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Generalized Lanczos algorithm for variational quantum Monte Carlo
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We show that the standard Lanczos algorithm can be efficiently implemented statistically and self-
consistently improved, using the stochastic reconfiguration method, which has been recently introduced to
stabilize the Monte Carlo sign problem instability. With this scheme a few Lanczos steps over a given
variational wave function are possible even for large size as a particular case of a more general and more
accurate technique that allows to obtain lower variational energies. This method has been tested extensively for
a strongly correlated model like thieJ model. With the standard Lanczos technique it is possible to compute
any kind of correlation functions, with no particular computational effort. By using the fact that the variance
(H?)—(H)2 is zero for an exact eigenstate, we show that the approach to the exact solution with few Lanczos
iterations is indeed possible even ferl00 electrons for reasonably good initial wave functions. The varia-
tional stochastic reconfiguration technique presented here allows in general a many-parameter energy optimi-
zation of any computable many-body wave function, including for instance generic long-range Jastrow factors
and arbitrary site-dependent orbital determinants. This scheme improves further the accuracy of the calculation,
especially for long-distance correlation functions.
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[. INTRODUCTION called—projection techniques, aiming to determine—as ac-
curately as possible—the ground-stétes) wave function
The study of strongly correlated systems is becoming ajq of a given HamiltoniarH.
subject of increasing interest due to the realistic possibility In the statistical approach the electron g.s. wave function
that in many physical materials such as highsupercon- is sampled over a set of configuratiof})}, denoting spins
ductors, a strong correlation between electrons may lead tand electron positions, and belonging to a complete basis
an unexpected physical behavior that cannot be explainedith large or even infinite dimension. The ground-state com-
within conventional schemes, such as for instance mean fieldonentys, of a given trial stateyc—henceforth assumed to
or Fermi liquid theories. be nonzero on each configuratirr-is filtered out by apply-
One of the most important models, which is still the sub-ing to it some projection operat@" for a large numben of
ject of intense numerical studies, due to its possible relpower iterations. The matri& may be given byG=e "4t
evance for highf, superconductivity, is the so-calletd] for short imaginary timeAt, as is the case for the conven-

model®? tional diffusion Monte Carlo simulation for continuous mod-
els, or the one that will be considered in the following sec-
tions,
. ~ o~ 1. _— o~
H=J -S—-nin; | —t et ¢ , 1
UEJ> (S a4 ’) <i;>,a homhe @ G=(Al=H)*, )

- . . - . for lattice models, where a suitably large constant shift

wherec! ,=cl (1-n; ), nj==,n; , is the electron density allows convergence to the ground state<{0 is used for the
on sitei, §==,,/C ,7,.,Ci . is the spin operator, and t-J mode). The integeik,,, determining the number of pow-
T4 are Pauli matrices. After many years of intense numeri€rs of the Hamiltonian in the Green function, may be in
cal and theoretical efforts there is no general consensus diinciple larger than £,but in the following we avoid this
the properties of this simple Hamiltonian and of the relatedcomplication and we considéy, fixed at its minimum value:
Hubbard model. In this paper thteJ model is studied by Kp=1.
means of a recent numerical techniquapparently very In order to perform stable simulations with a large signal-
promising, to improve systematically the accuracy of a start{o-noise ratio even for larga the many-body propagation
ing variational wave function, even when the Monte Carlo#,— G"|#c) needs to be stabilized at each iteration, using
simulation is severely affected by the so-called “sign prob-an approximation that can be efficiently implemented statis-
lem” instability. We will show in this paper that in a par- tically by means of the stochastic reconfigurati(8R)
ticular case this technique allows us to apply very eﬁicientlySChemé-
the well-known Lanczos technique, by means of quantum The essential step in the SR is to replace the many-body
Monte Carlo simulations. This allows us to obtain accuratestatey,. 1(x) =G, , obtained by applying t@, the exact
variational wave functions even on rather large sizes, as firgbreen functionG, with the approximate statg, . ,(x), de-
pointed out by Heeb and Riée. termined by the following conditions. A given set pft-1

The Green function Monte Carlo with stochastic recon-operators{O¥}, not restricted to be Hermitian operator, sat-
figuration (GFMCSR was introduced recenflyfor—so- isfies the equalities
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(| ON Wl 1) =(s|OM¢hns1) for k=0,...p, (3 Solving the linear system determined by the SR condi-
tions (3) we obtain a closed expression for the linear operator

with O° for k=0 being the identity here for simpler and Psr, Which explicitly depends on the staile; and the ref-
more compact notationy,. ;=r,'(x), ¢ being a refer-  erence statey:

ence state known exactle.g., the standard variational ap-
proach or statistically (e.g., the fixed node approximate

staté on each configuratior, and PSR:iEj s )| O, 9
p

rxzz akoi, (4) The operatorPgg is not a true projection operator.

k=0 Though it satisfies the simple requireméntP3 = Pgg, (ii)
where P£R= Psgr is not generally satisfied. A way to implement
statistically this “pseudoprojection” operator in the large

k_(l//G|OK|X> number of walker limit was discussed in Ref. 5.
Ox= (slx) ) After each reconfiguration the stage is replaced by,

=Pgrin, but also the reference staté is changed. In fact
in the original formulatio®® also the reference state explic-
itly depends om and is updated after each SR:

and the constants, are determined by the conditiofi3):

a= 2, S (16| 0¥ a), (6) f ,
¢ Yn(x)—sg g ()] n(X)]. (10

The reason for the choicgl0) is to optimize the reference
_ state and obtain more accurate results, as explained in the
si'k=2 sz(x)zpf(x)Oi(O)‘j. (7)  forthcoming paragraphs.

X With the restriction of a stable simulation the signs of the
At equilibrium, for largen ¢/, converges to a well-defined reference wave function have to be fixed; otherwise the av-
many-body state/sg, up to a trivial normalization constant, €rage sign will drop exp?nenually to zero in the simulation,
which maybe also infinite but irrelevant for physical expec- Therefore, in Eq.(10), ¢ has been restricted to have the
tation values. In this limit therefore the conditio(® deter- ~Same signgor the same nodgsf the guiding wave function

namely, function ¢' can be considerably improved from our best

variational guessyg, since during the exact dynamic the
(| OX R _(4//G|OKG|¢//SR) state iy, gets closer to the ground-state wave function. The
(Yol ¥sr (¥c|Glysr

optimal choice for the amplitudes has naturally led to the
definition (10).

These constraints are exactly fulfilled by an exact eigenstate This technique, with the choicd0), has been shown to
of the Green functiorG, so that they represent physically pe remarkably accurate for frustrated spin or boson systems,
relevant conditions restricting the possible values of the Corallowing one in many test cases to obtain essentially exact
relations functions for a reasonable approximatiaiof the  results within statistical errors® However, for fermion prob-
ground state oH (an exact eigenstate d@8). As will be  |ems the situation is much different. Though this technique
shown later on in Sec. V these constrai®s coincide in  allows a significant improvement in the energy and correla-
some special cases with the Euler equations of minimunion function calculation$° the bias remains still sizable
energy, but this is not generally true. The SR conditionsand difficult to eliminate completely by increasing the num-
represent therefore more restrictive criteria to judge the quakber of correlation functions used in the SR technique. Due to
ity of a given approximate state. They are directly related tahe antisymmetry of the fermion many-body wave function,
correlation functions and not necessarily to the energy alongt appears that the nodes in this case play a much more im-
This property is particularly important, since for the sameportant role.
strongly correlated Hamiltonian it is often possible to find |t is instructive to consider the case of continuous models.
several variational states, with very accurate energy expectan this case, for fermion systems, nodes have to appear in the
tion values, but with completely different correlation many-body wave function just by antisymmetry consider-
functions® Thus the SR conditiong), which are clearly not  ations. On the other hand, symmetry alone does not restrict
limited to a statistical approach, represent a useful tool tahe nodal surfacéthe locus where the wave functiam(x)
alleviate the above very important difficulty of approximate yanisheg implying that correlation effects can significantly
variational techniques. change the nodal surface. In this case it may be useless or

Going back to the more formal derivation, the SR can bgyrelevant to improve the amplitudes without changing the
considered a projectioRsg of the exactly propagated wave npodes in the reference wave functici0).
function ¢,,.1= G, onto a subspace spanned by the states For fermion systems, due to the above difficulty in deter-
|y, defined by(x|yf)=0ky'(x), for k=0, ... p. Notice  mining a nodal surface which is weakly modified by corre-
also thatonly when ¢ = yg, z//'f‘z(o")T|¢/fG>; namely,z,//'f‘ is lation effects, it appears at the moment difficult to avoid a
obtained by applying the operato®f)' to the stateyg . sizable “nodal” error in energies and correlation functions.

where the covariance matrix is given by

for k=0,...p. (8)
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Therefore in this case it is extremely important that any ap-

proximation is at least controlled by the variational principle.

