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Sr2Cu3O4Cl2 is an antiferromagnet consisting of weakly coupled CuO planes which comprise two weakly
interacting antiferromagnetic subsystems I and II which order at respective temperaturesTI'390 K andTII

'40 K. Except asymptotically near the ordering temperature, these systems are good representations of the
two-dimensional quantum spin-1/2 Heisenberg model. ForT,TII there are four low-energy modes at zero
wave vector, three of whose energies are dominated by quantum fluctuations. ForTII,T,TI there are two
low-energy modes. The mode with lower energy is dominated by quantum fluctuations. Our calculations of the
energies of these modes~including dispersion for wave vectors perpendicular to the CuO planes! agree ex-
tremely well with the experimental results of inelastic neutron scattering~in the accompanying paper! and for
modes in the sub-meV range observed by electron spin resonance. The parameters needed to describe quantum
fluctuations are either calculated here or are taken from the literature. These results show that we have a
reasonable qualitative understanding of the band structure of the lamellar cuprates needed to calculate the
anisotropic exchange constants used here.

DOI: 10.1103/PhysRevB.64.024436 PACS number~s!: 76.50.1g, 75.10.Jm, 75.50.Ee
w
e
e
e

y
o
ib
fe
ee

na
ta

et

su

er

te
n-

h
e
-

ntly

n-

he
er

g
of

een
he

of

her
m
tem

in-

lead
I. INTRODUCTION

There has been a resurgence of interest in lo
dimensional magnetism due in part to the desire to und
stand high-Tc superconductivity. The lamellar copper oxid
systems, when suitably doped give rise to a family of sup
conductors withTc’s in the range about 30 K.1 In these sys-
tems the Cu ions are essentially in a 3d9 configuration. Due
to a large on-site Coulomb interaction, the states of this s
tem which are accessible at ambient temperature have
hole per Cu ion, and hence the manifold of such access
states is described by a spin-1/2 Hamiltonian having anti
romagnetic interactions, which are strongest betw
nearest-neighboring Cu ions in the CuO2 plane. That this
system is a nearly perfect realization of the two-dimensio
~2D! spin 1/2 quantum Heisenberg model has been es
lished by a wide variety of experiments.2

Recently, a variant of this system Sr2Cu3O4Cl2 ~2342!
has been shown to display very interesting magn
properties.3–5 The structure of this system6 is one in which
an additional Cu ion~which we refer to as a CuII ion! is
inserted at the center of alternate Cu plaquettes of the u
copper lattice, whose ions we refer to as CuI’s. Although all
the Cu ions are chemically equivalent, they play very diff
ent roles insofar as magnetism is concerned. The CuI’s order
at a relatively high temperature (TI5386 K! and have prop-
erties similar to those of other lamellar cupra
antiferromagnets.2 With respect to the isotropic exchange i
0163-1829/2001/64~2!/024436~38!/$20.00 64 0244
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teractions, the coupling between CuI and CuII ions is frus-
trated. As a result, the CuII ’s order independently at a muc
lower temperature,TII539.6 K into the magnetic structur
shown in Fig. 1. ForTII,T,TI a very small residual aniso
tropic exchange interaction causes the CuII spins to have a
small ferromagnetic moment, the study of which4 led to the
determination of the magnetic structure which has rece
been confirmed by neutron diffraction.7 The study of the stat-
ics also led to the determination of several coupling co
stants in the Hamiltonian used to model this system.

A natural continuation of this study was to investigate t
dynamics of this system, and in the accompanying pap7

~which we refer to as paper I! an inelastic neutron scatterin
study of this system is reported. One interesting result
these experiments was that although the coupling betw
the CuI’s and CuII’s is frustrated in the mean-field sense, t
spin-wave spectrum showed an incontrovertible signature
interactions between these subsystems.5,7 The nature of this
coupling was described by Shender in a seminal paper.8 Al-
though this phenomenon has been identified in ot
materials,9 the effect of this coupling, caused by quantu
fluctuations, is perhaps the most dramatic in the sys
2342, as described briefly previously5 and in more detail in
paper I. As the CuII system orders forT,TII , the small gap
spin-wave energies are found to increase sharply. This
crease indicates that even though the CuI-CuII coupling is
frustrated in the mean-field sense, quantum fluctuations
©2001 The American Physical Society36-1
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A. B. HARRIS et al. PHYSICAL REVIEW B 64 024436
to a significant interaction between sublattices. A less ob
ous type of frustration arises with respect to the in-pla
anisotropy associated with the bond anisotropy of the
change interactions. When the moments lies in the e
plane, the exchange tensor for spinsi and j in the plane has
different values for directions parallel and perpendicular
the i - j bond. However, within mean field theory this aniso
ropy disappears when the average over all bonds is ta
But as before, there is a significant residual interaction du
quantum fluctuations which gives rise to in-plane anisotro
Finally, even classically frustration can be removed by
change anisotropy which has a form similar to the dipo
interaction. We will refer to such exchange anisotropy
pseudodipolar.

The purpose of the present paper is to calculate the s
wave spectrum in order to give a theoretical interpretation
the data presented in paper I. From the discussion so far
clear that most of these phenomena are outside the sco
linearized spin-wave theory. What is required is a nonlin
spin-wave analysis, i.e., an analysis which includes the
fects of quantum fluctuations. In fact, from an analysis of
magnetic structure of the cuprates10 it was shown that there
are several perturbations away from the linear analysis of
isotropic Heisenberg model that one must consider. Th
are the ones mentioned above, namely,~a! quantum fluctua-
tions of otherwise frustrated interactions,~b! quantum fluc-
tuations of the anisotropic in-plane exchange interactio
and ~c! pseudodipolar exchange anisotropy between theI
and CuII subsystems. In a simplified way, one can catego
these effects in the way they contribute to the spin-wa
energies, which is given by the famous formula11

v5A2HEHA, ~1!

FIG. 1. Magnetic structure of 2342. The CuI spins~in sublattices
a, b, c, andd) are thick arrows and the CuII spins~in sublatticese

and f ) are thin arrows. The basis vectors for the magnetic unit

area15a( x̂1 ŷ), a25a( x̂2 ŷ), anda35
1
2 (ax̂1aŷ1cẑ). All spin

directions are in the CuO (x-y) plane. Thej axis is defined to be
collinear with the spin directions.
02443
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where HE (HA) is the exchange~anisotropy! field and we
work in units such thatv, HE , and HA are all energies,
usually given in meV ~1 meV/kB511.6 K, 1 meV/h
5241.8 Ghz.! We will see that the out-of-plane anisotropy
the exchange interactions gives rise to a corresponding
of-plane anisotropy fieldHA

out which has been understood i
terms of the out-of-plane anisotropy in the exchange inter
tions without reference to fluctuations.12,13 In contrast, the
in-plane anisotropy of the exchange interactions, wh
summed over bonds, averages to zero and therefore
contributes when fluctuations are taken into account.12,13The
mechanism studied by Shender8 contributes toHA except for
the Goldstone mode, whose energy becomes nonzero
when lattice anisotropy is introduced.

One might expect that the number of coupling consta
might be so large that no useful information or test of t
theory would be possible. As it happens, the fit to the ene
of the gaps is overdetermined and the agreement betw
theory and experiment in some instances is quite remarka
as can be seen in paper I. The observation of the mo
whose energy depends on the in-plane anisotropy leads to
determination of the in-plane anisotropy of the exchange
teractions. These quantities are difficult to obtain experim
tally. Their values can be compared to calculations12–14

based on the electronic structure of the cuprates the kno
edge of which may lead to a better understanding of
high-Tc superconductors.

One should recognize that at the moment inelastic neu
scattering does not easily detect modes in the sub-meV ra
of energy. As a result neutron scattering experiments h
not detected those in-plane modes whose energy dep
only on the in-plane anisotropy. Recently, however, t
modes in the sub-meV range of energy have been obse
by ESR experiments of the group at RIKEN.15,16 The mere
existence of these modes tends to confirm the spin-wave
culations. Moreover, the fact that they are found in the p
dicted range of energy strongly supports the theoretical
culations in this paper.

Briefly, this paper is organized as follows. In Sec. II th
Hamiltonian with its various anisotropic exchange intera
tions is specified. In Sec. III we start by discussing briefly t
framework within which the calculations are to be done a
we give the Dyson-Maleev transformation17 to boson opera-
tors. In Sec. IV the isotropic exchange Hamiltonian is d
cussed, first within harmonic theory and then including sp
wave interactions, which are essential to obtain
qualitatively correct spectrum. In Sec. V the vario
anisotropies are included in an effective quadratic spin-w
Hamiltonian. In Sec. VI we give explicit results for the spi
wave energies for the case when the transverse wave ve
is zero and show the comparison of our calculations with
recent experiments of the MIT group. In Sec. VII intensiti
of modes are discussed, with numerical results given for z
wave vector relative to the Bragg peaks for CuI and CuII .
Our conlusions are summarized in Sec. VIII.

II. HAMILTONIAN

The Hamiltonian that we intend to treat is written as

H5H11H2 , ~2!

ll
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QUANTUM FLUCTUATIONS IN THE FRUSTRATED . . . PHYSICAL REVIEW B64 024436
where H1 includes almost all the significant interaction
namely, all the intraplanar interactions and the unfrustra
interactions between nearest neighbors in adjacent C
planes andH2 includes small residual anisotropic interplan
interactions involving CuII spins. Since this latter term i
totally negligibleexceptfor extremely small wave vector an
for the lowest-energy mode, it is only necessary to inclu
contributions fromH2 evaluated at zero wave vector. Sin
the effects ofH2 are only relevant to the extremely low
frequency spectrum, we defer consideration ofH2 until Secs.
V B 4 and V B 5.

Thus we writeH1 in tensor notation as

H15 1
2 (

^ i , j PI &
SiJISj1 (

^ i PI , j PII &
SiJI-IISj

1 (
^ i , j PII &

SiJIISj1(
i PI

J3Si•Si 1(1/2)cẑ , ~3!

wherei PI ( i PII ) means that sitei runs over CuI (CuII) sites
and ^ & restricts the summation to nearest neighbors of
indicated type in the same Cu-O plane. The only unfrustra
coupling between planes is that (J3) between CuI’s directly
above or below one another. We will allow the couplingsJI ,
JI-II , andJII to be anisotropic, whereas for simplicity we tak
J3 to be isotropic. Here and below we use a hybrid notat
for site labels in which the labeli 1r indicates a site at po
sition r with respect to sitei. In H2 we include the interpla-
nar CuI-CuII and CuII-CuII couplings whose isotropic part
are frustrated.

We first discuss the principal axes of the exchange ten
JI associated with a bond between nearest-neighboringI
spins in a CuO plane. This bond is invariant with respec
two mirror planes: one in the CuO plane and the other p
pendicularly bisecting the CuI-CuI bond in question. Accord-
ingly, the principal axes of the CuI-CuI exchange tensor be
tween nearest neighbors lie along the three crystal~1,0,0!
directions, just as they would be in the absence of the CuII ’s.
In that case, the exchange tensor will have different val
corresponding to the directions~i! along the bond in ques
tion, ~ii ! perpendicular to the bond in question but in t
CuO plane, and~iii ! along the crystalcI direction. The prin-
cipal axes of the other in-plane interactions are simila
fixed by symmetry.13,19 Then the HamiltonianH1 may be
written as follows:

H15 1
2 (

i PI
(
d1

~JI
zSi

zSi 1d1

z 1JI
i@Si• d̂1#@Si 1d1

• d̂1#

1JI
'@Si•ê1#@Si 1d1

•ê1# !1 (
i PII

(
d2,1

~JI-II
z Si

zSi 1d2,1

z

1JI-II
i @Si• d̂2,1#@Si 1d2,1

• d̂2,1#1JI-II
' @Si•ê2,1#

3@Si 1d2,1
•ê2,1# !1 1

2 (
i PII

(
d2

~JII
zSi

zSi 1d2

z 1JII
i @Si• d̂2#

3@Si 1d2
• d̂2#1JII

'@Si•ê2#@Si 1d2
•ê2# !
02443
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i PI

Si•Si 1
1
2 cẑ , ~4!

where d1 (d2) labels the nearest neighbor vectors in t
plane connecting adjacent CuI’s (CuII ’s! andd1,2 labels vec-
tors in the CuO plane which give the displacements
nearest-neighboring CuI’s relative to a CuII , and hat indi-
cates a unit vector. Alsoê1 , ê2,1, andê2 are unit vectors in
the CuO plane which are perpendicular to, respectively,d1 ,
d2,1, andd2.

We separate the HamiltonianH1 into an isotropic partH0
and an anisotropic perturbationH8. For that purpose we
write

DJ15 1
2 ~JI

i1JI
'!2JI

z, DJ125
1
2 ~JI-II

i 1JI-II
' !2JI-II

z ,

DJ25 1
2 ~JII

i 1JII
'!2JII

z , ~5!

dJ15 1
2 ~JI

i2JI
'!, dJ125

1
2 ~JI-II

i 2JI-II
' !, dJ25 1

2 ~JII
i 2JII

'!,
~6!

J̃5 1
3 ~JI

i1JI
'1JI

z!, J̃125
1
3 ~JI-II

i 1JI-II
' 1JI-II

z !,

J̃25 1
3 ~JII

i 1JII
'1JII

z !. ~7!

Thus theDJ’s describe the out-of-plane anisotropy~i.e., the
energy which gives rise to an easy plane! which is respon-
sible for the 5 meV anisotropy gap in the spin-wave spec
of cuprates which do not have CuII’s. Similarly, the dJ’s
describe the in-plane anisotropy~i.e., the anisotropy within
the easy plane! and they~i! are responsible for the wea
ferromagnetic moment3,4 induced in the CuII subsystem by
the staggered moment in the CuI subsystem and~ii ! contrib-
ute to the macroscopic or phenomenological fourfold anis
ropy constantK4.13,3,4 ~We shall see later thatH2 also con-
tributes toK4.! Note thatdJ12 is what was calledJpd in Refs.
3 and 4, but differs by a factor of 2 from its definition i
Refs. 13 and 14. The largest coupling isJ (J2 /J'J12/J
'0.1 andJ3 /J'1023), while the relative anisotropiesDJ/J
anddJ/J are at most 1023.13,14,3,4

With these notations the isotropic Hamiltonian is

H05 1
2 (

i PI
(
d1

J̃Si•Si 1d1
1 (

i PII
(
d2,1

J̃12Si•Si 1d2,1

1 1
2 (

i PII
(
d2

J̃2Si•Si 1d2
1(

i PI
J3Si•Si 1(1/2)cẑ ~8!

and the anisotropic perturbation is
6-3
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H852 1
2 DJ1 (

i PI ,d1

Si
zSi 1d1

z 2DJ12 (
i PII ,d2,1

Si
zSi 1d2,1

z 2 1
2 DJ2 (

i PII ,d2

Si
zSi 1d2

z 1 1
2 dJ1 (

i PI ,d1

~Si
xSi 1d1

y 1Si
ySi 1d1

x !

2 1
2 dJ1 (

i PI ,d2

~Si
xSi 1d2

y 1Si
ySi 1d2

x !1dJ12 (
i PII ,dx

~Si
xSi 1dx

x 2Si
ySi 1dx

y !1dJ12 (
i PII ,dy

~Si
ySi 1dy

y 2Si
xSi 1dy

x !

1 1
2 dJ2(

i PII
(

d2 : j 5 i 1d2

@@Si• d̂2#@Sj• d̂2#2@Si•ê2#@Sj•ê2##, ~9!

where we introduce the following sums over thed ’s:

dx56 1
2 ax̂, dy56 1

2 aŷ, d156 1
2 a~ x̂1 ŷ!, d256 1

2 a~ x̂2 ŷ!, ~10!

as shown in Fig. 2. In Eq.~8!, J̃5J1 1
3 DJ and similarly for the otherJ’s. Since the anisotropy in theJ’s is so small~at most

of order 1023), we henceforth drop the tildes.
It is convenient to express the spin components in a coordinate system in which one axis~the j axis! lies along the line of

the staggered magnetization. Thus we introduce the axesj andh which are obtained fromx andy by a rotation about thez axis
of p/4. Then

Sx5~Sj2Sh!/A2, Sy5~Sj1Sh!/A2, ~11!

so that

H852 1
2 DJ1 (

i PI ,d1

Si
zSi 1d1

z 2DJ12 (
i PI ,d2,1

Si
zSi 1d2,1

z 2 1
2 DJ2 (

i PII ,d2

Si
zSi 1d2

z 1 1
2 dJ1 (

i PI ,d1

~Si
jSi 1d1

j 2Si
hSi 1d1

h !

1 1
2 dJ1 (

i PI ,d2

~Si
hSi 1d2

h 2Si
jSi 1d2

j !2dJ12 (
i PII ,dx

~Si
jSi 1dx

h 1Si
hSi 1dx

j !1dJ12 (
i PII ,dy

~Si
jSi 1dy

h 1Si
hSi 1dy

j !

2dJ2(
i Pe

(
dx : j 5 i 12dx

~Si
jSj

h1Si
hSj

j!1dJ2(
i Pe

(
dy : j 5 i 12dy

~Si
jSj

h1Si
hSj

j!, ~12!

FIG. 2. Nearest-neighbor vectors connecting magnetic ions in a CuO plane. CuI spins are filled circles and CuII spins are open circles
Left: the vectorsd1 and d2 between nearest-neighboring CuI spins. Center: the vectorsdx and dy which give the displacements o
nearest-neighboring CuI’s relative to a CuII . Right: the vectors 2dx and 2dy between nearest-neighboring CuII spins.
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where, in the last line,i Pe indicates that the sum is take
over only half the CuII spins, i.e., those on thee sublattice
~see Fig. 1!.

