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Sr,Cu;0,Cl, is an antiferromagnet consisting of weakly coupled CuO planes which comprise two weakly
interacting antiferromagnetic subsystems | and Il which order at respective tempefgtai230 K andT),
~40 K. Except asymptotically near the ordering temperature, these systems are good representations of the
two-dimensional quantum spin-1/2 Heisenberg model. FaiT, there are four low-energy modes at zero
wave vector, three of whose energies are dominated by quantum fluctuations, €< T, there are two
low-energy modes. The mode with lower energy is dominated by quantum fluctuations. Our calculations of the
energies of these modémcluding dispersion for wave vectors perpendicular to the CuO plaagee ex-
tremely well with the experimental results of inelastic neutron scattéimthe accompanying papeand for
modes in the sub-meV range observed by electron spin resonance. The parameters needed to describe quantum
fluctuations are either calculated here or are taken from the literature. These results show that we have a
reasonable qualitative understanding of the band structure of the lamellar cuprates needed to calculate the
anisotropic exchange constants used here.
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l. INTRODUCTION teractions, the coupling between Cand Cy ions is frus-
trated. As a result, the Gls order independently at a much
There has been a resurgence of interest in lowjower temperatureT,=39.6 K into the magnetic structure
dimensional magnetism due in part to the desire to undefshown in Fig. 1. Foff,,<T<T, a very small residual aniso-
stand hight . superconductivity. The lamellar copper oxide tropic exchange interaction causes the, Gpins to have a
systems, when suitably doped give rise to a family of supersma|| ferromagnetic moment, the study of wHidéad to the
conductors withT.'s in the range about 30 Kin these sys-  getermination of the magnetic structure which has recently
tems the Cu ions are essentially in & gonfiguration. Due  peen confirmed by neutron diffractidihe study of the stat-

to a large on-site Coulomb interaction, the states of this SySgg ai50 led to the determination of several coupling con-
tem which are accessible at ambient temperature have ong

. ) .~ stants in the Hamiltonian used to model this system.
hole per Cu ion, and hence the manifold of such accessible Y

states is described by a spin-1/2 Hamiltonian having antifer A natural continuation of this study was to investigate the
romagnetic interactions, which are strongest betweedynam'cS of this system, and in the accompanying paper

nearest-neighboring Cu ions in the Cu@lane. That this I?which we refer to as papey an inelastic neutron scattering

system is a nearly perfect realization of the two-dimensiona?‘tudy of this system is reported. One interesting result of

(2D) spin 1/2 quantum Heisenberg model has been estaﬂhese experiments was that although the coupling between
lished by a wide variety of experimerfts. the Cy’s and Cy’s is frustrated in the mean-field sense, the

Recently, a variant of this system ,8;0,Cl, (2342 _spin—que spectrum showed an incontrovertible signatgre of
has been shown to display very interesting magnetidhteractions between these subsystérhhe nature of this
propertiesS The structure of this systéhis one in which ~ coupling was described by Shender in a seminal papér.
an additional Cu ion(which we refer to as a Guion) is though this phenomenon has been identified in other
inserted at the center of alternate Cu plaquettes of the usugaterials, the effect of this coupling, caused by quantum
copper lattice, whose ions we refer to as’€uAlthough all ~ fluctuations, is perhaps the most dramatic in the system
the Cu ions are chemically equivalent, they play very differ-2342, as described briefly previoudlgnd in more detail in
ent roles insofar as magnetism is concerned. Th&s@uder — paper . As the Cysystem orders fof <T,,, the small gap
at a relatively high temperaturd (=386 K) and have prop- spin-wave energies are found to increase sharply. This in-
erties similar to those of other lamellar cupratecrease indicates that even though thq-Cu, coupling is
antiferromagneté With respect to the isotropic exchange in- frustrated in the mean-field sense, quantum fluctuations lead
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SR k1 whereHg (H,) is the exchangéanisotropy field and we
L work in units such thatw, Hg, and H, are all energies,
S usually given in meV (1 meVkg=11.6 K, 1 meVh
! =241.8 Ghz. We will see that the out-of-plane anisotropy of
! the exchange interactions gives rise to a corresponding out-
. - Locel2 of-plane anisotropy fielt 3" which has been understood in
SRR ..b/ ______________ o \ terms of the out-of-plane anisotropy in the exchange interac-
! tions without reference to fluctuation®®® In contrast, the
! in-plane anisotropy of the exchange interactions, when
| summed over bonds, averages to zero and therefore only
. ST P SR 7 contributes when fluctuations are taken into accd@mtThe
ce mechanism studied by Shen@lepntributes tdH , except for

the Goldstone mode, whose energy becomes nonzero only

/ 3 when lattice anisotropy is introduced.
: One might expect that the number of coupling constants
z oy might be so large that no useful information or test of the

|
|
I
I
e : .'.
‘,/ ............. //bv { theory would be possible. As it happens, the fit to the energy
X
a

of the gaps is overdetermined and the agreement between
theory and experiment in some instances is quite remarkable,
as can be seen in paper |. The observation of the modes
FIG. 1. Magnetic structure of 2342. The Gpins(in sublattices ~ whose energy depends on the in-plane anisotropy leads to the
a, b, ¢, andd) are thick arrows and the Gspins(in sublatticese  determination of the in-plane anisotropy of the exchange in-
andf) are thin arrows. The basis vectors for the magnetic unit celf€ractions. These quantities are difficult to obtain ex%erimen-
area, =a(x+Y), a,=a(x—Y), andas= 1(ax+ay+c2). All spin tally. Their values can be compared to calculatién¥'
directions are in the CuOxfy) plane. The¢ axis is defined to be based on th_e electronic structure of the cuprates _the knowl-
collinear with the spin directions. edge of which may lead to a better understanding of the
high-T superconductors.
to a significant interaction between sublattices. A less obvi- One should recognize that at the moment inelastic neutron

ous type of frustration arises with respect to the ir]_planéscattering does not easily detect modes in the sub-meV range

anisotropy associated with the bond anisotropy of the ex9f energy. As a result neutron scattering experiments have

. . Y not detected those in-plane modes whose energy depends
change interactions. When the moments lies in the easéfnly on the in-plane anisotropy. Recently, however, the
plane, the exchange tensor for spirendj in the plane has ' :

) S ) modes in the sub-meV range of energy have been observed
different values for directions parallel and perpendicular toby ESR experiments of the group at RIKERE® The mere

thel-Jd_bond. Howexer, mth'n mean field th?IOLy tfgs ?‘”'tsokt' existence of these modes tends to confirm the spin-wave cal-
ropy disappears when the average over all bonds IS 1akeR, 5iions. Moreover, the fact that they are found in the pre-

But as before, th?fe Isa ;ignificant_residqal interactiqn due Bicted range of energy strongly supports the theoretical cal
guantum fluctuations which gives rise to in-plane anisotropy,ations in this paper

Finally, even classicall.y frustration Ca”.b‘? removed b.y ex- Briefly, this paper is organized as follows. In Sec. Il the
change anisotropy which has a form similar to the dipolar,mijtonian with its various anisotropic exchange interac-

interaction. We will refer to such exchange anisotropy Jions is specified. In Sec. lll we start by discussing briefly the

pseudodipolar. . framework within which the calculations are to be done and

The purpose of the present paper is to calculate the spinge give the Dyson-Maleev transformatidiio boson opera-

wave spectrum in qrder to give atheoreti(;al inte'rpretation.tqors_ In Sec. IV the isotropic exchange Hamiltonian is dis-
the data presented in paper I. From the dlscu§5|on So far it | ssed, first within harmonic theory and then including spin-
clear that most of these phenomena are outside the scope 0L e interactions. which are essential to obtain a
linearized spin-wave theory. What is required is a no”"neahualitatively correct spectrum. In Sec. V the various

spin-wave analysis, .€., an analysis which mcludes the efémisotropies are included in an effective quadratic spin-wave
fects of quantum fluctuations. In fact, from an analysis of th

. . ®Hamiltonian. In Sec. VI we give explicit results for the spin-
magnetic structure of the cuprat® was shown that there

| turbati p the li vsi fthwave energies for the case when the transverse wave vector
are several perturbations away from the linéar analysis ol thfs ;erq and show the comparison of our calculations with the

isotropic Heisenberg model that one must consider. Thes?eoent experiments of the MIT group. In Sec. VIl intensities

are the ones m.ent|oned aboye, nam@/,quantum fluctua- of modes are discussed, with numerical results given for zero
tions of otherwise frustrated interactior®) quantum fluc- wave vector relative to the Bragg peaks for,Gnd Cy
tuations of the anisotropic in-plane exchange interactionsOur conlusions are summarized in Sec. VIII ! '

and (c) pseudodipolar exchange anisotropy between the Cu
and Cy subsystems. In a simplified way, one can categorize Il. HAMILTONIAN
these effects in the way they contribute to the spin-wave
energies, which is given by the famous forntdla

The Hamiltonian that we intend to treat is written as

w=2HgH 4, (1) H=H;+H,, 2
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where H; includes almost all the significant interactions,

namely, all the intraplanar interactions and the unfrustrated +352> S-S+ica (4)
interactions between nearest neighbors in adjacent CuO el

planes and+, includes small residual anisotropic interplanar

interactions involving Cy spins. Since this latter term is where 5, (8,) labels the nearest neighbor vectors in the
totally negligibleexceptfor extremely small wave vector and plane connecting adjacent Gu(Cu,’s) and 81, labels vec-
for the lowest-energy mode, it is only necessary to includeors in the CuO plane which give the displacements of
contributions from*, evaluated at zero wave vector. Since nearest-neighboring ¢s relative to a Cy, and hat indi-
the effects of7{, are only relevant to the extremely 10W cqte5 5 unit vector. Alse,, &,,, ande, are unit vectors in
frequency spectrum, we defer consideratiort@funtil Secs. 1o cuo plane which are per’pendicular to, respectivéjy,

VB4 and VB5. 5y, ands,
Thus we write}t; in tensor notation as ‘We separate the Hamiltoni&it, into an isotropic part,
and an anisotropic perturbatioR’. For that purpose we
:% 2 S‘JISJ'"' . 2 S‘JI—IISj write
(i,jel) (iel,jell)

_ 1.4l 1y _ 1z 1L y\_ 9z
"‘( 2 S‘JIIS +2 I35 S+ w2z ) Ad=31HIN =3 A= 3Oy 3~ I
ije

wherei e I (i e 11) means that siteruns over Cu(Cuy,) sites AJ,= 2(J||+J )—J2, (5)
and( ) restricts the summation to nearest neighbors of the
indicated type in the same Cu-O plane. The only unfrustrated
coupling between planes is thals) between Cps directly 5\]1:%(\]\'\_#), P z(J| —35), 83 :%(Jn b,
above or below one another. We will allow the couplidgs ’
. : Ny (6)

J.i » andJ,, to be anisotropic, whereas for simplicity we take
J; to be isotropic. Here and below we use a hybrid notation
for site labels in which the labeH-r indicates a site at po- ~ L ez n 2
sition r with respect to sité. In H, we include the interpla- I=5Q+3E 3D, o= 5L+ 30+ ),
nar Cy-Cu, and Cy-Cu, couplings whose isotropic parts
are frustrated. _

We first discuss the principal axes of the exchange tensor Jo= (I + 3+ 3D). (7)
J, associated with a bond between nearest-neighboring Cu
spins in a CuO plane. This bond is invariant with respect to
two mirror planes: one in the CuO plane and the other perThus theAJ’s describe the out-of-plane anisotrofiye., the

pendicularly bisecting the G«Cu, bond in question. Accord- €N€rgy which gives rise to an easy plamenich is respon-
ingly, the principal axes of the G«Cu exchange tensor be- sible for the 5 ”f‘eV anisotropy gap in the'spm wave spectra
tween nearest neighbors lie along the three cry&td,0 of cuprates which do not have ga. Similarly, the 5J's
directions, just as they would be in the absence of thg<Cu describe the in-plane anisotrofiye., the anisotropy within

In that case, the exchange tensor will have different valueg1e easy planeand tgg)/(i) are responsible for the weak
corresponding to the directior§) along the bond in ques- erromagnetic moment induced in the Cy subsystem by

tion, (i) perpendicular to the bond in question but in thehe Staggered moment in the Gubsystem andi) contrib-
CuO plane, andiii) along the crystat direction. The prin- ute to the macroic,scé)flc or phenomenological fourfold anisot-
cipal axes of the other in-plane interactions are similarly™@PY constanK,.~=*(We shall see later that, also con-

fixed by symmetry31° Then the Hamiltoniarf<,; may be tributes toK,.) Note thatéJ,, is what was called 4 in Refs.
written );s ¥ol|ows:)} ! y 3 and 4, but differs by a factor of 2 from its deflnltlon in

Refs. 13 and 14. The largest coupling Js(J,/J~J1,/J
~0.1 andJ;/J~10"2), while the relative anisotropiesJ/J

H=32 X (SIS 5, IS B[S, 0] and 6J/J are at most 10%13143
el & ! With these notations the isotropic Hamiltonian is

+I[S- el][3+51 91])“‘; E (ISt |+52,1

NII—‘

2 988,12 E 3155 S5,

+J|||-||[3'A52,ﬂ[3+52'1' 8pa]+ IS - e24] = i
X[S+52’1'é2,:|]) 1]; z (J”SZSJ”S +J [332] +§i€” ;2 JZS’SJHSZJ"% J3S'S+(1/2)c} (8)
X[Si+s, 2l +JilS €28, €2]) and the anisotropic perturbation is
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FIG. 2. Nearest-neighbor vectors connecting magnetic ions in a CuO planepi@s are filled circles and Gspins are open circles.
Left: the vectorss, and 5_ between nearest-neighboring (CG8pins. Center: the vector§, and &, which give the displacements of
nearest-neighboring Ga relative to a Cy. Right: the vectors &, and 25, between nearest-neighboring Cspins.

