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Generalized Lanczos algorithm for variational quantum Monte Carlo
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We show that the standard Lanczos algorithm can be efficiently implemented statistically and self-
consistently improved, using the stochastic reconfiguration method, which has been recently introduced to
stabilize the Monte Carlo sign problem instability. With this scheme a few Lanczos steps over a given
variational wave function are possible even for large size as a particular case of a more general and more
accurate technique that allows to obtain lower variational energies. This method has been tested extensively for
a strongly correlated model like thet-J model. With the standard Lanczos technique it is possible to compute
any kind of correlation functions, with no particular computational effort. By using the fact that the variance
^H2&2^H&2 is zero for an exact eigenstate, we show that the approach to the exact solution with few Lanczos
iterations is indeed possible even for;100 electrons for reasonably good initial wave functions. The varia-
tional stochastic reconfiguration technique presented here allows in general a many-parameter energy optimi-
zation of any computable many-body wave function, including for instance generic long-range Jastrow factors
and arbitrary site-dependent orbital determinants. This scheme improves further the accuracy of the calculation,
especially for long-distance correlation functions.

DOI: 10.1103/PhysRevB.64.024512 PACS number~s!: 02.70.Rr, 75.10.Jm, 75.40.Mg
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I. INTRODUCTION

The study of strongly correlated systems is becomin
subject of increasing interest due to the realistic possib
that in many physical materials such as high-Tc supercon-
ductors, a strong correlation between electrons may lea
an unexpected physical behavior that cannot be expla
within conventional schemes, such as for instance mean
or Fermi liquid theories.

One of the most important models, which is still the su
ject of intense numerical studies, due to its possible
evance for high-Tc superconductivity, is the so-calledt-J
model:1,2

Ĥ5J(
^ i , j &

S Ŝi•Ŝj2
1

4
n̂i n̂ j D2t (

^ i , j &,s
c̃i ,s

† c̃ j ,s , ~1!

wherec̃i ,s
† 5 ĉi ,s

† (12n̂i ,s̄), n̂i5(sn̂i ,s is the electron density

on site i, Ŝi5(s,s8c̃i ,s
† ts,s8c̃i ,s8 is the spin operator, and

ts,s8 are Pauli matrices. After many years of intense num
cal and theoretical efforts there is no general consensu
the properties of this simple Hamiltonian and of the rela
Hubbard model. In this paper thet-J model is studied by
means of a recent numerical technique,3 apparently very
promising, to improve systematically the accuracy of a st
ing variational wave function, even when the Monte Ca
simulation is severely affected by the so-called ‘‘sign pro
lem’’ instability. We will show in this paper that in a par
ticular case this technique allows us to apply very efficien
the well-known Lanczos technique, by means of quant
Monte Carlo simulations. This allows us to obtain accur
variational wave functions even on rather large sizes, as
pointed out by Heeb and Rice.4

The Green function Monte Carlo with stochastic reco
figuration ~GFMCSR! was introduced recently3 for—so-
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called—projection techniques, aiming to determine—as
curately as possible—the ground-state~g.s.! wave function
c0 of a given HamiltonianH.

In the statistical approach the electron g.s. wave funct
is sampled over a set of configurations$ux&%, denoting spins
and electron positions, and belonging to a complete b
with large or even infinite dimension. The ground-state co
ponentc0 of a given trial statecG—henceforth assumed t
be nonzero on each configurationx—is filtered out by apply-
ing to it some projection operatorGn for a large numbern of
power iterations. The matrixG may be given byG5e2HDt

for short imaginary timeDt, as is the case for the conven
tional diffusion Monte Carlo simulation for continuous mo
els, or the one that will be considered in the following se
tions,

G5~LI 2H !kp, ~2!

for lattice models, where a suitably large constant shiftL
allows convergence to the ground state (L50 is used for the
t-J model!. The integerkp , determining the number of pow
ers of the Hamiltonian in the Green function, may be
principle larger than 1,5 but in the following we avoid this
complication and we considerkp fixed at its minimum value:
kp51.

In order to perform stable simulations with a large sign
to-noise ratio even for largen the many-body propagation
cn→GnucG& needs to be stabilized at each iteration, us
an approximation that can be efficiently implemented sta
tically by means of the stochastic reconfiguration~SR!
scheme.5

The essential step in the SR is to replace the many-b
statecn11(x)5Gcn , obtained by applying tocn the exact
Green functionG, with the approximate statecn118 (x), de-
termined by the following conditions. A given set ofp11
operators$Ok%, not restricted to be Hermitian operator, sa
isfies the equalities
©2001 The American Physical Society12-1
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^cGuOkucn118 &5^cGuOkucn11& for k50, . . . ,p, ~3!

with O0 for k50 being the identity here for simpler an
more compact notation,cn118 5r xc

f(x), c f being a refer-
ence state known exactly~e.g., the standard variational ap
proach! or statistically ~e.g., the fixed node approximat
state! on each configurationx, and

r x5 (
k50

p

akOx
k , ~4!

where

Ox
k5

^cGuOkux&

^cGux&
, ~5!

and the constantsak are determined by the conditions~3!:

a i5(
k

si ,k
21^cGuOkucn11&, ~6!

where the covariance matrix is given by

si ,k5(
x

cG~x!c f~x!Ox
i Ox

k . ~7!

At equilibrium, for largen cn8 converges to a well-define
many-body statecSR, up to a trivial normalization constan
which maybe also infinite but irrelevant for physical expe
tation values. In this limit therefore the conditions~3! deter-
mine the strong constraints on the many-body statecSR,
namely,

^cGuOkucSR&

^cGucSR&
5

^cGuOkGucSR&

^cGuGucSR&
for k50, . . . ,p. ~8!

These constraints are exactly fulfilled by an exact eigens
of the Green functionG, so that they represent physical
relevant conditions restricting the possible values of the c
relations functions for a reasonable approximationcSR of the
ground state ofH ~an exact eigenstate ofG). As will be
shown later on in Sec. V these constraints~8! coincide in
some special cases with the Euler equations of minim
energy, but this is not generally true. The SR conditio
represent therefore more restrictive criteria to judge the q
ity of a given approximate state. They are directly related
correlation functions and not necessarily to the energy alo
This property is particularly important, since for the sam
strongly correlated Hamiltonian it is often possible to fi
several variational states, with very accurate energy expe
tion values, but with completely different correlatio
functions.6 Thus the SR conditions~8!, which are clearly not
limited to a statistical approach, represent a useful too
alleviate the above very important difficulty of approxima
variational techniques.

Going back to the more formal derivation, the SR can
considered a projectionPSR of the exactly propagated wav
function cn115Gcn onto a subspace spanned by the sta
uc f

k&, defined by^xuc f
k&5Ox

kc f(x), for k50, . . . ,p. Notice
also thatonly whenc f5cG , c f

k5(Ok)†ucG&; namely,c f
k is

obtained by applying the operator (Ok)† to the statecG .
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Solving the linear system determined by the SR con
tions~3! we obtain a closed expression for the linear opera
PSR, which explicitly depends on the statecG and the ref-
erence statec f :

PSR5(
i , j

si , j
21uc f

i &^cGuOj . ~9!

The operatorPSR is not a true projection operator
Though it satisfies the simple requirement~i! PSR

2 5PSR, ~ii !
PSR

† 5PSR is not generally satisfied. A way to implemen
statistically this ‘‘pseudoprojection’’ operator in the larg
number of walker limit was discussed in Ref. 5.

After each reconfiguration the statecn is replaced bycn8
5PSRcn , but also the reference statec f is changed. In fact
in the original formulation3,5 also the reference state explic
itly depends onn and is updated after each SR:

cn
f ~x!→sgn@cG~x!#ucn8~x!u. ~10!

The reason for the choice~10! is to optimize the reference
state and obtain more accurate results, as explained in
forthcoming paragraphs.

With the restriction of a stable simulation the signs of t
reference wave function have to be fixed; otherwise the
erage sign will drop exponentially to zero in the simulatio
Therefore, in Eq.~10!, c f has been restricted to have th
same signs~or the same nodes! of the guiding wave function
cG . On the other hand, the amplitudes of the reference w
function c f can be considerably improved from our be
variational guesscG , since during the exact dynamic th
statecn gets closer to the ground-state wave function. T
optimal choice for the amplitudes has naturally led to t
definition ~10!.

This technique, with the choice~10!, has been shown to
be remarkably accurate for frustrated spin or boson syste
allowing one in many test cases to obtain essentially ex
results within statistical errors.7,8 However, for fermion prob-
lems the situation is much different. Though this techniq
allows a significant improvement in the energy and corre
tion function calculations,9,10 the bias remains still sizable
and difficult to eliminate completely by increasing the num
ber of correlation functions used in the SR technique. Due
the antisymmetry of the fermion many-body wave functio
it appears that the nodes in this case play a much more
portant role.

It is instructive to consider the case of continuous mode
In this case, for fermion systems, nodes have to appear in
many-body wave function just by antisymmetry consid
ations. On the other hand, symmetry alone does not res
the nodal surface@the locus where the wave functionc0(x)
vanishes#, implying that correlation effects can significant
change the nodal surface. In this case it may be useles
irrelevant to improve the amplitudes without changing t
nodes in the reference wave function~10!.