III. BOSON HAMILTONIAN

A. Overview of the calculation

Since the CuI-CuII interaction is frustrated, the CuI and
CuII sublattices are decoupled within mean-field theory
02443
r

within harmonic spin-wave theory at zero wave vector.
other words, to calculate the energy gaps at zero wave ve
we will need to include fluctuations, as first indicated
Shender.8 Here, in view of the myriad of terms in the Hami
tonian, we need to proceed in as systematic a way as
sible. In the original work of Shender8 it was found that the
effective coupling between sublattices, which depends
fluctuations beyond mean-field theory or beyond harmo
spin-wave theory involved energies of relative order 1/S with
6-4
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QUANTUM FLUCTUATIONS IN THE FRUSTRATED . . . PHYSICAL REVIEW B64 024436
respect to energies encountered in mean-field theory.
cordingly, here we will calculate all relevant effects in th
spin-wave spectrum due to anharmonic perturbations u
first order in 1/S. Therefore we analyze perturbative cont
butions at one-loop order. To be more specific, we will
troduce the usual Dyson-Maleev boson representation17 of
spin operators, in terms of which anharmonic perturbati
involving three~four! boson operators are of relative ord
1/AS (1/S). This means that we treat four-operator perturb
tions within first-order perturbation theory and three-opera
perturbations within second-order perturbation theory,
was done by Rastelli and Tassi18 in a similar situation. In
technical language, this would be done by keeping all s
contributions to the wave vector and energy-dependent s
energy. Since we work to low order, a more naive appro
~which is entirely equivalent to calculating the self-energy! is
both convenient and easy to follow. In this naive approa
one truncates all four operator terms by contracting out p
of operators in all possible ways. This reproduces exactly
results of the one-loop diagrams obtained by treating the
operator vertices in first order perturbation theory. In ad
tion, we would note that all non-Hermitian terms at order 1S
do not contribute to first order energies. So, at order 1/S we
simply discard non-Hermitian terms. Since the three-oper
terms are of interest in producing small gaps, we will follo
a calculational method which is strictly correct only at ze
wave vector. The fact that in our treatment the small per
bations have the wrong dependence on wave vector is i
evant because their effect is only nonnegligible very n
zero wave vector. To avoid the algebraic complexities due
the fact that the magnetic structure has six sublattices,
simply construct, by the methods mentioned above, the
fective quadratic Hamiltonian which includes all the se
energy corrections at order 1/S. As a check that our calcula
tions are really as consistent as we claim, we verify that
gaps have the expected dependence on the perturbation
other words, when the perturbations are known to not p
duce gaps, our calculations reproduce that result. This
of check indicates that, for instance, our treatment of thr
operator terms in second-order perturbation theory is con
tent with our treatment of four-operator terms in first-ord
perturbation theory.

B. Transformation to bosons

We make the following Dyson-Maleev transformation17

to bosons (a,b, . . . ,f ):

Sa
15A2Sa, Sa

25A2Sa†f~a!, Sa
j5S2a†a

Sb
15A2Sb†, Sb

25A2Sf~b!b, Sb
j52S1b†b

Sc
15A2Sc†, Sc

25A2Sf~c!c, Sc
j52S1c†c

Sd
15A2Sd, Sd

25A2Sd†f~d!, Sd
j5S2d†d

Se
15A2Se†, Se

25A2Sf~e!e, Se
j52S1e†e

Sf
15A2S f, Sf

25A2S f†f~ f !, Sf
j5S2 f †f , ~13!
02443
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whereS65Sh6 iSz, f(x)512x†x/(2S), and we have left
the site labels implicit. In bosonic variables the isotropic
teraction between spins assumes the form

Sai•Sb j5S~ai
†ai1bj

†bj1aibj1ai
†bj

†!

2 1
2 ~bj

†bjbjai1bj
†ai

†ai
†ai12ai

†aibj
†bj !,

Sai•Se j5S~ai
†ai1ej

†ej1aiej1ai
†ej

†!

2 1
2 ~ej

†ejejai1ej
†ai

†ai
†ai12ai

†aiej
†ej !,

Sai•Sf j5S~2ai
†ai2 f j

†f j1ai
†f j1ai f j

†!

2 1
2 ~ai f j

†f j
†f j1 f jai

†ai
†ai22ai

†ai f j
†f j !

Sbi•Se j5S~2bi
†bi2ej

†ej1bi
†ej1biej

†!

2 1
2 ~bi

†ej
†ejej1ej

†bi
†bibi22bi

†biej
†ej !,

Sbi•Sf j5S~bi
†bi1 f j

†f j1bi
†f j

†1bi f j !

2 1
2 ~bi

†f j
†f j

†f j1 f jbi
†bibi12bi

†bi f j
†f j !,

Sei•Sf j5S~ei
†ei1 f j

†f j1ei
†f j

†1ei f j !

2 1
2 ~ei

†f j
†f j

†f j1 f jei
†eiei12ei

†ei f j
†f j !. ~14!

The other interactions can be obtained by appropriate r
beling of boson variables.

The effective bilinear spin-wave Hamiltonian is of th
form ~see below!

H5(
q

@A~q!mnjm~q!†jn~q!1 1
2 B~q!mnjm

† ~q!jn
†~2q!

1 1
2 B~q!mn* jm~q!jn~2q!#, ~15!

wherej1(q)5a(q) and so forth~in orderb, c, d, e, and f ).
Here

jm
† ~ i !5

1

ANuc
(

q
eiq•r ijm

† ~q!, ~16!

whereNuc is the number of unit cells.

C. Spin-wave spectrum: General considerations

The transformation to normal mode operatorstk(q) is

j i
†~q!5(

j
Pi j ~q!* t j

†~q!1(
j

Qi j ~q!* t j~2q!,

j i~2q!5(
j

Qi j ~q!* t j
†~q!1(

j
Pi j ~q!* t j~2q!.

~17!

To preserve the commutation relations we require that

P~q!P†~q!2Q~q!Q†~q!5I,

P~q!Q†~q!2Q~q!P†~q!50, ~18!
6-5
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whereI is the unit matrix.
The transformation inverse to Eq.~17! is therefore

t j
†~q!5(

k
Pk j~q!jk

†~q!2(
k

Qk j~q!jk~2q!

t j~q!52(
k

Qk j~q!* jk
†~2q!1(

k
Pk j~q!* jk~q!.

~19!

The equation that determines the normal modes is

@t j~q!,H#25v j~q!t j~q! ~20!

which gives

F A~q! B~q!

2B~q! 2A~q!
GF Pj~q!

Qj~q!
G5v j~q!F Pj~q!

Qj~q!
G . ~21!

where Pj is the column vector with componen
P1 j ,P2 j , . . . ,Pn j and P5@P1 ,P2 , . . .Pn# and similarly for
the Q’s.
02443
From now on the arguments are alwaysq. Then

@A1B#@Pj1Qj #5v j@Pj2Qj #,

@A2B#@Pj2Qj #5v j@Pj1Qj #. ~22!

Therefore

@A1B#@A2B#@Pj2Qj #5v j
2@Pj2Qj #. ~23!

Hence, the squares of the spin-wave energies are the e
values of the matrix

D~q![@A~q!1B~q!#3@A~q!2B~q!#. ~24!

Roughly speaking the matricesA1B and A2B reproduce
the stiffnesses in the two directions transverse to the sub
tice magnetization.

As we shall see later, for the Hamiltonian of the form
H1 these dynamical matrices assume the form
A~q!53
a11 a12c1 a12c2 0 a15ex a16ex*

a12c1 a11 0 a12c2 a16ey* a15ey

a12c2 0 a11 a12c1 a16ey a15ey*

0 a12c2 a12c1 a11 a15ex* a16ex

a15ex* a16ey a16ey* a15ex a55 a56

cx1cy

2

a16ex a15ey* a15ey a16ex* a56

cx1cy

2
a55

4 ~25a!

and

B~q!53
b11 b12c112J3Scz b12c2 0 b15ex b16ex*

b12c112J3Scz b11 0 b12c2 b16ey* b15ey

b12c2 0 b11 b12c112J3Scz b16ey b15ey*

0 b12c2 b12c112J3Scz b11 b15ex* b16ex

b15ex* b16ey b16ey* b15ex b55 b56

cx1cy

2

b16ex b15ey* b15ey b16ex* b56

cx1cy

2
b55

4 , ~25b!
es
where

ex5exp~ iqxa/2!, ey5exp~ iqya/2!, cx5cos~qxa!,

cy5cos~qya!

c15cos@a~qx1qy!/2#, c25cos@a~qx2qy!/2#,
cz5cos~qzc/2!. ~26!

From now on we will analyze the energies of the mod
for wave vectors of the formG1qzẑ, whereG is a reciprocal
lattice vector. In that case the matricesA and B can be
brought into block diagonal form consisting of three 232
blocks. The unitary transformation such thatU†AU and
6-6
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U†BU are block diagonal depends onG, although, of course
the mode energies do not. ForG50 we have

U53
1/A2 0 1/2 0 1/2 0

0 1/A2 1/2 0 21/2 0

0 21/A2 1/2 0 21/2 0

21/A2 0 1/2 0 1/2 0

0 0 0 1/A2 0 1/A2

0 0 0 1/A2 0 21/A2

4 .

~27!

U(G) for generalG is given in Appendix A. ForG50 the
transformed block-diagonal matrices corresponding to c
umns 1 and 2,~labeled ‘‘12’’!, those for columns 3 and 4
~labeleds511), and those for columns 5 and 6~labeled
s521) are

A125Fa11 0

0 a11
G , ~28a!

As5F a1112sa12 A2~a151sa16!

A2~a151sa16! a551sa56
G , ~28b!

B125F b11 2J3Scz

2J3Scz b11
G , ~29a!

Bs5Fb1112sb1212sJ3Scz A2~b151sb16!

A2~b151sb16! b551sb56
G .

~29b!

These results remain valid whenH2 is included, providing it
is evaluated at zero wave vector, which, as we have sai
an excellent approximation.

D. Isotropic interactions

For a qualitative understanding of the mode structure
start by considering the results of linearized spin-wa
theory when all exchange interactions are isotropic. Th
one has

a1154JS12J3S, a165b155J12S,

a555b5654J2S, b1252JS ~30!

and all the other matrix elements are zero.
02443
l-

is

e
e
n

In the ‘‘12’’ sector, we find two optical modes which ar
degenerate for allqz , with

~v/S!25~4J12J3!22~2J3cz!
2'16J2. ~31!

Spin-wave interactions and anisotropic exchange interact
will have only negligible effects on these optical modes a
accordingly we will generally not discuss these modes a
further.20 In the s511 sector we find modes with energie

~v1
./S!252J3~12cz!@8J12J3~11cz!#'16JJ3~12cz!,

v1
,50. ~32!

Finally, thes521 sector has modes whose energies are

~v2
./S!252J3~12cz!@8J12J3~11cz!#

'16JJ3~12cz!, v2
,50. ~33!

Note that all modes are gapless at zero wave vector and
for both s511 ands521 we have a dispersionless ze
frequency mode due to the frustration of the CuI-CuII inter-
action.

Several aspects of the above results are noteworthy. F
of all, as we will see from our calculation of the dynam
structure factor in Sec. VII, thes511 (s521) sector cor-
responds to modes in which the spins move out of~within!
the basal plane and therefore we will refer to these mode
out-of-plane~in-plane! modes.~This identification can also
be deduced from the way the mode energies depend on
out-of-plane and in-plane anisotropies.! For both out-of-
plane and in-plane modes note the existence of a comple
gapless mode: when the CuI’s rotate in phase, they produc
zero coupling on the CuII ’s, each plane of which can b
rotated with zero cost in energy. The higher-energy out-
plane and in-plane modes are degenerate because we
not yet included any anisotropy and these modes give ris
the usual twofold degenerate mode of the CuI subsystem.
Even when more general anisotropic interactions are
cluded, the higher-energy modes remain mostly on the CI’s
and the lower-energy modes remain mostly on the CuII ’s.

E. Mode energies for general interactions

Here we give the mode energies in terms of the ma
elements of Eq.~25! for general interactions for wave vecto
of the formq5(0,0,qz). ~The eigenvalues, but not the matr
ces, are invariant under addition of a reciprocal lattice vec
G to q.! To evaluate Eq.~24! within the low-frequency sec-
tors s561, we record the form of the two by two blocks
Since we need bothA1B andA2B, we write
@A1hB#s5Fa1112sa121hb1112shJ3Scz12shb12 A2@a151sa161hb151shb16#

A2@a151sa161hb151shb16# a551sa561hb551shb56
G ~34!
6-7
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In evaluating Eq.~24! it is useful to note that in thes
511 sector the matrix element@A111B11#1;8JS is by far
the largest matrix element. Similarly in thes521 sector
@A112B11#2;8JS is by far the largest matrix element. I
either case, then, Eq.~24! gives the squares of the mod
energies as the eigenvalues of a matrix~or its transpose! of
the form

FU V

V WG Fu v

u wG , ~35!

whereAUu dominates all other matrix elements. In that ca
the eigenvalues are

~v.!25Uu12Vv1Wv2/u,

~v,!25~UW2V2!~uw2v2!/~v.!2. ~36!

Explicitly, within the sectorss561, we have

Us5a1112b121s~2a121b11!12J3Scz, ~37!

Vs5A2@a151b161s~a161b15!#,

Ws5a551b561s~a561b55!,

us5a1122b1222J3Scz1s~2a122b11!,

vs5A2@a152b161s~a162b15!#,

ws5a552b561s~a562b55!.

Substituting these evaluations into Eq.~36! @or, if need be,
exactly implementing Eq.~24!# gives the four low-energy
modes for wave vectors along thec direction. Obviously,
since the mode energies are derived from a two by two
namical matrix, we can easily obtain exact expressions
their energies.

IV. NONLINEAR SPIN WAVES

A. 1ÕS corrections to J, J3, and J2

When we include the effect of spin-wave interactions
order 1/S on the CuI-CuI interactions or on the CuII-CuII
interactions, we expect to get a simple renormalization.
the exchange interactions between neighbors in the s
CuO plane, this effect is well known. As explained abov
we decouple the fourth order terms inSai•Sb j as

2 1
2 @bj

†bjbjai1bj
†ai

†ai
†ai12ai

†aibj
†bj #

→2^ai
†ai1aibj&@ai

†ai1bj
†bj1aibj1ai

†bj
†#

~38!

and those inSei•Sf j as

2 1
2 @ei

†f j
†f j

†f j1 f jei
†eiei12ei

†ei f j
†f j #

→2^ei
†ei1ei f j&@ei

†ei1 f j
†f j1ei f j1ei

†f j
†#.

~39!
02443
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From this result we conclude thatJ and J2 should be re-
placed by ZcJ and Z2J2, respectively, with Zc51
2(1/S)^ai

†ai1aibj&, where i and j are nearest-neighborin
sites on theaI and bI sublattices, respectively, andZ251
2(1/S)^ei

†ei1ei f j& in a similar notation, so thatZ2'Zc at
zero temperature.Zc has been calculated more accurate
than this.~In Ref. 21 the valueZc'1.17 is given.! For J3 we
note thatai andbj refer to sites in different CuO planes, i
which case^aibj&'0. So we should replaceJ3 by Z̃3J3,
where

Z̃3512~1/S!^ai
†ai&, ~40!

so that Z̃3/2 is essentially the magnitude of the zero-po
staggered spin in the presence of quantum fluctuations.~Thus
Z̃3'0.6 is very different fromZc .)

B. The effect of spin-wave interactions onJ12

Now we discuss the effect of spin-wave interactions
J12, i.e., we consider the Shender interaction.8 Correctly to
order 1/S we construct the effective quadratic Hamiltonia
by contracting two operators in all possible ways. That is,
replace two operators by the thermal expectation value~in-
dicated by^•••&) of their product. Applying this procedure
to the relevant terms in Eq.~14! we obtain the effective
interactions between a CuI spin i on sublatticeaI and nearest
neighboring CuII spins as

Vae /J125ai
†ai~S2^ai

†ej
1&2^ej

†ej&!1ej
†ej~S2^ejai&

2^ai
†ai&!1aiej~S2^ej

†ej&2^ai
†ej

†&!

1ai
†ej

†~S2^ai
†ai&2^aiej&!, ~41!

Va f /J125ai
†ai~2S2^ai

†f j&1^ f j
†f j&!1 f j

†f j~2S2^ai f j
†&

1^ai
†ai&!1ai

†f j~S2^ai
†ai&1^ai f j

†&!

1 f j
†ai~S2^ f j

†f j&1^ai
†f j&!. ~42!

Here to leading order in 1/S it suffices to evaluate the variou
expectation values with respect to the original quadra
Hamiltonian. At quadratic order we have symmetry such t
^ai

†ej
†&5^aiej&,^ej

†ej&5^ f j
†f j&, etc. We define

J12
(1)S/J125S1^ai f j

†&2^ai
†ai&,

J12
(2)S/J125S1^ai f j

†&2^ f j
†f j&,

J12
(3)S/J125S2^aiej&2^ai

†ai&,

J12
(4)S/J125S2^aiej&2^ej

†ej&. ~43!

Note thatJ12
(3)2J12

(4)5J12
(1)2J12

(2) . Then

Vae5J12
(4)Sai

†ai1J12
(3)Sej

†ej1J12
(4)Saiej1J12

(3)Sai
†ej

† ,

Va f52J12
(2)Sai

†ai2J12
(1)S fj

†f j1J12
(1)Sai

†f j1J12
(2)S fj

†ai .
~44!
6-8
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Since we only work to order 1/S, we keep only the Her-
mitian part of these perturbations:

Vae5J12
(4)Sai

†ai1J12
(3)Sej

†ej1J12
(34)S~aiej1ai

†ej
†!,

Va f52J12
(2)Sai

†ai2J12
(1)S fj

†f j1J12
(12)S~ai

†f j1 f j
†ai !,

~45!

where

J12
(12)5 1

2 @J12
(1)1J12

(2)#, J12
(34)5 1

2 @J12
(3)1J12

(4)#. ~46!

As it turns out, the energies of the modes we study dep
only on the single parameter

a5~J12
(4)2J12

(2)!S5~J12
(3)2J12

(1)!S52J12~^aiej&1^ai f j
†&!.
~47!