PHYSICAL REVIEW B54 024512

According to the above Markov iteration, defined by Egs.
(15—(17), all the walkers propagate independently of each

In this way an approach different from the one proposecbther. The reference weights’ remain positive, whereas
beforé can be used. The first step to obtain a rigorous variaw; , related to the exact propagation, accumulate many sign

tional method is to consider the reference wave functién
fixed to the variational or the fixed node state?

Il. FIXED REFERENCE DYNAMIC

In the GFMC propagation a large numbédrof walkers is
used; theg th walker is characterized by two weighné Wi,
acting on a configuration staig, e.g., a state with definite
electron positions and spins. The reference weig)vfs
sample statistically the reference staif(x) whereas the
weightsw; refers to the statéy,(x) propagated by the exact
Green functiony,= G¢,_,. More precisely, taking into ac-
count the importance sampling transformation

(W] x )) = (0 dhs(x), (1D

<<Wj 5x,xj>>:(//n(x)l//6(x)r (12)

where the bracket§(- - -)) indicate both the statistical aver-
age and the one over the number of walkers, at a give
Markov iterationn. The two wave functionsbf1 and ¢,, are

propagated using the statistical approach. For the first state

reference Green functioﬁ)f(, , With all positive matrix ele-

changes, leading, for large to an exponential increase of
the signal-to-noise ratio. This is in fact determined by the
corresponding exponential drop of the average walker sign
(s)=2,;w;/Z|wj| (the infamous “sign problem). The sto-
chastic reconfiguration allows one to alleviate this problem,
by implementing statistically the operatBi5r described in
the previous section. In practice the weigttsare replaced

by approximate weightp;, but with a much larger average
sign (s). The weightsp; sample statisticallyy,(x) ¢/g(x)

and are determined by solving the corresponding linear sys-
tem (3). This is done at a given Markov iteration by averag-
ing Eq. (3) only over the walker samples. This means that
there exists a bias due to the statistical uncertainty of the
guantum averages in E@3). This bias, however, can be
controlled efficiently because for a large number of walkers
it vanishes as M. In this limit r, in Eq. (4) depends only on
the configuratiorx as the statistical fluctuations of the con-
stantsay can be neglected favi>p.

n Another method to control much more efficiently the sta-
tistical fluctuations of the constanfta,}, without using a too
large number of walkers, is to perform the SR scheme only
after applying, at each iteratiam a large numbetL,, of sta-
tistical steps defined in Eq6l5)—(17) In this way the statis-

ments is used, whereas the latter one is propagated by meags;, averages in Eq(3) have only small fluctuations

of the exact Green functiof2) which is related to the refer-
ence one by a simple reIatic@X,,Xzsx/,xG;,’x with finite
and known matrix elements; ,:

«/m(x'we(x'):g Gy xtn(X)P(x), (13

UniX)e(X) =2 Gy dh(0Pe(x). (19
The reference Green functio@)f(, «= Py xby is written in
terms of a stochastic matripx,yxv (Pxr x=0 and =,/ pyr «
=1) times an x dependent normalization factob,
=EX,G;, «» SO that a statistical implementation of the itera-
tion (13 is possible. Namely, given the configuratigp of
the jth walker a new configuratiomj’ is selected statistically
with probability pxj/ X (notice thatEx,pxj/ ij=1 by defini-
tion):

xj =x" with probability Px’ ;- (15
Then the reference weight
wjfﬂbxjwjf (16)

is scaled by the normalization factb;;j, whereas the weight
related to the exact Green functi@)

W

7

~>ij/ X, ijWj y

is further multiplied by thes, X matrix element.
r

«1/\L,, which can be neglected in the limit of large bin
lengthL,, even when a small number of walkers is used. In
each bin we are considering only the iteration>n+1 of
the power method when the parametesof the wave func-
tion Pgri), are known and computed in the previous itera-
tion. Thus{wjf} evolve statistically according t&' [Egs.
(15) and(16)], and new configuration;} are generated for
the statistical sampling of ¢g(x) lﬂf(X)=<<ij5xyxj>>,
whereas, inside the bin, the weights;} are always reset to

Wj=rxjwjf—i.e., with the same configurations and a simple

scaling of the weights it is possible to sample the propagated
statePsgri, in all the L, statistical steps. Then at each step
inside the bin the exact Green functi@is applied statisti-
cally [Eq.(17)] in order to sample/,,, ;= G Psgi/,, Which is
required to calculate the right-hand sidRHS) of the SR
conditions(3). At the end of the bin newt, can be computed

by solving the linear syster(B). It is understood that even
inside the bin a branching scheme at fixed number of
walkers? and with a fixed number of correcting factors can
be used to improve importance sampling. Whenever the
length of the bin is so large that the statistical fluctuations
can be neglected, the algorithm is deterministic inside the
statistical uncertainties and becomes much more efficient
compared to the original schem@where the SR conditions
were applied at each stefpf=1). We have found instead
that the most efficient scheme is to change these constants
only when the SR condition@) are not satisfied within sta-
tistical errors(e.g., they are off by more than three error
barg, by increasing systematically the bin length at each
iteration. This scheme allows one also to eliminate the bias
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due to the finite number of walkendl, which was rather \yith v_v=2|wj|/M.

sizable in the original formulatiof. Using the previous scheme the reference state equilibrates
After the SR, say, at the iteratiam, in order to continue necessarily to the largest right eigenstate of the reference

the power method iteration for>n,, the new approximate matrix G'. At equilibrium the statejsg has therefore a very

stateyy, = Psrin, replacesy, but the reference stat#' is  well-compact and clear definition. It represents the maxi-

still arbitrary. Instead of changing the reference weights withmum right eigenstate of the matrix

the choicéff ij=|.p]-|. [implying Eq.(10) in the large number P Al —H)Par, 2

of walker limits] it is instead possible to remain with the S SR

same reference staté]o, without changing it in the statisti- with given ' in the definition ofPgg Eq. (9).

cal sense. This is obtained by the following simple scheme. The method is therefore rigorously variational provided

After the SR new configurations; =x;;, are selected the pseudoprojector & is a true projector operator,

among the old ones; according to the probabilitl;  namely, fory'= yic when Fsg=Psg, as implied by Eq(9).

=|pj|/=|pxl. This scheme naturally defines the random in-In this case in fact by standard linear algebra, the maximum

dex tablej(i),**® used to improve importance sampling—as right eigenstate of the operat¢21) is the best variational

in the branching scheme for the standard diffusion Montestate ofH belonging to the subspace defined by the projector

Carlo simulatioh®*—and allows one to continue the simula- Psr (see Appendix A

tion more efficiently with equally weighted walketsv|

=const. In fact in order to sample statistically the stafés A. Variational energy when Psg=P{g
- : —— fr
and ¢ with corresponding new weights; andw;’, In the original formulation of the SR the reference Green
, _ oy function was defined with a slight generalization of the fixed
Yn() Y6 (X) = ((Pi 8ix)) = (W] Sx.x7)) node Green functioh The Green function proposed by Hell-
) berg and ManousaKi3is instead more appropriate in this
In(X) (0= (W] 8, )y = (W] S, x1)), (18)  context and much more convenient from the practical point

o o ~ of view of reducing statistical fluctuations:
it is enough to use the so-called reweighting method, which

makes the above equatioagactin the statistical sense: .

1
— Gy = A8 x= (XM Hw (X[ (22)
Wi =W sgn pjy, (19 Zy
, where z,=2,/|A 8,/ y— (X" )Hy x/¥c(X)|, |a] meaning
W =t T M (20) the absolute value of the numbeerlt is simple to show that,
i TORIYIO] by applying the power method with the above Green func-

rerl’ . . . een fL
% tion, convergence is reached when the maximum right eigen-

— 2 : .
where w=(1/M)=;|p;| is a constant common to all the vector ¢ig(x) is filtered out:

walker weights and sgan=*1 represents the sign of the

numbera. The correcting factow is taken into account only E G)f(/vxl,//G(X)2= o(x')2. (23
for a finite numberL of past iterations, starting, e.g., from X

n—L+1; otherwise, the weights of the walkers may increaserhys the above Green function can be used to generate sta-

or decrease exponentially, leading to a divergent variancgjstically configurationdsee Eqs(15) and (16)] distributed
This introduces a systematic bias, which vanishes, howevegccording to y5(x)2 with a stochastic matrix p,: 4

exponentially inL and decreases asM.f In practice for a =c' 2.1z
large number of walkers it is enough to consider only few X
even nong “correcting” factors in the statistical averages,
as common practice in Green function Monte Carlo
simulationst* From the reweighting method it is also clear
that the choice of the probability functidd; is not restricted s, . =G /G, =+27, (24)

to be proportional tg; . In particular we have found it more XX XXX <

convenient to use the weights correspondingstg, deter-  where the sign+ is given by the sign of the Green function
mined after applying Eq.17), so that the choicell; matrix elementA 8,/ y— (X )Hy x/c(x), and depends
=|wj|/Z|w,| further improves the importance sampling, of course orx andx’. Using the fixed reference algorithm in