H'=—3001 2 S8, M 2SS, 38, 3 SIS, 1500 X (S, +9S,)
ell, 0y el,o

iel,6; rell 2.1

—303; .E,s (S5 +S/8%5 )+, ;5 (SIS 5~ SIS+ 01, > (85,8,
el,o_ ell,ox

ell,éy

+363,>, 2 (IS 3IS; 8,0-[S-ellS - ell, 9

el 8y:j=i+5,

where we introduce the following sums over ths:
S=+*3ax, S,=+*3ay, S,=*za(xty), & ==*3a(x-y), (10

as shown in Fig. 2. In Eq8), J=J+ :AJ and similarly for the othed’s. Since the anisotropy in th&s is so small(at most
of order 10°%), we henceforth drop the tildes.

It is convenient to express the spin components in a coordinate system in which ofth@%isxis) lies along the line of
the staggered magnetization. Thus we introduce the &aesl » which are obtained frorr andy by a rotation about theaxis
of 7r/4. Then

S=(SE-SN/\2, Y=(St+S7)/4/2, (12)
so that

H=—3Ady 20 SIS~ Ay 2 S8, m 10, 21 S8, T30 2 (SIS, ~ SIS
el,o1 €l,0p1 ' ell,d.

t300 2 (S8, ~SIS ;)80 X (SIS, 4SS ) 80, X (ST, ST,

iell, oy

—383,2, > (Sig+SISH+63,>, 2 (SfS7+S7S), (12
lee 8y j=i+2dy lee dy:j=i+26,

where, in the last linei € e indicates that the sum is taken within harmonic spin-wave theory at zero wave vector. In

over only half the Cy spins, i.e., those on the sublattice  other words, to calculate the energy gaps at zero wave vector

(see Fig. L we will need to include fluctuations, as first indicated by
Shendef Here, in view of the myriad of terms in the Hamil-

I1l. BOSON HAMILTONIAN tonian, we need to proceed in as systematic a way as pos-
sible. In the original work of Shendgit was found that the
effective coupling between sublattices, which depends on

Since the CiCu, interaction is frustrated, the Cand fluctuations beyond mean-field theory or beyond harmonic
Cu, sublattices are decoupled within mean-field theory orspin-wave theory involved energies of relative ord& ith

A. Overview of the calculation
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respect to energies encountered in mean-field theory. AawhereS™=S7+iS?, ¢(x)=1—x"x/(2S), and we have left
cordingly, here we will calculate all relevant effects in the the site labels implicit. In bosonic variables the isotropic in-
spin-wave spectrum due to anharmonic perturbations up tteraction between spins assumes the form

first order in 15. Therefore we analyze perturbative contri-
butions at one-loop order. To be more specific, we will in-
troduce the usual Dyson-Maleev boson representdtioh
spin operators, in terms of which anharmonic perturbations
involving three(four) boson operators are of relative order
1/{/S (1/S). This means that we treat four-operator perturba-
tions within first-order perturbation theory and three-operator
perturbations within second-order perturbation theory, as
was done by Rastelli and Ta¥sin a similar situation. In
technical language, this would be done by keeping all such
contributions to the wave vector and energy-dependent self-
energy. Since we work to low order, a more naive approach
(which is entirely equivalent to calculating the self-engngy
both convenient and easy to follow. In this naive approach
one truncates all four operator terms by contracting out pairs
of operators in all possible ways. This reproduces exactly the
results of the one-loop diagrams obtained by treating the four
operator vertices in first order perturbation theory. In addi-
tion, we would note that all non-Hermitian terms at orde$ 1/
do not contribute to first order energies. So, at ord&rvié
simply discard non-Hermitian terms. Since the three-operator
terms are of interest in producing small gaps, we will follow
a calculational method which is strictly correct only at zero

—3(b/b;bja;+blalala; +2aabb)),
SaiSej=S(aja;+efe;+aej+a'e))
fatat T

N
[ @ & a;+ 2a; a;e)€)),

—3(efejgait+e
Sai'SfJ':S(_arai_firfj'f'a?‘fj‘f'aif}-)

—3(af]f]f;+f;alala —2afaf]f))
Soi- Se]':S(_bini_eJTej‘FbiTej"'bie]T)

_% bre}.e]ej +eJTbinibi —2binieJTej),
Spi- Srj=S(b/b+ {1+ b/t +b;f))

—5(b 1], + ;bbb + 2b7bi 7)),

Sei Sij=S(ele + 1T +eft] +ef))

—3(ef 1]t + el + 26 e 1))

(14

wave vector. The fact that in our treatment the small perturThe other interactions can be obtained by appropriate rela-
bations have the wrong dependence on wave vector is irrebeling of boson variables.

evant because their effect is only nonnegligible very near

zero wave vector. To avoid the algebraic complexities due tdorm (see below

the fact that the magnetic structure has six sublattices, we
simply construct, by the methods mentioned above, the ef-
fective quadratic Hamiltonian which includes all the self-
energy corrections at order3/As a check that our calcula-
tions are really as consistent as we claim, we verify that the
gaps have the expected dependence on the perturbations. |
other words, when the perturbations are known to not pro-

W

+3B(@)},Eu(DE(—a)],

duce gaps, our calculations reproduce that result. This typ ere

of check indicates that, for instance, our treatment of three-
operator terms in second-order perturbation theory is consis-
tent with our treatment of four-operator terms in first-order
perturbation theory.

1 .
N % eanigl(q),

()=

whereN,. is the number of unit cells.

B. Transformation to bosons

We make the following Dyson-Maleev transformatibn
to bosons 4,b, . .. f):

Si=\2Sa S,=\2Sa'¢(a), Si=S-a'a
S, =V2Sb', S, =12S¢(b)b, Si=-S+b'b
S, =\2Sc, S.=2S¢(c)c, St=-S+clc
S;=v2Sd  S;=v2Sd'¢(d), Si=s-d'd
S;=\2S¢€, S,=2Sp(e)e, Si=-S+e'e
Sf=\2Sf s =\25f'¢(f), Si=s—f'f, (13

024436-5

C. Spin-wave spectrum: General considerations

§?<q>=; Pij<q>*rf(q>+; Qij(@)* 7j(—q),

fi(—q>=; Qij<q>*7}(q>+Ei Pij(Q)* 7i(— Q).

P(a)P'(a)—Q(@)QT(a) =7,

P(a)Q"(@)—Q(q)P'(q) =0,

The effective bilinear spin-wave Hamiltonian is of the

H=§ [A(®) &, () TE(Q)+3B(A),, 4L (@) EN(—q)

(15

hereé;(q)=a(q) and so forth(in orderb, c, d, e, andf).

(16)

The transformation to normal mode operateg6q) is

(17)

To preserve the commutation relations we require that

(18
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whereZ is the unit matrix.
The transformation inverse to E(L7) is therefore

7(@=2 Py(@&(a) 2 Qi(@éd —a)

7)== 2 Qu(@* &(—a)+ 2 Py(@)* éda).
(19
The equation that determines the normal modes is

PHYSICAL REVIEW B 64 024436
From now on the arguments are alwaysThen
[A+B][P;+Q;]=w;[P;—Qj],
[A—B][P;—Qj]l= w;[Pj+Qj]. (22)
Therefore
[A+B][A-B][P,—Q]= [P~ Q]. (23)

Hence, the squares of the spin-wave energies are the eigen-

[7(q), H]-=wj(q)7;(q) (20)  values of the matrix
which gives
D(a)=[A(a)+B(aq)]X[A(q)—B(a)]. (24)
A(Q  B(a) |[Pia) Pi(q) _ ,
“B(q) Ao =w;(q) Qg (21)  Roughly speaking the matrices+ B and A—B reproduce
q q i i the stiffnesses in the two directions transverse to the sublat-
where P; is the column vector with components tice magnetization.
P1j,P2j, ... ,Pnyj andP=[Py,P,,...P,] and similarly for As we shall see later, for the Hamiltonian of the form of
the Q’s. 'H, these dynamical matrices assume the form
|
[ ap  aity apco 0 a6 YT
a;Cy  agg 0 Al a16e; aisey
a1C- 0 a;n 104 168y alse§
A(q) = 0 apc. apcy ap a158x a16€x (253
c+C
Ay A1y A1)  A1sey ass ase XZ !
c,t+cC
Q18 ALy A8y A1y ase X2 g ass
and
[ b1y i€, +2J3S¢, b1 0 D15ex bieel
biCy +233SC, b1y 0 b1 b1y bisey
b1 0 b1y biC. +2J3S¢, biey b sy
B(q)= 0 biC- bic +235S¢, b1y b;seX b1eex . (25b
cyt+cC
bisel bieey b1y bisex bss bse x2 ’
cyt+C
b1eex bisey bisey biee} bsg X2 ’ bss
|
where c,=c09q,c/2). (26)
ey=expig,al2), e,=expiqyal2), c,=cogq,a),

cy=co0gqya)

c,=coda(gs+qy)/2], c_=coga(qx—Qqy)/2],

From now on we will analyze the energies of the modes

for wave vectors of the forrs+ q,z, whereG is a reciprocal
lattice vector. In that case the matricAsand B can be
brought into block diagonal form consisting of three 2
blocks. The unitary transformation such thaf AU and

024436-6
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U'BU are block diagonal depends &) although, of course, In the *“12" sector, we find two optical modes which are
the mode energies do not. F6r=0 we have degenerate for alf,, with
[ 142 0 12 0 1/2 0 ] (w/S)?2=(4J+2J3)%—(2J5¢,)2~16J2. (31
0 12 12 0 -12 0 Spin-wave interactions and anisotropic exchange interactions
0 —1/\/2 12 0 -1/2 0 will have only negligible effects on these optical modes and
U= accordingly we will generally not discuss these modes any
~1K2 0 2 0 172 0 further? In the o= +1 sector we find modes with energies
0 0 0 12 0 142 o
0 0 0 13 0 13 (0719)?=235(1—c,)[8J+2J5(1+c,)]~161J5(1—c,),
L 127

L . 05=0. (32)
U(G) for generalG is given in Appendix A. FoIG=0 the

transformed block-diagonal matrices corresponding to colfinally, theo=—1 sector has modes whose energies are
umns 1 and 2(labeled “12"), those for columns 3 and 4

(labeledo=+1), and those for columns 5 and(&beled (07 15)2=235(1—c,)[8J+2J5(1+c,)]
o=-—1) are
~161J3(1—¢c,), w=-=0. (33
a;; O
A= 0 ay (283 Note that all modes are gapless at zero wave vector and that

for botho=+1 ando=—1 we have a dispersionless zero
frequency mode due to the frustration of the,-@Quw, inter-

a;+20a 2(astoa action. _
.= 1 2 V2 15 1) . (28p Several aspects of the above results are noteworthy. First
V2(aistoae)  asstoass of all, as we will see from our calculation of the dynamic

structure factor in Sec. VII, the=+1 (o= —1) sector cor-
(293 responds to modes in which the spins move oufvdthin)
' the basal plane and therefore we will refer to these modes as
out-of-plane(in-plane modes.(This identification can also
be deduced from the way the mode energies depend on the
out-of-plane and in-plane anisotropiedor both out-of-
plane and in-plane modes note the existence of a completely
gapless mode: when the Qurotate in phase, they produce
(29b) zero coupling on the Gus, each plane of which can be

