers. In the latter case individual planesdo screen
the electric fields polarized along thec direction.

The second source of potential energy is the electro
compressibility. This is due to the fact that ifdN electrons
are added to a plane, the free energy increases with
amountdF5mdN1dN2/(2K0n2), wherem, K0, andn are
the chemical potential, the electronic compressibility, and
electron density, respectively. For a Fermi gas,K0n2

5]n/]m corresponds to the density of states at the Fe
level. In the context of ‘‘excitons’’ in two-band supercon
ductors, the compressibility term was first considered
1966 by Leggett.10 In neutral fluids the compressibility
causes propagation of sound, whereas for electrons it ca
the dispersion of plasmons. Plasma dispersion of the JP
the cuprates has been described by Koyama and Tachiki.11 In
part the compressibility can be motivated by calculatio
based on the random-phase approximation, showing a fi
©2001 The American Physical Society30-1
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dispersion of the charge-density fluctuations in single laye12

and bilayer13 cuprates and of spin, amplitude, and phase c
lective modes.14 It has been shown by Artemenko an
Kobel’kov that the frequency of the resonance, its disp
sion, and its damping are strongly influenced by the prese
of quasiparticles at finite temperature.15 Although this type
of calculation demonstrates that the Pauli exclusion princ
causes a finite compressibility of the electron fluid leading
a finite dispersion of the collective modes, weak-coupl
approaches are not well supported due to the strong e
tronic correlations in these materials. We therefore treat
electronic compressibility as a phenomenological param
in this paper.

The terms in the free energy proportional todN only shift
the equilibrium density. In harmonic approximation, t
charge fluctuations around equilibrium follow from the qu
dratic terms

VK~Qm!5
~Qm /e!2

2K0n2A
5

g0

2C0
Qm

2 . ~2!

For later convenience the dimensionless constantg0
51/(4pde2K0n2), proportional to the 2D bulk modulus, i
introduced here to characterize the compressibility. In Re
we left these terms out of consideration.

We calculate the longitudinal dielectric function follow
ing the usual procedure of adding external chargesQm

e to
each layer, distributed such as to provide an external ele
field D ~the displacement field! of the plane-wave form with
wave vectork. Thedefinitionof the dielectric constant16 im-
plies that the internal and external charge distributions in
act only via the electromagnetic field. Hence, the interact
between internal and external charge is described by
Coulomb term, Eq.~1!, but the external charge does not en
the compressibility term, Eq.~2!. The charge dynamics en
ters via the Josephson couplingJm

m11 between each set o
nearest-neighbor planes

Hkin52Jm
m11 cos~fm2fm11!. ~3!

Our aim is to determine the dielectric constant and collec
modes in the absence of external dc magnetic fields. For
purpose we will need the equations of motion for theinternal
charge accelerationd2Qm

i /dt2 subject to the fields of the in
ternal and external chargesQm

t 5Qm
i 1Qm

e . These follow
from the Hamiltonian

H52 (
m.n

uxm2xnu
2C0

~Qm
i 1Qm

e !~Qn
i 1Qn

e!1(
m

g0

2C0
~Qm

i !2

2(
m

Jm
m11 cos~fm2fm11!. ~4!

Here the phasesfm and the internal chargesQm
i are conju-

gate variables, which are subject to the Hamilton-Joseph
equations of motion: (\/e* )dfm /dt5]H/]Qm

i , and
(\/e* )dQm

i /dt52]H/]fm , wheree* 52e is the charge of
a Cooper pair.
02453
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II. EQUATIONS OF MOTION

Working in the linear-response regime, we obtain t
equations of motion for theinternal charge acceleration
d2Qm

i /dt2 subject to the fields of the internaland external
charges

22C0H \

e* J
2

d2Qm
i

dt2
52(

n
$@Jm

m111Jm21
m #uxn2xmu

2Jm
m11uxn2xm11u2Jm21

m uxn2xm21u%Qn
t 12g0~Jm

m11

1Jm21
m !Qm

i 22g0Jm
m11Qm11

i 22g0Jm21
m Qm21

i . ~5!