The advantage of using the reference Green func¢2@n
is evident when we consider itery simplerelation with the
exact Green function, namely,

with a minor change in Eq¢19) and (20): Eq. (20) ¥'=ys, and the operatoPgg represents in this
special case a true projector olﬁéR: Psgr. Thus in this case
W =w- Pici) the method is rigorously variational as pointed out in the last
b wyl part of the previous section.
We notice also an important property of this method. If in
¢ [w/ | the SR conditiong3) only operators defined by powers of
Wi :m: the HamiltonianO*=HX are used, the projectdtsg acts on
X the same Krilov basigspanned byH¥| Ye), k=0,...p) of
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the well-known Lanczos algorithm. Thu®§:G Psp)"| #a) A compromise between the two methods is to introduce a

filters out the lowest-energy variational state in this Krilov parameten that interpolates smoothly the two limits. This

basis, i.e., by definition the state obtained by applyjng parameter enters in the reweighting relati@® in a very

Lanczos iterations t@/g . We recover in particular a known simple manner:

property of the Lanczos algorithm, valid also for the SR

method: the method is exactpfequals the dimension of the ” lw |

Hilbert space. wi == TR (27)
Due to the equivalence of the Lanczos algorithm with the %i

SR technique, it is clear why, with the latter technique, it iSotice that, when we release the fixed reference dynamic for
possible to obtain a rat7h_% good approximate ground state.. g and when for largen the constantge,} converge to
with p reasonably smaft’~*In fact the convergence of the 02610 values, the reference wave functigis not given

Lanczos algorithm is at least exponentialpin _ by averaging the configurations with the weight$ since
We have therefore derived that the Lanczos algorithm can,o relationysr= Psrin(X) =T, (x) is implied by the defi-
. .. . . n X

be implemented statistically using the SR method. This al'nition of the projectoPsg in Eq. (9). In fact, by using Eq.

lows us to perform easily two Lanczos iterations on a give / _ — of ;
variational wave function for fairly large size systems. Fur?(27) and that{(w{ dy,)) = seX) ¥6(X) = 1 (x) dre(x), it

thermore, the SR method allows us to put several correlatioft SIMPle to derive that
functions in the Eq(3). Since the method is strictly varia- ¢ T ,
tional, the variational energy has necessarily to decrease by (wi 5x,xi>>_|rx| SONN K ({W{ Oy x,))
increasing the mentioned number of correlation functions. _
J = |17 Sgnn e X) o (X)

B. Improving the variational energy =|r " () s(X). (29

Following Ref. 17, by applying a finite number of exact
Green function iterations to the wave functigqg, the cor-
responding quantum average

Forr=0 the method is rigorously variational, in the sense
that the parameters, appearing in the definition af, Eq.
(4), are the ones that minimize the energy expectation value,

(Y RIGkH ka, R once the SR condition@®) are satisfied for a large number
‘éR: S - S (25) of iterations. It is reasonable to expect that such a property
(YsdG™ |y remains valid even for<1 whenPl =Pgsr. We have em-

pirically verified that for smalf, in particular for the one that
Taking into account R statistical factors,, ,, the above ~MINIMIZES the energy expectation value, this property is in-

guantum averages can be statistically evaluated with thfleed verified. On the ot_her hand, fo#0 the expecta}ion
same Markov chain for whickgg (k=0) is computed. value of the energy, Wh'Ch can b_e Comp“ted by.usmg the
The sign problem can be controlled for not too lakgnd forvyard W?"k'”g teghnlque described in Appendix B, re-
systematically improved variational energies can be obtainel'#"S obviously a rigorous upp.er.bpund of the energy.
compared to thek=0 result. However, experience has Forr#0 we assume that the infinite number of walkers or

shown that it is very difficult to have significant improve- Ia_1rge binL, is taken so that the parameterg can be con-
ment over thek=0 result for a large system size sidered constants for large In this case, if we take into
' account the reweighting?7), the reference wave functiop

. . . . _ ! .
lll. VARIATIONAL ENERGY WHEN ~ Pgp# Py is obtained as the right eigenvectog(x) = ((w; Jyx)) With

o ~ maximum eigenvalue of the renormalized reference Green
We have seen that the method is rigorously vanatlonalfunction Gt

once the reference weights are changed according to EQq.
(20). However, as we have explained in the Introduction, a Gl —|r |rGf (29)
X' X X!

better choice is to continue after the SR with =|w’|, the XX

rationale for this choice being that the wave functigh  namely, asy{(x)=|ry| " ¥r(X)/ c(X)

—Psry has much better amplitudes than the variational Then the SR state/sg(x) =r,¢'(x) is simply given in
wave function ¢g. This allows us to improve self- terms of this right eigenvector:

consistently the reference wave function in order to be as

close as possible to the true ground state. In this way, how- PsrX) =Ryihr(X), (30
ever, '+ s and the method is no longer variational in the jith

sense that the SR state defined by the right eigenstate with

maximum modulusA — Egd eigenvalue of the matrix, Re=|ry Y "Tps(x) sgnry. (31

remains obviously variational for arky

Psr Al —H)Psd trsp = (A —Esp) | #/sR), (26)  Thus even whem#0 the SR state can be uniquely deter-
mined. It is also clear that, sincg is not necessarily positive
is no longer the lowest-energy one in the basis defined byr negative, the nodes can be changed and improved with
|4£), k=0,1, ... p, andEgr does not necessarily bound the respect to the nodes of the initial guegg, both forr=0
ground-state energy. with the standard Lanczos algorithm and for0. If the
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FIG. 1. Hole-hole correlations for the 26-sitel cluster for n

various methods. “SR standard” indicates the original GFMCSR
implementation(r=1 herg (Refs. 3 and § whereas “SR best
energy” indicates the optimal variational SR wave function ob-
tained withr =0.25. The “VMC” is the lowest-energy Jastrow- S
Slater variational singlet wave function as discussed in Sec. V, Fl\"fllso indicated.
+Lanczos step the fixed node over the one Lanczos step wavgertainly modifies and improves the nodes. For fermion sys-
function. tems therefore it appears important to work with snrall
because the nodes of the wave function play a particular
nodes ofig are exact and the Hamiltonian is not frustrated,important role in determining a good variational energy.
it is also possible to show that=1 and A — o provide the A different behavior is seen for correlation functions. For
exact result, withr, positive definite. largeJ/t=1 when a four-particle bound state is likely to be
Is it possible to compute correlation functions ovlsg?  formed, our Jastrow-Slater wave function is not appropriate
As is shown in Appendix B the answer is yes, and notenough, and the large distance behavior is not exactly repro-
only for correlation functions diagonal in the basisas in  duced(see Fig. 1 even when we apply to it a couple of
the standard forward walking technigtighut also for all the  Lanczos iterations, which, remarkably, provide a very accu-
ones with off-diagonal elements contained in the nonzeroate variational energysee Table )l
Hamiltonian matrix elements. In particular it is possible to  That the qualitative behavior of this correlation function is
compute different from the variational starting wave function can be
understood only when the algorithm with>0 or the fixed
(¢sdH|psp=Ey, node (FN) (which is worse in energyare used. Especially
successful is the original technique 1, which improves by
i.e., the expectation value over the state defined by the SR factor of 2 the important long-range behaviorNf|R|),
conditions. This estimate is obviously variational and can betlearly displaying the features of a genuine bound state, by a
further improved by applying a finite number of exact Greendecaying probability to have holes at larger and larger dis-
function powers to the right and to the left of the Hamil- tances. For correlation functions diagonal in the chosen basis
tonian, as in the power Lanczos algorithfyith the differ-  the nodes do not play any role ane:1 or the FN itself is
ence that in this case E5) has to be evaluated with the likely to provide much better correlation functions. However,
“forward walking technique,” as described in Appendix B. from the previous argument about the impossibility to cor-
In Fig. 2 we plot the evolution of the expectation value of therect the nodes for=1 andG,G"~1 we expect indeed that
energy over the stat¢sg as a function of the number of for large sizes the Green functic® tends to the identity,
iterations,n, required by the forward walking to filter out either because\«=L, as required by the power method to
from ¢ its component ovejsg, leading to a true varia- converge, or because the gap to the first excited state de-
tional energy estimate. We see that fo=1, within the creases and a power iteratiah,, =G, is less and less
original SR techniqué? the energy expectation value can be effective for changing the wave function. Thukas to scale
much higher than the corresponding “mixed average” esti-to zero for large sizes if we do not want to spoil too much the
mate (=0). variational expectation value of the energge Fig. 2 It is
This behavior can be understood in the following way: forremarkable that the gain in variational energy is larger and
r=1 and forA—o there is no way to improve the sign of larger when the size is increased. Thus the0 technique
the wave function oveg because,—1 [G andG' tendto  seems to overcome, at least partially, a serious limitation of
the identity up to a constant and so the correctigio ¢'  the Lanczos algorithm, namely, that in the thermodynamic
=y for r=1 has to become unity up ©(1/A)], whereas limit the energy per site cannot be improved by a technique
for r=0 the Lanczos algorithm, which id independent, which is not size consistent. The gain in energy withO