These results remain valid whét, is included, providing it  rotated with zero cost in energy. The higher-energy out-of-
is evaluated at zero wave vector, which, as we have said, jglane and in-plane modes are degenerate because we have

B =
2712358, by

b11+ 20'b12+ 20'J3SCZ \/E(b15+ Ublﬁ)
V2(bss+ abyg) D55+ obsg

(o8

an excellent approximation. not yet included any anisotropy and these modes give rise to
the usual twofold degenerate mode of the, Gubsystem.
D. Isotropic interactions Even when more general anisotropic interactions are in-

cluded, the higher-energy modes remain mostly on thésCu

%nd the lower-energy modes remain mostly on the’€u
start by considering the results of linearized spin-wave %y y &

theory when all exchange interactions are isotropic. Then
one has E. Mode energies for general interactions

Here we give the mode energies in terms of the matrix
elements of Eq(25) for general interactions for wave vectors
of the formq=(0,0g,). (The eigenvalues, but not the matri-
ces, are invariant under addition of a reciprocal lattice vector

a11= 4JS+ 2\]38, a16: b15: J128,

355=Dsg=4J5S,  by;=2JS @0 G q.) To evaluate Eq(24) within the low-frequency sec-
torso==x1, we record the form of the two by two blocks.
and all the other matrix elements are zero. Since we need botA+B and A— B, we write

gt 20a5,t 7by+20733SG+209by,  V2[aist gaset 7bis+ o 7bigl

A+ 7B, =
[A+ 78] V2[ a5+ gayet 7bist+ o 7bigl assT oAset 7bsst 0 7bsg

(34)
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In evaluating Eq.(24) it is useful to note that in ther
=+ 1 sector the matrix elemepf,+B44], ~8JSis by far
the largest matrix element. Similarly in the=—1 sector

[A11—B11]-~8JSis by far the largest matrix element. In
either case, then, Eq24) gives the squares of the mode

energies as the eigenvalues of a matoxk its transposeof
the form

u Vv
VvV W

u v
: (35)

u w

where\/Uu dominates all other matrix elements. In that case

the eigenvalues are

(w”)2=Uu+2Vo +Wov?/u,

(0=)%2=(UW—-V?)(uw—0v?)/ (™) (36)
Explicitly, within the sectorsr==*1, we have
Uo.:a11+ 2b12+ U(2a12+ b11)+ZJ3SCZ, (37)

V,=v2[ast bist o(asstbig)],
W, =asst bsgt o(aset bss),
Uy=ay3— 2b15—233SG+ o(2a,—byy),
Vo= 2[a5- b1t o(ass—big)],

W, = as5— bt o(ase— Dss) -

PHYSICAL REVIEW B 64 024436

From this result we conclude thdtand J, should be re-
placed by Z.J and Z,J,, respectively, with Z.=1
—(1/5)(a?ai+aibj), wherei andj are nearest-neighboring
sites on thea and b sublattices, respectively, and,=1
—(1/S)(e;rei+eifj> in a similar notation, so thaf,~Z. at
zero temperatureZ, has been calculated more accurately
than this.(In Ref. 21 the valu&.~1.17 is given). For J; we
note thata; andb; refer to sites in different CuO planes, in
which case(ajb;)~0. So we should replacé; by 7333,
where

Z3=1-(1/9)(a]a), (40)

so thatZ,/2 is essentially the magnitude of the zero-point
staggered spin in the presence of quantum fluctuati@insis

Z3~0.6 is very different froniz,..)

B. The effect of spin-wave interactions onJ;,

Now we discuss the effect of spin-wave interactions on
Ji,, i.e., we consider the Shender interactioBorrectly to
order 15 we construct the effective quadratic Hamiltonian
by contracting two operators in all possible ways. That is, we
replace two operators by the thermal expectation véiue
dicated by(- - - ) of their product. Applying this procedure
to the relevant terms in Eq14) we obtain the effective
interactions between a Cspini on sublatticea and nearest
neighboring Cy spins as

Vaeldio=alai(S—(ale/ ) —(e]e;)) +efe;(S—(eja)

Substituting these evaluations into E&6) [or, if need be, —(afa))) +ae(S—(efe)—(a'el))
exactly implementing Eq(24)] gives the four low-energy
modes for wave vectors along tleedirection. Obviously,
since the mode energies are derived from a two by two dy-

_at t t t t
namical matrix, we can easily obtain exact expressions for Vat/Ji2=ajai(—S—(ajfj)+(fjf;))+{f;(—S—(aif])
their energies. +(ala)) +ati(S—(ala)+(af]))

+1la(S—(f/f;)+(alf))).

+ale/(S—(afa)—(aig))), (41)

IV. NONLINEAR SPIN WAVES (42

A. 1/S corrections to J, J3, and J, Here to leading order in ®it suffices to evaluate the various
When we include the effect of spin-wave interactions ateXPectation values with respect to the original quadratic
order 16 on the CyCy interactions or on the GuCuy, Ha}mTlItonlan. At unadratui order we have symmetry such that
interactions, we expect to get a simple renormalization. Fofa; &) =(aie;).(eje;)=(f;f;), etc. We define
the exchange interactions between neighbors in the same
CuO plane, this effect is well known. As explained above,
we decouple the fourth order terms 3y, S, as

J(112)8/J12= S+ (aﬁr)—(afa&,

JgZZ)S/J12:S+<aif;r>_<f;rfj>.
—3[b/b;bja;+blalala; +2aabb;]

I393,,=S—(aie;))—(aa;),
——(ala;+a;b)[ala;+b/b;+ab;+a'b]] 12 S/J1,= S~ (i) — (&)

(38) \]g_é)S/lezs_(a,eD_(e}‘eD (43)
and those irS,;- Sy; as Note thatd{3)—J3(9=3— 32 . Then
= 3[elf]ff;+fielee, + 2efe f]f)] Vae=J17Sda;+ IS e +{FSqe +I(ISqe],
t to o £t tet
—(elet+ef\Mee+ff+ef +e'fl].
T {eeralpleet ihralal] Vo= = Isala, ISt + 3PSt + 9 s Tlay.
(39 (44)
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Since we only work to order $/ we keep only the Her-
mitian part of these perturbations:

Vae=J9Sa a;+JYSeej+I3VS(aig +alef),

ISt +357s(alf;+flay),
(45)

Vai=— J(lzz)SaTai

where

=130+ 32, IZI=1[3D+ 3.

(46)

PHYSICAL REVIEW B54 024436
where

Aeff= & + 4] BQS (53)

These results demonstrate that the Shender interaction does
mimic a biquadratic exchange interaction at long wave
length. However, in view of the relation for spin 1/2 that
(S-S)?=%—3S"S,, a biquadratic exchange interaction
between two spins 1/2 is equivalent to a Heisenberg ex-
change interaction, and we may therefore assume jthat
vanishes.

As it turns out, the energies of the modes we study depend As pefore, there is degeneracy between in-plane and out-

only on the single parameter

a=(39-3%)s=F-3%)s= - I ((aie) +(af] >>

Note that the parametéetin Ref. 5 is 6= a/S. We evaluate
this parameter in Appendix B and find
a=C,J%,/J, (48)

whereC,
The anharmonic effects of EG45) give rise to contributions
to the dynamical matrix of

da =«
das=J33I5-3,,S,

dags=2a,
obis= 3(1354)

S—J..S. (49)

is a numerical factor which we found to be 0.1686.

of-plane energies because we have not yet included anisot-
ropy. However, by taking into account spin-wave interac-
tions we now have the mode structure one would expect for
an isotropic antiferromagnet: We have a doubly degenerate
zero energy Goldstone mode at zero wave vector, and doubly
degenerate nonzero energy modes for nonzero wave vector
as shown in the right-hand panel of Fig. 3. The quantum gap
in the optical modew, at zero wave vector has been ob-
tained for a number of other frustrated systems in several
theoretical studié§???® beginning with the work of
ShendeP. However, because we have two subsystems which
order at different temperatures, the emergence of this gap has
a very unique signature not present in other experimental
systems studied up to now

V. INCLUSION OF ANISOTROPIES
A. Out-of-plane exchange anisotropy

To obtain the correct energy gaps at zero wave vector we

It is knowrf"?>%that in simpler problems these anharmonic must add the anisotropy due to anisotropic exchange interac-

effects give riseat zero momenturto effective biquadratic

tions. (Since we are dealing with spin 1/2’s, there can be no

exchange interactions between sublattices which otherwisgingle ion anisotropy.In this subsection we include out-of-
are frustrated in harmonic theory. To emphasize this poinplane exchange anisotropy. This part of the anisotropic ex-

we treat a biquadratic interaction between nearegt @y
neighbors(in the plang which is of the form

HBQ——'Eg PICEE NG (50

Then the contributions to the dynamical matrix are
0a1=4]gqS, (51)

da;6= —2j QS

das5=8]pqS,

5b15: 2] BQS

Then using Eqs(37) and(36) we find the mode energies at

zero transverse wave vector largeJ) are now

(wg)?=
=819 at2358(1-c,)],

839 a+4jgoS+2335(1—¢,)]

dag;)2S(1—C,)(8I,S+ aes)

<\2_
(o) ot 2355(1—c¢,) '

(52

change energy between sublattig@snd b of the Cy's is
given as

Vap=—AJ; 2 (54)

Sgiséinjv

where; is defined so as to implement the nearest neighbor
restriction. Thus, neglecting anharmonicity, we write

Var=3ddy 2 1S5~ SallSsi~ S,/1A,
:%AJlsi g ) (ai—a))(b] —b))A;;

=AJ18§ [af(q)b(q)+b'(q)a(q)—a’(q)b’(—q)

(59

This result allows us to identify the contribution to the pa-
rameters of the dynamical matrix introduced in E25) as

—a(g)b(—qg)lc. .

5a12: AJ]_S, 5b12: - AJ lS’ (56)
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FIG. 3. Spin-wave spectrum for wave vecter,c/(2) along thec direction in the absence of anisotropy. Each mode is twofold
degenerate. The left-hand scale applies to the lower modes and the right-hand scale applies to the optical mode. Left: without spin-wave
interactions. In this case one mode has zero energy for arbitrary wave vectordrditextion. Right: with spin-wave interactions. In the
presence of easy plane anisotropy, the twofold degeneracy is removed and only on@oneponding to rotation within the easy plane
is gapless at zero wave vector. When the fourfold in-plane anisotropy is also included there are no gapless modes.

without having to explicitly consider the other EGy, inter-
actions.

Next we consider the out-of-plane anisotropy of the
Cuy-Cuy, interactions. From the form of E@25) we see that
we only need construct thee-e anda-f interactions. For the
a-e interaction we have

5a16: - %A\] 125, (5b16: %AJ]_zS (60)
Finally we include the out-of-plane anisotropy of the
Cu;-Cuy, interactions. Thus

Ver=—AJ; 2

ice,jef

SeiSHAj

Vae=—AJ1 E

iea,jee

SESEA;
e =A% 3 [0 SallS—Sil4,
=7AJ Sai—Sa)(Sej— S A
M 2 SIS =383, 3 (ef—e)(f;— A,

ieejef

:%Alesa lzj . (ai—a;r)(e;r—ej)Aij

=Ast; [ef(q)f(q)—el(q)ff(—a)—e(@f(—q)

=%Aalzs§ [a(q)el(g)eld (rera) +fT(@e(@) ey, (61)

_af(—q)e(q)ea e+ He] which leads to
§a56: 2AJ28, 6b56: - ZAst (62)
-1 T * _ AT T *
ZAleszq: [al@e (e —a(—ael(ae The renormalizatioriat order 18) of the out-of-plane an-
(57 isotropy is accomplished by replacingyJAJ; by
ZNIAILP
It is instructive to see the influence of this anisotropy on
the gaps at zero wave vector. Referring to E2f) we see
that the high energy mode gap due to the Shender fluctuation
term, causedJu to be nonzero. To check for gaps in the
mode energies; at zero wave vector it suffices to consider
the quantity

+a'(g)e(q)e,—a(—q)e(q)e,l,
which gives a contribution to the dynamical matrix with
5a15: %Ales, 5b15: - %AJj_zS (58)
Similarly
Var=35A31,82 [a(a)f(—g)ec—a'(a)f(g)ey _ 2
q A=uw—v
+al(q)ff(—a)ef —a(@)f(q)e,, (59)

from which we deduce that

=[2AJ;S(1+0)+ a][2a+2A3,5(1+0)]
~[—\20a]” (63
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When we turn off both out-of-plane anisotropias; and