For fermion systems, due to the above difficulty in det
mining a nodal surface which is weakly modified by corr
lation effects, it appears at the moment difficult to avoid
sizable ‘‘nodal’’ error in energies and correlation function
2-2
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GENERALIZED LANCZOS ALGORITHM FOR . . . PHYSICAL REVIEW B64 024512
Therefore in this case it is extremely important that any
proximation is at least controlled by the variational princip
In this way an approach different from the one propos
before3 can be used. The first step to obtain a rigorous va
tional method is to consider the reference wave functionc f

fixed to the variational or the fixed node state.11,12

II. FIXED REFERENCE DYNAMIC

In the GFMC propagation a large numberM of walkers is
used; thej th walker is characterized by two weightswj

f ,wj ,
acting on a configuration statexj , e.g., a state with definite
electron positions and spins. The reference weightswj

f

sample statistically the reference statecn
f (x) whereas the

weightswj refers to the statecn(x) propagated by the exac
Green functioncn5Gcn21. More precisely, taking into ac
count the importance sampling transformation5

^^wj
fdx,xj

&&5cn
f ~x!cG~x!, ~11!

^^wjdx,xj
&&5cn~x!cG~x!, ~12!

where the bracketŝ̂ •••&& indicate both the statistical ave
age and the one over the number of walkers, at a gi
Markov iterationn. The two wave functionscn

f andcn are
propagated using the statistical approach. For the first sta
reference Green functionGx8,x

f with all positive matrix ele-
ments is used, whereas the latter one is propagated by m
of the exact Green function~2! which is related to the refer
ence one by a simple relationGx8,x5sx8,xGx8,x

f with finite
and known matrix elementssx8,x :

cn11~x8!cG~x8!5(
x

Gx8,xcn~x!cG~x!, ~13!

cn11
f ~x8!cG~x8!5(

x
Gx8,x

f cn
f ~x!cG~x!. ~14!

The reference Green functionGx8,x
f

5px8,xbx is written in
terms of a stochastic matrixpx8,x (px8,x>0 and (x8px8,x
51) times an x dependent normalization factorbx

5(x8Gx8,x
f , so that a statistical implementation of the iter

tion ~13! is possible. Namely, given the configurationxj of
the j th walker a new configurationxj8 is selected statistically
with probability px

j8 ,xj
~notice that(x8px

j8 ,xj
51 by defini-

tion!:

xj85x8 with probabilitypx8,xj
. ~15!

Then the reference weight

wj
f→bxj

wj
f ~16!

is scaled by the normalization factorbxj
, whereas the weigh

related to the exact Green functionG,

wj→sx
j8 ,xj

bxj
wj , ~17!

is further multiplied by thesx
j8 ,xj

matrix element.
02451
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According to the above Markov iteration, defined by Eq
~15!–~17!, all the walkers propagate independently of ea
other. The reference weightswf remain positive, whereas
wj , related to the exact propagation, accumulate many s
changes, leading, for largen, to an exponential increase o
the signal-to-noise ratio. This is in fact determined by t
corresponding exponential drop of the average walker s
^s&5( jwj /(uwj u ~the infamous ‘‘sign problem’’!. The sto-
chastic reconfiguration allows one to alleviate this proble
by implementing statistically the operatorPSR described in
the previous section. In practice the weightswj are replaced
by approximate weightspj , but with a much larger averag
sign ^s&. The weightspj sample statisticallycn8(x)cG(x)
and are determined by solving the corresponding linear s
tem ~3!. This is done at a given Markov iteration by avera
ing Eq. ~3! only over the walker samples. This means th
there exists a bias due to the statistical uncertainty of
quantum averages in Eq.~3!. This bias, however, can b
controlled efficiently5 because for a large number of walke
it vanishes as 1/M . In this limit r x in Eq. ~4! depends only on
the configurationx as the statistical fluctuations of the co
stantsak can be neglected forM@p.

Another method to control much more efficiently the s
tistical fluctuations of the constants$ak%, without using a too
large number of walkers, is to perform the SR scheme o
after applying, at each iterationn, a large numberLb of sta-
tistical steps defined in Eqs.~15!–~17! In this way the statis-
tical averages in Eq.~3! have only small fluctuations
}1/ALb, which can be neglected in the limit of large b
lengthLb , even when a small number of walkers is used.
each bin we are considering only the iterationn→n11 of
the power method when the parametersak of the wave func-
tion PSRcn are known and computed in the previous iter
tion. Thus $wj

f% evolve statistically according toGf @Eqs.
~15! and~16!#, and new configurations$xj% are generated for
the statistical sampling of cG(x) c f(x)5^^wj

fdx,xj
&&,

whereas, inside the bin, the weights$wj% are always reset to
wj5r xj

wj
f—i.e., with the same configurations and a simp

scaling of the weights it is possible to sample the propaga
statePSRcn in all the Lb statistical steps. Then at each st
inside the bin the exact Green functionG is applied statisti-
cally @Eq. ~17!# in order to samplecn115GPSRcn , which is
required to calculate the right-hand side~RHS! of the SR
conditions~3!. At the end of the bin newak can be computed
by solving the linear system~3!. It is understood that even
inside the bin a branching scheme at fixed number
walkers13 and with a fixed number of correcting factors ca
be used to improve importance sampling. Whenever
length of the bin is so large that the statistical fluctuatio
can be neglected, the algorithm is deterministic inside
statistical uncertainties and becomes much more effic
compared to the original scheme,3,5 where the SR conditions
were applied at each step (Lb51). We have found instead
that the most efficient scheme is to change these constanak
only when the SR conditions~3! are not satisfied within sta
tistical errors~e.g., they are off by more than three err
bars!, by increasing systematically the bin length at ea
iteration. This scheme allows one also to eliminate the b
2-3



it

e
-

m

in
as
nt
a-

ic

e
e

s
c
ve

s,
rlo
ar

g,

ates
nce

xi-

d

um
l
tor

en
ed
l-
is
int

nc-
en-

sta-

n

n

ast

in
f

SANDRO SORELLA PHYSICAL REVIEW B 64 024512
due to the finite number of walkersM, which was rather
sizable in the original formulation.5

After the SR, say, at the iterationn0, in order to continue
the power method iteration forn.n0, the new approximate
statecn0

8 5PSRcn0
replacescn0

but the reference statec f is

still arbitrary. Instead of changing the reference weights w
the choice3,5 wj

f5upj u @implying Eq.~10! in the large number
of walker limits# it is instead possible to remain with th
same reference statecn0

f , without changing it in the statisti

cal sense. This is obtained by the following simple sche
After the SR new configurationsxi85xj ( i ) are selected
among the old onesxj according to the probabilityP j
5upj u/(kupku. This scheme naturally defines the random
dex tablej ( i ),13,5 used to improve importance sampling—
in the branching scheme for the standard diffusion Mo
Carlo simulation14—and allows one to continue the simul
tion more efficiently with equally weighted walkersuwi8u
.const. In fact in order to sample statistically the statescn8
andc f with corresponding new weightswi8 andwi

f8,

cn8~x!cG~x!5^^pidx,xi
&&5^^wi8dx,x

i8
&&,

cn
f ~x!cG~x!5^^wi

fdx,xi
&&5^^wi

f 8dx,x
i8
&&, ~18!

it is enough to use the so-called reweighting method, wh
makes the above equationsexactin the statistical sense:

wi85w̄ sgn pj ( i ) , ~19!

wi
f 85w̄wj ( i )

f /upj ( i )u5
uwi8u

ur x
i8
u
, ~20!

where w̄5(1/M )( j upj u is a constant common to all th
walker weights and sgna561 represents the sign of th
numbera. The correcting factorw̄ is taken into account only
for a finite numberL of past iterations, starting, e.g., from
n2L11; otherwise, the weights of the walkers may increa
or decrease exponentially, leading to a divergent varian
This introduces a systematic bias, which vanishes, howe
exponentially inL and decreases as 1/M .5 In practice for a
large number of walkers it is enough to consider only few~or
even none! ‘‘correcting’’ factors in the statistical average
as common practice in Green function Monte Ca
simulations.14 From the reweighting method it is also cle
that the choice of the probability functionP j is not restricted
to be proportional topj . In particular we have found it more
convenient to use the weights corresponding toGcn deter-
mined after applying Eq.~17!, so that the choiceP j
5uwj u/(uwku further improves the importance samplin
with a minor change in Eqs.~19! and ~20!:

wi85w̄
pj ( i )

uwj ( i )u
,

wi
f 85

uwi8u

ur x
i8
u
,

02451
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with w̄5(uwj u/M .
Using the previous scheme the reference state equilibr

necessarily to the largest right eigenstate of the refere
matrix Gf . At equilibrium the statecSR has therefore a very
well-compact and clear definition. It represents the ma
mum right eigenstate of the matrix

PSR~LI 2H !PSR, ~21!

with given c f in the definition ofPSR Eq. ~9!.
The method is therefore rigorously variational provide

the pseudoprojector PSR is a true projector operator,
namely, forc f5cG when PSR

† 5PSR, as implied by Eq.~9!.
In this case in fact by standard linear algebra, the maxim
right eigenstate of the operator~21! is the best variationa
state ofH belonging to the subspace defined by the projec
PSR ~see Appendix A!.