FIG. 2. Energy per site as a function of the forward iteration
as described in Appendix B for the 26-sites—4-hole case and the
98-site—14-hole case. The value of the variational parameter
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TABLE I. Energy per site in thé-J model for various variational methods. VMC is the variational method, obtained by adjusting in the
Jastrow and determinant part of the wave function all possible parameters being compatible with the symmetries of the filigtedBeoe
V). VMC+LS is obtained by applying to this wave function a Lanczos step, WW® is the lattice fixed node approa@Refs. 12 and 1)1
VMC +2 LS indicates the two-Lanczos-step variational wave function, WNIS+FN is the fixed node over the VMELS wave function,
and the “Bestr” is {sdH|#sr), computed by “forward walking” as described in Appendix B, by optimizing the paranteféhe exact
energy values for the largest size were estimated by the variance extrapolation. On the 98 sites, the FNLS computation takes 10 h CPU time
on a Pentium-Il 400 MHz, whereas the VMQLS wave function takes about 40 hours with=500 walkers for a statistical accuracy of
10" “t on the energy per site, the “best SR” another factor of 8 more due to the forward walking. The computation of diagonal correlation
functions instead takes a similar amount of time for all methods; thus it is safer to compute them with the best variational method. Error bars
are indicated in brackets.

N L Jit VMC VMC+LS  VMC+FN VMC+2 LS VMC+LS +FN Best SR Best Exact
22 26 03 -0.6138) -0.63321) -0.62771) -0.63811) -0.63711) -0.63871) 0.375 -0.64262
22 26 0.5 -0.764m) -0.78121) -0.77591) -0.78521) -0.78411) -0.785%1) 0.25 -0.78812
22 26 1.0 -1.147@) -1.16721) -1.16081) -1.17191) -1.17061) -1.17241) 0.25 -1.17493
30 32 03 -0454@) -0.46281) -0.46111) -0.465223) -0.465243) -0.46611) 0.375 -0.470175
84 98 04 -0.6653@) -0.68071) -0.677711) -0.68651) -0.685305) -0.68792) 0.1 -0.6921)
50 98 0.4 -0.965@) -0.98321) -0.9822%5) -0.98861) -0.987816) -0.99012) 0.1 -0.99205)

can instead be size consistent, since, as shown in AppendiX. ENERGY OPTIMIZATION FOR A MANY-PARAMETER

B, r>0 corresponds to modifying the reference Green func- VARIATIONAL WAVE FUNCTION
. f _f . . . . . . )
tion G'—G', similarly to what the fixed node algorithm—  The most important advantage of the SR technique is that
which is size consistent for size consistgrg—does. many variational parameters can be handled at little expense
of solving a linear systeni6) of corresponding size. The
IV. NUMERICAL IMPLEMENTATION few-Lanczos-step technique, as we have discussed before, is

determined only by few coefficients due to the difficulty of
he large size to compute many powers of the Hamiltonian
n a given configuratiow, which is required for evaluation
of the  corresponding mixed estimator Of

In order to put efficiently a finite humbegs of Hamil-
tonian powers in the SR scheme it is by far more convenien
to use an importance sampling stratdgge, e.g., Appendix
C), by using information of the previoys— 1 Lanczos itera-

. 9) . - ous— (el H X/ (yig|x).
?Snsif gu'd;ggrvg;\ﬁ;ggguon (lr:/lt'.)’r(r;s E?i?gnpqtlztzekr l;e\>/|ous Clearly the method discussed in Sec. Il is not limited only
- , G\A)— k=0%k G

—r « " nb & With this new auiding fun to the Hamiltonian momenta correlation functions, but re-
N p-1(X)¥6(X), can be use - WIT IS New guUiding func-  4ing variational for arbitrary ones. In particular many kinds
tion the powers of the Hamiltonian can be put in the SR

- ) . : of correlation functions can be thought to be a renormaliza-
conditions by computing the corresponding mixed average o of the guiding wave functionyg, allowing a powerful

estimators: multiparameter energy optimization similar to Ref. 19, where
HK the variance was instead minimized. In the present section
"wel ) for simplicity thal th lation f i
= (32  we assume for simplicity thatl the correlation functions are
(¥6]x) used for the purpose of optimizing the variational wave func-
for k=0 0 tion g, and we restrict our very general analysis to varia-

The advantage of using the SR scheme is clear even wheﬂ?nal wave functions of the Jastrow-Slater form for a

we restrict this method only to evaluation of the first few strongly correlated system such as thé model defined in
Lanczos iterations. In order to perfonpnLanczos iterations, Eq. (D).

it is enough to compute onlp Hamiltonian powers on a o _

given configuratiorx. In the conventional variational method A. Variational wave function

it is always necessary to compute the expectation value of The Jastrow-Slater variational wave function can be gen-
the Hamiltonian amounting to2+1 powers of the Hamil-  erally written as

tonian, leading to a much more demanding numerical effort.

It is also important t_o _emphasize that within_ this technique |,/,G>:j|s>, (33

the parameters, defining the SR state are given at the end

of the SR simulatiom— . Once the{e,} are determined it where |S) is a determinant wave function that can be ob-
is then convenient to compute correlation functions withtained as an exact ground state of a generic one-body Hamil-
fixed constant§e,} by performing statistical averages over a tonian of the bilinear forff Hj oq,~c’c---+c'c’- -
large binL, without applying the SR condition®) as dis- *H.c. whereas the Jastrow factor

cussed in Sec. Il. This method significantly improves the

staFist_icaI fluctuations of the quantum averages over the J=ex E v(i,j)nm-)exp(E UZ(i,j)UZa_'2> (34)
variational statePsg ). T . 0y !
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introduces arbitrary Gaussian correlations between localhere f(7) is the pairing wave function simply related to
chargesnizz(,cﬁ(,.ciyo and local spins along the axis:  A(7) in Fourier transform:
of=cl.ci;—cl c; . Both operators are defined on each

configuration{x} of the chosen Hilbert space. The reason for f(k)= &
the exponential form in the Jastrow wave function comes et VAL+ €l

from size-consistency con3|dera_t|0ns, implying that for MaACvhere €, in the above expression is not limited to nearest-
roscopic and disconnected regions of spageand B the

. X . gy neighbor hopping.
wave function factorizesy, g= ¥a® i, this factorization 'Ighus if Sv% gcalef(r)—>c0nst><f(7-) the many-body
being fulfilled by the exponential form. ' '

e . wave function(37) remains unchanged, implying that the
Con3|der_|ng thet-J model the restrlct|o_n _of no doubly number of independent parameters is equalNt@e— 1,
ocpgp|ed sites can be thpught of an |nf|n|tely' negativeyyhere Ny, is the number of independent shells|af>0
v(i,i)=— charge correlation, whereas the restriction at aconsistent with the rotation-reflection symmetryfofotice
fixed numberN of particles can be thought of as anotherthat, once in the determinant part of the wave function
singular Jastrow term ekpoo(Nig—N)?] where Nyo==in; N, — 1 variational parameters are independently varied, it
is the total charge operator. The latter two singular terms ins useless to consider other terms, such as, for instance, the
the Jastrow factor are simply a restriction on the Hilbertchemical potentialu or next-nearest-neighbor hopping in
space that can be very easily implemented without numericatl ,: they always provide a suitable renormalizationf dfiat
instabilities. can be sampled by the firBk,.;— 1 parameters. Moreover,
We now consider how the symmetries of the finite-sizeby performing a particle-hole transformation in E§5) on
t-J model drastically restrict the still too large number of the spin downE{lH(—l)iEiyl, the ground state of the
variational parameters in the Jastrow-Slater wave functionHamiltonian (35) is just a Slater determinant withl=L
Translation invariance implies that the Jastrow potential departicles?! This is the reason why this variational wave func-
pends only on the vector differenqx(i,j)zv(ﬁi_ﬁj), the tion represents a generic Jastrow-Slater state, a standard
function v being invariant(s-wave for all rotation and re- Variational wave function used in QMC. Using the particle-

. . = = . hole transformation, it is also possible to control exactly the
. — . z = . . . ! B
I/I\gi/t:ao?ui%?g;emes OR; —R;. Moreovery” =0 for a singlet spurious finite system divergences related to the nodes of the