AJ,, the two modesw; are gapless. When we allow the +5Jls;( {[a"(k)+a(=k) ek +c'(—k)]
out-of-plane anisotropy to be nonzero, we clearly introduce a ’
gap (A is nonzergin the out-of-plane ¢=1) sector but not +[d"(k)+d(—k)][b(k)+b"(—k)]}c_ (67)

in the in-plane = —1) sector. This result follows from the

fact that the spins can still undergo a global rotation withinand

the easy plane at no cost in energy. Hence we still have a

single Goldstone mode with zero energy at zero wave vector. B vt Lt T

In order for this mode to have a gap, we have to take account Vain= 5‘]1i E;” (O —ajaifiBitzaiajai( B+ Bj)
of effects which lead to a fourfold in-plane anisotropy which h

we consider in the next subsection. +i(ef +a) B BiBy]. (68)

B. In-plane exchange anisotropy We now consider the effect df,;, on the spectrum for
ky=ky=0, so thatc, =c_=1. In this case because the per-
turbation is proportional th—c or to bT—c', one sees that
In this subsection we discuss the effects of the in-plané/,;, only couples to the optical mode sector. Accordingly,
anisotropy of the CuCu exchange interactions. First of all, we do not conside¥,;, any further.
note that this perturbation is extremely weak. It gives rise to We expect that this in-plane anisotropy should give rise to
an effective fourfold anisotropy. This very small fourfold a macroscopic fourfold anisotropy. In order to obtain this
anisotropy only has a non-negligible effect within the low- anisotropy we must include anharmonic effects at relative
frequency sector and even there only at zero wave vectoorder 15. Now we decouple the four operator terms into
The Hamiltonian describing the in-plane anisotropy of thequadratic terms times averages of the remaining quadratic
Cu-Cuy interactions is factors. This calculation is done in Appendix C. In that cal-
culation we naturally drop all contributions to the optical
_ fet anan mode sector and of the rest keep only terms which have an
Vin= 5‘Jli E;,.g o(9)(S'S 5~ S"Sh ), (64 effect on the mode energies at zero wave vector. The result is
o that contributions to the dynamical matrices due to the in-
wherej =i+ 8, & is summed over four valugshe twos,’s  plane CyCu interactions yield
and the twos_'s), ando(5.)==*1. Then

1. Cy,-Cu, interactions

5a11= 16C2 T, (693)
_ —afa (= g
Vin=0Jy, eaz,d;ﬁo.(&{(s ajai) (=St B By) 8a15= — 4(6C,— Coo— 4Cqp) T, (69b)
—1(29)[ai+ald(a)[ B+ &(B) B} Sbys=8C,er, (690
=83, 2 o(0)| ~alaipl—iSaitalllB]+ 5] Sbyy= —16C, (694
+ialof ai( B+ B+ (el + ) B BiB; where 7=(8J,)%/J and theC’s are lattice sums defined in

Eq. (C19 of Appendix C. It turns out that becauseis so
(65) small, the only evaluation we need is tHa;=0.01. Note

that the contributions in Eq69) are of relative order ¥
S ] - ) which is consistent with the fact that they represent the effect
wherea;=a if site i is ana site anda;=d if i is ad site, and  of quantum fluctuations. The fact that they represent a modi-
similarly for g;. We write fication in the zero-point energy is reflected by the appear-
ance of the factoC,<1.

1
- 8_SaiTa’iTa'iBJTBj,8j

Vin=V2,in+ V4,in+ V6,inv (66)

. - ) 2. Cuy,-Cu,, interactions
where the subscript 24 or 6) indicates terms quadratic S

(fourth or sixth order in boson operators. Since we work Next we deal with the in-plane anisotropy of the, &l

systematically to first order in $/ we neglect ;,. Also interactions. The terms in E¢L2) involving 6J;, are
Vain==380182 o(9)(ai+al)(Bi+B)) Vis= = 83ig 20 (S0 5+ S5
= 03182, {[a’(k)+a(~k)][b(k) +b'(~k)] 631, E.E.,ﬁy [SiS% s, TS/SH, ) (70
+[d"(k)+d(—k)J[c(k)+c'(—k)T}c, In terms of boson operators this is
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Vi, = 8312052 2 {[S—efei][@iant @l b(@ii) +dix+dlb(di)]+[e]+ d(e)el(—25+al @i +dl,di )}
—8312\SI2 > {[S—elel[b]_,+ d(bi_ybi_y+cl + d(civy)ciyl+[e] + p(e)e](2S—b!_ bi_y—cl, ¢y}
+ 833 \S2 2 {[— S+ fillai_yral (@) +dixtdl  b(diy)]

i+ Hle(f)l(-28+al ot dlydio0}b = 83182 2 {[ =S+, + ¢(biry)birytcly

+é(ci-y)ci—y I+ [fi+ Tl a(f1(2S—bl, by —cl ey} (71)

This perturbation contains terms linear and terms cubic in dags= daj,= 2 5bgs= 53%25/\]2555,
the boson operators. The linear terms &adrelative order
1/S) the cubic terms will shift the equilibrium so that the

boson operators are modified as
p 5a16: - 5&15: 5b16: - 5b15: %(S (74)

€—¢g+Ss, fiﬂfi"r‘s, aj—a;tt, biﬂbi"r‘t,

We also insert these shifts into the four operator terms of the
isotropic Hamiltonian. As before we only keep terms arising
from replacing two Cy operators by e). The magnitude of

These shifts are evaluated in Appendix D, where we find tha@ther terms, e.g., GuCu quartic terms when Gushifts (a)

Ci—>Ci+t, d|—>d|+t (72)

(to leading order in B) are kept, are shown in Appendix D to be much smaller than
those we have kept. The result of the calculation in Appendix
46J15\SI2 D is that we get the contributions to the dynamical matrix of
-8,
- _ —_1
208 J1pdipSI2 - d8s5= — (S,  dbss=—4{S,

T 8J+43; J,(8J+4dy)

These are the expected results. As one sees from(12y. dage=—3{S, Sbse=—{S. (75)
the perpendicular field acting on @nspin is 45J,,S in the

positive » direction, so that the perpendicular moment of the ) o

e spin isAS,=453,,Sy, = 4531,5(8J,), which agrees with  Note that these perturbative contributions from the-Cu,

J2Sswhen Eq.(73) is used. Further, due to the isotropic IN-Plane anisotropy, are proportional $ounlike the case for
exchange, the field acting on aa spin is 2J;,AS, the otherin-plane anisotropies. This indicates that the effect

=J.,60,5/3, in the negative» direction. Thus AS,  Of 8Ji, (which we calleddpy previously™), is a classical

= —[J312031,535]x1= —[J12831,5/3,]/[83+4J3], which  effect which already appeared within mean field thetty.

agrees withy2St when Eq.(73) is used. Note tharS, and ~ The other in-plane anisotropies only have an effect when we

AS, are both of ordefS, a result which indicates that the consider fluctuations. However, since the effectadf, is

effects here are completely classical. rather small, we do not consider the effects of fluctuation
To determine the effect 05 , on the spin-wave spec- Corrections to it.

trum we need to construct the effective quadratic Hamil-

tonian, which results from introducing shifts into anharmonic 3. Cu,-Cu,, intraplanar interactions

terms. This is done in Appendix D. When we insert these

shifts into the cubic terms of 5; , we ignoret in comparison Here we consider the in-plane anisotropy of the interac-

to s becausel>J;,. Thereby we get contributions to the tions between pairs of Guspins in the same plane. Their

dynamical matrix of interaction is
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V=-63,2

iee

2 (siEesrsht X (SFS}?+$"S§>}
+25, Sy 1j=1+28

Syij= y =i y

S
= _532\[5 2 {(S—ele)lfj+Tla(f)]+[el+p(e)e](~S+f)}
S
+632\[§§ {(s—elenlfi+1]o(f)]+[e]+ p(ene](—S+f]f))}
Y

=5J2\/@[§ [eﬁei(fj+f})—(eﬁ+ei)f}fj]—§ [eiTei(fJ-+f})—(er+ei)f;rfj]}
i, 0y i 0y

8S
=00\ qu p(K{[f(k)+f(—k)Te'(q)e(q—k)—[e(k) +el(—k) I (@) f(q—k)}, (76)
[
where
My 2 K[ S-ndPIS;- iy, (81)
1
p(k) = 5[cogak,) - cogak,)]. (77)

wheren{") is thekth principal axes for the paij which can

be obtained from the right panel of Fig. 4, by a rotation of
coordinates, if necessary, alg is the associated principal
value of the exchange tensor. The contributions of this inter-
action to the dynamical matrix are evaluated égr=q,=0

in Appendix F as

This Hamiltonian is treated in Appendix E, where the
additional contributions to the spin-wave matriced g,
=0) are found to be

Sass= — 16 835/3,][2C 5+ Copl=—16£[2C 25+ Cyp],
5a55: 5a66: 4( Kl_ K2C2 - K3SZ)S

dase=16£[2C o~ Cop] (78
+2(Ky+Kae?+Kps)Se, (823
and
— — _ 2_ 2
Sbos= — 166Cyp,  Obgg=48£C,,, (79) dase= dags=2(K,—K3)(c”—5%)S¢, (820
whereC,, andC,, are lattice sums defined in Appendix C. Sbsg= 6bgs=2(K;—K,s>—K43c?)Sg,, (820

It is interesting to note that apart from a minus sign, these
results are exactly the same as in Yildirenal'® This dif-
ference in sign is to be expected because thg<Care ori-
ented in a hard direction with respect to only,€Qu, inter-
actions. Consequently, this term tends to decrease the gap.

4. Cu;,-Cu,, interplanar interactions P

Here we consider the effect of interactions between a pair E
of Cu, spins in adjacent planes. The situation we consider is !
]

shown in the left panel of Fig. 4, where one sees that the /f, _____ le/
isotropic component of the GuCuy, interplanar interaction 7 7
is frustrated. To describe the anisotropy of this interaction .’ ' /
we introduce the principal axéshown in the right panel of .A_(____/
Fig. 4) as follows: e £
ﬁlzz—l/z(_;(+§,), ﬁ2=2’1’2(§<+§/)cosd/+ Zsin o, FIG. 4. Interplanar CyCu, interactions. Left: a plaquette of

Cu, spins in one plane with a Guneighbor in the adjacent plane
R A R over the center of the plaquette such that the isotropig-Cu,
ny=2"Y2(x+y)siny—zcosy. (80) interaction is frustrated. Right: The principal axes for the exchange
) ) ) tensor of a spin in the sublattice at O with a spin in thesublattice
The angley is not fixed by symmetry. We then write the gt A, The directions of the axes are given in E80). The axes for
anisotropic Cy-Cu, interaction H I between nearest- the interactions of the spin at A with other spins in the lower plane
neighboring spins andj in adjacent planes R can be obtained by a rotation of coordinates.
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sees that the isotropic component of thg-Cu, interplanar
interaction is frustrated. To describe the anisotropy of this
b interaction we introduce the principal axes for the-Quy,
# ' pair a-e, shown in the right panel of Fig. 5, as follows:

[=%

~
~
e e ———

my=—Yy, M,=2C0Sh—XSing,

o

M= —ZSin¢— X COS. (88)

i The angle¢ is not fixed by symmetry. We then write the
. anisotropic CyCuy interaction ;' between nearest-
34 neighboring sping andj in adjacent planes as
90 o | 3
-1l _ ’ ~ .. ~ ..

FIG. 5. Interplanar GuCu, interactions. Left: a plaquette of Cu Hij = kzl Kl S-mg(ij) LS my(ij)], (89
spins in one plane with a Gweighbor in the adjacent plane below R
the center of the plaquette such that the isotropie Qu, interac-  wherem,(ij) is thekth principal axes for the paij which
tion is frustrated. Right: The principal axes for the exchange tensotan by obtained from the right panel of Fig. 5, by a rotation
of a spin in thee sublattice at O with a spin in thesublattice at A.  of coordinates, if necessary, ald, is associated principal

The directions of the axes are given in E§0). The axes for the 5ye of the exchange tensor. In Appendix G we obtained the
interactions of other pairs of G«Cu, nearest neighbors in adjacent following contributions to the dynamical matrices fag,
planes can be obtained by a rotation of coordinates. =q,=0:

y=0:

5b56: 6b65: 2(K2+K3)8011 (82d) 5a15: 5b16:%[Kj,|_+ Ké(1_302)+Ké(l_Ssz)]EG|_“
wherec=cosy and s=siny. As we will see later, this in- (903

teraction can only contribute significantly to the lowest- _ Ciryr , 5 , 21
energy in-plane mode, where its effect is through the combi- 9816= Ob15= 5[ Ky +K5(1+CT) +Kg(1+s )]_HI_“(S—’)Ob)

nation
) ) where c=cos¢ and s=sin¢. We will see later that these
(855~ Asgt bgs—bsg) = 4S(K; —Kpc”—Kgs®)(1+¢,) terms have a negligible effect on the spin-wave spectrum.