Due to the lattice periodicity, the solutions have to be pla
waves with a wave vectork5f/d. Therefore we can use
generalized charge coordinatesR and S defined asQ2m
5Seimf, Q2m115Reimf to describe the charge fluctuation
in the even and odd planes. The Josephson coupling ene
J2m

2m115I andJ2m21
2m 5K characterize the two types of junc

tions.
It is quite easy to extend this to the situation where

have a lattice polarizability characterized by dielectric co
stantse I

s and eK
s for each type of Josephson junction. Th

corresponds to the transformationC0→Cav , g0→g, xI
→zI , and xK→zK in Eqs. ~4! and ~5!. Here the following
definitions have been used:Cav5Aeav

s /4pd for the average
capacitance,g5eav /(4pde2K0n2) for the compressibility,
zI5xIeav

s /e I
s and zK5xKeav

s /eK
s ~together satisfyingzK1zI

51) for the weight factors, and 1/eav
s 5xK /eK

s 1xI /e I
s for the

average dielectric constant. We are now ready to formu
the equations of motion for the generalized coordinatesSand
R for each wave numberk5f/d.

2CavH \v

e* J 2

Si52(
n

eifn$unu~ I 1K !2un2zI uI

2un1zKuK%St2(
n

eifn$un1zI u~ I 1K !2unuI

2un11uK%Rt12g~ I 1K !Si22g~ I 1e2 ifK !Ri ,

2CavH \v

e* J 2

Ri52(
n

eifn$unu~ I 1K !2un1zI uI

2un2zKuK%Rt2(
n

eifn$un2zI u~ I 1K !2unuI

2un21uK%St12g~ I 1K !Ri22g~ I 1eifK !Si .

~6!

The convergent lattice sums overn can be replaced with the
identities
0-2
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(
n

un1p6xueinf5e2 ipf
~12e7 if!x21

12cosf
. ~7!

Before we continue it is convenient to partly diagonali
Eq. ~6!, by transforming the expressions to new generaliz
charge coordinatesQ and P, defined asQ5S1R and P
5eifS1R, with identical transformations for the interna
and external charges. We will see later thatQ andP corre-
spond to charge fluctuations across the barriers of typeK and
I, respectively. The reverse transformations areS5(Q
2P)/(12eif), andR5(P2eifQ)/(12eif). In addition it
will turn out to be convenient to introduce the Josephs
plasma-resonance frequencies characteristic of the two t
of junctions vK

2 5zKK(e* /\)2Cav
21 , and v I

2

5zI I (e* /\)2Cav
21 and the corresponding local charge r

sponse functionseK512vK
2 /v2, and e I512v I

2/v2. With
the help of the identities, Eq.~7!, the equations of motion o
the external and total generalized charge coordinates bec

Qe5eKQt22gzK
21vK

2 v22@Qi2Pie2 if/2 cos~f/2!#,

Pe5e I P
t22gzI

21v I
2v22@Pi2Qieif/2 cos~f/2!#. ~8!

We see that if the compressibility termg50, these equations
of motion are already diagonal, corresponding to two n
dispersing longitudinal plasmons at frequenciesvK andv I .
It is also immediately clear from this thatQ and P corre-
spond to the charge fluctuations across junctions of typK
andI, respectively. Ifg is finite, the equations of motion ar
coupled, and the plasma frequencies will have a finite d
persion as a function ofk5f/d.

III. CALCULATION OF THE DIELECTRIC FUNCTION

We are interested in the response of the total electric fi
E to an external fieldD, which is polarized along thec axis,
and which varies harmonically in time and space along thc
direction, i.e.,

DW ~rW,t !5D0ẑei (kz2vt). ~9!

The dielectric functione(k,v) is calculated from the defini
tion DW 5eEW . We will employ the fact thatDW 5¹W Ve and EW

5¹W V. V, Vi , andVe are the total, internal, and the extern
voltages, respectively. Thus we need to arrange the exte
charges in a such a way as to guarantee that the external
D(z) has a plane-wave form. Forz coinciding with the co-
ordinates of the conducting planes, this requires t
V2m11

e /V2m
e 5eizIf. We satisfy this requirement by giving th

external charges the ratioRe/Se5$eizIf2zK2zIe
if%/$1

2zKeizIf2zIe
2 izKf%. For the generalized coordinates th

implies

Pe

Qe
5

zK sin~zIf/2!

zI sin~zKf/2!
eif/2. ~10!