Note that the parameterd in Ref. 5 isd5a/S. We evaluate
this parameter in Appendix B and find

a5CaJ12
2 /J, ~48!

whereCa is a numerical factor which we found to be 0.168
The anharmonic effects of Eq.~45! give rise to contributions
to the dynamical matrix of

da115a,

da165J12
(12)S2J12S,

da5552a,

db155J12
(34)S2J12S. ~49!

It is known8,22,23 that in simpler problems these anharmon
effects give riseat zero momentumto effective biquadratic
exchange interactions between sublattices which otherw
are frustrated in harmonic theory. To emphasize this po
we treat a biquadratic interaction between nearest CuI-CuII
neighbors~in the plane! which is of the form

HBQ52
j BQ

S2 (
i PII

(
d2,1

~Si•Si 1d2,1
!2. ~50!

Then the contributions to the dynamical matrix are

da1154 j BQS, ~51!

da16522 j BQS,

da5558 j BQS,

db1552 j BQS.

Then using Eqs.~37! and ~36! we find the mode energies a
zero transverse wave vector~for largeJ) are now

~vs
.!258JS@a14 j BQS12J3S~12cz!#

[8JS@aeff12J3S~12cz!#,

~vs
,!25

4aeffJ3S~12cz!~8J2S1aeff!

aeff12J3S~12cz!
, ~52!
02443
d

.

se
t

where

aeff5a14 j BQS. ~53!

These results demonstrate that the Shender interaction
mimic a biquadratic exchange interaction at long wa
length. However, in view of the relation for spin 1/2 th
(Si•Sj )

25 3
16 2 1

2 Si•Sj , a biquadratic exchange interactio
between two spins 1/2 is equivalent to a Heisenberg
change interaction, and we may therefore assume thatj BQ
vanishes.

As before, there is degeneracy between in-plane and
of-plane energies because we have not yet included an
ropy. However, by taking into account spin-wave intera
tions we now have the mode structure one would expect
an isotropic antiferromagnet: We have a doubly degene
zero energy Goldstone mode at zero wave vector, and do
degenerate nonzero energy modes for nonzero wave ve
as shown in the right-hand panel of Fig. 3. The quantum
in the optical modevs

. at zero wave vector has been o
tained for a number of other frustrated systems in sev
theoretical studies24,22,23 beginning with the work of
Shender.8 However, because we have two subsystems wh
order at different temperatures, the emergence of this gap
a very unique signature not present in other experime
systems studied up to now.9

V. INCLUSION OF ANISOTROPIES

A. Out-of-plane exchange anisotropy

To obtain the correct energy gaps at zero wave vector
must add the anisotropy due to anisotropic exchange inte
tions. ~Since we are dealing with spin 1/2’s, there can be
single ion anisotropy.! In this subsection we include out-of
plane exchange anisotropy. This part of the anisotropic
change energy between sublatticesaI and bI of the CuI’s is
given as

Vab[2DJ1 (
i Pa, j Pb

Sai
z Sb j

z D i j , ~54!

whereD i j is defined so as to implement the nearest neigh
restriction. Thus, neglecting anharmonicity, we write

Vab5 1
4 DJ1 (

i Pa, j Pb
@Sai

12Sai
2#@Sb j

1 2Sb j
2 #D i j

5 1
2 DJ1S (

i Pa, j Pb
~ai2ai

†!~bj
†2bj !D i j

5DJ1S(
q

@a†~q!b~q!1b†~q!a~q!2a†~q!b†~2q!

2a~q!b~2q!#c1 . ~55!

This result allows us to identify the contribution to the p
rameters of the dynamical matrix introduced in Eq.~25! as

da125DJ1S, db1252DJ1S, ~56!
6-9



old
spin-wave
e
e

A. B. HARRIS et al. PHYSICAL REVIEW B 64 024436
FIG. 3. Spin-wave spectrum for wave vector5qzc/(2p) along thecI direction in the absence of anisotropy. Each mode is twof
degenerate. The left-hand scale applies to the lower modes and the right-hand scale applies to the optical mode. Left: without
interactions. In this case one mode has zero energy for arbitrary wave vector in thecI direction. Right: with spin-wave interactions. In th
presence of easy plane anisotropy, the twofold degeneracy is removed and only one mode~corresponding to rotation within the easy plan!
is gapless at zero wave vector. When the fourfold in-plane anisotropy is also included there are no gapless modes.
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without having to explicitly consider the other CuI-CuI inter-
actions.

Next we consider the out-of-plane anisotropy of t
CuI-CuII interactions. From the form of Eq.~25! we see that
we only need construct thea-e anda- f interactions. For the
a-e interaction we have

Vae52DJ12 (
i Pa, j Pe

Sai
z Se j

z D i j

5 1
4 DJ12 (

i Pa, j Pe
~Sai

12Sai
2!~Se j

12Se j
2 !D i j

5 1
2 DJ12S (

aP i , j Pe
~ai2ai

†!~ej
†2ej !D i j

5 1
2 DJ12S(

q
@a~q!e†~q!eiq•(re2ra)

2a†~2q!e†~q!eiq•(re2ra)1H.c.#

5 1
2 DJ12S(

q
@a~q!e†~q!ex* 2a†~2q!e†~q!ex*

1a†~q!e~q!ex2a~2q!e~q!ex#, ~57!

which gives a contribution to the dynamical matrix with

da155
1
2 DJ12S, db1552 1

2 DJ12S. ~58!

Similarly

Va f5
1
2 DJ12S(

q
@a~q! f ~2q!ex2a†~q! f ~q!ex*

1a†~q! f †~2q!ex* 2a~q! f †~q!ex#, ~59!

from which we deduce that
02443
da1652 1
2 DJ12S, db165

1
2 DJ12S. ~60!

Finally we include the out-of-plane anisotropy of th
CuII-CuII interactions. Thus

Ve f52DJ2 (
i Pe, j P f

Sei
z Sf j

z D i j

5 1
4 DJ2 (

i Pe, j P f
@Sei

12Sei
2#@Sf j

12Sf j
2#D i j

5 1
2 DJ2S (

i Pe, j P f
~ei

†2ei !~ f j2 f j
†!D i j

5DJ2S(
q

@e†~q! f ~q!2e†~q! f †~2q!2e~q! f ~2q!

1 f †~q!e~q!#@cx1cy#, ~61!

which leads to

da5652DJ2S, db56522DJ2S. ~62!

The renormalization~at order 1/S) of the out-of-plane an-
isotropy is accomplished by replacingAJDJ1 by
ZgAJDJ1.25

It is instructive to see the influence of this anisotropy
the gaps at zero wave vector. Referring to Eq.~36! we see
that the high energy mode gap due to the Shender fluctua
term, causesUu to be nonzero. To check for gaps in th
mode energiesvs

, at zero wave vector it suffices to consid
the quantity

L[uw2v2

5@2DJ1S~11s!1a#@2a12DJ2S~11s!#

2@2A2sa#2. ~63!
6-10
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When we turn off both out-of-plane anisotropiesDJ1 and
DJ2, the two modesvs

, are gapless. When we allow th
out-of-plane anisotropy to be nonzero, we clearly introduc
gap (L is nonzero! in the out-of-plane (s51) sector but not
in the in-plane (s521) sector. This result follows from the
fact that the spins can still undergo a global rotation with
the easy plane at no cost in energy. Hence we still hav
single Goldstone mode with zero energy at zero wave vec
In order for this mode to have a gap, we have to take acco
of effects which lead to a fourfold in-plane anisotropy whi
we consider in the next subsection.

B. In-plane exchange anisotropy

1. CuI -CuI interactions

In this subsection we discuss the effects of the in-pla
anisotropy of the CuI-CuI exchange interactions. First of al
note that this perturbation is extremely weak. It gives rise
an effective fourfold anisotropy. This very small fourfo
anisotropy only has a non-negligible effect within the lo
frequency sector and even there only at zero wave vec
The Hamiltonian describing the in-plane anisotropy of t
CuI-CuI interactions is

Vin5dJ1 (
i Pa,d;d

s~d!~Si
jSi 1d

j 2Si
hSi 1d

h !, ~64!

where j 5 i 1d, d is summed over four values~the twod1’s
and the twod2’s!, ands(d6)561. Then

Vin5dJ1 (
i Pa,d;d

s~d!$~S2a i
†a i !~2S1b j

†b j !

2 1
4 ~2S!@a i1a i

†f~a i !#@b j
†1f~b i !b j #%

5dJ1 (
i Pa,d;d

s~d!S 2a i
†a ib j

†b j2
1
2 S@a i1a i

†#@b j
†1b j #

1 1
4 a i

†a i
†a i~b j

†1b j !1 1
4 ~a i

†1a i !b j
†b jb j

2
1

8S
a i

†a i
†a ib j

†b jb j D , ~65!

wherea i5a if site i is ana site anda i5d if i is ad site, and
similarly for b j . We write

Vin5V2,in1V4,in1V6,in , ~66!

where the subscript 2~4 or 6! indicates terms quadrati
~fourth or sixth! order in boson operators. Since we wo
systematically to first order in 1/S, we neglectV6,in . Also

V2,in52 1
2 dJ1S(

id
s~d!~a i1a i

†!~b j1b j
†!

52dJ1S(
d,k

$@a†~k!1a~2k!#@b~k!1b†~2k!#

1@d†~k!1d~2k!#@c~k!1c†~2k!#%c1
02443
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1dJ1S(
d,k

$@a†~k!1a~2k!#@c~k!1c†~2k!#

1@d†~k!1d~2k!#@b~k!1b†~2k!#%c2 ~67!

and

V4,in5dJ1 (
i Pa,d;d

s~d!@2a i
†a ib j

†b j1
1
4 a i

†a i
†a i~b j

†1b j !

1 1
4 ~a i

†1a i !b j
†b jb j #. ~68!

We now consider the effect ofV2,in on the spectrum for
kx5ky50, so thatc15c251. In this case because the pe
turbation is proportional tob2c or to b†2c†, one sees tha
V2,in only couples to the optical mode sector. According
we do not considerV2,in any further.

We expect that this in-plane anisotropy should give rise
a macroscopic fourfold anisotropy. In order to obtain th
anisotropy we must include anharmonic effects at relat
order 1/S. Now we decouple the four operator terms in
quadratic terms times averages of the remaining quadr
factors. This calculation is done in Appendix C. In that c
culation we naturally drop all contributions to the optic
mode sector and of the rest keep only terms which have
effect on the mode energies at zero wave vector. The resu
that contributions to the dynamical matrices due to the
plane CuI-CuI interactions yield

da11516C2t, ~69a!

da12524~6C22C2c24C2b!t, ~69b!

db1158C2ct, ~69c!

db125216C2bt, ~69d!

wheret[(dJ1)2/J and theC’s are lattice sums defined in
Eq. ~C19! of Appendix C. It turns out that becauset is so
small, the only evaluation we need is thatC250.01. Note
that the contributions in Eq.~69! are of relative order 1/S
which is consistent with the fact that they represent the ef
of quantum fluctuations. The fact that they represent a mo
fication in the zero-point energy is reflected by the appe
ance of the factorC2!1.

2. CuI -CuII interactions

Next we deal with the in-plane anisotropy of the CuI-CuII
interactions. The terms in Eq.~12! involving dJ12 are

VdJ12
52dJ12 (

i PII, dx

@Si
jSi 1dx

h 1Si
hSi 1dx

j #

1dJ12 (
i PII, dy

@Si
jSi 1dy

h 1Si
hSi 1dy

j #. ~70!

In terms of boson operators this is
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VdJ12
5dJ12AS/2(

i
$@S2ei

†ei #@ai 1x1ai 1x
† f~ai 1x!1di 2x1di 2x

† f~di 2x!#1@ei
†1f~ei !ei #~22S1ai 1x

† ai 1x1di 2x
† di 2x!%

2dJ12AS/2(
i

$@S2ei
†ei #@bi 2y

† 1f~bi 2y!bi 2y1ci 1y
† 1f~ci 1y!ci 1y#1@ei

†1f~ei !ei #~2S2bi 2y
† bi 2y2ci 1y

† ci 1y!%

1dJ12AS/2(
i

$@2S1 f i
†f i #@ai 2x1ai 2x

† f~ai 2x!1di 1x1di 1x
† f~di 1x!#

1@ f i1 f i
†f~ f i !#~22S1ai 2x

† ai 2x1di 1x
† di 1x!%2dJ12AS/2(

i
$@2S1 f i

†f i #@bi 1y
† 1f~bi 1y!bi 1y1ci 2y

†

1f~ci 2y!ci 2y#1@ f i1 f i
†f~ f i !#~2S2bi 1y

† bi 1y2ci 2y
† ci 2y!%. ~71!
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This perturbation contains terms linear and terms cubi
the boson operators. The linear terms and~at relative order
1/S) the cubic terms will shift the equilibrium so that th
boson operators are modified as

ei→ei1s, f i→ f i1s, ai→ai1t, bi→bi1t,

ci→ci1t, di→di1t. ~72!

These shifts are evaluated in Appendix D, where we find t
~to leading order in 1/S)

s5
4dJ12AS/2

8J2,

t52
2J12s

8J14J3
52

J12dJ12AS/2

J2~8J14J3!
. ~73!

These are the expected results. As one sees from Eq.~12!,
the perpendicular field acting on ane spin is 4dJ12S in the
positiveh direction, so that the perpendicular moment of t
e spin isDSe54dJ12Sx II54dJ12S/(8J2), which agrees with
A2Ss when Eq.~73! is used. Further, due to the isotrop
exchange, the field acting on ana spin is 2J12DSe
5J12dJ12S/J2 in the negative h direction. Thus DSa
52@J12dJ12S/J2#x I52@J12dJ12S/J2#/@8J14J3#, which
agrees withA2St when Eq.~73! is used. Note thatDSe and
DSa are both of orderS, a result which indicates that th
effects here are completely classical.

To determine the effect ofVdJ12
on the spin-wave spec

trum we need to construct the effective quadratic Ham
tonian, which results from introducing shifts into anharmon
terms. This is done in Appendix D. When we insert the
shifts into the cubic terms ofVdJ12

we ignoret in comparison

to s becauseJ@J12. Thereby we get contributions to th
dynamical matrix of
02443
n
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da555da1152db555dJ12
2 S/J2[zS,

da1652da155db1652db155
1
4 zS. ~74!

We also insert these shifts into the four operator terms of
isotropic Hamiltonian. As before we only keep terms arisi
from replacing two CuII operators bŷ e&. The magnitude of
other terms, e.g., CuI-CuI quartic terms when CuI shifts ^a&
are kept, are shown in Appendix D to be much smaller th
those we have kept. The result of the calculation in Appen
D is that we get the contributions to the dynamical matrix

da5552zS, db5552 1
4 zS,

da5652 3
4 zS, db5652zS. ~75!

Note that these perturbative contributions from the CuI-CuII

in-plane anisotropy, are proportional toS, unlike the case for
the other in-plane anisotropies. This indicates that the ef
of dJ12 ~which we calledJpd previously3,4!, is a classical
effect which already appeared within mean field theory3,4

The other in-plane anisotropies only have an effect when
consider fluctuations. However, since the effect ofdJ12 is
rather small, we do not consider the effects of fluctuat
corrections to it.

3. CuII -CuII intraplanar interactions

Here we consider the in-plane anisotropy of the inter
tions between pairs of CuII spins in the same plane. The
interaction is
6-12
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V52dJ2(
i Pe

F (
dx : j 5 i 12dx

~Si
jSj

h1Si
hSj

j!1 (
dy : j 5 i 12dy

~Si
jSj

h1Si
hSj

j!G
52dJ2AS

2 (
i ,dx

$~S2ei
†ei !@ f j1 f j

†f~ f j !#1@ei
†1f~ei !ei #~2S1 f j

†f j !%

1dJ2AS

2 (
i ,dy

$~S2ei
†ei !@ f j1 f j

†f~ f j !#1@ei
†1f~ei !ei #~2S1 f j

†f j !%

5dJ2AS/2 F(
i ,dx

@ei
†ei~ f j1 f j

†!2~ei
†1ei ! f j

†f j #2(
i ,dy

@ei
†ei~ f j1 f j

†!2~ei
†1ei ! f j

†f j #G
5dJ2A8S

N (
q,k

r~k!$@ f ~k!1 f †~2k!#e†~q!e~q2k!2@e~k!1e†~2k!# f †~q! f ~q2k!%, ~76!
e

.
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where

r~k!5
1

2
@cos~akx!2cos~aky!#. ~77!

This Hamiltonian is treated in Appendix E, where th
additional contributions to the spin-wave matrices~at qz
50) are found to be

da555216@dJ2
2/J2#@2C2a1C2b#[216j@2C2a1C2b#,

da56516j@2C2a2C2b# ~78!

and

db555216jC2b , db56548jC2b , ~79!

whereC2a andC2b are lattice sums defined in Appendix C
It is interesting to note that apart from a minus sign, the

results are exactly the same as in Yildirimet al.13 This dif-
ference in sign is to be expected because the CuII’s are ori-
ented in a hard direction with respect to only CuII-CuII inter-
actions. Consequently, this term tends to decrease the g

4. CuII -CuII interplanar interactions

Here we consider the effect of interactions between a
of CuII spins in adjacent planes. The situation we conside
shown in the left panel of Fig. 4, where one sees that
isotropic component of the CuII-CuII interplanar interaction
is frustrated. To describe the anisotropy of this interact
we introduce the principal axes~shown in the right panel o
Fig. 4! as follows:

n̂15221/2~2 x̂1 ŷ!, n̂25221/2~ x̂1 ŷ!cosc1 ẑsinc,

n̂35221/2~ x̂1 ŷ!sinc2 ẑ cosc. ~80!