=4AKS(1+c,). (83)

Note thatAK=0 for isotropic exchange.

A closely related interaction is the long-range dipolar in-  Explicitly, the dynamical matrices corresponding to the
teraction, whose contributions to the dynamical matrix areeffective quadratic Hamiltonian containing the abovemen-
also evaluated in Appendix F. This interaction is dominant intioned anisotropies are of the form of E5) with
Sr,CuO,Cl,.*® To include dipolar interactions we obtajim
Appendix B the result

VI. SPIN-WAVE SPECTRUM

aq= 4JS+ 2\]3S+ 16C2 T+ §S+ a,

5(a55_ a56+ b55_ b56) = 692,(1/%8(1"!‘02))(, (84) ap= A".118_4(6C2_ C26_4C2b) 7
whereX is the lattice sum a;5= 1AJ,S—1{S+G,
X= > M (85) a16= 31375~ 3AJ1,S+ 5 {S+H,,

5

ij

wherei labels a fixed Cy site, o is +1 if spinsi andj are
parallel and is— 1 if they are antiparallel. Numerical evalu- +2(K;+Kgc?+K,s%)Sc, (93)
ation yields

jell:zjj=cl2 r
: ass=4J,5— 16£(2C,— Cyp) + 2a+ 4(K; — K,c?—K35%)S

a56: 2AJ28+ 16§(ZC2_ 3CZb) - %gS

X=7x10"% A 3 (86)
+2(Ky—Kj)(c?=s?)Sg,,

Therefore we should replaceK by

AKe=AK+ g2udX. (87 P1=8Czm,

. . . b12: 2\] S_ A\]ls_ 16(:2b7',
5. Cuy,-Cu, interplanar interactions

Here we briefly summarize the results for a similar treat- b15=\](§4)s— 1AJ,S—3(S+H,,,
ment of the CuCu, anisotropic interactions. The situation
we consider is shown in the left panel of Fig. 5, where one b1g=3AJ,S+3{S+G,y,
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TABLE I. Definitions of parameters. NotatiodJ=(J, —J)/2.

Y C,~0.1686 T Z & C,~0.012 J{
OFNENA| Eqg. (49 (83313 (8319%3, (83,)%3, EQ.(C19  Egs.(43),(46)
AK AK o X=7x10"% A 3

Eq. (83 Eq. (87) Eq. (85

aSee Ref. 13.

bes=27S—16£C,p+2(K;—K,s2—K3c?)Sc,, (92 renormalizations. In what follows we will work to an accu-
racy of about 1%. That is, the only corrections of relative
bsg=4J,S—2AJ,S— {S+48,CH,+ 2(Ky+K3)Sc,. order 10 we will keep are those of ordef;,/J or J,/J.
(93 Then, in the notation of Eq$34) and(37) the components of

[In the above tabulation we not have included dipolar inter-the large matri{ A+ oB], are

actions. These are easiest to include when we give the mode

energies because these terms can then be combined via Eq. U =8]S V. =202¢3..S. W.=8J.S 94
(87) with the pseudodipolar terms which we treated explic- 7 - Vo=2\20058, W,=8),S. (94
itly.] In Table | we summarize the definitions of the various

parameters and in Table Il we give estimates of their numeriwe neglect terms which are small comparedvtand obtain
cal values.

A. Cu,’s ordered 4A0;S+ a+X3 —\2a
[A_B]a':+1: A (95)
1. Without ¥S renormalizations - \/ECY 4A 3,5+ 2«

Here we evaluate the energies of the four low-frequency
modes in the presence of Cwrdering without any 8  for the out-of-plane sector, wherg=2J3S(1—c,), and

TABLE Il. Estimated values of parameters from experiment and theory.

Parameter Values in meV
From experiment From theory

Value Referencé Value Referencé
J 130+5 7 145 28
Js 0.14+0.02 57
Jio —10*+2 7, TW
Js 10.5£0.5 5
AJ,(T=0 K) 0.081+0.01 T™W 0.04 13,14
AJ,(T=200 K) 0.068+0.011 7
Adg, 1.3¢ 27
AJ, 0.004+0.004 16, TW 0.036 26
8J4 +0.04 16, TW -0.02 14
531, +0.027 4 -0.015 b
8J, 0.4
AK o 2.73x10°4 TW, Eq.(87)
a 0.135 57, TW 0.13 TW, App. B
T 1.2x10°° 16, TW ~107° ¢
¢ 7x107° 4 2.2x10°° ¢
g 10—6 c

&TW denotes this work.

PThis is the contribution ta$J;, from dipolar interactions, which is much larger than that estimated from
8313~1.5x1074.

‘Evaluation based on the relevalis.

dEvaluated for the similar compound B2u;0,Cly.
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{S+ a+64C,7+ X3 J2(a—¢S)

[A+Bly——1= P2(a—¢S) 2({S+ a)—64£C,+ 4AK4S(1+C,)

(96)

for the in-plane sector, wherkK .+ was defined by Eq87).  factor analogous t€, and it would dominate the term pro-
From Eq.(36) we get the higher frequency modes as  portional to 7 except for the facfsee next sectignthat its
renormalization factoZ, is quite small. However, when the
161,Sa” Cu,’s are ordered, the interplanar (€u, dipolar interac-
a+t4AJ;S+ x5’ tions contained iIM K¢ are dominant, and lead to the dra-
(979 matic increase in the effective fourfold anisotropy observed
at low temperatures. The isotropic interplanar nearest-
16J,Sax; neighbor Cy-Cu, are frustrated. The anisotropic €Qu
Catxg interlayer interactiongas embodied by the constar@sand
(97b H) have only a negligible effect on the mode energies.

(07)?=8IS(4AJ;S+ a+Xx3)—8J,Sa+

(0”)?=8Ia+X3)+8Sa(—Jyp+2J,)—

and the lower frequency modes as 2. 1/S renormalizations

(07)2=6431,S%([4AJ,S+ a+Xs] In this subsection we summarize how we incorporate the
various renormalizations due to spin-wave interactions. We
X[4A3,S+ 2a]—2a?)(w7)?, (970 believe that the correct procedure is to calculate the mode
energies correctly at first order inS.and then se6=1/2.
(0°)2=6411,S%([{S+ a+64C, 7+ X3] Following this prescription we thereby obtain the following
results:

X[2{S+2a—64£C,+ 4AK o1S(14C,) ]

—2a— 9D (0)? (07)?=8) a+4AJ;SZ +x575]

6413, 83,,Sa+ 160;Sa” (983
~((—§)2a> [2X3+64(27— £)C,+ 8¢S ! a+4A3,SZ;+x5Z5’
w _
2
+4AK£S(1+c,)]. (970 (0”)?=8J9 a+x3Z5]—8J31,Sa+ %, (98b)
In obtaining the above results we replad¢w—V? by UW e
with an error of order 1%. To obtain the last line of £§70d) (07)?=6413,S%([4AJ;SZ+ a+X3Z5]
we assumed that dominates the other perturbations.
As we have already seen, quantum fluctuations of the ><[4AJZSZS+ 2a]-2a%)/(w7)?, (980
frustrated CyCu, interactions cause_ to be nonzero even
if the exchange interactions are isotropic. When we introduce (w>)?=6413,S%([{S+ a+ 64C,7+ Z3x3]
easy plane anisotroppy makingAJ; and/orAJ, nonzerg
we introduce a gap inte? , butw= has no gap yet, because X[2{S+2a—64£Co+4AKrS(1+C,)]
without in-plane anisotropy a global rotation of spins within —2la—¢SP)(w”)?
the easy plane costs no energy. The lowest mode develops a
gap when we introduce the in-plane anisotropy and take ac- 6413, a
count of quantum fluctuations. One might imagine that the ~l V= [2Z3x5+64(27— ) Cy+ 8{SZ
strongest such anisotropy, namely thatJifscaled by the (@2)

parametgr&Jl) would domina_te inw=. Thizs effect is_ incor- +4AKeﬁS(1+cZ)Z§]. (98d)
porated in the term proportional te= 6J7/J, and indeed

when the Cy’s are not ordered this term is the only one Here we noted that spins not in the same plane are essentially
which contributes atj,=0. However, when the Gis are  uncorrelated and hence we have

ordered, the situation is different. Notice that this factor has _ _

no factor ofSand more importantly, it is accompanied by the J3—2Z3d3, AKgr—Z3AKq, (99
small numerical facto€,~0.01. These observations remind -

us that this effect is another fluctuation effect. Within har-where Eq.(40) gives Z;~1—-0.2/S—0.6. But sinceJ; and
monic theory or mean-field theory the anisotropy of thesel K¢ always enter the mode energies in combination with an
Cu-Cy in-plane interactions averages to zero. In contrastiSotropic exchange constant, we associate with them the
the weaker in-plane interaction between /€wnd Cy's  renormalizations

[scaled by /=(68J,,)?%/J] appears already in mean-field 5 )

theory? Thus, this term, which is proportional ® has no J3—27333,  AKegr—Z5AK, (100
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TABLE Ill. Renormalizations]— ZJ.

Quantity J J3 2 VIAJ, AK gy

Renormalized to ZJ 7333 ZgIAJ, AK 23
(1+0.0858)J (1-0.28)J, (1-0.28)JIAJ, (1-0.28)K

Refer to Ref. 21 Eq(40) Ref. 25 Eq.(99)

3n the dynamics)Jy— Z.Z3JJ3=223J;, where we seZ3=0.77.
bIn the dynamics),AK g— ZZ3J,AK e=Z32J,AK o, Where we seZ2=0.77.

where zgzzgzc_ Thus zgz(l_o_z/s)(1+o_0855):(1 Since the statics treat the fourfold anisotropy phenomeno-
~0.1156)—0.77. Also, we will determine, by compari- ~ logically, as did Yildirim et al,’® we identify their fourfold
son, in Eq. (108 below, with the phenomenological amsotropy constank, which scales the anisotropy energy
treatmertt of the statics. For convenience we summarize inP€r Cuy spin, from

Table Ill the renormalizations of the various interactions L

which follow from our treatment to order 3/ E=—-3Kcog40), (102

_ because there are two Guper unit cell. Alsoé is the angle
B. Cu,’s disordered of the magnetic moment with respect to the eéls@,0 axis.

To get the energies of the spin-wave modes when thén Ref. 13 the energy per Capin is(in the present notation
Cu,’s are disordered one sefls,=J,=0 (i.e., modesw —
and = no longer exist as elementary excitatiprasd « E:32C27'S(S><5y/s4)' (103

=0, in which case we get So we make the identificatiol=8C,S, or, if we include

(0.)?=8I94A3,SZ+23,SZ(1-c,)], (1013 the effects of the Gyls,
K=4Cy(27—§)S. (104)

(w_)?=819647C,+2J;S7%(1—c,)]. (101b

) ] We start by comparing the results of the two approaches
Note that in Eq.(97b) we had dropped a term representing\yhen the Cy's are disordered. There the spin-wave calcula-
the fourfold anisotropy which is proportional tg because jon completely ignores the presence of the, Guwhereas
such a term is negligible in comparison do Here, witha i, the statics the Gyis are characterized by their susceptibil-
not present, we restore this termdn_. Note also that the iy in the pseudodipolar field caused by the small in-plane
higher energy mode is the one which has fluctuations out ofnisotropy of the GuCu, interactions. In the statics for tem-
the plane(as indicated by the dependence 8d;) and at  peratures far below the ordering temperature for thesOb-
zero wave vector is of the expected fomA=2HgHa, With  [attice (but still with the Cy'’s disorderedione has the effec-

the exchange fielddg=4JS and the anisotropy fieldHs e fourth-order anisotropy constaky,, from the statics as
=4AJ,S. The energy of this out-of-plane gap is about 5

meV in many Iamell_ar copper ox_|de antlferromagr?eﬂﬁ?e Kewa= 2K + 8M 232, [ 1—8x2J2,] 1, (105
lower-energy mode involves motion of the spins within the
plane and would have no gap at zero wave vector except fovhere we introduce the Cu spin susceptibilitieg

the appearance of a small effective fourfold anisotropy~0.53/(8J), x,,~0.53/(81,), and(in the present notation
which was obtained previousfy from phenomenological

considerations. The same result for the gap, namely, Mo=48314S)xu » (106
=166J,12C,S~1.65J4, is obtained from the microscopic
calculation given in Appendix C and also in Ref. 25. where (- - -) denotes a thermal average. If one talés,

=0.025 meV, therM ,=2x10"*. Then the second term on

the right-hand side of Eq105) is about 6< 108 meV, com-

pared with K which was founfl to be 2<10 ¢ meV. So
Here we briefly compare our results with those of a meanthis correction(due to paramagnetic Gis) which is absent

field treatment of the statiésin that calculation the fourfold  from our spin-wave analysis is negligible.

anisotropy is included phenomenologically and the aniso- \When the Cy's are well ordered, Ref. 4 gives approxi-

tropic Cy-Cu, interactions are included even when the,Cu mately

sublattice is not antiferromagnetically ordered. When the

Cu, sublattice is ordered, the static treatment assumes that Ksta= 2K +8(8312)%(S)?[0.53/(8J,)]. (107

the Shender mechanism is strong enough that all spins are

essentially collinear. So the dynamics of the Goldstone mod&sing Eq.(104) as the identification oK, we see from Eq.

should involve the static response coefficients, although98d) that the mode energy involves the combinatifor ¢

spin-wave hydrodynamiés rigorously applies only in the <7 and{S<a) which we identify to be the effective value

limit of zero frequency. of k from the dynamicskg,,,, where

C. Comparison of static and dynamic theories
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TABLE IV. Experimental values of spin-wave gaps at zero determined by comparing the experimental dispersion with
wave vector. respect to in-plane wave vector of £spin waves to various
theoretical treatments which take account of spin-wave

Mode Temperature EnergyneV) Ref. interactions®

W T=200K 5.5(3)2 5 Now we discuss the analysis of the magnon gaps at zero

o T=200 K 0.0664) 16 wave vector where values are listed in Table V. We first fit

> T0 K 10.96) 7 the observetf in-plane gap when the Gis are disordered.