For the calculation ofe we need to calculate the macroscop
average ofE andD, corresponding to the macroscopic ele
tric and displacement fields. For this it is sufficient to kno
02453
d

n
es

me

-

-

ld

al
eld

t

-

the voltages at the positions of the planes. Now, using
~1! we observe that the voltages in each plane are

V2m5
21

Cav
(

n
~Q2nun2mu1Q2n11un2m1zI u!,

V2m115
21

Cav
(

n
~Q2nun2m2zI u1Q2n11un2mu!.

~11!

We consider a charge oscillation with wave vectork5f/d.
The charges in the alternating layers areQ2n

t 5einfSt and
Q2n11

t 5einfRt. After summation over the indexn, the volt-
ages in the zeroth and first plane are

V05
21

Cav~cosf21!
$St1Rt~zK1zIe

2 if!%,

V15
21

Cav~cosf21!
$St~zK1zIe

if!1Rt%, ~12!

with similar expressions for the external charges for wh
Cav must be replaced withC0. The electric fields integrated
between the nearest-neighbor planes are

E
(m2zK)d

md

E~z!dz5V2m2V2m215Cav
21eimf~e2 if21!zKQt,

E
md

(m1zI )d

E~z!dz5V2m112V2m5Cav
21eimf~e2 if21!zI P

t,

~13!

with similar expressions forD, for which Cav must be re-
placed withC0. In the limit k→0 the macroscopic electric
field is just the sum of the two integrals divided by the latti
parameterd. We conclude from this that fork→0 the dielec-
tric function is

e~v!5

E
0

d

D~z!dz

E
0

d

E~z!dz

5eav

zKQe1zI P
e

zKQt1zI P
t
. ~14!

From Eq.~10! we see thatPe5Qe in the limit k→0. We
can combine this identity with the equations of motion, E
~8!, to prove thatPt/Qt5$eK22g(vK

2 /zK1v I
2/zI)v

22%/$e I

22g(vK
2 /zK1v I

2/zI)v
22%, that Pe/Pt5e I2$(eK

2e I)2gv I
2/zI%/$eKv222g(vK

2 /zK1v I
2/zI)%, and Qe/Qt

5eK2$(e I2eK)2gvK
2 /zK%/$e Iv

222g(vK
2 /zK1v I

2/zI)%.
The dielectric function is now easily obtained,

1

e~v!
5

1

eav

v2~v22ṽT
2!

~v22ṽ I
2!~v22ṽK

2 !
~15!

with the definitions
0-3
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ṽK
2 5S 1

2
1

g

zK
DvK

2 1S 1

2
1

g

zI
Dv I

2

1AF S 1

2
1

g

zK
DvK

2 2S 1

2
1

g

zI
Dv I

2G2

1
~2gvKv I !

2

zKzI
,

ṽ I
25S 1

2
1

g

zK
DvK

2 1S 1

2
1

g

zI
Dv I

2

2AF S 1

2
1

g

zK
DvK

2 2S 1

2
1

g

zI
Dv I

2G2

1
~2gvKv I !

2

zKzI
,

ṽT
25S zI1

2g

zK
DvK

2 1S zK1
2g

zI
Dv I

2 . ~16!

Here we have adopted the convention for labeling the
plasma resonances, such thatK always refers to the highes
plasma-resonance frequency.

IV. CENTRAL RESULT

Provided thatṽ I,ṽT,ṽK , it is always possible to ex
pressṽT as a weighted average of the two longitudinal fr
quencies

ṽT
25 z̃Kṽ I

21 z̃IṽK
2 , ~17!

with weight factors satisfyingz̃K1 z̃I51. The latter are no
longer the volume fractionszI andzK , as in Ref. 2. Instead
they depend on the volume fractionsandon the microscopic
electronic parameters characterizing the two types of ju
tions. The effective fractions can be calculated by invert
the above relation, i.e., using

z̃K5~ṽK
2 2ṽT

2!/~ṽK
2 2ṽ I

2!. ~18!

As a result17 we can write the inverse dielectric function, E
~15!, as a linear superposition of two plasma resonances

eav

e~v!
5

z̃Iv
2

v22ṽ I
2

1
z̃Kv2

v22ṽK
2

, ~19!

which is the same expression as in Ref. 2, except thatzI and
zK have been replaced witheffectivevolume fractions

z̃K5
1

2
6

~zK2zI !~zKzI12g!