The anglec is not fixed by symmetry. We then write th
anisotropic CuII-CuII interaction H i j

II-II between nearest
neighboring spinsi and j in adjacent planes as10
02443
e

p.

ir
is
e

n

H i j
II-II 5 (

k51

3

Kk@Si•n̂k
( i j )#@Sj•n̂k

( i j )#, ~81!

wheren̂k
( i j ) is thekth principal axes for the pairi j which can

be obtained from the right panel of Fig. 4, by a rotation
coordinates, if necessary, andKk is the associated principa
value of the exchange tensor. The contributions of this in
action to the dynamical matrix are evaluated forqx5qy50
in Appendix F as

da555da6654~K12K2c22K3s2!S

12~K11K3c21K2s2!Scz , ~82a!

da565da6552~K22K3!~c22s2!Scz , ~82b!

db555db6652~K12K2s22K3c2!Scz , ~82c!

FIG. 4. Interplanar CuII-CuII interactions. Left: a plaquette o
CuII spins in one plane with a CuII neighbor in the adjacent plan
over the center of the plaquette such that the isotropic CuII-CuII

interaction is frustrated. Right: The principal axes for the excha
tensor of a spin in thee sublattice at O with a spin in thee sublattice
at A. The directions of the axes are given in Eq.~80!. The axes for
the interactions of the spin at A with other spins in the lower pla
can be obtained by a rotation of coordinates.
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db565db6552~K21K3!Scz , ~82d!

wherec[cosc and s[sinc. As we will see later, this in-
teraction can only contribute significantly to the lowe
energy in-plane mode, where its effect is through the com
nation

d~a552a561b552b56!54S~K12K2c22K3s2!~11cz!

[4DKS~11cz!. ~83!

Note thatDK50 for isotropic exchange.
A closely related interaction is the long-range dipolar

teraction, whose contributions to the dynamical matrix
also evaluated in Appendix F. This interaction is dominan
Sr2CuO2Cl2.16 To include dipolar interactions we obtain~in
Appendix F! the result

d~a552a561b552b56!56g2mB
2S~11cz!X, ~84!

whereX is the lattice sum

X5 (
j PII :zi j 5c/2

xi j yiys j

r i j
5

, ~85!

wherei labels a fixed CuII site,s j is 11 if spins i and j are
parallel and is21 if they are antiparallel. Numerical evalu
ation yields

X5731024 Å 23. ~86!

Therefore we should replaceDK by

DKeff5DK1 3
2 g2mB

2X. ~87!

5. CuI -CuII interplanar interactions

Here we briefly summarize the results for a similar tre
ment of the CuI-CuII anisotropic interactions. The situatio
we consider is shown in the left panel of Fig. 5, where o

FIG. 5. Interplanar CuI-CuII interactions. Left: a plaquette of CuI

spins in one plane with a CuII neighbor in the adjacent plane belo
the center of the plaquette such that the isotropic CuI-CuII interac-
tion is frustrated. Right: The principal axes for the exchange ten
of a spin in thee sublattice at O with a spin in thec sublattice at A.
The directions of the axes are given in Eq.~80!. The axes for the
interactions of other pairs of CuI-CuII nearest neighbors in adjace
planes can be obtained by a rotation of coordinates.
02443
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sees that the isotropic component of the CuI-CuII interplanar
interaction is frustrated. To describe the anisotropy of t
interaction we introduce the principal axes for the CuI-CuII
pair aI -eI , shown in the right panel of Fig. 5, as follows:

m̂152 ŷ, m̂25 ẑ cosf2 x̂ sinf,

m̂352 ẑ sinf2 x̂ cosf. ~88!

The anglef is not fixed by symmetry. We then write th
anisotropic CuI-CuII interaction H i j

I-II between nearest
neighboring spinsi and j in adjacent planes as

H i j
I-II 5 (

k51

3

Kk8@Si•m̂k~ i j !#@Sj•m̂k~ i j !#, ~89!

wherem̂k( i j ) is thekth principal axes for the pairi j which
can by obtained from the right panel of Fig. 5, by a rotati
of coordinates, if necessary, andKk8 is associated principa
value of the exchange tensor. In Appendix G we obtained
following contributions to the dynamical matrices forqx
5qy50:

da155db165
1
2 @K181K28~123c2!1K38~123s2!#[GI-II

~90a!

da165db155
1
2 @K181K28~11c2!1K38~11s2!#[H I-II ,

~90b!

where c[cosf and s[sinf. We will see later that these
terms have a negligible effect on the spin-wave spectrum

VI. SPIN-WAVE SPECTRUM

Explicitly, the dynamical matrices corresponding to t
effective quadratic Hamiltonian containing the aboveme
tioned anisotropies are of the form of Eq.~25! with

a1154JS12J3S116C2t1zS1a,

a125DJ1S24~6C22C2c24C2b!t,

a155
1
2 DJ12S2 1

4 zS1GI-II ,

a165J12
(12)S2 1

2 DJ12S1 1
4 zS1H I-II ,

a5554J2S216j~2C22C2b!12a14~K12K2c22K3s2!S

12~K11K3c21K2s2!Scz , ~91!

a5652DJ2S116j~2C223C2b!2 3
4 zS

12~K22K3!~c22s2!Scz ,

b1158C2ct,

b1252JS2DJ1S216C2bt,

b155J12
(34)S2 1

2 DJ12S2 1
4 zS1H I-II ,

b165
1
2 DJ12S1 1

4 zS1GI-II ,

or
6-14
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TABLE I. Definitions of parameters. Notation:dJ[(J'2Ji)/2.

a Ca'0.1686 t z j C2'0.01a J12
(n)

CaJ12
2 /J Eq. ~48! (dJ1)2/J (dJ12)

2/J2 (dJ2)2/J2 Eq. ~C19! Eqs.~43!,~46!

DK DKeff X5731024 Å 23

Eq. ~83! Eq. ~87! Eq. ~85!

aSee Ref. 13.
er
o
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nc

-
ve
b555
1
4 zS216jC2b12~K12K2s22K3c2!Scz , ~92!

b5654J2S22DJ2S2zS148jC2b12~K21K3!Scz .
~93!

@In the above tabulation we not have included dipolar int
actions. These are easiest to include when we give the m
energies because these terms can then be combined vi
~87! with the pseudodipolar terms which we treated exp
itly.# In Table I we summarize the definitions of the vario
parameters and in Table II we give estimates of their num
cal values.

A. CuII ’s ordered

1. Without 1ÕS renormalizations

Here we evaluate the energies of the four low-freque
modes in the presence of CuII ordering without any 1/S
02443
-
de
Eq.
-

i-

y

renormalizations. In what follows we will work to an accu
racy of about 1%. That is, the only corrections of relati
order 1/J we will keep are those of orderJ12/J or J2 /J.
Then, in the notation of Eqs.~34! and~37! the components of
the large matrix@A1sB#s are

Us58JS, Vs52A2sJ12S, Ws58J2S. ~94!

We neglect terms which are small compared toa and obtain

@A2B#s5115F4DJ1S1a1x3 2A2a

2A2a 4DJ2S12a
G ~95!

for the out-of-plane sector, wherex352J3S(12cz), and
om
TABLE II. Estimated values of parameters from experiment and theory.

Parameter Values in meV
From experiment From theory

Value Referencea Value Referencea

J 13065 7 145 28
J3 0.1460.02 5,7
J12 21062 7, TW
J2 10.560.5 5
DJ1(T50 K! 0.08160.01 TW 0.04 13,14
DJ1(T5200 K! 0.06860.011 7
DJ12 1.3d 27
DJ2 0.00460.004 16, TW 0.036 26
dJ1 60.04 16, TW 20.02 14
dJ12 60.027 4 20.015 b

dJ2 0.4
DKeff 2.7331024 TW, Eq. ~87!

a 0.135 5,7, TW 0.13 TW, App. B
t 1.231025 16, TW ;1025 c

z 731025 4 2.231025 c

j 1026 c

aTW denotes this work.
bThis is the contribution todJ12 from dipolar interactions, which is much larger than that estimated fr
dJ/J;1.531024.

cEvaluation based on the relevantJ’s.
dEvaluated for the similar compound Ba2Cu3O4Cl2.
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@A1B#s5215F zS1a164C2t1x3 A2~a2zS!

A2~a2zS! 2~zS1a!264jC214DKeffS~11cz!
G ~96!
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for the in-plane sector, whereDKeff was defined by Eq.~87!.
From Eq.~36! we get the higher frequency modes as

~v1
.!258JS~4DJ1S1a1x3!28J12Sa1

16J2Sa2

a14DJ1S1x3
,

~97a!

~v2
.!258JS~a1x3!18Sa~2J1212J2!2

16J2Sax3

a1x3
,

~97b!

and the lower frequency modes as

~v1
,!2564JJ2S2~@4DJ1S1a1x3#

3@4DJ2S12a#22a2!/~v1
.!2, ~97c!

~v2
,!2564JJ2S2~@zS1a164C2t1x3#

3@2zS12a264jC214DKeffS~11cz!#

22~a2zS!2!/~v2
.!2

'S 64JJ2S2a

~v2
.!2 D @2x3164~2t2j!C218zS

14DKeffS~11cz!#. ~97d!

In obtaining the above results we replacedUW2V2 by UW
with an error of order 1%. To obtain the last line of Eq.~97d!
we assumed thata dominates the other perturbations.

As we have already seen, quantum fluctuations of
frustrated CuI-CuII interactions causevs

. to be nonzero even
if the exchange interactions are isotropic. When we introd
easy plane anisotropy~by makingDJ1 and/orDJ2 nonzero!
we introduce a gap intov1

, , butv2
, has no gap yet, becaus

without in-plane anisotropy a global rotation of spins with
the easy plane costs no energy. The lowest mode develo
gap when we introduce the in-plane anisotropy and take
count of quantum fluctuations. One might imagine that
strongest such anisotropy, namely that inJ ~scaled by the
parameterdJ1) would dominate inv2

, . This effect is incor-
porated in the term proportional tot5dJ1

2/J, and indeed
when the CuII’s are not ordered this term is the only on
which contributes atqz50. However, when the CuII’s are
ordered, the situation is different. Notice that this factor h
no factor ofSand more importantly, it is accompanied by th
small numerical factorC2'0.01. These observations remin
us that this effect is another fluctuation effect. Within ha
monic theory or mean-field theory the anisotropy of the
CuI-CuI in-plane interactions averages to zero. In contra
the weaker in-plane interaction between CuI’s and CuII’s
@scaled by z[(dJ12)

2/J] appears already in mean-fiel
theory.4 Thus, this term, which is proportional toS, has no
02443
e

e

s a
c-
e

s

-
e
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factor analogous toC2 and it would dominate the term pro
portional tot except for the fact~see next section! that its
renormalization factorZz is quite small. However, when th
CuII ’s are ordered, the interplanar CuII-CuII dipolar interac-
tions contained inDKeff are dominant, and lead to the dra
matic increase in the effective fourfold anisotropy observ
at low temperatures. The isotropic interplanar neare
neighbor CuI-CuII are frustrated. The anisotropic CuI-CuII
interlayer interactions~as embodied by the constantsG and
H) have only a negligible effect on the mode energies.

2. 1ÕS renormalizations

In this subsection we summarize how we incorporate
various renormalizations due to spin-wave interactions.
believe that the correct procedure is to calculate the m
energies correctly at first order in 1/S and then setS51/2.
Following this prescription we thereby obtain the followin
results:

~v1
.!258JS@a14DJ1SZg

21x3Z3
2#

28J12Sa1
16J2Sa2

a14DJ1SZg
21x3Z3

2 , ~98a!

~v2
.!258JS@a1x3Z3

2#28J12Sa1
16J2Sa2

a1x3Z3
2 , ~98b!

~v1
,!2564JJ2S2~@4DJ1SZg

21a1x3Z3
2#

3@4DJ2SZg
212a#22a2!/~v1

.!2, ~98c!

~v2
,!2564JJ2S2~@zS1a164C2t1Z3

2x3#

3@2zS12a264jC214DKeffS~11cz!#

22@a2zS#2!/~v2
.!2

'S 64JJ2S2a

~v2
.!2 D @2Z3

2x3164~2t2j!C218zSZz

14DKeffS~11cz!Z3
2#. ~98d!

Here we noted that spins not in the same plane are essen
uncorrelated and hence we have

J3→Z̃3J3 , DKeff→Z̃3DKeff , ~99!

where Eq.~40! gives Z̃3'120.2/S→0.6. But sinceJ3 and
DKeff always enter the mode energies in combination with
isotropic exchange constant, we associate with them
renormalizations

J3→Z3
2J3 , DKeff→Z3

2DKeff , ~100!
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TABLE III. RenormalizationsJ→ZJ.

Quantity J J3
a AJDJI DKeff

b

Renormalized to ZcJ Z̃3J3 ZgAJDJI DKeffZ̃3
2

(110.085/S)J (120.2/S)J3 (120.2/S)AJDJI (120.2/S)Keff

Refer to Ref. 21 Eq.~40! Ref. 25 Eq.~99!

aIn the dynamicsJJ3→ZcZ̃3JJ3[Z3
2JJ3, where we setZ3

250.77.
bIn the dynamicsJ2DKeff→ZcZ̃3J2DKeff[Z3

2J2DKeff , where we setZ3
250.77.
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where Z3
25Z̃3Zc . Thus Z3

25(120.2/S)(110.085/S)5(1
20.115/S)→0.77. Also, we will determineZz by compari-
son, in Eq. ~108! below, with the phenomenologica
treatment4 of the statics. For convenience we summarize
Table III the renormalizations of the various interactio
which follow from our treatment to order 1/S.

B. CuII ’s disordered

To get the energies of the spin-wave modes when
CuII’s are disordered one setsJ125J250 ~i.e., modesv1

,

and v2
, no longer exist as elementary excitations! and a

50, in which case we get

~v1!258JS@4DJ1SZg
212J3SZ3

2~12cz!#, ~101a!

~v2!258JS@64tC212J3SZ3
2~12cz!#. ~101b!

Note that in Eq.~97b! we had dropped a term representi
the fourfold anisotropy which is proportional tot, because
such a term is negligible in comparison toa. Here, witha
not present, we restore this term inv2 . Note also that the
higher energy mode is the one which has fluctuations ou
the plane~as indicated by the dependence onDJ1) and at
zero wave vector is of the expected formv252HEHA , with
the exchange fieldHE54JS and the anisotropy fieldHA
54DJ1S. The energy of this out-of-plane gap is about
meV in many lamellar copper oxide antiferromagnets.2 The
lower-energy mode involves motion of the spins within t
plane and would have no gap at zero wave vector excep
the appearance of a small effective fourfold anisotro
which was obtained previously13 from phenomenologica
considerations. The same result for the gap, namelyv
516dJ1A2C2S'1.6dJ1, is obtained from the microscopi
calculation given in Appendix C and also in Ref. 25.

C. Comparison of static and dynamic theories

Here we briefly compare our results with those of a me
field treatment of the statics.4 In that calculation the fourfold
anisotropy is included phenomenologically and the ani
tropic CuI-CuII interactions are included even when the CII
sublattice is not antiferromagnetically ordered. When
CuII sublattice is ordered, the static treatment assumes
the Shender mechanism is strong enough that all spins
essentially collinear. So the dynamics of the Goldstone m
should involve the static response coefficients, althou
spin-wave hydrodynamics29 rigorously applies only in the
limit of zero frequency.
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Since the statics treat the fourfold anisotropy phenome
logically, as did Yildirim et al.,13 we identify their fourfold
anisotropy constantK, which scales the anisotropy energ
per CuI spin, from

E52 1
2 K cos~4u!, ~102!

because there are two CuI’s per unit cell. Alsou is the angle
of the magnetic moment with respect to the easy~1,0,0! axis.
In Ref. 13 the energy per CuI spin is~in the present notation!

E532C2tS~Sx
2Sy

2/S4!. ~103!

So we make the identificationK58C2tS, or, if we include
the effects of the CuII ’s,

K54C2~2t2j!S. ~104!

We start by comparing the results of the two approac
when the CuII ’s are disordered. There the spin-wave calcu
tion completely ignores the presence of the CuII ’s, whereas
in the statics the CuII ’s are characterized by their susceptib
ity in the pseudodipolar field caused by the small in-pla
anisotropy of the CuI-CuII interactions. In the statics for tem
peratures far below the ordering temperature for the CuI sub-
lattice ~but still with the CuII ’s disordered! one has the effec-
tive fourth-order anisotropy constantkstat from the statics as

kstat52K18M0
2J12

2 x I@128x II
2J12

2 #21, ~105!

where we introduce the Cu spin susceptibilitiesx I
'0.53/(8J), x II'0.53/(8J2), and~in the present notation!

M054dJ12̂ S&x II , ~106!

where ^•••& denotes a thermal average. If one takesdJ12
50.025 meV, thenM05231024. Then the second term o
the right-hand side of Eq.~105! is about 631028 meV, com-
pared with 2K which was found4 to be 231026 meV. So
this correction~due to paramagnetic CuII ’s! which is absent
from our spin-wave analysis is negligible.

When the CuII’s are well ordered, Ref. 4 gives approx
mately

kstat52K18~dJ12!
2^S&2@0.53/~8J2!#. ~107!

Using Eq.~104! as the identification ofK, we see from Eq.
~98d! that the mode energy involves the combination~for j
!t andzS!a) which we identify to be the effective valu
of k from the dynamics,kdyn, where
6-17
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kdyn58~2t2j!C2S1zS2Zz1DKeffS
2Z3

2

52K1~dJ12!
2S2Zz /J21DKeffS

2Z3
2 . ~108!

We see that the term (0.53)^S&2 in the statics appears a
S2Zz in the spin-wave dynamics. With an appropriate ren
malizationZz'0.19, these two terms are the same. Thus
far as the intralayer interactions are concerned the comp
son between statics and dynamics indicates that these t
are correctly treated. We also see that the treatment of
statics did not include the interplanar anisotropic interacti
DKeff . As we shall see, this term gives an important con
bution to the modev2

, , so it should be included in a re
analysis of the statics. In terms of the constantkdyn we may
write Eq. ~98d! as

~v2
,!2~q50!564J2kdynS J

J2J1212J2
D . ~109!