A. Variational energy when PSRÄPSR
†

In the original formulation of the SR the reference Gre
function was defined with a slight generalization of the fix
node Green function.3 The Green function proposed by Hel
berg and Manousakis15 is instead more appropriate in th
context and much more convenient from the practical po
of view of reducing statistical fluctuations:

Gx8,x
f

5
1

zx8

uLdx8,x2cG~x8!Hx8,x /cG~x!u. ~22!

where zx5(x8uLdx8,x2cG(x8)Hx8,x /cG(x)u, uau meaning
the absolute value of the numbera. It is simple to show that,
by applying the power method with the above Green fu
tion, convergence is reached when the maximum right eig
vectorcG(x)2 is filtered out:

(
x

Gx8,x
f cG~x!25cG~x8!2. ~23!

Thus the above Green function can be used to generate
tistically configurations@see Eqs.~15! and ~16!# distributed
according to cG(x)2 with a stochastic matrix px8,x

5Gx8,x
f zx8 /zx .

The advantage of using the reference Green function~22!
is evident when we consider itsvery simplerelation with the
exact Green function, namely,

sx8,x5Gx8,x /Gx8,x
f

56zx8 , ~24!

where the sign6 is given by the sign of the Green functio
matrix elementLdx8,x2cG(x8)Hx8,x /cG(x), and depends
of course onx andx8. Using the fixed reference algorithm i
Eq. ~20! c f5cG , and the operatorPSR represents in this
special case a true projector onePSR

† 5PSR. Thus in this case
the method is rigorously variational as pointed out in the l
part of the previous section.

We notice also an important property of this method. If
the SR conditions~3! only operators defined by powers o
the HamiltonianOk5Hk are used, the projectorPSR acts on
the same Krilov basis~spanned byHkucG&, k50, . . . ,p) of
2-4
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GENERALIZED LANCZOS ALGORITHM FOR . . . PHYSICAL REVIEW B64 024512
the well-known Lanczos algorithm. Thus (PSRGPSR)
nucG&

filters out the lowest-energy variational state in this Kril
basis, i.e., by definition the state obtained by applyingp
Lanczos iterations tocG . We recover in particular a known
property of the Lanczos algorithm, valid also for the S
method: the method is exact ifp equals the dimension of th
Hilbert space.

Due to the equivalence of the Lanczos algorithm with
SR technique, it is clear why, with the latter technique, it
possible to obtain a rather good approximate ground s
with p reasonably small.4,7–10 In fact the convergence of th
Lanczos algorithm is at least exponential inp.16

We have therefore derived that the Lanczos algorithm
be implemented statistically using the SR method. This
lows us to perform easily two Lanczos iterations on a giv
variational wave function for fairly large size systems. Fu
thermore, the SR method allows us to put several correla
functions in the Eq.~3!. Since the method is strictly varia
tional, the variational energy has necessarily to decreas
increasing the mentioned number of correlation functions

B. Improving the variational energy

Following Ref. 17, by applying a finite number of exa
Green function iterations to the wave functioncSR, the cor-
responding quantum average

ESR
k 5

^cSRuGkHGkucSR&

^cSRuG2kucSR&
~25!

remains obviously variational for anyk.
Taking into account 2k statistical factorssx8,x , the above

quantum averages can be statistically evaluated with
same Markov chain for whichESR (k50) is computed.

The sign problem can be controlled for not too largek and
systematically improved variational energies can be obtai
compared to thek50 result. However, experience ha
shown that it is very difficult to have significant improve
ment over thek50 result for a large system size.

III. VARIATIONAL ENERGY WHEN PSRÅPSR
†

We have seen that the method is rigorously variatio
once the reference weights are changed according to
~20!. However, as we have explained in the Introduction
better choice is to continue after the SR withwf 85uw8u, the
rationale for this choice being that the wave functionc8
5PSRc has much better amplitudes than the variatio
wave function cG . This allows us to improve self
consistently the reference wave function in order to be
close as possible to the true ground state. In this way, h
ever,c fÞcG and the method is no longer variational in th
sense that the SR state defined by the right eigenstate
maximum modulusuL2ESRu eigenvalue of the matrix,

PSR~LI 2H !PSRucSR&5~L2ESR!ucSR&, ~26!

is no longer the lowest-energy one in the basis defined
uc f

k&, k50,1, . . . ,p, andESR does not necessarily bound th
ground-state energy.
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A compromise between the two methods is to introduc
parameterr that interpolates smoothly the two limits. Th
parameter enters in the reweighting relation~20! in a very
simple manner:

wi
f 855

uwi8u

ur x
i8
u12r

. ~27!

Notice that, when we release the fixed reference dynamic
rÞ0 and when for largen the constants$ak% converge to
nonzero values, the reference wave functionc f is not given
by averaging the configurations with the weightswf since
the relationcSR5PSRcn(x)5r xc

f(x) is implied by the defi-
nition of the projectorPSR in Eq. ~9!. In fact, by using Eq.
~27! and that^^wi8dx,xi

&&5cSR(x)cG(x)5r xc
f(x)cG(x), it

is simple to derive that

^^wi
f 8dx,xi

&&5ur xur 21sgnr x^^wi8dx,xi
&&

5ur xur 21sgnr xcSR~x!cG~x!

5ur xurc f~x!cG~x!. ~28!

For r 50 the method is rigorously variational, in the sen
that the parametersak appearing in the definition ofr x Eq.
~4!, are the ones that minimize the energy expectation va
once the SR conditions~3! are satisfied for a large numbern
of iterations. It is reasonable to expect that such a prop
remains valid even forr !1 whenPSR

† .PSR. We have em-
pirically verified that for smallr, in particular for the one tha
minimizes the energy expectation value, this property is
deed verified. On the other hand, forrÞ0 the expectation
value of the energy, which can be computed by using
forward walking technique described in Appendix B, r
mains obviously a rigorous upper bound of the energy.

For rÞ0 we assume that the infinite number of walkers
large binLb is taken so that the parametersak can be con-
sidered constants for largen. In this case, if we take into
account the reweighting~27!, the reference wave functionc f

is obtained as the right eigenvectorcR(x)5^^wi
f 8dx,xi

&& with
maximum eigenvalue of the renormalized reference Gr
function Ḡf :

Ḡx8,x
f

5ur x8u
rGx8,x

f , ~29!

namely, asc f(x)5ur xu2rcR(x)/cG(x)
Then the SR statecSR(x)5r xc

f(x) is simply given in
terms of this right eigenvector:

cSR~x!5RxcR~x!, ~30!

with

Rx5ur xu12r /cG~x! sgnr x . ~31!

Thus even whenrÞ0 the SR state can be uniquely dete
mined. It is also clear that, sincer x is not necessarily positive
or negative, the nodes can be changed and improved
respect to the nodes of the initial guesscG , both for r 50
with the standard Lanczos algorithm and forr .0. If the
2-5
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SANDRO SORELLA PHYSICAL REVIEW B 64 024512
nodes ofcG are exact and the Hamiltonian is not frustrate
it is also possible to show thatr 51 andL→` provide the
exact result, withr x positive definite.

Is it possible to compute correlation functions overcSR?
As is shown in Appendix B the answer is yes, and n

only for correlation functions diagonal in the basisx, as in
the standard forward walking technique,13 but also for all the
ones with off-diagonal elements contained in the nonz
Hamiltonian matrix elements. In particular it is possible
compute

^cSRuHucSR&>E0 ,

i.e., the expectation value over the state defined by the
conditions. This estimate is obviously variational and can
further improved by applying a finite number of exact Gre
function powers to the right and to the left of the Ham
tonian, as in the power Lanczos algorithm,17 with the differ-
ence that in this case Eq.~25! has to be evaluated with th
‘‘forward walking technique,’’ as described in Appendix B
In Fig. 2 we plot the evolution of the expectation value of t
energy over the statecSR as a function of the number o
iterations,n, required by the forward walking to filter ou
from cG its component overcSR, leading to a true varia-
tional energy estimate. We see that forr 51, within the
original SR technique,3,5 the energy expectation value can
much higher than the corresponding ‘‘mixed average’’ e
mate (n50).

This behavior can be understood in the following way:
r 51 and forL→` there is no way to improve the sign o
the wave function overcG becauser x→1 @G andGf tend to
the identity up to a constant and so the correctionr x to c f

.c for r 51 has to become unity up toO(1/L)], whereas
for r 50 the Lanczos algorithm, which isL independent,

FIG. 1. Hole-hole correlations for the 26-sitet-J cluster for
various methods. ‘‘SR standard’’ indicates the original GFMCS
implementation~r51 here! ~Refs. 3 and 5!, whereas ‘‘SR best
energy’’ indicates the optimal variational SR wave function o
tained with r 5 0.25. The ‘‘VMC’’ is the lowest-energy Jastrow
Slater variational singlet wave function as discussed in Sec. V,
1Lanczos step the fixed node over the one Lanczos step w
function.
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certainly modifies and improves the nodes. For fermion s
tems therefore it appears important to work with smalr
because the nodes of the wave function play a partic
important role in determining a good variational energy.