. . L d-wave order parameter.
The singlet and translation symmetries imply also strong P

restrictions on the one-body Hamiltonian defining the Slater B. Stochastic minimization

determinant. This Hamiltonian can be generally written . : . '
Among the correlation functions important to define the

o o variational wave function two classes are important for guid-
Hs=Ho+(AT+A), (35 ing functions of the Jastrow-Slater for(83).
(i) The first class of operators renormalizes the Slater de-
terminant and has been identified by Filippi and F&hilere
At= A(7)(ch TEJFZJ l+”éTR+- TE’Fr{ D (36) O are defined by means of the one-body operaﬁ:ij%Ody
(R7) R e by the following relation:

k__ <X|Ok| ‘/’G)_ <X|O|i-bodyls>

whereHo=3, €.} ,Cy , is the free-electron tight-binding k= - (39)
nearest-neighbor Hamiltoniarg,= — 2t(cosk,+cosk)— u, (x|ya) (x[s)

w is the free-electron chemical potential, ahdl creates all  Thus for |y small, (1+ =, 0N vg)
possible pairs at the various distanced with definite :jexp(zkako';_bodyﬂs), which remains a Jastrow-Slater
rotation-reflection symmetrye.g., d,2_,2 implies A(1,0) wave function of the same formJ|S’) with |S')
=—A(0,1)]. = expExaOf poay)|S). Since one-body operators are bilin-

For a generic Jastrow-Slater singlet state, satisfying albar (e.g.,c'c) in fermion second-quantization operato,
symmetries of the-J model, a quite large number of varia- remains a Slater determinatin the Jastrow-Slater case for
tional parameters are therefore available corresponding tghe t-J model considered here the one-body operators read
v(7) andD(7) for all distance$r|. Not all these parameters

are independent; namely, the substitgti®m|r|)ev(r) Oi;.—body: S( T)(EE.TE;JrT,L+E1I;+T,TE;¢)’
+const does not change the wave function up to a constant, R,reshelltk

o) thatv(;-) can be assumed to be zero at the maximum _ ' . (39)
distance. An analogous dependence exists between the vawhere the sigr§(7)= =1 is determined by symmetry. Also

ous parametera (1), since after projecting it at a fixed num- the bar kinetic energiH, is considered in this approach.
ber of particles, the ground state of the Slater determinarﬁ‘c_cord'”g to the previous discussion the chemical potential

Hamiltonian(35) can be written wis fixed to the free-electron one _I-FIO. _ _
(i) The second class of correlation functions is composed
N2 of the ones that appear in the Jastrow factor. They are the
N _ —_ —_ _ . k . . .
S)= Y N N B 0), (3 diagonal operator®“—density-density=gngng , Or Spin-
S) RE,"T (MR Criz ¥ CriziCr1) | 100 (B spin ook, ,—in the chosen basig of configurations

T
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with fixed spins and electron positions. Again for small
they can be considered a renormalization of the Jastrow fac-
tor: J— J expEa0Y).

The multiparameter minimization method can be summa-
rized as follows.

(i) After each reconfiguration the facto;’(=2kak0>'§ is
computed with givern,, whose statistical fluctuations can
be arbitrarily reduced by increasing the number of walkers or
the bin lengthL, as described in Sec. Il. In this case of
nonlinear optimization the bin technique is particularly im-
portant because i'F allows one to avoid, forlle.lrge enough bin T e S 1
ItgngthLb, unphysical fluctuations of the guiding wave func- Stochntic Reconfiguration steps
ion.

After an exact Green function step a wave function better FIG. 3. Energy per site and evolution of the pairing amplitudes
thang is obtained and is parametrized by the coefficiept  for four holes in thet-J model atJ/t=0.5 as a function of the

BCS parameters

Energy per site

contained in the factor, : In fact, stochastic power method iteration Here 200 walkers were used.
Upper panel: triangles and circles denote nearest-neightje)y
PsrVnt 1= PsrGPsrn="rxtc(X) amplitudes in Eq(35) along thex andy directions, respectively.

has to be by definition a variational state better tha Lower panel: the arrows indicate the power iterations when the
23 1 v . . . "Monte Carlo bin lengtih, has increased from 10 to 10@ft arrow)

Psrin,~> which in turn is better thawys, since for instance and from 100 to 50@right arrow Monte Carlo steps.

we can assume,_ o= g .

(i) It is therefore convenient to change at each iteration e Eyler's equations are identically satisfied. In this case

the guiding wave function the SR represents a very useful tool for global minimization.
p In fact the bin length_,, or the number of walkerM repre-

|z//(’3>—>exp< > ;kok) W) (40) ~ sents at each iteratianan effective inverse temperature that

k=1 can be increased gradually following the well-known ‘“‘simu-

In the above equation we have introduced the new scale ted a””ea'”?g stat|§t|cal qlgorlthﬁﬁ‘.As IS sh_own in F'g'.
ffici  — . /C simply related h defined we apply this technique with a very short bin length using

coeh|C|entSak—g_k c S|m|[;]_y related to the ones, defined 5 q| tranglation-invariant singlet wave function and using

by the SR condition¢3). This is obtained by recasting in - v yefiection symmetries without rotation symmetry. This

a form that is more suitable for exponentiation: amounts to 24 independent parameters for a 26-site cluster
p (Nghen=13). In the plot we show the evolution of the short-
r=Cl1+ 2 ;k(oz_gk)} (41) range BCS parametefs(1,0),A(0,1) when at the beginning
k=1 Yn=0= s Was set with no Jastrow term=0 and the

swave symmetric determinant defined By1,0)=A(0,1)
=0.1t, A,=0 for |7]>1. Thes-wave symmetric solution is
locally stable, but for short enough bin there is a finite tun-

where

> e(x)?0k neling probability to cross the barrier and stabilize the much
6k:X— =( <ijo>l§ 8X,%;)) Iowg_r-energy solution _Withd-vx_/ave symmetry.
S he(x)? (iii) In order to continue with the new guiding wave func-
" Vo tion (40) without another long equilibration, walker weights

_ w; andwjf in Egs.(11) and (12) can be reweighted as fol-
and C=1+3p_,«,0O% The above exponentiation is justi- |ows:
fied, providedyg/||ysl|=ve!||¥cl|- This is certainly ful-

filled at equilibrium when for largen / ;=Psrtni1 Wi —W;[ (X)) (X)) ],
P s, ¥ being the Jastrow-Slater wave function
with the lowest-energy expectation value. In fact at equilib- wjf—>wjf[z//(’3(xj)/z/;6(xj)]2 (43)

rium the SR conditions turn exactly to the Euler equations of
minimum energy for/% : in order that the new weights acting on the same configura-

tions x represent statistically Eq11) with ¢'= 5= ¥ and
(PEIOMYEY  (YE|OKHYE) Eq. (12 with the new guiding wave functiom; .
S - (EIH|E) (42) (iv) For largen the one-body operators corresponding to
the Slater determinant may become linearly dependent be-

as implied by Eq.(3) for ¢,,,=¢¢ and ¢,,1=Gy,  causeD may approach an eigenstate of a one-body Hamil-
«Gy , and taking also into account that here for simplicity tonian £hO o4y, =hiO% 1oa,/S)=E|S), with suitable
0° is the identity. constantd, andE. Thus the covariance matrs ., quickly

This implies thatyg is a lowest-energy wave function of becomes singular, leading to a numerical instability which is

the Jastrow-Slater form. There may be many local minimalifficult to control statistically. A stable method to overcome
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this difficulty was found by Filippi and Fah’?,essentially by 0.025
taking out one operatathe one-body kinetic energyrom
the ones used in the linear systéd). Here we have found it _ 002037/ = +=—— . ] /,7,._4.
more convenient to solve the linear systési & / : — —
Z  0.0151 —A—vMC 1
b [ YMC with Jastrow 4 holes J/t=0.5
K —@— Exact
> Sk = {(6| 0G| ) = fy, 0.010
0.0 . o
by diagonalizing first the symmetric matrix g // LAt
¥ o/ ¥ e
— g o ] ] —— BCS d-
Sk,k’ = 2 Uk,JA] Uk',j (44) § 0.2 4 hOleS J/t=0-3 f)ens;yg?:tmw
-0.3 ]
and taking out the lowest eigenvalig,=0 component of : i s 2 il 3

the positive-definite matris. This is equivalent to selecting
in the SR another set gf—1 operators which are no longer FIG. 4. Hole-hole correlationaipper panelsand Jastrow-Slater
singularly dependent. This is a perfectly legal operation foparameterglower panels for the optimal variational singlet wave
Ay~0, since as shown in Ref. 5, for the singular operatofunctions with pairing wave functiohwith d-wave symmetry in a
O* =%, U, (O, such thatO* |¢c) =0, the SR conditior{3) ~ 26-site clustet-J model.

is identically satisfied. Thus the resulting linear system is no

longer affected by the above numerical instability: each other and do not form many-particle bound states as is
the case for largd/t when phase separation occurs.
A => u, ifi (45) For the_3_2-site cIust(_ar the spirj-translation symmetry has
K ’ to be explicitly broken in the variational wave function by

introducing a staggered magnetizatidty—Hg— A 2R
(—1)Rog along thez axis. The best wave function compat-
ible with reflection and rotation and translation with spin
a=2, Uy ja]. (46) interchange {+]) can be conveniently parametrized by
=0 A and a next-neighbor hopping’ in the Slater
determinarf® and also a spin Jastrow factor is allowed
within this class of wave functions. Even in this case, as
S%hown in the corresponding Fig. 5, the hole-hole correlations