> TLO0K 9.13) 7 Equation (101b vyields w_=16\2C,S8J; and with® »_

w? To0K 1.74734) 16 =0.066 meV, we get|d),|= |J||—Jl|/2= 0.042 meV, a

o T-0 K 1.7220) 7 value which is about twice the theoretical estimafeldsing

0= T_0K 0.1493) 16 Egs. (104 and (105 this corresponds tok=16C,Sr
=16(0.01)(0.5)(0.042)130=1%x 10 ® meV, compared to

*Extrapolated tdT =0. the value deduced from the stafiés=2x 10" meV, for 70
K=T=120 K. At low temperature {=1.4 K) , where the

Kayn=8(27— £)C,S+(S?Z;+ AK qSZ5 Cu’s are well ordered, the statit¥sgives k=25x10"6

meV. From Eq.(109 with «==0.15 meV, we getkgyn
=41x10"% meV. These results are listed in Table V, where

We see that the term (0.53)? in the statics appears as We see only a qualitative consistency between the interpreta-
SZZg in the spin-wave dynamics. With an appropriate renor-tion of the static and dynamic experiments. It is possible that
malizationZ,~0.19, these two terms are the same. Thus, aghe gquantum renormalizatiorigvhich affect the determina-
far as the intralayer interactions are concerned the compartion of k from the observed mode enejggre not quite cor-
son between statics and dynamics indicates that these termect. Also, the interpretation of the statics within which the
are correctly treated. We also see that the treatment of th€éu,-Cu, interplanar anisotropy is subsumed into the four-
statics did not include the interplanar anisotropic interactionfold anisotropy constarkis not strictly correct. If we fix5J;
AKg. As we shall see, this term gives an important contri-to fit the value ofw_ at T=100 K and assume that the
bution to the modew™, so it should be included in a re- interplanar Cy-Cu, interactions result from the actual
analysis of the statics. In terms of the constiagh, we may  dipole-dipole interactions, then the temperature dependence
write Eq. (98d) as of k results from the last term in E¢LO8). With only dipolar
(i.e., no pseudodipolainteractions, Eqs(87) and (86) give
. oy (with 9=2.2" AKg= 273x 10°® meV, so thatAK 4S?Z3
=53x10"® meV, from whichkgy,=56x10° meV. From

Table V it is clear that the experimentally deduced tempera-

Thus we conclude that except for the fact that the Static?ure dependence df is qualitatively accounted for by the
ignored the interplanar anisotropic G€Cu, interactions, the intraplanar dipolar interactions

two theoretical approaches are compatible with one another. Now we consider the higher-energy modes. Fitting to the

In the next section will show that thexperimentalresults .\ 2 energy w, =55 meV of the out-of-plane gap

frgm static and dynamic measurements are also conS|Ste\r,1v en the Cy's are disordered to Eq(1013 (with Z
with one another. g

=0.6) we obtain the value afJ;=0.081 meV. As was the
_ ) case fordJ,, this result is also about twice the theoretical
D. Comparison to experiments estimates for a simple CuO plafiet* Given the values of
The comparison between the present theory and experthese parameters, both higher-energy modes at low tempera-
ments has been described briefly in several previou§ire involve only the one additional parameterIf we de-
publications>>® Since a more detailed comparison is giventermine @ from o7 we geta=0.14 meV, whereas if we
in paper |, we will simply summarize the comparison of thedeterminea from »~ we geta=0.13 meV. These two val-
theoretical and experimental results. First one has the estites agree perfectly with one another and their average coin-
mate forJ which is nearly the same for all cuprates. This cides with the theoretical evaluation of Appendix B that
estimate has been refined by Kiti3? who givesJ=130  =0.13 meV. Clearly these agreements strongly support our
meV. The value J,=10.5 meV has been accurately interpretation of the role of fluctuations embodied by the

=2K+(8119)2S°Z,13,+ AKS?Z5. (108

N2 (N— () — -
((1),) (q_o)_64\]2kdyn(J_J12+2J2

TABLE V. Values in (10 ¢ meV) of the fourfold anisotropy constait

k T=14K T=100 K
Experimental: From staticdRef. 4 25 2
Experimental: Fitting Eq(109 to AFMR data(Ref. 16 41 1
Theoretical: See Eq109 56 12

43, —J)|=0.041 meV is fixed so that the dynamics and theory agree.
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parameterr. Note that a biquadratic interaction between two S7(q)=[ST(q)+S (q)]/2

spin 1/2’s can be subsumed into a ordinary Heisenberg ex-

Egiz?beugtte(z)rictlon. Therefore biquadratic exchange cannot :\/S/—2§m: [V 7) Em() + Vi n)*ng(_q)]
Finally we consider the lower-energy out-of-plane mode

in the zero temperature limit. The AFMR d&t&® gives (119

w5 =1.7473(4) meV, more accurate than, but entirely con-and

sistent with, the data of Ref. 7. Evaluating the expression in

Eq. (980 with AJ,=0 givesw T =1.717 meV. If we fixAJ, S(q)=—i[S"(a)—S (q)1/2
to fit the experimental value of this gap, we gatl,
=0.004+0.004 meV. We attribute a large uncertainty to = S22, [Vim(2) Em(a) +Vim(2)* EL(— )],
AJ, because its value changes significanthAid; or « is m
slightly modified. To get the same relative out-of-plane an- (116
isotropy,AJ/J, for the Cy-Cu, exchange as for the Gy, .
exchange would requiraJ,=0.008 meV. where the operators are labeled as in @&%) and the trans-
pose of the column vecton(«) is
VIl. DYNAMIC STRUCTURE FACTOR V( 7])2(1,1'1,1,1'1, V(Z)=i(1,—1,—1,1,— 1,2).
The cross sectionr(q, ), for inelastic neutron scattering (117

from magnetic ions is proportional to the dynamic structureThus we may write
factor S*#(q,w) which in turn is related to the spin-spin

corelation function. We have X(0,0)= 1S3 ([Vi@) () + Vin(@)* €5~ 0)];

o —0a.0 B
7(Q.0)% 2y (55~ 0ulg)SP(Qw). (110 [ValB)En(— @)+ Vol B)* EX D)o -

118

According to the fluctuation-dissipation theorem, we may (118
write We may evaluate these response functions in terms of
normal modes. Suppose we have found the unnormalized

1 right eigenvectors of the dynamical matrix, Eg3). That is
$*%(q,w)= —n(w)im x“P(q,0=i0%), (111  we have the column vectord; which satisfy

- = 2.
wheren(w)=[e"“/(kN—1]71 and, in the usual notatiofi, [A+BI[A=B]D;=0fd;. (119
the A-B Green’s function is defined as Then we make the identification that
_ (n[Alm)(m[B|n) (n|B|m)(m|A|n) Pi=Qj=x®;. (120
((AiB))y=2, Po| —— - — : L
mn wo—EntE, o+En—E, We can arbitrarily fix the phase of the normal mode opera-

(112 tors so thai; is real positive. Then

where|n) and|m) are exact eigenstates with respective en- [A—B]x®;=[A—B][P,— Q;]=w;[P;+Q;] (121
ergiesk,, andE, andp, is the Boltzmann weight of the state
In). Then y, the dynamic susceptibility, is written as the ©'
Green’s function

x“P(a,0)=((S(); S’ (= a))). - (113  sothat

We construct the dynamic susceptibility by writing the spin

_X -1
operators in terms of boson operators at leading orderSn 1/ Pi _E(I+ wj [A=B])®,

S*(a)=+29a(q)+b'(—q)+c’(—q)

+d(g)+ef(—q+f(g)],

To use Eq(18) we write

S (—q)=v2Sa'(a)+b(—g)+c(—q) 2
+d'(q) +e(—q) +fT(q)]. (114 PJTPJ—QJTQFQ,—'](‘DJT[A—B]‘I’J')’ (124
Thus we have so that
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2 @j

@ TA-BID,) 129

Then we write the susceptibilities as

<2/S)x“’*<q.w>:mZnr [Vin(@) P @) + Vi @)* Qe D TV B)* Prr(@)* + Vo B)Que(@)* W{7(q); 71 (A)))
+ r;r;r [Vm(a)er(Q) +Vm(a)* Pmr(q)][vn(ﬁ)* Qnr(q)* +Vn(,3) Pnr(q)* ]<<T:(CI), Tr(q)>>w

:Z AV()PI+[V(@)* QIHIV(BP I+ [V(B)* Q11 [w—w, ()] *+{[V(a) Q1+ [V(a)* P, ]}

X{IV(BQI+IV(B* P [o+ o (q)] )

J*P(q) 148 (q)
=>

T w—wr(q)+w+wr(q) ' (129

where we left the argumentimplicit in several places. We unitary transformationl. In that case we may apply the
will refer to | andJ as “intensities,” although to get inelastic above formulas in terms of the transformed quantities indi-
neutron scattering cross-sections one needs to include sevetated by primes:
other factors. At low temperature we only need

By 2 ; . A'=U'AU, B'=U'BU,

() =X (80, AV(2) P () ]+ (@) 764

X{V(n) TA=BI® ()} (55 LV(2)'®(a)] d'=UTd,, ¥/=U"T,, V' (a)=U'V(a).
_ 130
o (Q) 165, {V(m) TA-BI® (@) (12) (130
In writing this result we used the fact thel{ ) is real and For wave vectors which are equal modulo a reciprocal

V(z) is imaginary. From now on, we specialize to the case Oiat’tice vector, the corresponding quantities, B', @', and
wave vectors of the forng=G+q,2. In that casd 7|20 \If_ are gqu_al. However, the |nten5|t|e§ at such equn_/{_;\lent
vanishes and points will differ becauseéJ, and hence/’, depend specifi-
cally on the zone of the wave vector. This can be seen ex-
+ ) plicitly in Appendix A where we obtain the results summa-
27_ [V(2)'®(9)][“e(q) (1283 rized in Tables VI and VII. Note that the= + 1 sector does
"D (q)[A-B]D,(q)} have intensity mainly il ** in confirmation of our identifi-
cation of this as the out-of-plane sector. Similarly, the
tra 2 = —1 sector has its intensity mainly 7”7 as expected for
[ 77= V() TA—B]P ()} . (128h  in-plane modes. These identifications are also consistent with
o (P{P,(q) TA-B]D,(q)} the fact that ther=+1 modes depend on the out-of-plane

anisotropies scaled by theJ’'s, whereas ther=—1 modes
The above results are useful for the out-of-plame=(+1)  go not involve these quantities.