A different behavior is seen for correlation functions. F
largeJ/t51 when a four-particle bound state is likely to b
formed, our Jastrow-Slater wave function is not appropri
enough, and the large distance behavior is not exactly re
duced ~see Fig. 1! even when we apply to it a couple o
Lanczos iterations, which, remarkably, provide a very ac
rate variational energy~see Table I!.

That the qualitative behavior of this correlation function
different from the variational starting wave function can
understood only when the algorithm withr .0 or the fixed
node ~FN! ~which is worse in energy! are used. Especially
successful is the original techniquer 51, which improves by
a factor of 2 the important long-range behavior ofN(uRu),
clearly displaying the features of a genuine bound state, b
decaying probability to have holes at larger and larger d
tances. For correlation functions diagonal in the chosen b
the nodes do not play any role andr 51 or the FN itself is
likely to provide much better correlation functions. Howeve
from the previous argument about the impossibility to c
rect the nodes forr 51 andG,Gf;I we expect indeed tha
for large sizes the Green functionG tends to the identity,
either becauseL}L, as required by the power method
converge, or because the gap to the first excited state
creases and a power iterationcn115Gcn is less and less
effective for changing the wave function. Thusr has to scale
to zero for large sizes if we do not want to spoil too much t
variational expectation value of the energy~see Fig. 2!. It is
remarkable that the gain in variational energy is larger a
larger when the size is increased. Thus ther .0 technique
seems to overcome, at least partially, a serious limitation
the Lanczos algorithm, namely, that in the thermodynam
limit the energy per site cannot be improved by a techniq
which is not size consistent. The gain in energy withr .0

-

N
ve

FIG. 2. Energy per site as a function of the forward iterationn
as described in Appendix B for the 26-sites–4-hole case and
98-site–14-hole case. The value of the variational parameterr is
also indicated.
2-6
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TABLE I. Energy per site in thet-J model for various variational methods. VMC is the variational method, obtained by adjusting i
Jastrow and determinant part of the wave function all possible parameters being compatible with the symmetries of the finite lattice~see Sec.
V!. VMC1LS is obtained by applying to this wave function a Lanczos step, VMC1FN is the lattice fixed node approach~Refs. 12 and 11!,
VMC12 LS indicates the two-Lanczos-step variational wave function, VMC1LS1FN is the fixed node over the VMC1LS wave function,
and the ‘‘Bestr ’’ is ^cSRuHucSR&, computed by ‘‘forward walking’’ as described in Appendix B, by optimizing the parameterr. The exact
energy values for the largest size were estimated by the variance extrapolation. On the 98 sites, the FNLS computation takes 10 h
on a Pentium-II 400 MHz, whereas the VMC12LS wave function takes about 40 hours withM5500 walkers for a statistical accuracy o
1024t on the energy per site, the ‘‘best SR’’ another factor of 8 more due to the forward walking. The computation of diagonal cor
functions instead takes a similar amount of time for all methods; thus it is safer to compute them with the best variational method. E
are indicated in brackets.

N L J/t VMC VMC1LS VMC1FN VMC12 LS VMC1LS 1FN Best SR Bestr Exact

22 26 0.3 -0.6138~1! -0.6332~1! -0.6277~1! -0.6381~1! -0.6371~1! -0.6387~1! 0.375 -0.64262
22 26 0.5 -0.7647~1! -0.7812~1! -0.7759~1! -0.7852~1! -0.7841~1! -0.7855~1! 0.25 -0.78812
22 26 1.0 -1.1476~1! -1.1672~1! -1.1608~1! -1.1719~1! -1.1706~1! -1.1724~1! 0.25 -1.17493
30 32 0.3 -0.4543~1! -0.4628~1! -0.4611~1! -0.46522~3! -0.46524~3! -0.4661~1! 0.375 -0.470175
84 98 0.4 -0.6653~1! -0.6807~1! -0.6777~1! -0.6865~1! -0.68530~5! -0.6879~2! 0.1 -0.692~1!

50 98 0.4 -0.9656~1! -0.9832~1! -0.98225~5! -0.9886~1! -0.98781~6! -0.9901~2! 0.1 -0.9920~5!
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can instead be size consistent, since, as shown in Appe
B, r .0 corresponds to modifying the reference Green fu
tion Gf→Ḡf , similarly to what the fixed node algorithm—
which is size consistent for size consistentcG—does.

IV. NUMERICAL IMPLEMENTATION

In order to put efficiently a finite numberp of Hamil-
tonian powers in the SR scheme it is by far more conven
to use an importance sampling strategy~see, e.g., Appendix
C!, by using information of the previousp21 Lanczos itera-
tions. A guiding wave function corresponding to the previo
(p21) approximation, cG8 (x)5^xu(k50

p21akH
kucG&

5r p21(x)cG(x), can be used.18 With this new guiding func-
tion the powers of the Hamiltonian can be put in the S
conditions by computing the corresponding mixed aver
estimators:

Ox
k5

^cGuHkux&

^cG8 ux&
~32!

for k50, . . . ,p.
The advantage of using the SR scheme is clear even w

we restrict this method only to evaluation of the first fe
Lanczos iterations. In order to performp Lanczos iterations,
it is enough to compute onlyp Hamiltonian powers on a
given configurationx. In the conventional variational metho
it is always necessary to compute the expectation valu
the Hamiltonian amounting to 2p11 powers of the Hamil-
tonian, leading to a much more demanding numerical eff
It is also important to emphasize that within this techniq
the parametersak defining the SR state are given at the e
of the SR simulationn→`. Once the$ak% are determined it
is then convenient to compute correlation functions w
fixed constants$ak% by performing statistical averages over
large binLb without applying the SR conditions~3! as dis-
cussed in Sec. II. This method significantly improves
statistical fluctuations of the quantum averages over
variational statePSRucG&.
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V. ENERGY OPTIMIZATION FOR A MANY-PARAMETER
VARIATIONAL WAVE FUNCTION

The most important advantage of the SR technique is
many variational parameters can be handled at little expe
of solving a linear system~6! of corresponding size. The
few-Lanczos-step technique, as we have discussed befo
determined only by few coefficients due to the difficulty
the large size to compute many powers of the Hamilton
on a given configurationx, which is required for evaluation
of the corresponding mixed estimator Ox

k

5^cGuHkux&/^cGux&.
Clearly the method discussed in Sec. II is not limited on

to the Hamiltonian momenta correlation functions, but
mains variational for arbitrary ones. In particular many kin
of correlation functions can be thought to be a renormali
tion of the guiding wave functioncG , allowing a powerful
multiparameter energy optimization similar to Ref. 19, whe
the variance was instead minimized. In the present sec
we assume for simplicity thatall the correlation functions are
used for the purpose of optimizing the variational wave fun
tion cG , and we restrict our very general analysis to var
tional wave functions of the Jastrow-Slater form for
strongly correlated system such as thet-J model defined in
Eq. ~1!.

A. Variational wave function

The Jastrow-Slater variational wave function can be g
erally written as

ucG&5 ĴuS&, ~33!

where uS& is a determinant wave function that can be o
tained as an exact ground state of a generic one-body Ha
tonian of the bilinear form20 H1-body.c†c•••1c†c†

•••

1H.c. whereas the Jastrow factor

Ĵ5expS (
i , j

v~ i , j !ninj DexpS (
i , j

vz~ i , j !s i
zs j

zD ~34!
2-7
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SANDRO SORELLA PHYSICAL REVIEW B 64 024512
introduces arbitrary Gaussian correlations between lo
chargesni5(sci ,s

† .ci ,s and local spins along thez axis:
s i

z5ci ,↑
† ci ,↑2ci ,↓

† ci ,↓ . Both operators are defined on ea
configuration$x% of the chosen Hilbert space. The reason
the exponential form in the Jastrow wave function com
from size-consistency considerations, implying that for m
roscopic and disconnected regions of spacesA and B the
wave function factorizes,cA,B5cA^ cB , this factorization
being fulfilled by the exponential form.

Considering thet-J model the restriction of no doubly
occupied sites can be thought of an infinitely negat
v( i ,i )52` charge correlation, whereas the restriction a
fixed numberN of particles can be thought of as anoth
singular Jastrow term exp@2`(Ntot2N)2# where Ntot5( ini
is the total charge operator. The latter two singular terms
the Jastrow factor are simply a restriction on the Hilb
space that can be very easily implemented without numer
instabilities.

We now consider how the symmetries of the finite-s
t-J model drastically restrict the still too large number
variational parameters in the Jastrow-Slater wave funct
Translation invariance implies that the Jastrow potential
pends only on the vector differencev( i , j )5v(RW i2RW j ), the
function v being invariant~s-wave! for all rotation and re-
flection symmetries ofRW i2RW j . Moreovervz 50 for a singlet
wave function.

The singlet and translation symmetries imply also stro
restrictions on the one-body Hamiltonian defining the Sla
determinant. This Hamiltonian can be generally written

ĤS5Ĥ01~D̂†1D̂ !, ~35!