—0 and the correct Euler equations are satisfied. With thi e almost exactly reproduced by the strong attractive Ja-
scheme also optimization of the Jastrow parameters togethS row term at Iony disptance Thisymeans thzgt in this small
with the Slater determinant ones is possible without too, . . ng © :

much effort. doping regime it is important to have a broken symmetry

We have found that the generic situation for Jastrow-ground state, which suppress thevave BCS order param-

Slater wave functions is that the optimal determinant is ac_eter. :
The next step is to perform few Lanczos steps over these

tij;“);] tgi grour;d Ztrztzeulgfr ﬁnzgfzﬁginﬁ%?:tgp tlﬁg_g%dc;/sen variational wave functions which have been shown to be
~ =kkH1body: @ P . i .- .very accurate but not an exact representation of the ground-
one-body operators used in the SR conditions. This is in

agreement with the Filippi-Fahy ans&fz.Occasionally,

however, the optimal determinant turns out to be the excited 0.4f

with @y=0 and

Finally we obtain a much more stable determinationf
which does not affect the result at equilibrium, whetg

state of a one-body Hamiltonian. 5 sz /T

In Figs. 4 and 5 we show the full Jastrow-Slater optimi- % [ \/
zation for thet-J model in the largest-size cases where the % 0.0
exact solution is known: 4 holes in 26 sitéand 2 holes in g A Demsity-Jastrow

32 sites?® respectively. We display the hole-hole correlation 02] S naton

functionsN(R) =((1—ng)(1—ng)) on the variational wave 0.006-> 2 holes J/t=0.3

function with and without the Jastrow factor. We see that the

improvement towards an exact solution is crucially depen- it
dent on the Jastrow density-density factor especially at long-
range distance. This behavior seem to be analogous to the
one-dimensionallD) case where long-range Jastrow factors 0.000
are enough to determine the anomalous long-range behavior

of correlation functions in one-dimensional Luttinger

liquids?"*® The remarkable accuracy of the Jastrow-Slater FiG. 5. Same as in Fig. 4 for the 32-site cluster, with a broken

wave functions is clearly limitedsee, e.g., Fig. 2to the  symmetry Slater determinant wave function withy=0.2t,
region J/t=0.5 where pairs withd-wave symmetry repel Agcs=0.1t, andt’/t=—0.15.

VMC
VMC with Jastrow

N(RI)
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-113 -0.61 -0.43
A
-114] = = e T
ks o -0.62 1 JH=3 o -0.44
-1.15] Q
18 S 2 o4s) 2 holes J/t=0.3
@ a6 0l @ 0.
o] e 8 -0.46
g — -0.641 o
2 - -0.75 2047 .
5 -0.4001 | J/{= - J/t=0.5| no Jastrow g ®  Best singlet VMC
g s -0.76 e = .048] A AFVMC with broken SU(2)
-0.425 1 ;/ o=
AT -0.77 1 - -
04504~ " with Jastrow 0.000 0.001 0.002
, -0.78 .
e — - Variance
0.000 0002 0.004 0.006 0.000 0.002 0.004

FIG. 7. Energy per site as a function of the number of Lanczos
stepsp=0 (higher energy with nonzero varianc@=1 (medium
FIG. 6. Energy per site as a function of the number of Lanczo<E"€rdy with nonzero varianteandp =2 (lowest energy with non-
stepsp=0 (higher energy variangep=1 (medium-energy vari- 2 varlanc)egtartlng from the pptlmal Jastrow-SIa}er wave func-
ance, and p=2 (lowest energy with nonzero variancetarting tion fqr a 32-sitet-J square Iattlc_e. The arrows indicate the exact
from the optimal Jastrow-Slater wave function for 4 holes in the€Nergies, whereas the zero-variance energies are the extrapolated
26-site clusters and severdk. Only for J/t=0 is the broken sym- 'esults with a quadratic fitsolid lines. The broken symmetry so-
metry solution(with the spin Jastrow factar?#0) better than the !utlon is descrlbediln. Elg. 5 whereas thg best S|.nglet wave function
best singlet wave functioftriangles. The arrows indicate the exact IS oPtained by optimizing only the density-density Jastrow and the
energies, whereas the zero-variance energies are the extrapolafii/ave parameters as in EGS).
results with a quadratic fitsolid lineg. For J/t=0.5 we show the
corresponding variationg=0 energy and variance for the wave However, this residual energy should vanish in the thermo-
function without a Jastrow term. dynamic limit if the symmetry is indeed spontaneously bro-
ken. Therefore we conclude that the small discrepancy be-
state many-body wave function. In the singlet case with ndween exact results and extrapolated ones in Figs. 6 and 7 is
broken symmetry the energy as a function of the variance oifrelevant within the above assumption, which is confirmed
the energy per site, by simulations on a much larger size, showing antiferromag-
netic long-range order at small dopiigind ferromagnetism
(Y| (HIL)?|pg) [ {s|HIL|ws) for the J=0 cas€ In any case the variance extrapolation
(ol vy ( TS ) (47 with few Lanczos steps provides always a much more accu-
rate estimate of the exact ground-state energy compared to
is indeed smoothly related to the exact ground-state energyhe lowest variational estimate.
The reason is that for a good variational state the variance
approaches zero as the energy becomes exact, and this prop-
erty can be used to estimate the exact energy by a simple
linear extrapolation energy versus variance for several varia- The variational approach is certainly limited and “bi-
tional wave functions, as pointed out by several authorssed” by the “human” choice of the variational wave func-
before3°=32 The combination of the Lanczos approach andtion, “believed” to be the correct one for the physical prob-
the variance extrapolation is particularly effective since thdem considered. In this paper we have described a variational
Lanczos technigue converges remarkably fast for a good iniapproach that improves systematically any given variational
tial wave function, so that in the variance extrapolation awave function with a coupléand in principle morgLanczos
systematic and reliable extrapolation can be easilysteps(LS’s), with reasonable computational effort. This ap-
obtained® proach is certainly limited, especially for large sizes, when
Whenever on a finite system a broken symmetry variafew Lanczos iterations cannot remove the possible large bias
tional solution has much lower energy than the fully sym-of the initial variational guess. However, for 2D fermionic
metric one, the Lanczos method is less effective. This isystems on a lattice, in the strong correlation regime, i.e.,
shown, for instance, for the 26 sitesHt=0, Fig. 6, or in  close to a Mott insulator state, it is very difficult to improve
the 32-site—2-hole case, Fig. 7. In the latter case we showhe best variational wave function obtained with the Lanczos
also the energy as a function of the variance for the fullyschemedsee Table)l This result is particularly meaningful if
symmetric solution. We see in this case that the approach tawe consider that in principle the FN technique is size con-
the exact solution for a singlet wave function is rather diffi- sistent(lowers the energy per site of the variational guess
cult but indeed possible. even in the thermodynamic limitand the LS’s technique
On a finite system there is always a small energy gain tavith a fixed number of iterationp is not. Thus, close to a
recover a state with definite spin. It is very difficult to obtain Mott insulator, it is very important to change the nodes of the
this residual energy with few Lanczos step iterations, sincevave function—which the Lanczos technique allows—rather
in order to average over the various directions of the ordethan improving only the amplitudes—as in the FN technique.
parameter many Hamiltonian power iterations are requiredit is worth mentioning, however, that the FN energy reported

Variance

2

VI. RESULTS AND DISCUSSION
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in Table | is only an upper bound of the expectation value of 114 4
the Hamiltonian on the FN state. We do not know exactly

how much this will lower the energy in favor of the FN 115
technique, but we expect that this should be only a minor
correction, especially for large sizes.