2~zKzI12g14g2!
A12

4~2g!2ṽK
2 ṽ I

2

~zKzI12g!~ṽK
2 2ṽ I

2!2

2
2g~zKzI1g!

zKzI12g14g2

ṽK
2 1ṽ I

2

ṽK
2 2ṽ I

2
. ~20!
02453
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Together, Eqs.~19! and ~20! form the central result of this
paper. From the intensities of the experimental loss functi
the effective volume fractionsz̃K and z̃I can be extracted
These can be used to calculateg, and this in turn can be use
to determine the density of states

]n

]m
5

1

4pde2

1

g
~21!

or, usingK0n25]n/]m, the compressibility. Onceṽ I and
ṽK have been measured, andg has been calculated from th
weight factorsz̃K and z̃I using Eq.~20!, it becomes possible
to make two further deductions, namely, the determination
vK andv I using

vK
2 5

zK

zK12g H ṽK
2 1ṽ I

2

2

6
ṽK

2 2ṽ I
2

2 A12
4~2g!2ṽK

2 ṽ I
2

~zKzI12g!~ṽK
2 2ṽ I

2!2J ,

v I
25

zI

zI12g H ṽK
2 1ṽ I

2

2

7
ṽK

2 2ṽ I
2

2
A12

4~2g!2ṽK
2 ṽ I

2

~zKzI12g!~ṽK
2 2ṽ I

2!2J , ~22!

from which we can calculate directly the Josephson coup
energies

K5
eav

4pd H \vK

e* J 2

and I 5
eav

4pd H \v I

e* J 2

. ~23!

V. EVOLUTION OF THE OSCILLATOR STRENGTH
AS A FUNCTION OF g

For the analysis of experimental data, Eqs.~19! and ~20!
suffice to deduce the microscopic parametersI, K, andK0n2,
i.e., the two Josephson energies and the compressibility
tor. To predict the plasma-resonance frequenciesṽT , ṽ I ,
and ṽK , we can use Eq.~16!. The intensities of the two
peaks in the energy-loss function Im21/e(v) are just the
weight factorsz̃K and z̃I . Their dependence on the micro
scopic parametersv I , vK , andK0n2 is given by the expres-
sions
z̃K512 z̃I5
1

2
1

~zK2zI !~vK
2 2v I

2!22g~vK
2 /zK1v I

2/zI !

2AF S 11
2g

zK
DvK

2 2S 11
2g

zI
Dv I

2G2

14
~2gvKv I !

2

zKzI

. ~24!
0-4



es
is

o

-

er
c-
f
for

-

TRANSVERSE-OPTICAL JOSEPHSON PLASMONS: . . . PHYSICAL REVIEW B64 024530
The compressibility is characterized by the dimensionl
parameterg. The most important effect of this extra term
that the intensity of the highest plasma resonanceṽK is re-
duced compared to what it would have been ifg were zero:
It is clear from Eq.~24! that the effective volume fractionz̃K
is smaller thanzK .

The oscillator strength of the transverse-optical plasm
follows directly from the pole strength of the pole nearṽT in

FIG. 1. Oscillator strengths as a function ofg.
he
in
e
s

i

02453
s

n

e(v). From Eq. ~15! it follows that ST5(ṽK
2 2ṽT

2)(ṽT
2

2ṽ I
2)/ṽT

4 . With the help of this, it follows that the depen
dence ofST on the microscopic parametersv I , vK , and
K0n2 is

ST5
~vK

2 2v I
2!2~zIzK12g!

S zI1
2g

zK
DvK

2 1S zK1
2g

zI
Dv I

2

. ~25!

In Figs. 1 and 2 the plasmon strengthsz̃I andz̃K and the pole
strengthST are displayed as a function ofg for a few differ-
ent sets ofvK , v I , and the volume fractionzK .