D̂†5 (
^R,tW &

D~tW !~ c̃R,↑
† c̃R1tW ,↓

†
1 c̃R1tW ,↑

†
c̃R,↓

† !, ~36!

whereĤ05(k,sekc̃k,s
† c̃k,s is the free-electron tight-binding

nearest-neighbor Hamiltonian,ek522t(coskx1cosky)2m,
m is the free-electron chemical potential, andD̂† creates all
possible pairs at the various distancesutu with definite
rotation-reflection symmetry@e.g., dx22y2 implies D(1,0)
52D(0,1)].

For a generic Jastrow-Slater singlet state, satisfying
symmetries of thet-J model, a quite large number of varia
tional parameters are therefore available correspondin

v(tW ) andD(tW ) for all distancesutW u. Not all these parameter
are independent; namely, the substitutionv(utu)→v(tW )
1const does not change the wave function up to a cons
so thatv(tW ) can be assumed to be zero at the maxim
distance. An analogous dependence exists between the
ous parametersD(tW ), since after projecting it at a fixed num
ber of particles, the ground state of the Slater determin
Hamiltonian~35! can be written

uS&5S (
R,t

f ~tW !~ c̃R,↑
† c̃R1tW ,↓

†
1 c̃R1tW ,↑

†
c̃R,↓

† ! D N/2

u0&, ~37!
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where f (t) is the pairing wave function simply related t
D(t) in Fourier transform:

f ~k!5
D~k!

ek1ADk
21ek

2
,

whereek in the above expression is not limited to neare
neighbor hopping.

Thus, if we scalef (t)→const3 f (t), the many-body
wave function~37! remains unchanged, implying that th
number of independent parameters is equal toNshell21,
whereNshell is the number of independent shells atutu.0
consistent with the rotation-reflection symmetry off. Notice
that, once in the determinant part of the wave functi
Nshell21 variational parameters are independently varied
is useless to consider other terms, such as, for instance
chemical potentialm or next-nearest-neighbor hopping
H0: they always provide a suitable renormalization off that
can be sampled by the firstNshell21 parameters. Moreover
by performing a particle-hole transformation in Eq.~35! on
the spin downc̃i ,↓

† →(21)i c̃i ,↓ , the ground state of the
Hamiltonian ~35! is just a Slater determinant withN5L
particles.21 This is the reason why this variational wave fun
tion represents a generic Jastrow-Slater state, a stan
variational wave function used in QMC. Using the particl
hole transformation, it is also possible to control exactly t
spurious finite system divergences related to the nodes o
d-wave order parameter.

B. Stochastic minimization

Among the correlation functions important to define t
variational wave function two classes are important for gu
ing functions of the Jastrow-Slater form~33!.

~i! The first class of operators renormalizes the Slater
terminant and has been identified by Filippi and Fahy.22 Here
Ok are defined by means of the one-body operatorsO1-body

k

by the following relation:

Ox
k5

^xuOkucG&

^xucG&
5

^xuO1-body
k uS&

^xuS&
. ~38!

Thus for uaku small, (11(kakO
k)ucG&

. Ĵ exp((kakO1-body
k )uS&, which remains a Jastrow-Slate

wave function of the same formJuS8& with uS8&
5exp((kakO1-body

k )uS&. Since one-body operators are bilin
ear ~e.g.,c†c) in fermion second-quantization operators,S8
remains a Slater determinant.20 In the Jastrow-Slater case fo
the t-J model considered here the one-body operators re

O1-body
k 5 (

R,tPshell#k
S~t!~ c̃R,↑

† c̃R1t,↓
† 1 c̃R1t,↑

† c̃R,↓
† !,

~39!

where the signS(t)561 is determined by symmetry. Also
the bar kinetic energyH0 is considered in this approach
According to the previous discussion the chemical poten
m is fixed to the free-electron one inH0.

~ii ! The second class of correlation functions is compo
of the ones that appear in the Jastrow factor. They are
diagonal operatorsOk—density-density(RnRnR1t or spin-
spin (RsR

z sR1t
z —in the chosen basisx of configurations
2-8
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with fixed spins and electron positions. Again for smalla
they can be considered a renormalization of the Jastrow
tor: J→J exp((kakO

k).
The multiparameter minimization method can be summ

rized as follows.
~i! After each reconfiguration the factorr x5(kakOx

k is
computed with givenak , whose statistical fluctuations ca
be arbitrarily reduced by increasing the number of walkers
the bin lengthLb as described in Sec. II. In this case
nonlinear optimization the bin technique is particularly im
portant because it allows one to avoid, for large enough
lengthLb , unphysical fluctuations of the guiding wave fun
tion.

After an exact Green function step a wave function be
thancG is obtained and is parametrized by the coefficientak
contained in the factorr x : In fact,

PSRcn115PSRGPSRcn5r xcG~x!

has to be by definition a variational state better th
PSRcn ,23 which in turn is better thancG , since for instance
we can assumecn505cG .

~ii ! It is therefore convenient to change at each iteration
the guiding wave function

ucG8 &→expS (
k51

p

ākO
kD ucG&. ~40!

In the above equation we have introduced the new sc
coefficientsāk5ak /C simply related to the onesak defined
by the SR conditions~3!. This is obtained by recastingr x in
a form that is more suitable for exponentiation:

r x5CF11 (
k51

p

āk~Ox
k2Ōk!G , ~41!

where

Ōk5

(
x

cG~x!2Ox
k

(
x

cG~x!2

5^^wj
fOx

kdx,xj&&

and C511(k51
p akŌ

k. The above exponentiation is just
fied, providedcG8 /uucG8 uu.cG /uucGuu. This is certainly ful-
filled at equilibrium when for largen cn118 5PSRcn11

}PSRcn}cG* , cG* being the Jastrow-Slater wave functio
with the lowest-energy expectation value. In fact at equil
rium the SR conditions turn exactly to the Euler equations
minimum energy forcG* :

^cG* uOkucG* &

^cG* ucG* &
5

^cG* uOkHucG* &

^cG* uHucG* &
, ~42!

as implied by Eq. ~3! for cn118 5cG* and cn115Gcn8
}GcG* , and taking also into account that here for simplic
O0 is the identity.

This implies thatcG* is a lowest-energy wave function o
the Jastrow-Slater form. There may be many local mini
02451
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when Euler’s equations are identically satisfied. In this c
the SR represents a very useful tool for global minimizatio
In fact the bin lengthLb or the number of walkersM repre-
sents at each iterationn an effective inverse temperature th
can be increased gradually following the well-known ‘‘sim
lated annealing’’ statistical algorithm.24 As is shown in Fig.
3 we apply this technique with a very short bin length usi
a full translation-invariant singlet wave function and usi
x,y reflection symmetries without rotation symmetry. Th
amounts to 24 independent parameters for a 26-site clu
(Nshell513). In the plot we show the evolution of the shor
range BCS parametersD(1,0),D(0,1) when at the beginning
cn505cG was set with no Jastrow termv50 and the
s-wave symmetric determinant defined byD(1,0)5D(0,1)
50.1t, Dt50 for utu.1. Thes-wave symmetric solution is
locally stable, but for short enough bin there is a finite tu
neling probability to cross the barrier and stabilize the mu
lower-energy solution withd-wave symmetry.

~iii ! In order to continue with the new guiding wave fun
tion ~40! without another long equilibration, walker weigh
wj and wj

f in Eqs. ~11! and ~12! can be reweighted as fol
lows:

wj→wj@cG8 ~xj !/cG~xj !#,

wj
f→wj

f@cG8 ~xj !/cG~xj !#
2 ~43!

in order that the new weights acting on the same configu
tionsx represent statistically Eq.~11! with c f5cG5cG8 and
Eq. ~12! with the new guiding wave functioncG8 .

~iv! For largen the one-body operators corresponding
the Slater determinant may become linearly dependent
causeD may approach an eigenstate of a one-body Ham
tonian (hkO1-body

k , (hkO1-body
k uS&5EuS&, with suitable

constantshk andE. Thus the covariance matrixsk,k8 quickly
becomes singular, leading to a numerical instability which
difficult to control statistically. A stable method to overcom

FIG. 3. Energy per site and evolution of the pairing amplitud
for four holes in thet-J model atJ/t50.5 as a function of the
stochastic power method iterationn. Here 200 walkers were used
Upper panel: triangles and circles denote nearest-neighborD(t)
amplitudes in Eq.~35! along thex and y directions, respectively.
Lower panel: the arrows indicate the power iterations when
Monte Carlo bin lengthLb has increased from 10 to 100~left arrow!
and from 100 to 500~right arrow! Monte Carlo steps.
2-9
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SANDRO SORELLA PHYSICAL REVIEW B 64 024512
this difficulty was found by Filippi and Fahy,22 essentially by
taking out one operator~the one-body kinetic energy! from
the ones used in the linear system~3!. Here we have found it
more convenient to solve the linear system~3!,

( sk,k8ak85^cGuOkGucn&5 f k ,

by diagonalizing first the symmetric matrix

sk,k85(
j

Uk, jL jUk8, j ~44!

and taking out the lowest eigenvalueL0>0 component of
the positive-definite matrixs. This is equivalent to selecting
in the SR another set ofp21 operators which are no longe
singularly dependent. This is a perfectly legal operation
L0;0, since as shown in Ref. 5, for the singular opera
O* 5(kUk,0O

k, such thatO* ucG&50, the SR condition~3!
is identically satisfied. Thus the resulting linear system is
longer affected by the above numerical instability:

L ja j85(
k

Uk, j f k ~45!

with a0850 and

ak5(
j .0

Uk8, ja j8 . ~46!