Thus we conclude that except for the fact that the sta
ignored the interplanar anisotropic CuII-CuII interactions, the
two theoretical approaches are compatible with one anot
In the next section will show that theexperimentalresults
from static and dynamic measurements are also consis
with one another.

D. Comparison to experiments

The comparison between the present theory and exp
ments has been described briefly in several previ
publications.3,5,16 Since a more detailed comparison is giv
in paper I, we will simply summarize the comparison of t
theoretical and experimental results. First one has the
mate for J which is nearly the same for all cuprates. Th
estimate has been refined by Kim,30–32 who givesJ5130
meV. The value J2510.5 meV has been accurate

TABLE IV. Experimental values of spin-wave gaps at ze
wave vector.

Mode Temperature Energy~meV! Ref.

v1
. T5200 K 5.5(3)a 5

v2
. T5200 K 0.066~4! 16

v1
. T→0 K 10.8~6! 7

v2
. T→0 K 9.1~3! 7

v1
, T→0 K 1.7473~4! 16

v1
, T→0 K 1.72~20! 7

v2
, T→0 K 0.149~3! 16

aExtrapolated toT50.
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determined5 by comparing the experimental dispersion wi
respect to in-plane wave vector of CuII spin waves to various
theoretical treatments which take account of spin-wa
interactions.33

Now we discuss the analysis of the magnon gaps at z
wave vector where values are listed in Table IV. We first
the observed16 in-plane gap when the CuII’s are disordered.
Equation ~101b! yields v2516A2C2SdJ1 and with16 v2

50.066 meV, we getudJ1u5uJi2J'u/250.042 meV, a
value which is about twice the theoretical estimates.14 Using
Eqs. ~104! and ~105! this corresponds tok516C2St
516(0.01)(0.5)(0.042)2/1305131026 meV, compared to
the value deduced from the statics4 k5231026 meV, for 70
K<T<120 K. At low temperature (T51.4 K! , where the
CuII ’s are well ordered, the statics34 gives k52531026

meV. From Eq.~109! with v2
,50.15 meV, we getkdyn

54131026 meV. These results are listed in Table V, whe
we see only a qualitative consistency between the interpr
tion of the static and dynamic experiments. It is possible t
the quantum renormalizations~which affect the determina
tion of k from the observed mode energy! are not quite cor-
rect. Also, the interpretation of the statics within which t
CuII-CuII interplanar anisotropy is subsumed into the fou
fold anisotropy constantk is not strictly correct. If we fixdJ1

to fit the value ofv2 at T5100 K and assume that th
interplanar CuII-CuII interactions result from the actua
dipole-dipole interactions, then the temperature depende
of k results from the last term in Eq.~108!. With only dipolar
~i.e., no pseudodipolar! interactions, Eqs.~87! and ~86! give
~with g52.24! DKeff527331026 meV, so thatDKeffS

2Z3
2

55331026 meV, from whichkdyn55631026 meV. From
Table V it is clear that the experimentally deduced tempe
ture dependence ofk is qualitatively accounted for by the
intraplanar dipolar interactions.

Now we consider the higher-energy modes. Fitting to
observed7 energy v155.5 meV of the out-of-plane gap
when the CuII’s are disordered to Eq.~101a! ~with Zg
50.6) we obtain the value ofDJ150.081 meV. As was the
case fordJ1, this result is also about twice the theoretic
estimates for a simple CuO plane.13,14 Given the values of
these parameters, both higher-energy modes at low temp
ture involve only the one additional parametera. If we de-
termine a from v1

. we get a50.14 meV, whereas if we
determinea from v2

. we geta50.13 meV. These two val-
ues agree perfectly with one another and their average c
cides with the theoretical evaluation of Appendix B thata
50.13 meV. Clearly these agreements strongly support
interpretation of the role of fluctuations embodied by t
TABLE V. Values in (1026 meV! of the fourfold anisotropy constantk.

k T51.4 K T5100 K

Experimental: From statics~Ref. 4! 25 2
Experimental: Fitting Eq.~109! to AFMR data~Ref. 16! 41 1
Theoretical: See Eq.~108! 56 1a

auJ'2Jiu50.041 meV is fixed so that the dynamics and theory agree.
6-18
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parametera. Note that a biquadratic interaction between tw
spin 1/2’s can be subsumed into a ordinary Heisenberg
change interaction. Therefore biquadratic exchange ca
contribute toa.

Finally we consider the lower-energy out-of-plane mo
in the zero temperature limit. The AFMR data15,16 gives
v1

,51.7473(4) meV, more accurate than, but entirely co
sistent with, the data of Ref. 7. Evaluating the expression
Eq. ~98c! with DJ250 givesv1

,51.717 meV. If we fixDJ2

to fit the experimental value of this gap, we getDJ2
50.00460.004 meV. We attribute a large uncertainty
DJ2 because its value changes significantly ifDJ1 or a is
slightly modified. To get the same relative out-of-plane a
isotropy,DJ/J, for the CuII-CuII exchange as for the CuI-CuI
exchange would requireDJ150.008 meV.

VII. DYNAMIC STRUCTURE FACTOR

The cross section,s(q,v), for inelastic neutron scatterin
from magnetic ions is proportional to the dynamic structu
factor Sab(q,v) which in turn is related to the spin-spi
correlation function. We have

s~q,v!}(
ab

~da,b2q̂aq̂b!Sab~q,v!. ~110!

According to the fluctuation-dissipation theorem, we m
write

Sab~q,v!5
1

p
n~v!Im xab~q,v2 i01!, ~111!

where n(v)5@e\v/(kT)21#21 and, in the usual notation,35

the A-B Green’s function is defined as

^^A;B&&v5(
m,n

pnF ^nuAum&^muBun&
v2Em1En

2
^nuBum&^muAun&

v1Em2En
G ,

~112!

whereun& and um& are exact eigenstates with respective e
ergiesEn andEm andpn is the Boltzmann weight of the stat
un&. Then x, the dynamic susceptibility, is written as th
Green’s function

xa,b~q,v!5^^Sa~q!;Sb~2q!&&v . ~113!

We construct the dynamic susceptibility by writing the sp
operators in terms of boson operators at leading order inS:

S1~q!5A2S@a~q!1b†~2q!1c†~2q!

1d~q!1e†~2q!1 f ~q!#,

S2~2q!5A2S@a†~q!1b~2q!1c~2q!

1d†~q!1e~2q!1 f †~q!#. ~114!

Thus we have
02443
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Sh~q!5@S1~q!1S2~q!#/2

5AS/2(
m

@Vm~h!jm~q!1Vm~h!* jm
† ~2q!#

~115!

and

Sz~q!52 i @S1~q!2S2~q!#/2

5AS/2(
m

@Vm~z!jm~q!1Vm~z!* jm
† ~2q!#,

~116!

where the operators are labeled as in Eq.~15! and the trans-
pose of the column vectorsV(a) is

Ṽ~h!5~1,1,1,1,1,1!, Ṽ~z!5 i ~1,21,21,1,21,1!.
~117!

Thus we may write

xab~q,v!5 1
2 S(

mn
^^@Vm~a!jm~q!1Vm~a!* jm

† ~2q!#;

@Vn~b!jn~2q!1Vn~b!* jn
†~q!#&&v .

~118!

We may evaluate these response functions in terms
normal modes. Suppose we have found the unnormal
right eigenvectors of the dynamical matrix, Eq.~23!. That is
we have the column vectorsF j which satisfy

@A1B#@A2B#F j5v j
2F j . ~119!

Then we make the identification that

Pj2Qj5xjF j . ~120!

We can arbitrarily fix the phase of the normal mode ope
tors so thatxj is real positive. Then

@A2B#xjF j5@A2B#@Pj2Qj #5v j@Pj1Qj # ~121!

or

Pj1Qj5~xj /v j !@A2B#F j , ~122!

so that

Pj5
xj

2
~I1v j

21@A2B# !F j

Qj5
xj

2
~2I1v j

21@A2B# !F j . ~123!

To use Eq.~18! we write

Pj
†Pj2Qj

†Qj5
xj

2

v j
~F j

†@A2B#F j !, ~124!

so that
6-19
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xj
25

v j

~F j
†@A2B#F j !

. ~125!

Then we write the susceptibilities as

~2/S!xab~q,v!5 (
m,n,r

@Vm~a!Pmr~q!1Vm~a!* Qmr~q!#@Vn~b!* Pnr~q!* 1Vn~b!Qnr~q!* #^^t r~q!;t r
†~q!&&v

1(
mnr

@Vm~a!Qmr~q!1Vm~a!* Pmr~q!#@Vn~b!* Qnr~q!* 1Vn~b!Pnr~q!* #^^t r
†~q!;t r~q!&&v

5(
r

„$@Ṽ~a!Pr #1@Ṽ~a!* Qr #%$@Ṽ~b!Pr #1@Ṽ~b!* Qr #%* @v2v r~q!#211$@Ṽ~a!Qr #1@Ṽ~a!* Pr #%

3$@Ṽ~b!Qr #1@Ṽ~b!* Pr #%* @v1v r~q!#21
…

[(
r

F Jr
ab~q!

v2v r~q!
1

I r
ab~q!

v1v r~q!
G , ~126!
c
ve
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where we left the argumentq implicit in several places. We
will refer to I andJ as ‘‘intensities,’’ although to get inelasti
neutron scattering cross-sections one needs to include se
other factors. At low temperature we only need

I r
ab~q!5xr

2
„da,z@V~z!†F r~q!#1v r~q!21da,h

3$V~h!†@A2B#F r~q!%…„db,z@V~z!†F r~q!#

1v r~q!21db,h$V~h!†@A2B#F r~q!%…* . ~127!

In writing this result we used the fact thatV(h) is real and
V(z) is imaginary. From now on, we specialize to the case
wave vectors of the formq5G1qzẑ. In that caseI r

hz1I r
zh

vanishes and

I r
zz5

u@V~z!†F r~q!#u2v r~q!

$F r~q!†@A2B#F r~q!%
~128a!

I r
hh5

u$V~h!†@A2B#F r~q!%u2

v r~q!$F r~q!†@A2B#F r~q!%
. ~128b!

The above results are useful for the out-of-plane (s511)
modes in which case@A2B# is the small matrix. Alterna-
tively, for in-plane (s521) modes whenA1B is the small
matrix the following forms are useful:

I r
zz5

u$V~z!†@A1B#C r~q!%u2

v r~q!$C r~q!†@A1B#C r~q!%
~129a!

I r
hh5

u@V~h!†C r~q!#u2v r~q!

$C r~q!†@A1B#C r~q!%
. ~129b!

For high symmetry directions of the wave vector, the ma
cesA andB may be brought into block diagonal form by
02443
ral
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unitary transformationU. In that case we may apply th
above formulas in terms of the transformed quantities in
cated by primes:

A8[U†AU, B8[U†BU,

F r8[U†F r , C r8[U†C r , V8~a![U†V~a!.
~130!

For wave vectors which are equal modulo a recipro
lattice vector, the corresponding quantitiesA8, B8, F8, and
C8 are equal. However, the intensities at such equiva
points will differ becauseU, and henceV8, depend specifi-
cally on the zone of the wave vector. This can be seen
plicitly in Appendix A where we obtain the results summ
rized in Tables VI and VII. Note that thes511 sector does
have intensity mainly inI zz in confirmation of our identifi-
cation of this as the out-of-plane sector. Similarly, thes
521 sector has its intensity mainly inI hh as expected for
in-plane modes. These identifications are also consistent
the fact that thes511 modes depend on the out-of-plan
anisotropies scaled by theDJ’s, whereas thes521 modes
do not involve these quantities.

VIII. CONCLUSIONS

Here we briefly summarize the significant conclusio
from this work.

~1! The degeneracy, present within mean-field theory,
which the CuII sublattice spins can be globally rotated wi
respect to the CuI spins is removed by quantum fluctuation
which cause the sublattice magnetizations to be collinear
first indicated by Shender.8

~2! A degeneracy present within mean-field and line
spin-wave theories, in which the magnetization can be g
bally rotated through an arbitrary angle within the easy pla
6-20
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TABLE VI. Amplitude of the dynamic structure factor. Results for wave vector 2p(Hx̂/a1Kŷ/a

1Lẑ/c)1qz for H andK half integral andH1K1L an even integer. Results are given only to leading or
in J. y35x314DJ1S1

1
2 a52J3S@12cos(qzc/2)#14DJ1S1

1
2 a. The mode energies~without 1/S correc-

tions! and intensities@ I r
ab(q)# are independent of the particular values ofH, K, andL and are evaluated fo

qz50.

Mode energy Energya ~meV! Intensity
Formula Evaluation

v1
.5@8JSy3#1/2 10.8 I .1

zz 50 0
I .1

hh 50 0

v1
,5H8J2SF4DJ2S1

2a~4DJ1S1x3!

y3
GJ1/2

1.72 I ,1
zz 5

16J2S

v1
,

12

I ,1
hh 50 0

v2
.5@8JS(x312a)#1/2 9.1 I .2

zz 50 0
I .2

hh 50 0

v2
,5F8J2S

2ax3164a~2t2j!C218azS

x31a G1/2

0.15 I ,2
zz 50 0

I,2
hh 5

16J2S

v2
,

140

aSee Table IV.
ro
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is similarly removed by quantum fluctuations, as first p
posed in Ref. 13.

~3! These fluctuation effects, in addition to selecting t
ground state from among the classically degenerate con
02443
-

u-

rations, also give rise to nonzero energies of the correspo
ing spin-wave excitations. The most dramatic evidences
this phenomenon are the striking increases of the out
plane gap energy from 5 to 10 meV and that of the in-pla
are
TABLE VII. Amplitude of the dynamic structure factor. Results for wave vector 2p(Hx̂/a1Kŷ/a

1Lẑ/c)1qz for H andK integers andH1K1L an even integer. The notation is as in Table V. Results
given only to leading order inJ. The intensities are evaluated forqz50 andH5L51 andK50.

Mode energya ~meV! Formula for intensity Intensity

v1
.510.8 I.1

zz 5
8JS

v1
.

@12~21!L#2 50

I.1
hh 5

8JS

v1
.3

uy3@11~21!L#1~21!Hau2 0

v1
,51.72 I,1

zz 5@12~21!L#2
~8JS!2~4J2S!a2

v1
.4v1

,
26

I,1
hh 5

v1
,

4J2S
0

v2
.59.1 I.2

zz 5
8JS

v2
.3

$@11~21!L#@x31
1
2a#1a~21!H%2 0

I.2
hh 5

8JS

v2
.

@12~21!L#2 59

v2
,50.15 meV I,2

zz 5
v2

,

4J2S
0

I,2
hh 5

~4J2S!~8JS!2a2

v2
,v2

.4
@12~21!L#2 570

aSee Table IV.
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gap from zero to 9 meV when the CuII sublattice evolves
from disorder to order.

~4! The experimental results of inelastic neutron scat
ing for the lowest energy gaps are broadly consistent w
the effective fourfold anisotropy previously obtained fro
the statics experiments.4 More precise agreement may d
pend on more accurate understanding of the various re
malizations due to quantum and thermal fluctuations.

~5! Our improved theoretical treatment which now i
cludes the interlayer dipolar interactions resolves the mys
surrounding the dramatic increase~first found in the statics4!
in the effective fourfold anisotropy as the temperature is
duced into the regime where the CuII ’s order. In fact the
dipolar interlayer interactions between the CuII’s dominates
the effective fourfold anisotropy when the CuII’s develop
long range order.

~6! Recent AFMR results16 lead to an identification of the
small in-plane anisotropies and qualitatively confirm pre
ous theoretical estimates of the exchange anisotropy indu
by spin-orbit interactions.13,14
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APPENDIX A: INTENSITY CALCULATIONS

In this appendix we evaluate the intensities for which fo
mulas are given in Sec. V. We first give the unitary transf
mation which brings the matricesA andB into block diago-

nal form. We do this for wave vectorsq5G1qzẑ, where

G52pFHx̂

a
1

Kŷ

a
1

Lẑ

c
G , ~A1!

whereH andK are either both half integral or both integr
andH1K1L is an even integer. Then
U5
1

2 3
A2 0 1 0 1 0

0 A2 ~21!H1K 0 2~21!H1K 0

0 2~21!2HA2 ~21!H2K 0 2~21!H2K 0

2~21!2HA2 0 ~21!2H 0 ~21!2H 0

0 0 0 ~2 i !2HA2 0 ~2 i !2HA2

0 0 0 ~ i !2HA2 0 2~ i !2HA2

4 . ~A2!
The first two columns are the high frequency CuI optical
modes. Columns Nos. 3 and 4 are thes51 out-of-plane
modes and columns Nos. 5 and 6 are thes521 in-plane
modes. The following results hold for all wave vectors of t
form q5G1qzẑ.

1. Out-of-plane modes

For the out-of-plane sector we have~for dominantJ)

A82B85S x314DJ1S1 1
2 a a/A2

a/A2 4DJ2S1a
D ,

A81B85S 8JS A2J12S

A2J12S 8J2S
D ~A3!

independent ofG, where x352J3S@12cos(cqz/2)#. Note
thatqz is measured relative to the reciprocal lattice vector
question. We now tabulate the right eigenvectors of
 e

block matricesM 12[@A81B8#@A82B8# associated with
the eigenvalues~the squares of the mode energies! v r

2 . We
have

F̃1
.5@1,0#, ~v1

.!25~8JS!~x314DJ1S1 1
2 a!,

F̃1
,5@2a/A2,x314DJ1S1 1

2 a#,

~v1
,!25~8J2S!F4DJ2S1a2

1
2 a2

x314DJ1S1 1
2 a

G .

~A4!

Also we find that

V~z!85F12~21!H1K

0 G ,

6-22
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V~h!85F11~21!H1K

A2~21!H,
G for integerH, ~A5a!

V~z!85F 0

i 2HA2
G , V~h!85F0

0G for half integerH.

~A5b!