VI. DISPERSION OF THE PLASMA MODES

In the previous section we found for the double lay
cupratestwo longitudinal plasma modes with the electri
field vector polarized along thec direction. The dispersion o
the longitudinal modes can be calculated by realizing that
longitudinal modesDW 50 by virtue of the fact that longitu-
dinally polarized free photons don’t exist. Hence in Eq.~8!
the external charge coordinatesQe5Pe50. The correspond-
ing 232 matrix is easily solved, providing the two longitu
dinal branches
ṽK
2 5S 1

2
1

g

zK
DvK

2 1S 1

2
1

g

zI
Dv I

21AF S 1

2
1

g

zK
DvK

2 2S 1

2
1

g

zI
Dv I

2G2

1
~2gvKv I !

2

zKzI
cos2

kzd

2
,

ṽ I
25S 1

2
1

g

zK
DvK

2 1S 1

2
1

g

zI
Dv I

22AF S 1

2
1

g

zK
DvK

2 2S 1

2
1

g

zI
Dv I

2G2

1
~2gvKv I !

2

zKzI
cos2

kzd

2
. ~26!
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An example of this dispersion is given in Fig. 3. In Fig. 4 t
oscillations of these modes are sketched. The longitud
modes in the left-hand side of the figure have a finite disp
sion, provided thatgÞ0, in other words, if the electron ga
has finite compressibility.

In addition to the two longitudinal plasma modes there
one transverse-optical plasma mode andone transverse po-

FIG. 2. Oscillator strengths as a function ofg.
al
r-

s

larized pole of the dielectric function atv50, representing
the superconducting dielectric response for fields and c
rents polarized along thec axis and with the direction of
propagation parallel to the planes. In the right-hand pane
Fig. 4 the oscillations of these modes are sketched.
transverse mode is coupled to electromagnetic radiation
long wavelengths, giving rise to coupled plasma-polarit

FIG. 3. Dispersion of the longitudinal JPR’s.
0-5
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modes instead of separate photons and transverse-op
plasma modes. The plasma-polariton dispersion follows fr
Maxwell’s equations in dielectric media and is given by t
relation between wave numberk ~in the solid! and frequency
(v)

k2c25e~v!v2. ~27!

With the dielectric constant given by Eq.~15! we get

v~k!5H S ṽ I
21ṽK

2 1k2c2

2
D

6AS ṽ I
21ṽK

2 1k2c2

2
D 2

2ṽ I
2ṽK

2 2k2c2ṽT
2J 1/2

.

~28!

This dispersion is sketched in Fig. 5. We see that there
two plasma-polariton branches. The lowest starts at
quency v I in the long-wavelength limit~small k) and
quickly merges with the transverse-optical~TO! plasma fre-
quencyvT as the wavelength is reduced belowc/vT , which
is of the order of a millimeter ifvT/2p is of order 300 GHz.
At these shorter wavelengths the character is almost pu
the TO JPR. The upper branch corresponds to a conventi
transverse Josephson plasmon18 ~without the adjective ‘‘op-
tical’’ ! as it merges with the light line in the shor

FIG. 4. Snapshot of the currents~arrows! and planar charge
fluctuation amplitudes~indicated by gray scales! of the two sets of
transverse and longitudinal modes with polarization along thc
direction. On the right-hand side of each plot the voltage distri
tion is indicated.
r-
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wavelength limit. The lower branch is novel. It correspon
to a real polarization wave, and these modes can be use
convert electromagnetic radiation into microscopic curren
or vice versa.

Finally it should be added that in the short-waveleng
limit, the presence of finite compressibility gives rise to no
trivial dependence ofe(k,v) on the wave vectork, which for
the transverse modes are parallel to the planes. This e
becomes prominent on short wavelengths of the order
lattice spacings. Figure 5 was sketched on the scale ofk of
the order of a few inverse millimeter. On the scale of a fe
inverse angstrom thek dependence ofe(k,v) will give rise
to finite k dispersion ofṽ I(k), ṽT(k) , andṽK(k).

VII. CONCLUSIONS

An expression was derived for the dielectric function
superconductors consisting of two Josephson coupled su
conducting layers per unit cell, taking into account the eff
of finite compressibility of the electron fluid. In this mode
two longitudinal and one transverse-optical Joseph
plasma resonance exist. The latter mode appears as a
nance in the transverse dielectric function, and it coup
directly to the electric-field vector of infrared radiation.
shift of all plasma frequencies and a reduction of the int
sity of the transverse-optical Josephson plasmon is show
result from the finite compressibility of the electron fluid.
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FIG. 5. Dispersion of the transverse JPR’s for small values oki
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