Finally we obtain a much more stable determination ofak ,
which does not affect the result at equilibrium, whereL0
→0 and the correct Euler equations are satisfied. With
scheme also optimization of the Jastrow parameters toge
with the Slater determinant ones is possible without
much effort.

We have found that the generic situation for Jastro
Slater wave functions is that the optimal determinant is
tually the ground state of a one-body HamiltonianH1-body

5(khkO1-body
k , a particular linear combination of the chose

one-body operators used in the SR conditions. This is
agreement with the Filippi-Fahy ansatz.22 Occasionally,
however, the optimal determinant turns out to be the exc
state of a one-body Hamiltonian.

In Figs. 4 and 5 we show the full Jastrow-Slater optim
zation for thet-J model in the largest-size cases where
exact solution is known: 4 holes in 26 sites25 and 2 holes in
32 sites,26 respectively. We display the hole-hole correlati
functionsN(R)5^(12n0)(12nR)& on the variational wave
function with and without the Jastrow factor. We see that
improvement towards an exact solution is crucially dep
dent on the Jastrow density-density factor especially at lo
range distance. This behavior seem to be analogous to
one-dimensional~1D! case where long-range Jastrow facto
are enough to determine the anomalous long-range beha
of correlation functions in one-dimensional Lutting
liquids.27,28 The remarkable accuracy of the Jastrow-Sla
wave functions is clearly limited~see, e.g., Fig. 2! to the
region J/t&0.5 where pairs withd-wave symmetry repe
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each other and do not form many-particle bound states a
the case for largeJ/t when phase separation occurs.

For the 32-site cluster the spin-translation symmetry
to be explicitly broken in the variational wave function b
introducing a staggered magnetizationH0→H02DAF(R

(21)RsR
z along thez axis. The best wave function compa

ible with reflection and rotation and translation with sp
interchange (↑↔↓) can be conveniently parametrized b
DAF and a next-neighbor hoppingt8 in the Slater
determinant29 and also a spin Jastrow factor is allowe
within this class of wave functions. Even in this case,
shown in the corresponding Fig. 5, the hole-hole correlati
are almost exactly reproduced by the strong attractive
strow term at long distance. This means that in this sm
doping regime it is important to have a broken symme
ground state, which suppress thed-wave BCS order param
eter.

The next step is to perform few Lanczos steps over th
variational wave functions which have been shown to
very accurate but not an exact representation of the grou

FIG. 4. Hole-hole correlations~upper panels! and Jastrow-Slater
parameters~lower panels! for the optimal variational singlet wave
functions with pairing wave functionf with d-wave symmetry in a
26-site clustert-J model.

FIG. 5. Same as in Fig. 4 for the 32-site cluster, with a brok
symmetry Slater determinant wave function withDAF50.2t,
DBCS50.1t, andt8/t520.15.
2-10
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state many-body wave function. In the singlet case with
broken symmetry the energy as a function of the variance
the energy per site,

^cGu~H/L !2ucG&

^cGucG&
2S ^cGuH/LucG&

^cGucG& D 2

, ~47!

is indeed smoothly related to the exact ground-state ene
The reason is that for a good variational state the varia
approaches zero as the energy becomes exact, and this
erty can be used to estimate the exact energy by a sim
linear extrapolation energy versus variance for several va
tional wave functions, as pointed out by several auth
before.30–32 The combination of the Lanczos approach a
the variance extrapolation is particularly effective since
Lanczos technique converges remarkably fast for a good
tial wave function, so that in the variance extrapolation
systematic and reliable extrapolation can be ea
obtained.33

Whenever on a finite system a broken symmetry va
tional solution has much lower energy than the fully sy
metric one, the Lanczos method is less effective. This
shown, for instance, for the 26 sites atJ/t50, Fig. 6, or in
the 32-site–2-hole case, Fig. 7. In the latter case we s
also the energy as a function of the variance for the fu
symmetric solution. We see in this case that the approac
the exact solution for a singlet wave function is rather di
cult but indeed possible.

On a finite system there is always a small energy gain
recover a state with definite spin. It is very difficult to obta
this residual energy with few Lanczos step iterations, si
in order to average over the various directions of the or
parameter many Hamiltonian power iterations are requir

FIG. 6. Energy per site as a function of the number of Lanc
stepsp50 ~higher energy variance!, p51 ~medium-energy vari-
ance!, and p52 ~lowest energy with nonzero variance! starting
from the optimal Jastrow-Slater wave function for 4 holes in
26-site clusters and severalJ/t. Only for J/t50 is the broken sym-
metry solution~with the spin Jastrow factorvzÞ0) better than the
best singlet wave function~triangles!. The arrows indicate the exac
energies, whereas the zero-variance energies are the extrap
results with a quadratic fit~solid lines!. For J/t50.5 we show the
corresponding variationalp50 energy and variance for the wav
function without a Jastrow term.
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However, this residual energy should vanish in the therm
dynamic limit if the symmetry is indeed spontaneously b
ken. Therefore we conclude that the small discrepancy
tween exact results and extrapolated ones in Figs. 6 and
irrelevant within the above assumption, which is confirm
by simulations on a much larger size, showing antiferrom
netic long-range order at small doping13 and ferromagnetism
for the J50 case.34 In any case the variance extrapolatio
with few Lanczos steps provides always a much more ac
rate estimate of the exact ground-state energy compare
the lowest variational estimate.

VI. RESULTS AND DISCUSSION

The variational approach is certainly limited and ‘‘b
ased’’ by the ‘‘human’’ choice of the variational wave func
tion, ‘‘believed’’ to be the correct one for the physical pro
lem considered. In this paper we have described a variatio
approach that improves systematically any given variatio
wave function with a couple~and in principle more! Lanczos
steps~LS’s!, with reasonable computational effort. This a
proach is certainly limited, especially for large sizes, wh
few Lanczos iterations cannot remove the possible large
of the initial variational guess. However, for 2D fermion
systems on a lattice, in the strong correlation regime, i
close to a Mott insulator state, it is very difficult to improv
the best variational wave function obtained with the Lancz
scheme~see Table I!. This result is particularly meaningful i
we consider that in principle the FN technique is size co
sistent~lowers the energy per site of the variational gue
even in the thermodynamic limit! and the LS’s technique
with a fixed number of iterationsp is not. Thus, close to a
Mott insulator, it is very important to change the nodes of t
wave function—which the Lanczos technique allows—rath
than improving only the amplitudes—as in the FN techniq
It is worth mentioning, however, that the FN energy repor

s

ted

FIG. 7. Energy per site as a function of the number of Lanc
stepsp50 ~higher energy with nonzero variance!, p51 ~medium
energy with nonzero variance!, andp52 ~lowest energy with non-
zero variance! starting from the optimal Jastrow-Slater wave fun
tion for a 32-sitet-J square lattice. The arrows indicate the exa
energies, whereas the zero-variance energies are the extrapo
results with a quadratic fit~solid lines!. The broken symmetry so
lution is described in Fig. 5 whereas the best singlet wave func
is obtained by optimizing only the density-density Jastrow and
d-wave parameters as in Eq.~35!.
2-11
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SANDRO SORELLA PHYSICAL REVIEW B 64 024512
in Table I is only an upper bound of the expectation value
the Hamiltonian on the FN state. We do not know exac
how much this will lower the energy in favor of the F
technique, but we expect that this should be only a mi
correction, especially for large sizes.

As shown in Table I the variational energy can be furth
improved by using ther .0 technique, which, within the
formalism of the present paper, can be thought as a s
consistent improvement of the amplitudes and the node
the few-Lanczos-step variational wave function. Forr 51
the original SR scheme is recovered, which as seen in~Fig.
2!, may not be the optimal choice from the variational po
of view.3,5. As far as the variational energy is concerned
self-consistent approach (r .0) is not very effective~the im-
provement is between 20% and 30% on small size syste!
for small system sizes but appears to be more and m
important as the size is increased. Also correlation functi
may be qualitatively improved~Fig. 1! by the self-consisten
approach, especially when a many-particle bound state
pears~’’stripes’’ or phase separation in this model! which is
not contained at the variational level.

An important advantage of the standard variational
proach (r 50) is that the error in the ground state energy a
correlation functions can be estimated using that the varia
of the energy per site~47! in an exact calculation should b
zero. The variance can be estimated systematically with h
statistical accuracy for the firstp Lanczos steps acting on th
initial variational wave functioncG . We show that the ap
proach to the exact result may be smooth, even for la
system size and number of electrons, even whencG is not
particularly close to the exact result. Obvious exceptions
ist and are shown here in Fig. 2 for correlation functio
whereas the energy seems always better behaved~see Fig. 6!.