modes in which casfA—B] is the small matrix. Alterna-
tively, for in-plane = —1) modes whei\ + B is the small

matrix the following forms are useful: VIIl. CONCLUSIONS
. 5 Here we briefly summarize the significant conclusions
22— {V(2) TA+BI¥ (q)}| (1293 from this work.
r _wr(Q){‘I’r(Q)T[AJrB]‘I’r(Q)} (1) The degeneracy, present within mean-field theory, in

which the Cy sublattice spins can be globally rotated with
+ 5 respect to the Guspins is removed by quantum fluctuations
[ 77= (V™ ()] e (q) (129h which cause the sublattice magnetizations to be collinear, as
T V(@) TA+BIV ()} first indicated by Shendér.
(2) A degeneracy present within mean-field and linear
For high symmetry directions of the wave vector, the matri-spin-wave theories, in which the magnetization can be glo-
cesA andB may be brought into block diagonal form by a bally rotated through an arbitrary angle within the easy plane
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TABLE VI. Amplitude of the dynamic structure factor. Results for wave vect@r(lﬂf(/a+ K§//a
+ Lilc)JrqZ for H andK half integral andH + K +L an even integer. Results are given only to leading order
in J. ya=X3+4AJ;S+ 3 =239 1—cos@,c/2)]+4AJ;S+ 2a. The mode energiegnithout 15 correc-
tions) and intensitie§ *#(q)] are independent of the particular valuesfK, andL and are evaluated for

q,=0.
Mode energy Energ§ (meV) Intensity
Formula Evaluation
07 =[8JSy]? 10.8 122, =0 0
177 =0 0
20(4A0,S+x5)]| 2 16J,S
wf=[8325{4mzs+ 22044509 1.72 122, =—2 12
Y3 h
177 =0 0
0~ =[8I(xz+2a)]*? 9.1 122 =0 0
177 =0 0
_ 1/2
e ZSZaX3+64a(27' £)Cy+8alS 015 1 o 0
X3+ o
163,S
177 =—— 140
w_
aSee Table IV.

is similarly removed by quantum fluctuations, as first pro-rations, also give rise to nonzero energies of the correspond-
posed in Ref. 13. ing spin-wave excitations. The most dramatic evidences of

(3) These fluctuation effects, in addition to selecting thethis phenomenon are the striking increases of the out-of-
ground state from among the classically degenerate configyslane gap energy from 5 to 10 meV and that of the in-plane

TABLE VII. Amplitude of the dynamic structure factor. Results for wave vector(lzf(/a+ K§//a

+L2/c)+qZ for H andK integers andd + K+ L an even integer. The notation is as in Table V. Results are
given only to leading order id. The intensities are evaluated fgy=0 andH=L=1 andK=0.

Mode energy? (meV) Formula for intensity Intensity
8JS
0;=10.8 12, =—[1-(-1'F 50
+
8JS
177 =—— lyj 1+ (= D" ]+(— 1) af? 0
.,
(819%(43,9)”
wi=172 12, =1 (- )P o 26
[ONON
<
7= 0
43,
8JS
©0==9.1 12 = {[1+(~ DD+ 3al+ a1 0
w_
8JS Lo
177 =—[1—(-1)"] 59
w_
<
©==0.15 meV |22 _o 0
<= 43,8
41,9)(8J9%?
i SOy 570
w_w_
aSee Table IV.
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gap from zero to 9 meV when the Gsublattice evolves by NSF Grant No. DMR97-04532 and by the MRSEC Pro-
from disorder to order. gram of the NSF under Grant No. DMR98-089¢it MIT),

(4) The experimental results of inelastic neutron scatterunder Contract No. DE-AC02-98CH10886, Division of Ma-
ing for the lowest energy gaps are broadly consistent witherial Science, U.S. Department of Ener@y BNL), and by
the effective fourfold anisotropy previously obtained fromthe NSF under Agreement No. DMR-92431(dt NIST).
the statics experimenfsMore precise agreement may de- We thank M. A. Kastner for useful discussions.
pend on more accurate understanding of the various renor-
malizations due to quantum and thermal fluctuations.

(5) Our improved theoretical treatment which now in- APPENDIX A: INTENSITY CALCULATIONS
cludes the interlayer dipolar interactions resolves the mystery
surrounding the dramatic increadigst found in the statuf%) In this appendix we evaluate the intensities for which for-
in the effective fourfold anisotropy as the temperature is re- ; . . . .

. . mulas are given in Sec. V. We first give the unitary transfor-
duced into the regime where the (& order. In fact the . . . ) . .
dipolar interlayer interactions between the,Gudominates mation which bnnqs the matrice’ andB into b[OCk diago-
the effective fourfold anisotropy when the Csi develop Nal form. We do this for wave vectors= G+ q,z, where
long range order.
(6) Recent AFMR resulf§ lead to an identification of the

small in-plane anisotropies and qualitatively confirm previ- Hx Ky Lz

ous theoretical estimates of the exchange anisotropy induced G=2m—+—_+—| (A1)
by spin-orbit interaction&>*
ACKNOWLEDGMENTS whereH andK are either both half integral or both integral
This work was supported by the U.S.-Israel BinationalandH+K+L is an even integer. Then
Science Foundation. R.J.B. and Y.J.K. were also supported
|
[ 2 0 1 0 1 0 ]
0 \/5 (_1)H+K 0 _(_1)H+K 0
1 0 —(-1H\2 (—pHK 0 —(—DHK 0
U=~ A2
2|~z 0 (-L* 0 (1M o (A2
0 0 0 (=)*2 0 (=2
.0 0 0 ()2 0 — ()2

The first two columns are the high frequency,@ptical  block matricesM_,_=[A’+B']J[A’—B’] associated with

modes. Columns Nos. 3 and 4 are the=1 out-of-plane  the eigenvalueéthe squares of the mode energies . We
modes and columns Nos. 5 and 6 are the —1 in-plane  have

modes. The following results hold for all wave vectors of the

form g=G+q,z. $Z=[10], (07)2=(8I9)(xs+4A;S+1a),

1. Out-of-plane modes

o 1
For the out-of-plane sector we hater dominantJ) BT =[~ alV2x3+443:5+ 3a],
A’ B’ X3+4AJ18+%C¥ a/\/i ) %az
o ' (05)%=(81,9)| 4A),S+a— —— |
al\2 400,S+ a ' ? ? Xa+4AJ;S+ La
A4
L 8IS (20,8 (A4)
ATFB= \/Eles 8J,S (A3) Also we find that
independent ofG, where x3=2J35 1—coscq/2)]. Note Hak
thatq, is measured relative to the reciprocal lattice vector in V(z)' = 1-(=1)
guestion. We now tabulate the right eigenvectors of the 0 ’
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1+(_1)H+K 1+(_1)H+K
V(np)' = for integerH, Ab5g) V(z)' = ,
(77) \/E(_l)H, g ( ) ( ) _\/E(_l)H
0 0 _( H+K
V(Z),:LZH \/5} V(77)’={0 for half integerH. V(77)’=[ 0 for integerH, (A8a)
(A5b)
Note that the vector¥(«)’ depend orG. Substituting these V(z)' = {0} V(p)' = 0 for half integerH.
evaluations into Eq128 we obtain the results for the inten- ol —J2(iH)H
sities in Tables VI and VIl for the out-of-planerE& +1) (A8b)
modes. As before, only the vectorg¢(a)’ depend orG. Substituting
these evaluations into E¢L29) we obtain the results for the
2. In-plane modes intensities in Tables VI and VII for the in-planerE& —1)

For the in-plane sector we hay®r dominantJ) modes.

Xs+(Stia V2({S—ia) APPENDIX B: SHENDER PARAMETERS

A'+B' = . .
J2((S—1a) 2{Sta In this Appendix we evaluate the averages
8JS 23,8 Ar=(anf 1), (B1a)
A —B' = , (AB)
V23,8 83,8 Ay=(anen), (B1b)

and we now tabulate the rlght eigenvectors of the block Mayhere siten is a nearest neighbor of site The above guan-
tricesM_, =[A"—B'][A’+B'] associated with the eigen- tities can be calculated perturbatively in the frustrated cou-
values(the squares of the mode energiex;z. For dominant  pling J;, between Cpis and Cy'’s. (See Fig. 1.

J we have the approximate results

1.A,

o)-{o

T-=[1,0], (w0 )?=(8IS)(xz+{(S+ia), Thus

V== 2({S—La),xz+ S+ ia],

n

1 N Tl
Ar=— OVI-IIEamfn amfazVin|0), (B2

({S—3a)?
<\2_
(02)7=(8J55)| 2{S+a— Z(X +{S+ia) (A7) \where€is the unperturbed energy of the virtual state relative
3 z to the ground state. Here we invoke perturbation theory rela-
and tive to decoupled Guand Cy subsystems, and

V,_,,=J128[ Y [ala+efej+ae+ale/1+ > [ala+f]fj+alf;+fla]+ > [bib+efe;+ble+efb]
iea,d iea,d ieb,é

+ > [bloj+f/f;+bifj+bt11+ X [clci+efej+cle+efcil+ X [clei+f+cifj+cff]]
ieb,s i S5 i S

lec, lecC,

+ > [didi+efej+dig+dfef1+ > [didi+f/f;+df;+fld]]. (B3)
ied,é ied,és

Only terms inV,, which have operators in both subsystems contribute. Also, it suffices to treat each subsystem as an isotropic
Heisenberg model. Accordingly, in EB2) we need keep only terms withor e anda', d*, b, or c. So we set

Vi =V,=31,82 [alef+a/f;+elbj+bifj+efci+cif;+dlef+df;]. (B4)
i,6

Thus withn=m-+ &,; we haveA;=A] +A] , where
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AI=—lesga<0aF§a ><0|[e.+5 i s, [0)— J1282< ><0|[e.+5 Fhiveyfhes [0)

—J1§§C<0céa ><0|[e.+5 +fiv o, fme s, [0) J1252< Lan ><0|[e.+5d+f.+5df]f +5,10),
(B5a)

——lesga< amg ><0|f coglels, tfivs,JI0)= lesZ< amz ><0|f N e (P [V

_J1252< amgcl ><0|f roglel st fiva,10)— J1282< am%dT ><0|f w8l syt fiva, J10)-

(B5b)

Here we neglected the energy of the,Guodes in comparison to that of the Guodes. Also we used the unusual notation
that

0= Ts. (B6)

As will become clearer as we proceed, one can deduce the forAy offom that of A] by interchanging thé and m
coefficients defined in Eq$B9) and (B16), below. Therefore we focus of; which is

J1oS 1 . : . :
Ar=- Nli 2 2 <o aT<q>§a(q>’0>e'<q+k>"im<0|[ef(k)e'k'5ae+f(—k)e'k'ﬁaf]f*(—me'“af|0>
uc gk iea
les 1 . . . .
22 <° b(—q)ga<q)‘°>e'(q“"”m<0|[e*<k>e'k"%e+f(—k)e'”of]f*(—k)e—'k'ﬁaf|0>
uc q, ie
J 1 ) : : )
> <0 c(—q)gam)0>e"q+k>"im<0|[e*<k)e'k'5ce+f(—k)e'k'ﬁcf]m—k)e—'k'faf]|0>
c gk iec
J 1 . : . )
— <0 dT(q)—a(q)’o>e'(q+k>'fim<o|[eT(k)e'k-5de+f(—k)e'k-ﬁdf]fT(—k)e'k-ﬁaf|o>. (B7)
Nuc g,k ied £

Doing the sum over we get

Ap=- J,\ff 2 <0 a*(q)%a(q)’0><0|[eT(—q)e‘q"fae+f(q)e‘q"’af]f*(q)e“"‘?af|0>
—JlesE <0 b(—q)%a(q)‘0><0|[eT(—q)eiq"*ve+f(q)eiq"*ﬂf]f*(q)eiq"saf|0>
uc ¢
- JleS% <0 c(—q)%a(q)0><0|[eT(—q)e‘q‘5°e+f(q)e‘q“scf]f*(q>e‘q‘5af]|0>
J,S 1 4 . .
N % <0 dT(q)ga(q)‘0><0|[eT(—q)e"q'ﬁde+f(q)e"q'5df]f*(q)e'q‘5af|0>- (B8)

For the Cy subsystem we have the usual relations
e(q)=lgng—mgs’ 4, fT(—a)=—mgng+1gs",, (B9)
where (q) and (q) are the normal mode operators for the,Gubsystem antl, andm, are given by

, 1+e(q) , 1—€() ) (B10)

T 2e(q) 0 2e(q) 0T 2e()”
wherey(q) = %[cos@qx)vLcoseqy)] ande(q)?=1—y(q)?. In the ground state we evaluate the averages to get
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J12S
+—_
A= % <o

1 . . A J1S 1
a*(q)—a(q)‘o [—Igmge 9 St 2e710 Aar]eld dar— 222 3 <0‘b(—q)—a(q)0
< Nuc % <