Note that the vectorsV(a)8 depend onG. Substituting these
evaluations into Eq.~128! we obtain the results for the inten
sities in Tables VI and VII for the out-of-plane (s511)
modes.

2. In-plane modes

For the in-plane sector we have~for dominantJ)

A81B85F x31zS1 1
2 a A2~zS2 1

2 a!

A2~zS2 1
2 a! 2zS1a

G ,

A82B85F 8JS A2J12S

A2J12S 8J2S
G , ~A6!

and we now tabulate the right eigenvectors of the block m
trices M 21[@A82B8#@A81B8# associated with the eigen
values~the squares of the mode energies! v r

2 . For dominant
J we have the approximate results

C̃2
.5@1,0#, ~v2

.!25~8JS!~x31zS1 1
2 a!,

C̃2
,5@2A2~zS2 1

2 a!,x31zS1 1
2 a#,

~v2
,!25~8J2S!F2zS1a22

~zS2 1
2 a!2

~x31zS1 1
2 a!

G ~A7!

and
02443
-

V~z!85F11~21!H1K

2A2~21!H G ,

V~h!85F12~21!H1K

0 G for integerH, ~A8a!

V~z!85F0

0G , V~h!85F 0

2A2~ i !2HG for half integerH.

~A8b!

As before, only the vectorsV(a)8 depend onG. Substituting
these evaluations into Eq.~129! we obtain the results for the
intensities in Tables VI and VII for the in-plane (s521)
modes.

APPENDIX B: SHENDER PARAMETERS

In this Appendix we evaluate the averages

A15^amf n
†&, ~B1a!

A25^amen&, ~B1b!

where siten is a nearest neighbor of sitem. The above quan-
tities can be calculated perturbatively in the frustrated c
pling J12 between CuI’s and CuII’s. ~See Fig. 1.!

1. A1

Thus

A152 K 0UVI-II

1

E amf n
†U0L 2 K 0Uamf n

† 1

E VI-IIU0L , ~B2!

whereE is the unperturbed energy of the virtual state relat
to the ground state. Here we invoke perturbation theory re
tive to decoupled CuI and CuII subsystems, and
isotropic
VI-II 5J12SF (
i Pa,d

@ai
†ai1ej

†ej1aiej1ai
†ej

†#1 (
i Pa,d

@ai
†ai1 f j

†f j1ai
†f j1 f j

†ai #1 (
i Pb,d

@bi
†bi1ej

†ej1bi
†ej1ej

†bi #

1 (
i Pb,d

@bi
†bi1 f j

†f j1bi f j1bi
†f j

†#1 (
i Pc,d

@ci
†ci1ej

†ej1ci
†ej1ej

†ci #1 (
i Pc,d

@ci
†ci1 f j

†f j1ci f j1ci
†f j

†#

1 (
i Pd,d

@di
†di1ej

†ej1diej1di
†ej

†#1 (
i Pd,d

@di
†di1 f j

†f j1di
†f j1 f j

†di #G . ~B3!

Only terms inVI-II which have operators in both subsystems contribute. Also, it suffices to treat each subsystem as an
Heisenberg model. Accordingly, in Eq.~B2! we need keep only terms withf or e† anda†, d†, b, or c. So we set

VI-II 5V1[J12S(
i ,d

@ai
†ej

†1ai
†f j1ej

†bi1bi f j1ej
†ci1ci f j1di

†ej
†1di

†f j #. ~B4!

Thus withn5m1da f we haveA15A1
11A1

2 , where
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A1
152J12S(

i Pa
K 0Uai

† 1

E amU0L ^0u@ei 1dae

† 1 f i 1da f
# f m1da f

† u0&2J12S(
i Pb

K 0Ubi

1

E amU0L ^0u@ei 1dbe

† 1 f i 1db f
# f m1da f

† u0&

2J12S(
i Pc

K 0Uci

1

E amU0L ^0u@ei 1dce

† 1 f i 1dc f
# f m1da f

† u0&2J12S(
i Pd

K 0Udi
† 1

E amU0L ^0u@ei 1dde

† 1 f i 1dd f
# f m1da f

† u0&,

~B5a!

A1
252J12S(

i Pa
K 0Uam

1

E ai
†U0L ^0u f m1da f

† @ei 1dae

† 1 f i 1da f
#u0&2J12S(

i Pb
K 0Uam

1

E biU0L ^0u f m1da f

† @ei 1dbe

† 1 f i 1db f
#u0&

2J12S(
i Pc

K 0Uam

1

E ciU0L ^0u f m1da f

† @ei 1dce

† 1 f i 1dc f
#u0&2J12S(

i Pd
K 0Uam

1

E di
†U0L ^0u f m1da f

† @ei 1dde

† 1 f i 1dd f
#u0&.

~B5b!

Here we neglected the energy of the CuII modes in comparison to that of the CuI modes. Also we used the unusual notati
that

dst5r t2r s . ~B6!

As will become clearer as we proceed, one can deduce the form ofA1
2 from that of A1

1 by interchanging thel and m
coefficients defined in Eqs.~B9! and ~B16!, below. Therefore we focus onA1

1 which is

A1
152

J12S

Nuc
2 (

q,k
(
i Pa

K 0Ua†~q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dae1 f ~2k!eik•da f# f †~2k!e2 ik•da fu0&

2
J12S

Nuc
2 (

q,k
(
i Pb

K 0Ub~2q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dbe1 f ~2k!eik•db f# f †~2k!e2 ik•da fu0&

2
J12S

Nuc
2 (

q,k
(
i Pc

K 0Uc~2q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dce1 f ~2k!eik•dc f# f †~2k!e2 ik•da f#u0&

2
J12S

Nuc
2 (

q,k
(
i Pd

K 0Ud†~q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dde1 f ~2k!eik•dd f# f †~2k!e2 ik•da fu0&. ~B7!

Doing the sum overi we get

A1
152

J12S

Nuc
(

q
K 0Ua†~q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dae1 f ~q!e2 iq•da f# f †~q!eiq•da fu0&

2
J12S

Nuc
(

q
K 0Ub~2q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dbe1 f ~q!e2 iq•db f# f †~q!eiq•da fu0&

2
J12S

Nuc
(

q
K 0Uc~2q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dce1 f ~q!e2 iq•dc f# f †~q!eiq•da f#u0&

2
J12S

Nuc
(

q
K 0Ud†~q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dde1 f ~q!e2 iq•dd f# f †~q!eiq•da fu0&. ~B8!

For the CuII subsystem we have the usual relations

e~q!5 l qhq2mqd2q
† , f †~2q!52mqhq1 l qd2q

† , ~B9!

whereh(q) andd(q) are the normal mode operators for the CuII subsystem andl q andmq are given by

l q
25

11e~q!

2e~q!
, mq

25
12e~q!

2e~q!
, l qmq52

g~q!

2e~q!
, ~B10!

whereg(q)5 1
2 @cos(aqx)1cos(aqy)# ande(q)2512g(q)2. In the ground state we evaluate the averages to get
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A1
152

J12S

Nuc
(

q
K 0Ua†~q!

1

E a~q!U0L @2 l qmqe
2 iq•dae1 l q

2e2 iq•da f#eiq•da f2
J12S

Nuc
(

q
K 0Ub~2q!

1

E a~q!U0L
3@2 l qmqe

2 iq•dbe1 l q
2e2 iq•db f#eiq•da f2

J12S

Nuc
(

q
K 0Uc~2q!

1

E a~q!U0L
3@2 l qmqe

2 iq•dce1 l q
2e2 iq•dc f#eiq•da f2

J12S

Nuc
(

q
K 0Ud†~q!

1

E a~q!U0L @2 l qmqe
2 iq•dde1 l q

2e2 iq•dd f#eiq•da f

52
J12S

Nuc
(

q
K 0Ua†~q!

1

E a~q!U0L @2 l qmqe
iaqx1 l q

2#2
J12S

Nuc
(

q
K 0Ub~2q!

1

E a~q!U0L @2 l qmqe
2 iqya/2

1 l q
2eiqya/2#eiqxa/22

J12S

Nuc
(

q
K 0Uc~2q!

1

E a~q!U0L @2 l qmqe
iqya/21 l q

2e2 iqya/2#eiqxa/2

2
J12S

Nuc
(

q
K 0Ud†~q!

1

E a~q!U0L @2 l qmq1 l q
2eiqxa#. ~B11!

For the CuI subsystem we have normal modes via the transformations

a~q!5~1/A2!@a1~q!1a2~q!#, d~q!5~1/A2!@a1~q!2a2~q!#,

b~q!5~1/A2!@b1~q!1b2~q!#, c~q!5~1/A2!@b1~q!2b2~q!#. ~B12!

In terms of these operators~in the ordera1 , b1 , a2 , b2) we have the matricesA andB:

A~q!

S
5F 4J12J3 0 0 0

0 4J12J3 0 0

0 0 4J12J3 0

0 0 0 4J12J3

G ~B13!

andB(q)/S as

F 0 2J~c11c2!12J3cz 0 0

2J~c11c2!12J3cz 0 0 0

0 0 0 2J~c12c2!12J3cz

0 0 2J~c12c2!12J3cz 0

G , ~B14!
where

c15cos@a~qx1qy!/2#, c25cos@a~qx2qy!/2#,

cz5cos~qzc/2!. ~B15!

Now each sector has relations analogous to the CuI’s:

as~q!5 l s,qas~q!2ms,qbs
†~2q!,

bs
†~2q!52ms,qas~q!1 l s,qbs

†~2q!, ~B16!

whereas(q) andbs(q) are the normal mode operators~with
s51 or s52), and

l s,q
2 5

A1Es~q!

2Es~q!
, ms,q

2 5
A2Es~q!

2Es~q!
,

02443
l s,qms,q5
Bs~q!

2Es~q!
. ~B17!

Here

Es~q!25A22Bs~q!2, ~B18!

where

A54JS12J3S,

Bs~q!52JS~cos@~qx1qy!a/2#1s cos@~qx2qy!a/2# !

12J3Scos~qzc!. ~B19!

Thus
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K 0Ua†~q!
1

E a~q!U0L 5 1
2 (

s
^0uas

†~q!as~q!u0&Es~q!215 1
2 (

s
msq

2 Es~q!21

5(
s

A2Es~q!

4Es~q!2
. ~B20!

Similarly

K 0Ua~q!
1

E a†~q!U0L 5 1
2 (

s
l sq
2 Es~q!215(

s

A1Es~q!

4Es~q!2
, ~B21!

K 0Ud†~q!
1

E a~q!U0L 5 1
2 (

s
smsq

2 Es~q!215(
s

s
A2Es~q!

4Es~q!2
, ~B22!

K 0Ua~q!
1

E d†~q!U0L 5 1
2 (

s
s l sq

2 Es~q!215(
s

s
A1Es~q!

4Es~q!2
, ~B23!

K 0Ub~2q!
1

E a~q!U0L 52 1
2 (

s
l s,qmsqEs~q!2152(

s

Bs~q!

4Es~q!2
, ~B24!

K aU~q!
1

E b~2q!U0L 52 1
2 (

s
l s,qmsqEs~q!2152(

s

Bs~q!

4Es~q!2
, ~B25!

K 0Uc~2q!
1

E a~q!U0L 52 1
2 (

s
s l s,qmsqEs~q!2152(

s
s

Bs~q!

4Es~q!2
, ~B26!

K 0Ua~q!
1

E c~2q!U0L 52 1
2 (

s
s l s,qmsqEs~q!2152(

s
s

Bs~q!

4Es~q!2
. ~B27!

Then

A15A1
11A1

2

52
J12S

8Nuc
(

q
(
s

@Es~q!2e~q!#21$@A2Es~q!#@2g~q!eiqxa111e~q!#1@A1Es~q!#@2g~q!eiqxa112e~q!#

2Bs~q!@2g~q!e2 iqya/21„11e~q!…eiqya/2#eiqxa/22Bs~q!@2g~q!e2 iqya/21„12e~q!…eiqya/2#eiqxa/22sBs~q!

3@2g~q!eiqya/21„11e~q!…e2 iqya/2#eiqxa/22sBs~q!@2g~q!eiqya/21„12e~q!…e2 iqya/2#eiqxa/2

1s@A2Es~q!#@2g~q!1„11e~q!…eiqxa#1s@A1Es~q!#@2g~q!1„12e~q!…eiqxa#%, ~B28!
where

g~q!5 1
2 @cos~qxa!1cos~qya!# ~B29!

and

e~q!2512g~q!2. ~B30!

We use the fact thatJ3!J. Only if a sum is divergent will
it make a difference if we retain nonzeroJ3. So we tenta-
tively assume no divergences and write

B1~q!54JScos~qxa/2!cos~qya/2!, ~B31a!
02443
B2~q!524JSsin~qxa/2!sin~qya/2!. ~B31b!

We now simplify Eq.~B28!. We note that under the sum
over wavevectors we can replace exp(iqxa) by g(q). Let us
apply the same reasoning to exp@i(qx6qy)a/2#:

exp@ i ~qx6qy!a/2#

5cos~qxa/2!cos~qya/2!7sin~qxa/2!sin~qya/2!

1 i @sin~qxa/2!cos~qya/2!a6cos~qxa/2!sin~qya/2!#.

~B32!
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After summation over wave vectors the imaginary parts w
drop out. So

exp@ i ~qx1qy!a/2#

⇒cos~qxa/2!cos~qya/2!2sin~qxa/2!sin~qya/2!

5S 1

4JSD(
s

Bs~q!, ~B33a!
02443
l exp@ i ~qx2qy!a/2#

⇒cos~qxa/2!cos~qya/2!1sin~qxa/2!sin~qya/2!

5S 1

4JSD(
s

sBs~q!. ~B33b!

In this connection note that sums which are proportiona
B1(q)B2(q) vanish. So
A152
J12S

8Nuc
(

q
(
s

S 1

Es~q!2e~q!
D H @A2Es~q!#@2g~q!2111e~q!#1@A1Es~q!#@2g~q!2112e~q!#1s@A2Es~q!#

3@g~q!e~q!#1s@A1Es~q!#@2g~q!e~q!#2S Bs~q!

4JS D @2g~q!sBs~q!1„11e~q!…Bs~q!#

2S Bs~q!

4JS D @2g~q!sBs~q!1„12e~q!…Bs~q!#2S sBs~q!

4JS D @2g~q!Bs~q!1„11e~q!…sBs~q!#

2S sBs~q!

4JS D @2g~q!Bs~q!1„12e~q!…sBs~q!#J
52

J12S

8Nuc
(

q
(
s

S 1

Es~q!2e~q!
D $2Ae~q!222Es~q!e~q!22Es~q!e~q!sg~q!2~JS!21Bs~q!2@12sg~q!#%. ~B34!

Now we must understand how the wave vector sums are to be done. The unit cell is

a15ax̂1aŷ, a252ax̂1aŷ. ~B35!

Thus the reciprocal lattice vectors are

G15~p/a!~ x̂1 ŷ!, G25~p/a!~2 x̂1 ŷ!. ~B36!

Thus the sums are carried over the first zone, shown below in Fig. 7.

2. A2

Thus

A252 K 0UVI-II

1

E amenU0L 2 K 0Uamen

1

E VI-IIU0L , ~B37!

where we invoke perturbation theory relative to decoupled and isotropic CuI and CuII subsystems. As forA1 effectively we
have Eq.~B4!. Thus, as before, we writeA25A2

11A2
2 , where A2

2 is obtained fromA2
1 by interchanging alll and m

coefficients and

A2
152J12S(

i Pa
K 0Uai

† 1

E amU0L ^0u@ei 1dae

† 1 f i 1da f
#em1dae

u0&2J12S(
i Pb

K 0Ubi

1

E amU0L ^0u@ei 1dbe

† 1 f i 1db f
#em1dae

u0&

2J12S(
i Pc

K 0Uci

1

E amU0L ^0u@ei 1dce

† 1 f i 1dc f
#em1dae

u0&2J12S(
i Pd

K 0Udi
† 1

E amU0L ^0u@ei 1dde

† 1 f i 1dd f
#em1dae

u0&.

~B38!

Then
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A2
152

J12S

Nuc
2 (

q,k
(
i Pa

K 0Ua†~q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dae1 f ~2k!eik•da f#e~k!e2 ik•daeu0&

2
J12S

Nuc
2 (

q,k
(
i Pb

K 0Ub~2q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dbe1 f ~2k!eik•db f#e~k!e2 ik•daeu0&

2
J12S

Nuc
2 (

q,k
(
i Pc

K 0Uc~2q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dce1 f ~2k!eik•dc f#e~k!e2 ik•dae#u0&

2
J12S

Nuc
2 (

q,k
(
i Pd

K 0Ud†~q!
1

E a~q!U0L ei (q1k)•r im^0u@e†~k!eik•dde1 f ~2k!eik•dd f#e~k!e2 ik•daeu0&. ~B39!

Doing the sum overi we get

A2
152

J12S

Nuc
(

q
K 0Ua†~q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dae1 f ~q!e2 iq•da f#e~2q!eiq•daeu0&

2
J12S

Nuc
(

q
K 0Ub~2q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dbe1 f ~q!e2 iq•db f#e~2q!eiq•daeu0&

2
J12S

Nuc
(

q
K 0Uc~2q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dce1 f ~q!e2 iq•dc f#e~2q!eiq•dae#u0&

2
J12S

Nuc
(

q
K 0Ud†~q!

1

E a~q!U0L ^0u@e†~2q!e2 iq•dde1 f ~q!e2 iq•dd f#e~2q!eiq•daeu0&. ~B40!

This is

A2
152

J12S

Nuc
(

q
K 0Ua†~q!

1

E a~q!U0L @^0ue†~2q!e~2q!u0&1^0u f ~q!e~2q!u0&eiq•df ae#

2
J12S

Nuc
(

q
K 0Ub~2q!

1

E a~q!U0L F ^0u@e†~2q!e~2q!u0&eiq•daeb1^0u f ~q!e~2q!u0&eiq•(dae2db f)#

2
J12S

Nuc
(

q
K 0Uc~2q!