We have tested this simple scheme in the 2D-Heisenb
model where an exact solution of energies and correla
functions is easily available by using standard techniqu
The 2D-Heisenberg model has off-diagonal long-range or
in the ground state, the order parameter

m25
1

L2 (
R,R8

SW R•SW R8~21!R2R8

being finite in the thermodynamic limitL→`. We start with
the variational wave function in Eq.~35! obtained by project-
ing out the doubly occupied states to a wave function w
d-wave nearest-neighbor BCS pairing correlations,35 but
without any explicit antiferromagnetic order parameter.

This wave function represents an accurate wave func
for quantum antiferromagnets as far as the energy is c
cerned, but certainly has not the right behavior at large
tances and may be considered a resonating valence
~RVB! disordered variational wave function.1 After applying
only two Lanczos iterations the 18-site size is almost exa
reproduced by this simple wave function, showing that
short distance the quantum antiferromagnetic wave func
is almost indistinguishable from a RVB one.6 As we increase
the size, the variational energy calculation~see Fig. 8!
clearly loses accuracy, since the gap to the first excited s
scales to zero and the Lanczos algorithm becomes co
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spondingly less effective. This loss of accuracy is, howev
not dramatic~asymptotically it scales as 1/AL), as shown by
the similar quantitative agreement with the exact result
tained with both the 50- and 98-site lattices~Fig. 8!.

Also remarkable is the correct trend of long-range cor
lation functions as we increase the number of Lanczos ite
tions. As shown in the inset of Fig. 9 the linear extrapolati
with variance, which is valid for correlation functions ave
aged over the system volume~see Appendix D!, is capable of
detecting almost the right long-range magnetic order in
Heisenberg model. This is remarkable if we consider that
starting wave functioncG is disordered, as also shown in th
same inset. We remark also that in this particular case
original SR algorithm3,5 for r 51 andL→` is exactsince
the nodes of the variational wave function are the corr
ones.

As anticipated the estimate of the variational error,
using the fact that the variance has to approach zero in
exact calculation, is really effective in this case and sho

FIG. 8. Energy per site of the finite-size Heisenberg mod
Comparison of exact results~indicated by arrows! and the approxi-
mate p50,1,2 Lanczos step iterations over the projectedd-wave
wave function. Solid lines are a quadratic fit of the data.

FIG. 9. Order parameterm5AS(p,p)/L in the finite-size
Heisenberg model@S(p,p) being the spin isotropic antiferromag
netic structure factor#. Comparison of exact results~indicated by
arrows! and the approximatep50,1,2 Lanczos step iterations ove
the projectedd-wave wave function. Solid lines are a quadratic
of the data. Inset: finite-size scaling with the variational~BCS
d-wave! wave function and with the variance extrapolated one.
2-12
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that, even for a large size, it is possible to reach very g
quantitative estimates of the energies and correlation fu
tions ~see Ref. 33!, even when the starting wave function
not particularly close to the exact one. In the Lanczos al
rithm the variance becomes zero only when the lowe
energy state nonorthogonal to the initial wave function
reached. However, we expect that the variance may re
very small values close to a ‘‘quasieigenstate,’’ implying t
failure of the variance variational error estimate. In fact,
this case the energy optimization Lanczos technique
trapped in a local minimum, with no possibility of tunnelin
to the true global minimum energy~see Fig. 10!.

Clearly this is a well-known problem in numerical opt
mization and the only possibility, when the exact solution
not known, is to check the various candidates for the gro
state and determine the one with the lowest energy. F
another point of view, this property of the Lanczos algorith
may be useful to estimate physically observable quantit
such as the condensation energy for a metal to becom
superconductor, which is just the macroscopic difference
energy between two thermodynamically stable states. F
Fig. 10 an estimate of this condensation energy is 0.t
;100 K, in reasonable agreement with experiments on h
Tc cuprates,36 suggesting that the main features ofd-wave
superconductivity can be understood with this simple mod

At the moment, the approach we have presented here
to be limited to very few Lanczos iterations for large siz
with the given computer resources. Nevertheless, it is
tainly systematic and unbiased as far as the approach to
ground state is concerned: the corrections to the initial gu
ing function depend only on the HamiltonianH and no other
biased approximation. Compared to the standard FN te
nique, it allows a systematic improvement of the start
variational wave functioncG by correcting not only its am-
plitudes but also the nodes.

The extension of this technique to continuous models
straightforward. For the reference dynamic@given by Gf in
Eq. ~22!# one can use the Langevin dynamic, as is done
Ref. 37, so that it is possible to determine the lowest-ene
state obtained by applying tocG few Lanczos steps with
(r .0) or without self-consistency (r 50) or by using a

FIG. 10. Energy per site vs variance for two different initi
wave functions~highest-energy dots! after applying one~medium-
energy points! and two ~lowest-energies points! Lanczos steps.
Lines are a quadratic fit to the data.
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many-parameter variational wave function, with a nonline
optimization as described in Sec. V.
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APPENDIX A: PROPERTIES OF THE OPERATOR
PSR„LIÀH …PSR

In this appendix we focus on some properties of the m
trix PSR(LI 2H)PSR, defined in Eq.~21!.

~i! The maximum eigenvalueL2ESR of the Hermitian
matrix PSR(LI 2H)PSR is certainly smaller than the corre
sponding oneL2E0 of the exact Green functionLI 2H. In
fact cSR5PSRcSR is the normalized eigenstate ofPSR(LI
2H)PSR with eigenvalueESR; then PSR

† 5PSR implies that
ESR5^cSRuPSRHPSRucSR&5^cSRuHucSR&>E0, ascSR can
be considered a variational state of the exact HamiltoniaH
with energyESR.

~ii ! Since cSR is obtained by applying @PSR(LI
2H)PSR#

n to a given trial wave function, forn→` such a
propagated wave function will converge therefore to t
lowest-energy state in the subspace projected byPSR. This
implies clearly thatESR is lower than or at most equal to th
variational energy on the reference wave functio
^cGuHucG&, simply becausecG belongs to this subspace.

~iii ! SincecG belongs to the subspace projected byPSR,
^cGuHPSR5^cGuPSRH. Therefore the mixed average es
mate, statistically much more convenient,

EMA5
^cGuHucSR&

^cGucSR&
5

^cGuPSRHPSRucSR&

^cGuPSRucSR&
5ESR,

coincides with the variational boundESR of the ground-state
energy ascSR is an exact eigenstate ofPSRHPSR with eigen-
valueESR.

APPENDIX B: FORWARD WALKING

In order to compute correlation functions overcSR it is
necessary to use a slight generalization of the forward w
ing technique, generalized to a nonsymmetric matrix such
~29!. Moreover, since in the meaningful SR limit of a larg
number of walkers or bin lengthLb→` the parametersak
can be assumed constants inr x , Eq. ~4!, it is much more
convenient to implement the forward walking techniq
without allowing any fluctuations of the random variabl
ak . This can be done easily by first evaluating the expec
tion value ratiosāk5^ak&/^a0&, k51, . . . ,p, with the stan-
dard SR algorithm, i.e., allowing theak fluctuations for each
2-13
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SANDRO SORELLA PHYSICAL REVIEW B 64 024512
Markov iterationn. The second step is to perform a differe
simulation, usually much more efficient as far as the er
bars are concerned, withr x determined by nonrandom con
stantsāk :

r x511 (
k51

p

ākOx
k . ~B1!

If the āk are determined accurately forM ,Lb large, the SR
conditions ~3! will be automatically verified within error
bars. The statistical or systematic error related to the de
mination of the constantsāk is also not much important. In
fact even assuming that with the first simulation the co
stantsāk are determined with a non-negligible statistical e
ror and an unavoidable systematic bias due to the finite n
ber of walkers, the method that we will describe in t
following will provide also in such a case a variational es
mate of the energy with the chosen constantsāk . The anal-
ogy of this method with the Lanczos method is evident a
in this case. Even in the latter technique, a first run is usu
implemented to determine the coefficients of the ground s
āk in the Krilov basis spanned by the initial wave functio
cG and the powers of the Hamiltonian applied to it,c0
5cG1(k51,pakH

kucG& ~with some more technical ingred
ent to work with an orthonormal basis!. Then correlation
functions overc0 are computed by recovering the groun
state wave function in this basis using the determined c
ficients āk .

Let us now focus on the implementation of the forwa
walking technique within the SR scheme at fixed consta
āk . SinceḠf in Eq. ~29! is not symmetric, its left eigenvec
tor ^cLu} limn→`^cGu(Ḡf)n does not necessarily coincid
with the corresponding right eigenvectorcR . Fortunately the
matrix Ḡf can be easily written in terms of a symmetr
matrix G0:

Ḡx8,x
f

5ax8Gx8,x
0 /ax , ~B2!

with

ax5
ucG~x!uur xur /2

Azx

, ~B3!

Gx8,x
0

5
ur xur /2ur x8u

r /2

Azxzx8

uLdx8,x2Hx8,xu. ~B4!