As shown in Table | the variational energy can be further
improved by using the >0 technique, which, within the
formalism of the present paper, can be thought as a self-
consistent improvement of the amplitudes and the nodes of
the few-Lanczos-step variational wave function. Ferl

-

=

XN
1

-

=

~
1

4 L=98

the original SR scheme is recovered, which as sedfim -1 /
2), may not be the optimal choice from the variational point

-

=

o0
1

Energy per site

-

=

o
1

of view.>®. As far as the variational energy is concerned the 0.001 0.002
self-consistent approacin ¥ 0) is not very effectivdéthe im- Vari
provement is between 20% and 30% on small size systems ariance

for small system sizes but appears to be more and more g, 8. Energy per site of the finite-size Heisenberg model.
important as the size is increased. Also correlation functions:omparison of exact resu|('3qdicated by arromand the approxi_
may be qualitatively improve(Fig. 1) by the self-consistent mate p=0,1,2 Lanczos step iterations over the projeatiestave
approach, especially when a many-particle bound state agvave function. Solid lines are a quadratic fit of the data.
pears(”stripes” or phase separation in this mogelhich is
not contained at the variational level. spondingly less effective. This loss of accuracy is, however,
An important advantage of the standard variational apnot dramatiolasymptotically it scales as<ll), as shown by
proach ¢=0) is that the error in the ground state energy andthe similar quantitative agreement with the exact result ob-
correlation functions can be estimated using that the varianceined with both the 50- and 98-site latticgsg. 8).
of the energy per sité47) in an exact calculation should be  Also remarkable is the correct trend of long-range corre-
zero. The variance can be estimated systematically with higlation functions as we increase the number of Lanczos itera-
statistical accuracy for the firgptLanczos steps acting on the tions. As shown in the inset of Fig. 9 the linear extrapolation
initial variational wave functionyg. We show that the ap- with variance, which is valid for correlation functions aver-
proach to the exact result may be smooth, even for largaged over the system voluni@ee Appendix ) is capable of
system size and number of electrons, even wiignis not  detecting almost the right long-range magnetic order in the
particularly close to the exact result. Obvious exceptions exHeisenberg model. This is remarkable if we consider that the
ist and are shown here in Fig. 2 for correlation functions,starting wave function)g is disordered, as also shown in the
whereas the energy seems always better beh@esdFig. .  same inset. We remark also that in this particular case the
We have tested this simple scheme in the 2D-Heisenbergriginal SR algorithm® for r=1 and A — is exactsince
model where an exact solution of energies and correlatiothe nodes of the variational wave function are the correct
functions is easily available by using standard techniquesones.
The 2D-Heisenberg model has off-diagonal long-range order As anticipated the estimate of the variational error, by
in the ground state, the order parameter using the fact that the variance has to approach zero in an
exact calculation, is really effective in this case and shows

e
S
S

1 5 2 ,
M= 2 Sg-Sp(-DF R
RR' 0.50 \
e
being finite in the thermodynamic limit— oo. We start with 0.45 :
the variational wave function in E¢35) obtained by project-
ing out the doubly occupied states to a wave function with 0.40 et
d-wave nearest-neighbor BCS pairing correlatihdyut = 035 s
without any explicit antiferromagnetic order parameter. ’ Sl
This wave function represents an accurate wave function 0.30 - b B 1=50
for quantum antiferromagnets as far as the energy is con- e =%
cerned, but certainly has not the right behay|0r at large dis- 0-205.000 0.0'02 0.0'04 0.606
tances and may be considered a resonating valence band .
(RVB) disordered variational wave functidrfter applying Variance

only two Lanczos iterations the 18-site size is almost exactly £ 9. Order parametem=\S(7,m)/L in the finite-size
reproduced by this simple wave function, showing that atyejsenberg moddiS(w, ) being the spin isotropic antiferromag-
short distance the quantum antiferromagnetic wave functioRetic structure factdr Comparison of exact resul@ndicated by
is almost indistinguishable from a RVB ofié\s we increase arrowg and the approximatp=0,1,2 Lanczos step iterations over
the size, the variational energy calculatiéeee Fig. 8  the projectect-wave wave function. Solid lines are a quadratic fit
clearly loses accuracy, since the gap to the first excited staisf the data. Inset: finite-size scaling with the variatiofBICS
scales to zero and the Lanczos algorithm becomes correrwave wave function and with the variance extrapolated one.
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-0.66 F T ' 3 many-parameter variational wave function, with a nonlinear
-0.67 £/ L=50 8 holes J/t=0.4 3 optimization as described in Sec. V.
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wave functionshighest-energy dosafter applying ongmedium-
energy points and two (lowest-energies pointsLanczos steps.
Lines are a quadra’[ic fit to the data. APPENDIX A: PROPERTIES OF THE OPERATOR

Psr(Al—H)Pgsg

that, even for a large size, it is possible to reach very good In this appendix we focus on some properties of the ma-

guantitative estimates of the energies and correlation fundrix Psg(Al —H)Pgg, defined in Eq(21).

tions (see Ref. 38 even when the starting wave function is (i) The maximum eigenvalud — Egg of the Hermitian

not particularly close to the exact one. In the Lanczos algomatrix Psg(Al —H)Pgg is certainly smaller than the corre-

rithm the variance becomes zero only when the lowestsponding one\ —E, of the exact Green functiohl —H. In

energy state nonorthogonal to the initial wave function isfact #sg=Psri/sr is the normalized elgenstate BlsR(Al

reached. However, we expect that the variance may reach H) Psg With eigenvalueEsg; then PL=Pgg implies that

very small values close to a “quasieigenstate,” implying theEsg=(#/sr PsfHPsr /s =(#sd H| s =Eo, as ¢sg can

failure of the variance variational error estimate. In fact, inbe considered a variational state of the exact Hamiltokian

this case the energy optimization Lanczos technique i&Vith energyEgg.

trapped in a local minimum, with no possibility of tunneling (i) Since ¢sg is obtained by applying[Psg(Al

to the true global minimum energgee Fig. 10 —H)Pgg]" to a given trial wave function, fon—« such a
Clearly this is a well-known problem in numerical opti- Propagated wave function will converge therefore to the

mization and the only possibility, when the exact solution islowest-energy state in the subspace projectedPly. This

not known, is to check the various candidates for the groundmplies clearly thaEggis lower than or at most equal to the

state and determine the one with the lowest energy. Frordariational energy on the reference wave function,

another point of view, this property of the Lanczos algorithm{#c|H| ), simply because) belongs to this subspace.

may be useful to estimate physically observable quantities, (iii) Sinceyg belongs to the subspace projectedRyg,

such as the condensation energy for a metal to become (@g|HPsg=(#c|PsgH. Therefore the mixed average esti-

superconductor, which is just the macroscopic difference innate, statistically much more convenient,

energy between two thermodynamically stable states. From

Fig. 10 an estimate of this condensation energy is t0.02 (YelH|¢sp  (#e|PsiHPsd¥sp)

~100 K, in reasonablg agreement with experiments on high- MAT (uslvsR  (Ys|PsA¥sp =Esr:

T. cuprates® suggesting that the main features dfvave

superconductivity can be understood with this simple modelcoincides with the variational bourflsg of the ground-state
At the moment, the approach we have presented here hgfergy asjsris an exact eigenstate BfsgH Psg with eigen-

to be limited to very few Lanczos iterations for large sizesvalueEgg.

with the given computer resources. Nevertheless, it is cer-

tainly systematic and unbiased as far as the approach to the APPENDIX B: FORWARD WALKING
ground state is concerned: the corrections to the initial guid- ) ) o
ing function depend only on the Hamiltonidhand no other In order to compute correlation functions ovggr it is

biased approximation. Compared to the standard FN tecHiecessary to use a slight generalization of the forward walk-
nique, it allows a systematic improvement of the startingind technique, generalized to a nonsymmetric matrix such as
variational wave functionyg by correcting not only its am- (29). Moreover, since in the meaningful SR limit of a large
plitudes but also the nodes. number of walkers or bin length,—~ the parameters,

The extension of this technique to continuous models igan be assumed constantsrip, Eq. (4), it is much more
straightforward. For the reference dynarigven by G’ in convenient to implement the forward walking technique
Eq. (22)] one can use the Langevin dynamic, as is done invithout allowing any fluctuations of the random variables
Ref. 37, so that it is possible to determine the lowest-energyk- This can be done easily by first evaluating the expecta-
state obtained by applying t¢g few Lanczos steps with tion value ratiosw ={a,)/{ag), k=1, ... p, with the stan-
(r>0) or without self-consistencyr&0) or by using a dard SR algorithm, i.e., allowing the, fluctuations for each
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Markov iterationn. The second step is to perform a different L= tha(X)ry /2, (B6)
simulation, usually much more efficient as far as the error
bars are concerned, with, determined by nonrandom con- @"

stantsay: Re=|ry "1 h(x)sgnry,. (B7)

p

— After applying several times the Green functi@ the
=1+ a0k, (B1) prying
k=1

walkersw',x determine the statgr(x). Then it is possible
to evaluate expectation values of any oper&@awith given
If the o, are determined accurately fof,L,, large, the SR~ matrix elementsO,. , by applying the following relation,
conditions (3) will be automatically verified within error Which corresponds to propagatingimes forwardyg(x):
bars. The statistical or systematic error related to the deter-

mination of the C(_)nstantgk is also not much important. In > (Ef);‘,,vx,gxrixsz(x)
fact even assuming that with the first simulation the con- .
(sdOlhsp . XX x

stantsa, are determined with a non-negligible statistical er- = lim , (B8
ror and an unavoidable systematic bias due to the finite num-  (¥srl¥sR . S (@Y T ae(X)

ber of walkers, the method that we will describe in the - X7x!IXXER
following will provide also in such a case a variational esti- xx' X

mate of the energy with the chosen constaﬁts The anal- where the matrix elements @ and the identityl are re-
ogy of this method with the Lanczos method is evident alsg|aced by the ones of the left-right transformed matriGes

in this case. Even in the latter technique, a first run is usuall%mdl— respectively. The explicit matrix elements ©fand
implemented to determine the coefficients of the ground statg thé RHS of the ébove equation are given by

ay in the Krilov basis spanned by the initial wave function

¥ and the powers of the Hamiltonian applied to g 6)(, =L Oy yRy, (B9)
= o+ Sko1paH"|¢6) (with some more technical ingredi- ' '
ent to work with an orthonormal bagisThen correlation T =L RS . (B10)

functions overy,, are computed by recovering the ground- . _ .
state wave function in this basis using the determined coefThis means that in the standard forward walking technidue,
ficients;k. instead of using the importance-sampled matrix elements ob-