1

E a~q!U0L [ ^0u@e†~2q!e~2q!u0&eiq•daec1^0u f ~q!e~2q!u0&eiq•dae2 iq•dc f#

2
J12S

Nuc
(

q
K 0Ud†~q!

1

E a~q!U0L @^0u@e†~2q!e~2q!u0&eiq•daed1^0u f ~q!e~2q!u0&eiq•(dae2dd f)#. ~B41!

Here the symbold f ae denotes the vector which goes from anf site to ane site via ana site, such that fae is a sequence
nearest-neighboring sites. So

A25A2
11A2

2

52
J12S

4Nuc
(

q
(
s

$Es~q!22@A2Es~q!#@mq
22 l qmqe

2 iqxa#1@A1Es~q!#@ l q
22 l qmqe

2 iqxa#

2Bs~q!@e2 i (qx1qy)a/2mq
22 l qmqe

i (qy2qx)a/2#2Bs~q!@e2 i (qx1qy)a/2l q
22 l qmqe

i (qy2qx)a/2#

2sBs~q!@ei (qy2qx)a/2mq
22e2 i (qx1qy)a/2l qmq#2sBs~q!@ei (qy2qx)a/2l q

22e2 i (qx1qy)a/2l qmq#

1s@A2Es#@e2 iqxamq
22 l qmq#1s@A1Es#@e2 iqxamq

22 l qmq#%. ~B42!

Making the same replacements as inA1 we get
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A252
J12S

4Nuc
(

q
(
s

Es~q!22$@A2Es~q!#@mq
22 l qmqg~q!#1@A1Es~q!#@ l q

22 l qmqg~q!#

2Bs~q!Bs~q!~4JS!21@mq
22s l qmq#2Bs~q!Bs~q!~4JS!21@ l q

22s l qmq#2sBs~q!Bs~q!~4JS!21@smq
22 l qmq#

2sBs~q!Bs~q!~4JS!21@s l q
22 l qmq#1s@A2Es#@g~q!mq

22 l qmq#1s@A1Es#@g~q!l q
22 l qmq#%. ~B43!

This is

A252
J12S

8Nuc
(

q
(
s

Es~q!22e~q!21F @A2Es~q!#@12e~q!2g~q!2#1@A1Es~q!#@11e~q!2g~q!2#

2S Bs~q!2

4JS D @222sg~q!#2S sBs~q!2

4JS D @2s22g~q!#1s@A2Es~q!#$g~q!@12e~q!#2g~q!%

1s@A1Es~q!#$g~q!@11e~q!#1g~q!%G . ~B44!

So

A252
J12S

8Nuc
(

q
(
s

S 1

Es~q!2e~q!
D $2Ae~q!212Es~q!e~q!12Es~q!sg~q!e~q!2Bs~q!2~JS!21@12sg~q!#%.

~B45!

3. Summary

So

A152S J12

2J D ~Ca2Cb! ~B46a!

A252S J12

2J D ~Ca1Cb!, ~B46b!

where

Ca5
JS

4Nuc
(

q
(
s

S 1

Es~q!2e~q!
D $2Ae~q!22Bs~q!2~JS!21@12sg~q!#% ~B47a!

Cb5
JS

4Nuc
(

q
(
s

S 1

Es~q! D $2@11sg~q!#%. ~B47b!

If we extend the sum over2p/a,qx ,qy,p/a, then we may write these as

Ca5
JS

4Nuc
(

q
S 1

E1~q!2e~q!
D $2Ae~q!22B1~q!2~JS!21@12g~q!#% ~B48a!

Cb5
JS

4Nuc
(

q
S 1

E1~q! D $2@11g~q!#%. ~B48b!

Of course, note that now(q52Nuc . So it is convenient to introduce the notation^•••&q to denote (2Nuc)
21(q . Then

Ca5
JS

2 K S 1

E1~q!2e~q!
D $2Ae~q!22B1~q!2~JS!21@12g~q!#%L

q

, ~B49a!

Cb5
JS

2 K S 1

E1~q! D $2@11g~q!#%L
q

~B49b!

or
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Ca5
1

4 K 12g~q!222 cos2~aqx/2!cos2~aqy/2!@12g~q!#

@12cos2~aqx/2!cos2~aqy/2!#A12g~q!2 L
q

~B50a!

Cb5
1

4 K 11g~q!

A12cos2~aqx/2!cos2~aqy/2!
L

q

. ~B50b!

In the approximation thatg(q)50, etc.Ca5Cb5 1
4 . Numerical evaluation yields

Ca50.1686, Cb50.4210. ~B51!
n

he

n

la-
APPENDIX C: IN-PLANE Cu I-CuI INTERACTION

Here we reproduce by perturbation theory the gap fou
phenomenologically by Yildirimet al.13 We treat an antifer-
romagnet on a square lattice~of lattice constanta), in which
there are two sublattices,a andb. The lattice is shown in the
Fig. 6 with the magnetic unit cell within dashed lines. T
magnetic unit cell has basis vectors

a15aĵ1aĥ,

a252aĵ1aĥ. ~C1!

We transform to bosons using Eq.~13!.
First we consider termsH in the Hamiltonian which are

quadratic in boson operators. We write

H5HJ1Hd . ~C2!

Here

HJ54JS(
q

$a†~q!a~q!1b†~q!b~q!1g~q!

3@a†~q!b†~2q!1a~q!b~2q!#%, ~C3!

with

g~q!5 1
2 @cosqxa1cosqya#. ~C4!

and the sum over wave vectors is over the Brillouin zo
associated with the magnetic unit cell~see Fig. 7!. Also

FIG. 6. Unit cell of the square lattice.
02443
d

e

Hd5dJ1S(
k

@cx~k!2cy~k!#@a~k!1a†~2k!#

3@b†~k!1b~2k!#, ~C5!

wherecx(k)5coskxa andcy(k)5coskya.
Since the effect we wish to treat involves energies of re

tive order (1/S), we now consider the fourth-order termsV4
in the boson Hamiltonian, which we write as

V45VJ1Vd , ~C6!

where

VJ52 1
2 J(̂

i j &
bj

†~ai
†1bj !

2ai , ~C7!

where^ i j & indicates thati is summed overa sites andj over
nearest-neighboringb sites and

Vd5dJ1(̂
i j &

sd@2 1
4 ai

†ai
†ai~bj

†1bj !

2 1
4 ~ai

†1ai !bj
†bjbj1ai

†aibj
†bj #, ~C8!

wheresd is 11 for x bonds and21 for y bonds.

FIG. 7. Brillouin zone for the square lattice.
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We construct the effective quadratic Hamiltonian by ta
ing all possible averages of pairs of operators out of
fourth order terms. Thus we have the effective quadra
terms

DHJ52 1
2 J(̂

i j &
@aibj

†^~bj1ai
†!2&12ai~bj1ai

†!

3^bj
†~bj1ai

†!&12bj
†~bj1ai

†!^~bj1ai
†!ai&

1~bj1ai
†!2^aibj

†&# ~C9!

and

DHd5dJ1(̂
i j &

sd@2 1
2 ai

†~bj
†1bj !^ai

†ai&

2 1
2 ai

†ai^ai
†~bj

†1bj !&2 1
4 ai

†ai
†^ai~bj

†1bj !&

2 1
4 ai~bj

†1bj !^ai
†ai

†&2 1
2 ~ai

†1ai !bj^bj
†bj&

2 1
2 bj

†bj^bj~ai
†1ai !&2 1

4 ~ai
†1ai !bj

†^bjbj&

2 1
4 bjbj^~ai

†1ai !bj
†&1ai

†ai^bj
†bj&1bj

†bj^ai
†ai&

1ai
†bj^bj

†ai&1ai
†bj

†^aibj&1bj
†ai^ai

†bj&

1bjai^bj
†ai

†&#, ~C10!

where^X& denotes an average with respect to the quadr
Hamiltonian.

Since the quadratic Hamiltonian is real and Hermitian
can equate averages like^ai

†bj
†& and ^aibj&. Also at this or-

der of (1/S) we only need keep Hermitian contributions
the effective Hamiltonian. Therefore we write

DHJ52 1
4 J(̂

i j &
@~aibj

†1ai
†bj !^~bj1ai

†!2&

14~ai1bj
†!~bj1ai

†!^bj
†~bj1ai

†!&1~bj
†1ai !

2^aibj
†&

1~bj1ai
†!2^aibj

†&#. ~C11!

Next we considerDHd . Here we can eliminate any term
which involve local averages~e.g., ^ai

†ai&) because they
multiply a function whose Fourier coefficient vanishes
zero wave vector. Thereby we have

DHd5dJ1(̂
i j &

sd@2 1
2 ai

†ai^ai
†~bj

†1bj !&

2 1
4 ai

†ai
†^ai~bj

†1bj !&2 1
2 bj

†bj^bj~ai
†1ai !&

2 1
4 bjbj^~ai

†1ai !bj
†&1ai

†bj^bj
†ai&

1ai
†bj

†^aibj&1bj
†ai^ai

†bj&1bjai^bj
†ai

†&#.

~C12!

Taking the Hermitian part of this we get
02443
-
e
ic

ic

e

t

DHd5dJ1(̂
i j &

sd@2 1
2 ai

†ai^ai
†~bj

†1bj !&

2 1
8 ~ai

†ai
†1aiai !^ai~bj

†1bj !&2 1
2 bj

†bj^bj~ai
†1ai !&

2 1
8 ~bj

†bj
†1bjbj !^~ai

†1ai !bj
†&1~ai

†bj1aibj
†!^bj

†ai&

1~ai
†bj

†1aibj !^aibj&#. ~C13!

Thus we need the averages

X1[^bj
2&5^~bj

†!2&5^ai
2&5^~ai

†!2&, ~C14a!

X2[^bj
†bj&5^ai

†ai&, ~C14b!

Yi j [^bjai
†&5^bj

†ai&[Y01sdY, ~C14c!

Zi j [^bj
†ai

†&5^bjai&[Z01sdZ, ~C14d!

where

Y05 1
4 (

j
Yi j 5

1
4 (

j
^bj

†ai&, ~C15a!

Y5 1
4 (

j
sdYi j 5

1
4 (

j
sd^bj

†ai&, ~C15b!

Z05 1
4 (

j
Zi j 5

1
4 (

j
^bjai&, ~C15c!

Z5 1
4 (

j
sdZi j 5

1
4 (

j
sd^bjai&, ~C15d!

where the sums overj are restricted to sites that are neare
neighbors of sitei. Now drop terms which sum to zero be
cause ofsd and also those~such as( i j sdai

†bj ) which do not
contribute at zero wave vector. Then we get

DHJ1DHd52 1
4 J(̂

i j &
@~2X114Y0!~aibj

†1ai
†bj !

1Y0@~bj
†!21bj

21ai
21~ai

†!2#14~X21Z0!

3~ai
†1bj !~ai1bj

†!#

1 1
8 dJ1(

i j
@~Y1Z!@24ai

†ai24bj
†bj

2ai
22~ai

†!22bj
22~bj

†!2#18Y~ai
†bj1aibj

†!

18Z~ai
†bj

†1aibj !#. ~C16!

The coefficients can be evaluated straightforwardly. For
stance, if one considersHJ as the unperturbed Hamiltonia
and treatsHd as a perturbation, then one has
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Y5 1
4 (

j
sd^bj

†ai&

5(
j

sdF K 0Ubj
†ai

1

EHdU0L 1^0uHd

1

E bj
†ai u0&G ,

~C17!

whereu0& is the spin-wave vacuum andE is the unperturbed
energy of the virtual state. We give the evaluations

X154C2c~dJ1 /J!2, ~C18a!

Y054C2d~dJ1 /J!2, ~C18b!

Y528C2a~dJ1 /J!, ~C18c!

Z528C2b~dJ1 /J!, ~C18d!

where

C2a5
1

128N (
q

@cx~q!2cy~q!#2

e~q!3
, ~C19a!

C2b5
1

128N (
q

@cx~q!2cy~q!#2

e~q!3
g~q!2, ~C19b!

C2c5
1

128N (
q

@cx~q!2cy~q!#2

e~q!5
@112g~q!2#,

~C19c!

C2d5C22C2c , ~C19d!

wheree(q)2512g(q)2,C25C2a1C2b .
To summarize, the effect of quantum fluctuations of t

in-plane exchange anisotropy are contained in the effec
Hamiltonian of Eq.~C16!. Since the result is given in rea
space, we can apply it now to the 2342 structure wher
gives rise to contributions to the dynamical matrices writ
in Eq. ~69!. The terms proportional toX21Z0 are taken into
account by the spin-wave renormalization incorporated
Zc .

APPENDIX D: IN-PLANE ANISOTROPIC I-II
INTERACTION

We start from Eq.~71!, which can be written asV12

5V12
e 1V12

f , where

V12
e 52dJ12AS/2(

i
ei

†ei~ai 1x1ai 1x
† 1di 2x1di 2x

†

2bi 2y
† 2bi 2y2ci 1y2ci 1y

† !24dJ12SAS/2

3(
i

Fei
†1ei2

ei
†eiei

2S G1dJ12AS/2(
i

~ei
†1ei !

3@ai 1x
† ai 1x1di 2x

† di 2x1bi 2y
† bi 2y1ci 1y

† ci 1y#

~D1!
02443
e
e

it
n

n

and V12
f is obtained fromV12

e by replacinge by f †, x by
2x, y by 2y and normally ordering the result. So we focu
on V12

e . Eliminate terms linear in the boson operators by t
shifts

ei→ei1s, ai→ai1t, bi→bi1t,

ci→ci1t, di→di1t. ~D2!

The corresponding Fourier transforms are shifted by a fa
ANuc . For example,

Nuc
21/2(

i
ai5a~0!→a~0!1tANuc . ~D3!

In what followse will denotee(q50) and similarly for other
operators. Then the linear terms in the HamiltonianV12

e are

V1
e524dJ12SANucS/2~e†1e!. ~D4!

The quadratic zero-wave-vector terms in the isotropic par
the Hamiltonian are

V25~4J12J3!S~a†a1b†b1c†c1d†d!14J2S~e†e1 f †f !

1J12S~@a†1d†# f 1@b†1c†#e1@a1d# f †1@b1c#e†!

1~2J12J3!S~a†b†1c†d†1ab1cd!

12JS~a†c†1b†d†1ac1bd!14J2S~e†f †1e f!

1J12S~@a†1d†#e†1@b†1c†# f †1@a1d#e1@b1c# f !.

~D5!

We determine the shiftss and t by requiring that

]~V11V2!

]e
50

5ANucS~24dJ12AS/212J12t

14J2s12J12t14J2s!,

]~V11V2!

]a
50

5ANucS@~4J12J3!t1J12s

1~2J12J3!t12Jt1J12s!]. ~D6!

For J12
2 !4JJ2 we have

s54dJ12

AS/2

8J2
, ~D7!

t52
2J12s

8J14J3
52J12dJ12

AS/2

J2~8J14J3!
. ~D8!

As discussed in the text, these are the expected results.
Now we record the terms in the HamiltonianV12

e which
are cubic in boson operators
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H (3,e)5dJ12AS/2H 2(
i Pe

ei
†ei~ai 1x

† 1ai 1x1di 2x
† 1di 2x

2bi 2y
† 2bi 2y2ci 1y

† 2ci 1y!12(
i Pe

ei
†eiei

1(
i Pe

~ei
†1ei !~ai 1x

† ai 1x1di 2x
† di 2x1bi 2y

† bi 2y

1ci 1y
† ci 1y!J . ~D9!

Now make the replacements of Eq.~D2! to get the quadratic
contribution fromH (3,e) as

H (3,e)5^e&dJ12AS/2H 2(
i Pe

~ei
†1ei !~ai 1x

† 1ai 1x1di 2x
†

1di 2x2bi 2y
† 2bi 2y2ci 1y

† 2ci 1y!

12(
i Pe

@ei
212ei

†ei #12(
i Pe

~ai 1x
† ai 1x1di 2x

† di 2x

1bi 2y
† bi 2y1ci 1y

† ci 1y!J . ~D10!

Here we dropped the terms proportional to^a&. They are
smaller than those in̂e& by J12/(4J)'1/50. Also, as before
to this order in 1/S we may replace the perturbation by i
Hermitian part. Then the sum of the effective quadratic ter
from H (3,e) andH (3,f ) are

H (3)5
~dJ12!

2S

4J2
(

q
$4@a†~q!a~q!1b†~q!b~q!

1c†~q!c~q!1d†~q!d~q!1e†~q!e~q!1 f †~q! f ~q!#

1e†~q!e†~2q!1e~q!e~2q!1 f †~q! f †~2q!

1 f ~q! f ~2q!1@e~q!2 f ~q!1e†~2q!2 f †~2q!#

3@2a†~q!1b†~q!1c†~q!2d†~q!2a~2q!

1b~2q!1c~2q!2d~2q!#%, ~D11!

which leads to Eq.~74!.
Now we look at the fourth order terms in the CuII-CuII

isotropic exchange interaction. These are

VDM52 1
2 J2 (

i Pe,d
~ei

†f i 1d
† f i 1d

† f i 1d1 f i 1dei
†eiei

12ei
†ei f i 1d

† f i 1d!. ~D12!

Substituting in two shifts of̂e&, this is

VDM52 1
2 ^e&2J2(

i ,d
@ei

†f i 1d12 f i 1d
† f i 1d12ei

†f i 1d
†

1~ f i 1d
† !212 f i 1dei1 f i 1dei

†12ei
†ei1ei

212ei
†ei

12 f i 1d
† f i 1d12~ei

†1ei !~ f i 1d
† 1 f i 1d!#. ~D13!
02443
s

Taking the Hermitian part of this, we get

VDM52
~dJ12!

2S

16J2
(
i ,d

@ei
†f i 1d1ei f i 1d

† 12ei
†f i 1d

†

12ei f i 1d14 f i 1d
† f i 1d14ei

†ei1
1
2 ei

21 1
2 ~ei

†!21 1
2 f i 1d

2

1 1
2 ~ f i 1d

† !212~ei
†1ei !~ f i 1d

† 1 f i 1d!#

52
~dJ12!