Therefore the right and left eigenvectors ofḠf are easily
written in terms of the maximum eigenstatef0 of the sym-
metric matrix G0, namely, cR(x)5axf0(x) and cL(x)
5f0(x)/a(x). Then using the definition of the SR state, E
~30!, it follows that also the left eigenvector ofḠf can be
written in terms ofcSR:

cSR~x!5LxcL~x!, ~B5!

with
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Lx5cG~x!r x /zx ~B6!

and

Rx5ur xu12r /cG~x!sgnr x . ~B7!

After applying several times the Green functionḠf the
walkerswf ,x determine the statecR(x). Then it is possible
to evaluate expectation values of any operatorO with given
matrix elementsOx8,x by applying the following relation,
which corresponds to propagatingn times forwardcR(x):

^cSRuOucSR&

^cSRuI ucSR&
5 lim

n→`

(
x8,8,x8,x

~Ḡf !x9,x8
n Ōx8,xcR~x!

(
x8,8,x8,x

~Ḡf !x9,x8
n Ī x8,xcR~x!

, ~B8!

where the matrix elements ofO and the identityI are re-
placed by the ones of the left-right transformed matricesŌ

and Ī , respectively. The explicit matrix elements ofŌ and Ī
in the RHS of the above equation are given by

Ōx8,x5Lx8Ox8,xRx , ~B9!

Ī x8,x5LxRxdx8,x . ~B10!

This means that in the standard forward walking techniqu13

instead of using the importance-sampled matrix elements
tained withLx5cG(x)51/Rx in Eq. ~B9!, the slightly more
involved ones~B9! and~B10! have to be considered. In fac
by simple substitutions of these matrix elements into E

~B8!, using also that(x
8,8(Ḡf)

x8,8,x8

n
}cL(x8)5cSR(x8)/Lx8 ,

Eq. ~B5!, and thatcR(x)5cSR(x)/Rx , Eq. ~30!, Eq. ~B8! is
easily verified. The statistical algorithm used to evaluate
ratio in Eq.~B8! is very similar to the standard ‘‘forward
walking’’ technique13 for diagonal operators. The few differ
ences are the following.

~i! Also the denominator in Eq.~B8! has to be ‘‘forward’’
propagated forn iterations, since in this case the diagon
elements ofĪ are not trivially one~since LxÞRx

21). The
error bars have to be then calculated taking into account
the numerator and the denominator are very much correla

~ii ! Off-diagonal operators can be computed without p
forming another simulation, provided the matrix elements
the operatorO are contained in the nonvanishing ones of t
Green functionG ~or some power ofG if the operator is
evaluated statistically!. In particular the expectation value o
the Hamiltonian and the even more accurate ones~25! can be
computed altogether with a single Markov chain.

~iii ! Similarly the accuracy of diagonal and off-diagon
operators can be further improved by computing

^cSRuGkOGkucSR&

^cSRuG2kucSR&
.

In fact an important advantage of the SR technique is that
reference Green functionGx8,x

f is nonzero for all nonzero
2-14
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elements of the exact Green functionG ~whereas in the FN
technique the matrix elements with negative sign are s
pressed!. Thus exact sampling of the Green functionG can
be done with the standard reweighting method, requir
only the finite multiplicative factorssx8,x5Gx8,x /Gx8,x

f , cal-
culated for each iterationn and each walker of the Marko
chain. The same technique can be obviously general
when the reference Green functionGf is the fixed node
one—slightly generalized to have the possibility to cross
nodes5—simply replacingGf andzx51 in the above expres
sions. However, the statistical accuracy for the determina
of the constants$ak% is very bad with the FN referenceGf ,
about an order of magnitude less efficient than the one in
~22!, without a significant improvement in variational ene
gies. The reason for such bad behavior@or the successful one
for Eq. ~22!# is not clear at present.

APPENDIX C: EFFICIENT CALCULATION OF THE
SINGLE-LANCZOS-STEP WAVE FUNCTION

In this appendix we describe an efficient way to find t
optimal LS wave functionuca&5(11aH)uc&, starting from
a chosen variational guessuc&, i.e., to calculate the value o
a for which the energy

E~a!5
^cGu~11aH !H~11aH !ucG&

^cGu~11aH !2ucG&
~C1!

has a minimum. A standard method is to calculate stat
cally the various powers of the Hamiltonian

hn5
^cGuHnucG&

^cGucG&
, ~C2!

using configurationsx generated by the Metropolis algorithm
according to the weightcG(x)2. This method is, however
inefficient since much better importance sampling is o
tained when configurations are instead generated accor
to the optimal Lanczos wave functionca* (x)5@1
1a* ecG

(x)#cG(x), whereec(x)5^cuHux&/^cux& ~Ref. 18!
is the local energy corresponding to a generic guiding w
function c, anda* minimizes the above expectation valu
~C1! for a5a* . This wave functionca* may be much bet-
ter leading to much lower variances especially for the hig
momentah2 andh3.

In this appendix we describe an efficient way to find t
optimal LS wave functionuca* &, starting from a chosen
variational guessuca& with energy

E~a!5
h112ah21a2h3

112ah11a2h2
, ~C3!

which easily written in terms of the energy momentahn .
In order to minimize Eq.~C3!, given an arbitrary value o

a, it is convenient first to compute the energy expectat
value h1 with the standard statistical method and then,
place of the remaining Hamiltonian higher momentah2 and
h3, generate statistical configurations according toca(x)2

and compute
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E~a!5
^cauHuca&

^cauca&
,

x5
^cau~11aH !21uca&

^cauca&
.

Here E(a) is obtained by averaging over the chosen co
figurations the local energy corresponding toca , namely,
^eca

&, whereasx is obtained by averaging over the sam

configurationŝ @11aecG
(x)#21&. Given x it is straightfor-

ward to compute

h25@~x2122!~11ah1!11#/a2,

and therefore givenh1 andh2, the value ofE(a) implicitly
defines the highest momentumh35@E(a)(112ah1
1a2h2)2h122ah2#/a2. Notice that the most difficult en-
ergy momentumh3 is given by sampling an energy expect
tion value, which is by far statistically more accurate co
pared to the direct determination ofh3.

It is then possible to minimize analyticallyE(a), yielding

a*

5
2~h32h1h2!6A~h32h1h2!224~h22h1

2!~h1h32h2
2!

2~h1h32h2
2!

,

~C4!

where the above sign6 is such as to minimizeE(a* ).
The analytic minimization ofE(a), Eq. ~C3!, given the

values ofx, h1, andE(a) itself, provides the exact value o
a* in Eq. ~C4! within the statistical uncertainties. They be
come smaller and smaller whenevera;a* . Typically two
or at most three attempts are enough to reach an accu
determination ofa* when the condition

x5
1

11a* E~a* !
~C5!

is exactly fulfilled. This condition is true in general only fo
eigenstates of the Hamiltonian, but remains valid for t
single-Lanczos-step wave function.

APPENDIX D: VARIANCE ESTIMATE OF THE ERROR
IN ‘‘BULK’’ CORRELATION FUNCTIONS

In this appendix we estimate the error in correlation fun
tions assuming that the ground stateuc0& is approximated by
the wave functionucp& distantep from uc0&. Namely, with
no loss of generality we write

ucp&5uc0&1epuc8&, ~D1!

with ^c0uc0&5^c8uc8&51, c8 representing a normalize
wave function orthogonal to the exact one^c0uc8&50. We
restrict our analysis to thermodynamically averaged corre
tion functionsO, the ones which can be written as a bu
average of local operatorsOR : O5(1/L)(ROR . This class
of operators includes for instance, the average kinetic or
tential energy or the spin-spin correlation function at a giv
2-15
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distancet, OR5SR•SR1t . If we use periodic boundary con
ditions, the expectation value ofOR on a state with a given
momentum does not even depend onR and the bulk average
does not represent an approximation:

^c0uORuc0&5^c0uOuc0&5C. ~D2!

We show here that the expectation value of bulk-avera
operatorsO on the approximate statecp satisfies the follow-
ing relation:

^cpuOucp&

^cpucp&
5C1O~ep

2 ,ep /AL !, ~D3!

thus implying that for large enough size the expectat
value ~D3! approaches the exact correlation functionC lin-
early with variance. This allows one to obtain a good ac
racy with a good variational calculation, which is not easy
obtain if a term;ep dominates.
u

en

an

en
be
he
to

ch

02451
d

n

-

The validity of the above statement is very simple to sh
under very general grounds. In fact by definition

^cpuOucp&5C12ep^c8uOuc0&1ep
2^c8uOuc8&. ~D4!

The most important term proportional toe in the above equa-
tion can be easily bounded by use of the Schwartz inequa

u^c8uOuc0&u25u^c8uO2Cuc0&u2<^c0u~O2C!2uc0&.
~D5!

The final term in the latter inequality can be estimated un
the general assumption that the correlation functionsC(t)
5^(OR2C)(OR1t2C)& decay sufficiently fast with dis-
tanceutu, as a consequence of the cluster property:

^c0u~O2C!2uc0&5
1

L (
t

C~t!.

This concludes the proof of the statement of this appen
provided(tC(t) is finite for L→`.
tt.
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