Let us now focus on the implementation of the forward t@ined withL, = c(x)=1/R, in Eq. (BY), the slightly more

walking technique within the SR scheme at fixed constantd"volved ones(B9) and(B10) have to be considered. In fact
— e =% . L . by simple substitutions of these matrix elements into Eq.
ay. SinceG' in Eq. (29) is not symmetric, its left eigenvec-

=N ’ '
tor (4 |=limy,_..(g|(G"" does not necessarily coincide (B8), using also that, '(Gf)x,”,x,ocde(x )= sr(X") Ly,
with the_corresponding right eigenvectgg . Fortunately the  Eq. (B5), and thatyr(x) = sg(X)/Ry, Eq.(30), Eq.(B8) is
matrix G' can be easily written in terms of a symmetric easily verified. The statistical algorithm used to evaluate the

matrix G°: ratio in Eq(B8) is very similar to the standard “forward
walking” techniqué?® for diagonal operators. The few differ-
5; = aX,GS, Jay, (B2)  ences are the following.
' (i) Also the denominator in EqB8) has to be “forward”
with propagated fomn iterations, since in this case the diagonal

elements ofl are not trivially one(since L,#R, ). The

(0|1 error bars have to be then calculated taking into account that
Ax= Jz, ' (B3) the numerator and the denominator are very much correlated.
X (i) Off-diagonal operators can be computed without per-
2 2 forming another simulation, provided the matrix elements of
G0 — ™4 1A, —Hy (B4) the operato© are contained in the nonvanishing ones of the
X'x VZ, 20 e e Green functionG (or some power ofG if the operator is

. evaluated statistically In particular the expectation value of
Therefore the right and left eigenvectors Gf are easily the Hamiltonian and the even more accurate d@8scan be
written in terms of the maximum eigenstatg of the sym-  computed altogether with a single Markov chain.
metric matrix Go, namely, yr(X) = a,po(X) and ¢ (X) (iii ) Similarly the accuracy of diagonal and off-diagonal
= ¢o(X)/ a(X). Then using the definition of the SR state, Eq. operators can be further improved by computing

(30), it follows that also the left eigenvector @' can be

kA ~k
written in terms ofygg: (Ysd G OG | Ysp)
L (5) (rsAGH|Ysp
X)= X
YsrX) =L (), In fact an important advantage of the SR technique is that the
with reference Green functio@i,’x is nonzero for all nonzero
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elements of the exact Green functi@h(whereas in the FN (Yo H| )
technique the matrix elements with negative sign are sup- E(a)=W,
pressedl Thus exact sampling of the Green functi@ncan e

be done with the standard reweighting method, requiring (| (1+aH) Y yp,)

only the finite multiplicative factorsX,,X=GX,,x/G;,’X, cal- X AN,
culated for each iteration and each walker of the Markov ara
chain. The same technique can be obviously generalizeHere E(«) is obtained by averaging over the chosen con-
when the reference Green functig®' is the fixed node figurations the local energy corresponding#g, namely,
one—slightly generalized to have the possibility to cross the{e¢a), whereasy is obtained by averaging over the same
npde§—3|mply replacmg_ﬁf. andz,=1 in the above expres- configurationg[ 1+ ae,,_(x)]~1). Given y it is straightfor-
sions. However, the statistical accuracy for the determlnatlovvard to com ¢

. ) £ pute
of the constant$«,} is very bad with the FN referend@’,
about an order of magnitude less efficient than the one in Eq. h,=[(x " 1=2)(1+ah;)+1]/a?,
(22), without a significant improvement in variational ener-

gies. The reason for such bad behayimrthe successful one and therefore giveh, andh,, the value ofE(a) implicitly
for Eq. (22)] is not clear at present. defines the highest momenturh;=[E(«a)(1+2ah,

+ a?h,)—h;—2ah,]/a?. Notice that the most difficult en-
ergy momentunis is given by sampling an energy expecta-
tion value, which is by far statistically more accurate com-
pared to the direct determination bf.

In this appendix we describe an efficient way to find the It is then possible to minimize analyticalB( «), yielding
optimal LS wave functioni,) = (1+ aH)| ), starting from
a chosen variational guegs), i.e., to calculate the value of a*
«a for which the energy

APPENDIX C: EFFICIENT CALCULATION OF THE
SINGLE-LANCZOS-STEP WAVE FUNCTION

— (ha—h3hy) = \(hs—h3hy)2—4(h,—h?) (hihs—h)
2(hsh3—hj) ’

_ (Wel(1+ aH)H(1+aH)|yo)

E(a C1
O el al ) () <o
has a minimum. A standard method is to calculate statistiwhere the above sigrt is such as to minimiz&(a*).
cally the various powers of the Hamiltonian The analytic minimization oE(«), Eq. (C3), given the
values ofy, h;, andE(«) itself, provides the exact value of
h :<¢G|Hn|¢e> (C2) a* in Eq. (C4) within the statistical uncertainties. They be-
" (Yl come smaller and smaller whenewer «*. Typically two

) ] ] ) ) or at most three attempts are enough to reach an accurate
using configurationg generated by the Metropolis algorithm yatermination ofx* when the condition

according to the weightsg(x)2. This method is, however,
inefficient since much better importance sampling is ob- 1
tained when configurations are instead generated according X= 1+ a*E(a*) (CH
to the optimal Lanczos wave function «(x)=[1
+a*e, (X)]4e(x), wheree,(x) =(4[H[x)/(#|x) (Ref. 1§ s exactly fulfilled. This condition is true in general only for
is the local energy corresponding to a generic guiding wavéigenstates of the Ham|lt0n|an_, but remains valid for the
function ¢, and «* minimizes the above expectation value Single-Lanczos-step wave function.
(C)) for a= a*. This wave functionf,» may be much bet-
ter leading to much lower variances especially for the higher APPENDIX D: VARIANCE ESTIMATE OF THE ERROR
momentah, andhs. IN “BULK” CORRELATION FUNCTIONS

In this appendix we describe an efficient way to find the
optimal LS wave function|#,+), starting from a chosen
variational guess$y,) with energy

In this appendix we estimate the error in correlation func-
tions assuming that the ground st&gg) is approximated by
the wave functior{y,,) distante, from [y,). Namely, with
no loss of generality we write

E( )_ h1+ 2ah2+ a2h3 (CS)
T 1+ 2ah;+a?h, oy =| o) + €l '), (D1)
which easily written in terms of the energy momehta with (ol o)=('|¢')=1, ¢' representing a normalized

In order to minimize Eq(C3), given an arbitrary value of wave function orthogonal to the exact ofw|#')=0. We
«a, it is convenient first to compute the energy expectatiornrestrict our analysis to thermodynamically averaged correla-
value h; with the standard statistical method and then, intion functionsO, the ones which can be written as a bulk
place of the remaining Hamiltonian higher momehtaand  average of local operato®gr: O=(1/L)=gOg. This class
hs, generate statistical configurations accordingtg(x)?>  of operators includes for instance, the average kinetic or po-
and compute tential energy or the spin-spin correlation function at a given
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distancer, Ogr=Sg- Sg. ,. If we use periodic boundary con- The validity of the above statement is very simple to show
ditions, the expectation value @i on a state with a given under very general grounds. In fact by definition
momentum does not even dependR®and the bulk average

— ’ 2 ’ ’
does not represent an approximation: (#pl Olp) =C+2¢x(4" Ol o) + €x(¢'[O]y"). (D4)
The most important term proportional éan the above equa-
(%0l Orl o) = (10| Ol o) = C. (D2)  tion can be easily bounded by use of the Schwartz inequality

We show here that the expectation value of bulk-averaged |{i'|O|o)|2=|(1'|O—C| o)< (tho|(O—C)?| 1//0)
operatorsO on the approximate staig, satisfies the follow-

ing relation: The final term in the latter inequality can be estlmated under
the general assumption that the correlation functiGis)
WolOlvo) _ -\ 52 e 11D, 03  =((Op—C)(Og.,~C)) decay sufficiently fast with dis-
(ol ) PP tance| 7|, as a consequence of the cluster property:
thus implying that for large enough size the expectation 1
value (D3) approaches the exact correlation functionin- (ol (0O—C)?| o) = T > C(7).

early with variance. This allows one to obtain a good accu-
racy with a good variational calculation, which is not easy toThis concludes the proof of the statement of this appendix,
obtain if a term~ €, dominates. providedX C(7) is finite for L—oo.
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