2S

16J2
(

q
$@6e~q! f †~q!16e†~q! f ~q!

18e~q! f ~2q!18e†~q! f †~2q!#~cx1cy!

116f †~q! f ~q!116e†~q!e~q!12e†~q!e†~2q!

12e~q!e~2q!12 f †~q! f †~2q!12 f ~q! f ~2q!%,

~D14!

which leads to Eq.~75!.
Contributions from quartic terms in the CuI-CuII interac-

tion are smaller, i.e., of order (dJ12)
2J12

2 /(JJ2
2), if we take

out one factor of̂ e& and one factor of̂a&. Taking out two
^a& factors gives an even smaller result. Taking out two^a&
shifts from the CuI-CuI anharmonic term gives a contributio
of orderJ12

2 dJ12
2 /(JJ2

2). All these terms are neglected.

APPENDIX E: IN-PLANE ANISOTROPIC II-II
INTERACTION

1. Self-energy due to cubic perturbations

We start by discussing how one constructs the self-ene
due to cubic perturbations. The point is that we wish to av
the complexities involving Matsubara sums, etc. Let us s
pose that we have an unperturbed Hamiltonian in terms
normal mode operatorsE(q) andF(q):

H5(
q

v~q!@E†~q!E~q!1F†~q!F~q!#. ~E1!

Now we want to identify the perturbative contributions to t
matricesA(q) andB(q). Suppose we wish to calculate pe
turbative contributions leading to an effective quadra
Hamiltonian of the form

1
2 B~q!E†~q!E†~2q!. ~E2!

For this purpose we make the identification

dB~q!5 K 0UE~q!E~2q!V
1

E VU0L . ~E3!

Thus forv(q)→0 and considering only the ground state, w
may write

dB~q!5 K 0U]V/]E†~q!
1

E ]V/]E†~2q!U0L
1 K 0U]V/]E†~2q!

1

E ]V/]E†~q!U0L . ~E4!

Similarly for the term in the Hamiltonian
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A~q!E†~q!F~q! ~E5!

we make the identification

dA~q!5 K 0UE~q!V
1

E VF†~q!U0L . ~E6!

Thus forv(q)→0 and considering only the ground state, w
may write

dA~q!5 K 0U]V/]E†~q!
1

E ]V/]F~q!U0L
1 K 0U]V/]F~q!

1

E ]V/]E†~q!U0L . ~E7!

This type of relation holds generally under the two assum
tions: ~a! we consider the perturbation to modes whose
ergy can be neglected in the energy denominators and~b! we
consider only the ground and low lying excited states, so
boson occupation numbers are zero. We have made the
tification in terms of the normal mode operators, but equa
we may transform to any set of modes.

2. Application to CuII -CuII in-plane interactions

We start from Eq.~76! and implement the results of th
preceding subsection. For smallk we write

T1[]V/]e~k!

5dJ2A2S/Nuc(
q

@ f ~q!1 f †~2q!#e†~q!~cx2cy!,

T2[]V/]e†~k!

5dJ2A2S/Nuc(
q

@ f ~q!1 f †~2q!#e~2q!~cx2cy!,

T3[]V/] f ~k!

52dJ2A2S/Nuc(
q

@e~q!1e†~2q!# f †~q!~cx2cy!,

T4[]V/] f †~k!

52dJ2A2S/Nuc(
q

@e~q!1e†~2q!# f ~2q!~cx2cy!,

~E8!

where cx5cos(aqx) and cy5cos(aqy). Thus if p̄ denotes
2p, then

K T1

1

E T1L 5
2S~dJ2!2

Nuc
(
q,p

K @ f ~q!1 f †~ q̄!#e†~q!~cx2cy!

3
1

E @ f ~p!1 f †~ p̄!#e†~p!~cx2cy!L
5

2S~dJ2!2

Nuc
(
q,p

K @ l qdq2mqhq#~2mqd q̄!
02443
-
-

at
en-
y

~cx2cy!
1

E @2mph p̄
†
1 l pd p̄

†
# l php

†~cx2cy!L
52

2S~dJ2!2

Nuc
(

q

~cx2cy!2l q
2mq

2

8J2Se~q!

52
~dJ2!2

4J2Nuc
(

q
S ~cx2cy!2

e~q!3 D g~q!2

4
, ~E9!

where the normal mode operatorsh(q) andd(q) were intro-
duced in Eq.~B9!. Similarly

K T1

1

E T2L 5 K T2

1

E T1L
52

~dJ2!2

4J2Nuc
(

q
S ~cx2cy!2

e~q!3 D
3S 12e~q!

2
1

g~q!2

4 D , ~E10!

K T1

1

E T3L 5 K T3

1

E T1L 5
~dJ2!2

4J2Nuc
(

q
S ~cx2cy!2

e~q!3 D 3g~q!2

4
,

~E11!

K T1

1

E T4L 5 K T4

1

E T1L
5

~dJ2!2

4J2Nuc
(

q
S ~cx2cy!2

e~q!3 D @12e~q!#2

4
.

~E12!

Now we have the contribution to the coefficient ofe†e,
which we denoteda55, as

da555 K T1

1

E T2L 1 K T2

1

E T1L
5@dJ2

2/J2#@232C2a216C2b#, ~E13!

whereC2a andC2b were defined in Eq.~C19!.
Likewise the contribution to the coefficient ofe†f which

we denoteda56 is

da565 K T1

1

E T4L 1 K T4

1

E T1L
5@~dJ2!2/J2#@32C2a216C2b#. ~E14!

Similarly, db5 is the contribution to the coefficient of1
2 e†e†,

so that

db5552K T1

1

E T1L 5@~dJ2!2/J2#@216C2b# ~E15!

and likewise
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db565 K T1

1

E T3L 1 K T3

1

E T1L 5@~dJ2!2/J2#@48C2b#.

~E16!

APPENDIX F: INTERPLANAR ANISOTROPIC Cu II -CuII

INTERACTION

1. Pseudodipolar interactions

In order to facilitate the evaluation of the lattice sums
parametrize the anisotropic exchange interactions betw
the i th CuII spin in one plane and the nearest-neighboringj th
CuII spin in an adjacent layer. We introduce the indica
variables i which is unity if i is on thee sublattice and is
21 if i is on thef sublattice. We also introduce a variablem i
to distinguish between the two nearest-neighboring sites w
the same value ofs i . Then for the interaction betwee
nearest-neighboring CuII spinsi andj in adjacent CuO layers
we use Fig. 4 to write the principal axes as

n̂1
( i j )5@ 1

2 ~11s is j !ĥ2 1
2 ~12s is j !ĵ #m im j , ~F1a!

n̂2
( i j )5@ 1

2 ~11s is j !ĵcosc1 1
2 ~12s is j !ĥ cosc#m im j

1 ẑ sinc, ~F1b!

n̂3
( i j )5@ 1

2 ~11s is j !ĵ sinc1 1
2 ~12s is j !ĥ sinc#m im j

2 ẑ cosc. ~F1c!

We also write

Si52s i~S2ai
†ai !ĵ1AS/2~ai

†1ai !ĥ1 iAS/2~ai2ai
†!ẑs i ,

~F2!

where, in this appendix,ai is the boson operator for spini.
Then we have

Si•n̂1
( i j )5 1

2 ~s i2s j !m im j~S2ai
†ai !1 1

2 ~11s is j !

3m im jAS/2~ai
†1ai !, ~F3a!

Si•n̂2
( i j )52 1

2 ~S2ai
†ai !c~s i1s j !m im j1

1
2 ~12s is j !

3m im j cAS/2~ai
†1ai !1 iss iAS/2~ai2ai

†!,

~F3b!

Si•n̂3
( i j )52 1

2 ~S2ai
†ais~s i1s j !m im j1

1
2 ~12s is j !

3m im j sAS/2~ai
†1ai !2 ics iAS/2~ai2ai

†!,

~F3c!

wherec[cosc ands[sinc. Then we have

Hi j 5S(
m51

3

Km@Si•n̂m#@Sj•n̂m#[S(
m51

3

KmTm , ~F4!

where, at quadratic order
02443
en

r

th

T15 1
2 ~12s is j !~ai

†ai1aj
†aj !

1 1
4 ~11s is j !~ai

†1ai !~aj
†1aj !

T252 1
2 ~11s is j !c

2~ai
†ai1aj

†aj !

1 1
2 @ 1

2 ~12s is j !~ai
†1ai !cm im j1 is is~ai2ai

†!#

3@ 1
2 ~12s is j !~aj

†1aj !cm im j1 is j s~aj2aj
†!#

~F5!

andT3 is obtained fromT2 by replacing sinc by 2cosc and
cosc by sinc. Thereby we get the site-diagonal contributio
to the Hamiltonian as

dH54DKS(
i

ai
†ai , ~F6!

whereDK was defined in Eq.~83!.
The remaining contributions to the Hamiltonian are fou

from Eq. ~F4! to be

dH5 1
2 (

i PII, j
$ 1

4 K1S~11s is j !~ai
†1ai !~aj

†1aj !

1 1
2 K2S@ 1

2 c2~12s is j !~ai
†1ai !~aj

†1aj !

2s is j s
2~ai2ai

†!~aj2aj
†!1 icsm im j~s j2s i !

3~ai
11ai !~aj2aj

†!#1•••%, ~F7!

where••• indicates further terms inK3 obtained from those
of K2 by replacing cosc by sinc and sinc by 2cosc and j
is summed over CuII nearest neighbors in adjacent plane
For qx5qy50 the imaginary term gives zero contribution
the dynamical matrices. Then, the terms withs i5s j give a
contribution to the Hamiltonian of

dH5
S

4 (
i

(
j :s j 5s i

@K1~ai
†1ai !~aj

†1aj !2K2s2~ai2ai
†!

3~aj2aj
†!2K3c2~ai2ai

†!~aj2aj
†!#. ~F8!

The terms withs i52s j give a contribution to the Hamil-
tonian of

dH5
S

4 (
i

(
j :s j 52s i

@K2c2~ai1ai
†!~aj1aj

†!

1K2s2~ai2ai
†!~aj2aj

†!1K3s2~ai1ai
†!~aj1aj

†!

1K3c2~ai2ai
†!~aj2aj

†!#. ~F9!

The term in Eq.~F6! and the number conserving terms in E
~F8! reproduce Eq.~82a! and the other terms in Eq.~F8!
reproduce Eq.~82b!. Equation~F9! reproduces Eqs.~82b!
and ~82c!.
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2. Dipolar interactions

For the dipolar interactions it is convenient to constru
the Hamiltonian explicitly rather than to identify it with th
pseudodipolar interaction. We substitute Eq.~F2! into the
dipolar interaction to get

Hi j 5g2mB
2r i j

23@Si•Sj23~Si• r̂ i j !~Sj• r̂ i j !#

→23g2mB
2r i j

23~Si• r̂ i j !~Sj• r̂ i j !

52
3g2mB

2

r i j
3 $2s i@S2ai

†ai #~ ĵ• r̂ i j !1AS/2~ai1ai
†!

3~ ĥ• r̂ i j !1 is iAS/2~ai2ai
†!~ ẑ•r i j !%

3$2s j@S2aj
†aj #~ ĵ• r̂ i j !1AS/2~aj1aj

†!

3~ ĥ• r̂ i j !1 is jAS/2~aj2aj
†!~ ẑ•r i j !%. ~F10!

Here we dropped the term inSi•Sj which may be included in
the isotropic Heisenberg Hamiltonian. At quadratic order t
gives

H5 1
2 (

i , j PII
Hi j

5 (
i , j PII

3g2mB
2S

2r i j
3 @s is j~aj

†aj1ai
†ai !~ ĵ• r̂ i j !

22 1
2 ~ai1ai

†!

3~aj1aj
†!~ ĥ•r i j !

21 1
2 s is j~ai2ai

†!~aj2aj
†!~ ẑ•r i j !

2

2 is j~ai1ai
†!~aj2aj

†!~ ẑ• r̂ i j !~ ĥ• r̂ i j !#. ~F11!

We now consider what contributions this gives to the d
namical matrix forqx5qy50. Then the imaginary term ca
be dropped. For simplicity we truncate the sums to inclu
only interactions between adjacent planes. Then we hav

da555(
j Pe

3g2mB
2S

r i j
3 @~ ĵ• r̂ i j !

22 1
2 cz~ ĥ• r̂ i j !

22 1
2 cz~ ẑ• r̂ i j !

2#

1(
j P f

3g2mB
2S

r i j
3

s j~ ĵ• r̂ i j !
2, ~F12a!

da565(
j P f

3g2mB
2S

r i j
3 @2 1

2 ~ ĥ• r̂ i j !
21 1

2 ~ ẑ• r̂ i j !
2#cz ,

~F12b!

db555(
j Pe

3g2mB
2S

r i j
3 @2 1

2 ~ ĥ• r̂ i j !
21 1

2 ~ ẑ• r̂ i j !
2#cz ,

~F12c!

db565(
j P f

3g2mB
2S

r i j
3 @2 1

2 ~ ĥ• r̂ i j !
22 1

2 ~ ẑ• r̂ i j !
2#cz ,

~F12d!
02443
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wherecz5cos(qzc/2), i is a fixed site in thee sublattice, and
the sum overj is restricted to the planes adjacent to sitei.

This interaction is negligibly small except with respect
the lowest in-plane mode. So we only need the combina

d~a551b552a562b56!

5 (
j PII: zi j 56c/2

3g2mB
2S

r i j
3 @s j~ ĵ• r̂ i j !

22s j~ ĥ• r̂ i j !
2cz#

5 (
j PII: zi j 5c/2

3g2mB
2S

r i j
5 @s j~xi j 1yi j !

22s j cz~xi j 2yi j !
2#.

~F13!

Note that the sum over sitesj in an adjacent plane from sit
i vanishes:

(
j PII: zi j 5c/2

s j xi j
2

r i j
5

5 (
j PII :zi j 5c/2

s j yi j
2

r i j
5

50. ~F14!

Thus

d~a551b552a562b56!

56~11cz!g
2mB

2S (
j PII :zi j 5c/2

s j xi j yi j

r i j
5

. ~F15!

APPENDIX G: INTERPLANAR ANISOTROPIC Cu I-CuII

INTERACTION

For the CuI sites we introduce further indicator variablest
~which tells the direction of the moment! andr ~which dis-
criminates between sublattices! such thatt5r51 for an a
site, 2t5r51 for a b site, t5r521 for a c site, andt
52r51 for a d site. Then, from Fig. 5, we have the prin
cipal axes for the sitesi and j wherei ~j! is in the CuI (CuII)
sublattice as

m̂1
( i j )52

r is j

A2
@ ĵ1t i ĥ#, ~G1a!

m̂2
( i j )5 ẑcosf1

r is jsinf

A2
@ĥ2t i ĵ #, ~G1b!

m̂3
( i j )52 ẑ sinf1

r is jcosf

A2
@ĥ2t i ĵ #. ~G1c!

In checking the above it is useful to note that changing
sign of eitherr i or s j induces a 180o rotation about thez
axis.

Also we use Eq.~F2! for the CuII spins and

Si5t i~S2ai
†ai !ĵ1AS/2~ai1ai

†!ĥ1 i t iAS/2~ai
†2ai !ẑ

~G2!

for the CuI spins. Thus ifi labels a CuI spin we have
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m̂1
( i j )

•Si5
r it is j

A2
@2~S2ai

†ai !2AS/2~ai1ai
†!#,

~G3a!

m̂2
( i j )

•Si5
1

A2
@2r is j s~S2ai

†ai !1r is j sAS/2~ai1ai
†!

1 i t icAS~ai
†2ai !#, ~G3b!

m̂3
( i j )

•Si5
1

A2
@2r is j c~S2ai

†ai !1r is j cAS/2~ai1ai
†!

2 i t isAS~ai
†2ai !# ~G3c!

and if j labels a CuII spin we have

m̂1
( i j )

•Sj5
r i

A2
@~S2aj

†aj !2t is jAS/2~aj1aj
†!#,

~G4a!

m̂2
( i j )

•Sj5
1

A2
@r it is~S2aj

†aj !1r is j sAS/2~aj1aj
†!

1 is j cAS~aj2aj
†!#, ~G4b!

m̂3
( i j )

•Sj5
1

A2
@r it ic~S2aj

†aj !1r is j cAS/2~aj1aj
†!

2 is j sAS~aj2aj
†!#,, ~G4c!

wherec[cosf ands[sinf. We now write
ev

.
-

O
,

n-
-
et

t-
I.
e-

02443
Hi j 5 (
m51

3

@m̂m•Si # (
m51

3

@m̂m•Sj #[S(
m51

3

Km8 Tm , ~G5!

and at quadratic order we have

T15 1
2 t is j@ai

†ai1aj
†aj #1 1

4 @ai1ai
†#@aj1aj

†#, ~G6a!

T25 1
2 t is j s

2@ai
†ai1aj

†aj #

1F 1
2 r is j s~ai1ai

†!1
i t ic

A2
~ai

†2ai !G
3F 1

2 r is j s~aj1aj
†!1

is j c

A2
~aj2aj

†!G , ~G6b!

T35 1
2 t is j c

2@ai
†ai1aj

†aj #F 1
2 r is j c~ai1ai

†!2
i t is

A2
~ai

†2ai !G
1F 1

2 r is j c~aj1aj
†!2

is j s

A2
~aj2aj

†!G . ~G6c!

We drop terms which do not contribute to the dynamic
matrix for qx5qy50 and thereby find that

H5 (
i PII, j PII

Hi j

5S (
i PI, j PII

$ 1
4 ~ai

†1ai !~aj
†1aj !~K181K28s

21K38c
2!

2 1
2 ~ai

†2ai !~aj2aj
†!~K28c

21K38s
2!t is j%. ~G7!

This result reproduces that of Eq.~90!.
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