_ : . J1oS
— ~iq- dhet | 210" B gid- ar— 127
X[—lgmge +lge le Ny Eq: <0

1
C(—q)ga(q)0>

i i i J1S
X[—lqmge ™' %et]2e 19 %r] el far— N > (0
uc q

1 _ _ _
d'(q) Ea(q)‘ o> [—1gmge "% et | e~ 10 %ur] el %ar

_ J125 t 1 iagy | 12 J125 . —iqyai2
- % <Oa(q)ga(q)‘0>[ | gMge'2+12] Ne. % 0/b(—a) za(a)|0 ) [—lqmee™
. . J 1 . . .
+|ée|qya/2]e|qxa/2_ le % <0 C(_q)Ea(q)’0>[_|qmqelqya/2+|§e—|qya/2]equa/2
J 1 ‘
- les% <o dT(q)Ea(q)‘0>[—lqmq+lée'qxa]. (B1D)
uc

For the Cy subsystem we have normal modes via the transformations
a(q)=(1N2)[a,(q)+a_(a)], d(@)=(1N2)[a.(q9)—a_(q)],
b(a)=(1N2)[b. (@) +b_(q)], c(a)=(1N2)[b,(aq)—b_(q)]. (B12)

In terms of these operatofm the ordera,, b, , a_, b_) we have the matriceA andB:

4J+23, 0 0 0
A(Q) 0 4+23; 0 0
s 0 0 43+ 23, 0 (B13
0 0 0 43+ 27,
andB(q)/S as
0 2J(c, +c_)+2J;¢c,
2J(c, +c_)+2Jsc, 0 0 0
, (B14)
0 0 0 2J(c,—c_)+2J5c,
0 0 2J(c,—c_)+2J5C, 0
|
where B,(q)
I(,'qm(,yqz2E @ (B17)
c.=coda(ay+qy)/2], c_=coda(dy—dy)/2], 7
Here
c,=cogq,c/2). (B15)
Now each sector has relations analogous to thgsCu En(9)*=A*-B,(q)?, (B19)
ao(Q):lo,qao(Q)_mo,qﬁZ(_Q), where
bl(—a)=—m, g, () +1,485(—a),  (B16) A=43S+235S,
wherea(q) andB,(q) are the normal mode operatdusith
wherean (@) anipn perata B,(0) = 205(cog (0 + Gy)a/2] + o cog (d— ) /2])
+2J3Sc09q,C). (B19
2 =A+E0(CI) m2 _A_Ea(q)
79 2E,(q) T 7Y 2E.(q) Thus
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1
a*(q)ga(q)’0>=%§ (0lal(@)a,(a)[0)E,(q ‘1=%Z‘ m5El(q) "

R o
Similarly
1 - A+E,(q)
At _1 2 1_
<0 a(a)za (q)‘0> zg I5Ex(a) E AE(Q)? (B21)
1 _ A—E,(q)
T - _1 2 _
<o d'(a) za(a) 0> =32, omE,(q) =2 o Eq? (B22)
1 A+E,(q)
—qt _1 2 -1 i
<0 a(q) zd (q)‘0> 22 olgEqa(a) ; T AENQ? (B23)
1 ; 4 < Bo@
<0‘b(—q>ga(q>‘0>=—z§ LMo o(@) == 20 2 2 (B24)
1 B,
<a (q>gb<—q>‘0>=—%§ |7.qMagBo() 1= = 2 45—((2))2 (825
1 B,
<0 c(—q)ga(q)’0>=—%§ol ola,qmoan(q)’1=—§g‘, T IE ((2))2, (B26)
1 B,
<0 a(Q)EC(_Q)‘O> :_% = Ulu,quqEU(q)_lz_; 0-4E (((;))2 (827)
Then
A=AT+A]

=~ an_ 2 2 [E(@%e(@] {A-Ey ()]~ v(@e' %+ 1+e(a)]+[A+E,(a)][ - v(@)e' "+ 1-e(q)]

q

—B,(a)[ — y(q)e” B2+ (1+ €(q))e'W¥?]e %2 —B (q)[ — y(q)e~'V¥2+ (1 - €(q))e'D?2]e'H@2— B (q)

X[ =A@ eV2+ (1+ e(q))e” V2] b2 gB, (q)[ - y(q)e' V¥ + (1- e(q))e HH2]e!de

FOTA=E ()]~ 7(@) + L+ e(@)e %]+ o A+E,(q) ][~ 7(a) + (L~ e()e™*]},

where

¥(q) =3[ cogaya) +cogqya)] (B29)

and

e(@)?=1-y(q)* (B30)

We use the fact thalz;<J. Only if a sum is divergent will
it make a difference if we retain nonzeda. So we tenta-
tively assume no divergences and write

B (q)=4JScogq,al2)cogqyal2), (B313

(B28)

B_(q)=—4JSsin(g,a/2)sin(qya/2). (B31b

We now simplify Eq.(B28). We note that under the sum
over wavevectors we can replace eg) by y(q). Let us
apply the same reasoning to éxp,*+qy)a/2]:

exfdi(ax*=ay)a/2]
=cogq,a/2)cog qya/2) = sin(q,a/2)sin(q,al2)

+i[sin(gxa/2)cog qyal2)a* cogq,al2)sin(qyal2)].
(B32
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After summation over wave vectors the imaginary parts will exdi(qy—ay)a/2]
drop out. So ) )
. =co0gq,a/2)cog qya/2) + sin(qya/2)sin(q,a/2)
exdi(ax+qy)al2]

1
— cog Q,al2) cog q,a/2) — sin(g,al2)sin(g,a/2) =l 235 JS>§ oB,(q). (B33b)
_ In this connection note that sums which are proportional to
=[— B , B33 .
(4JS) 2,;‘ sl (B339 B.(g)B_(q) vanish. So

1

A — -
' E,(q)%€(q)

J12S
8N, 2

c q g

) [[A—EU(Q)][— Y(@)?+ 1+ e(@)]+[A+EL()][— v(@)?+1—e(a) ]+ o[A-E,(a)]

B,
X[v(@e(@]+olA+E ()]~ v(q)e(q)]—( 4;?)[— (@) 0B,(q) + (1+€(a))B,(q)]

Bt B, (a)+(1 B 78,49 B,(q)+ (1+€(q))oB
~| 235 |[- (@oBy(a)+ (L~ e(@)B, (]| —;755~ |[~ v (AB(q)+ (1 +e(a)oB,(q)]
_(9BAD) s - 5
43S [ ’}’(Q) U(Q)+( f(q))O' o.(q)]
- ————— |{2Ae(q)*~2E,(q) e(q) — 2E(q) e(q) o ¥(q) — (IS T'B(a)’[1—o¥y(a)]}. (B34
8Nue ‘7 %7 | E,(9)%€(a) ’ v o

Now we must understand how the wave vector sums are to be done. The unit cell is
a=ax+ay, a,=-—ax+ay. (B35)
Thus the reciprocal lattice vectors are
Gy=(mla)(x+y), G,=(mla)(—X+Y). (B36)

Thus the sums are carried over the first zone, shown below in Fig. 7.

2.A,

0)-{o
where we invoke perturbation theory relative to decoupled and isotropia@lCy subsystems. As foh; effectively we

have Eq.(B4). Thus, as before, we writd,=A, +A, , where A, is obtained fromA; by interchanging all and m
coefficients and

Thus

1 1
A=~ < 0| Vi Eamen amen EVI-II ‘ 0> ) (B37)

1
aiTzvam

1
A; = _JlZSiEa <0 0><O|[eiT+5ae+fi+5af]em+5ae|o>_3128i2b <0’bi§am 0><O|[eiT+5be+fi+5bf]em+5ae|0>

O> (o|[ef, sgoT fiv oy €me 5ae|o>'

(B38)

1
di1L_am

—lesgc <o

Cizam O><0|[eiT+5¢e+fi+5Cf]em+fsae|0>_\]125izd <0

Then
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Az =~ JNl—gf 22 <0 a*(q)%a(q)’0>e‘(q*k)'”m<0|[eT(k)eik'"ae+f(—k)e‘k"saf]e(k)eik'5a8|0>
- JNl_i = < <0 b(_Q)%a(‘”‘0>ei(“k)'ri”‘(ol[eT(k)eik‘%e+f(—k)eik-sm]e(k)eik.aae|0>
- J,\ll—g? 2 & <0 C(—Q)%a(Q)0>ei(q+k)'rim<0|[eT(k)eik'5ce+f(—k)eik‘ﬁcf]e(k)eik'ﬁae]|o>
_ % 2 2 <0 dT(q)%a(q)’0> &K Tim( 0| [ &' (k) ek det F(— k)ek Hr]e(k)e Tk %d0). (B39

NP 1 . A .
A= N 2 <0 aT(q)ga(q)‘0><0|[e*(—q)e"q'5w+f(q)e"q'ﬁaf]e(—q)e'q"sae|0>
J 1 _ _ _
- I\}zs% <0 b(—q)ga(q)‘0><0|[e*(—q)e'q"5°8+f(q)e"‘"*Df]e<—q)e'q"$ae|0>
155 1 t —iq- &, —iq- & iq- &
“ Ny 2 | 0]e(-a) za(@|0 ) (Ol[e(~ e ket f(g)e ¢ rle(— )e'™ e]|0)
J125 t 1 t —iq-§ ~iq- & iq- 8.
" N, % 0jd"(a) za(a)|0 )(O|[e"(—qye " et f(q)e " urle( —q)e'd %c[0). (B40)
This is
L S 1 _
A2=—q % <0 a*(q)ga(q)0>[<0|e*(—q)e(—q)|0>+<0|f(q)e<—q)|0>e'q'5fae]
125 1 t iq- 6. iq: (830~ o)
"N, 2 | O[p(= ) za(@)|0 )| (Ol[e(~ el q)|0)e™ Aev (Ol f(q)e( ~ g)|0)e!t e )]
J12S 1 T iq- &, i Bac—iQ- &
"N 2 | 0e(-a za@)|0)[(OI[e"(~ q)e(~ a)]0)e'™ ect (0 f(g)e( ~ | 0) e’ et 1]
J12S . T iq-8 i0- (Bae Ba)
"Ny, 2 | 0]d7(@ Za(@)|0)[(0ILe"(~ qe(~ a)|O)e'® eat (Ol f(@)e( ~ )0y 0. (B4Y

Here the symbob;,. denotes the vector which goes from fasite to ane site via ana site, such that fae is a sequence of
nearest-neighboring sites. So

A=AF +A,

318 . ‘
- 4:\7 C% Z‘ {Eo(@) " [A—E (@) I[M;—1qmge @]+ [A+E () ][15—Iqmge ']

_ Bg(q)[e_i(QX+Qy)a/2m§_ | qmqei(Qy_QX)alz] — Bg(q)[e_i(QX+Qy)a/2| é_ |qmqei(Qy_QX)a/2]
— O-Bo_(q)[ei(qy_qx)alzmé_ e_i(qx+qy)a/2| qmq] — O-Bo_(q)[ei(Qy_qx)a/2| 5_ e_i(qx+qy)a/2| qmq]

+0[A—E,J[e”%m—1mg]+ o A+E, ][ ' %*mZ— I m,]}. (B42)
Making the same replacements asfipwe get
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J125

A== 5 S B HA- EA@IIME - g (@] +[A+ E (@I lqmyy(@)]

~B,(0)B,(q)(4J9) 1 [m;— alqmg] —B,(q)B,(q)(43S) " [15— ol qmg] — 0B, (q)B,(0)(4S) [ om;—Iqmy]

— 0B, (A)B,(9)(439) [ oli~ gl + o[ A—E, I (@) mG—1qmg]+ o[ A+ E, I w()Ig—1qmg]}. (B43)
This is
o=~ sig > El(a) %e(a)” 1[[A Eo(@)1[1~e(a) ~ 7]+ [A+E,(@)][1+e(a) ~ 7(a)?]
_[Bola” 2-2 —(M 20—2 +o[A-E 1- -
135|127 207 @)1~ | ;55— |[20-27(@)]+ o[ A-E (@) »()[ 1~ e(q)]— ¥(a)}
+o[A+E (N y(a[1+e(a)]+ y(q)}}- (B44)
So
2oy (—2 {2A€(0)?+2E,,(q) €(q) + 2E,(q) o ¥(0) €(q) — B, (@) 2(IS) [1~o¥(q) ]}
Nue“a o | E (q)%e(q)
(B45)
3. Summary
So
‘J12
A1=—(E)(ca—cﬁ) (B46a
A :—(J—lz)(c +Cp) (B46h)
2 2J3) T TR
where
Sy (—2 {2A€(0)*~B,(9)?(IS) [1-op(a)]} (B473
Nuec " “o | E,(a)e(q)
Cp= 4%%2( (q)){2[1+oy<q>]}. (B47h)
If we extend the sum over w/a<q,,q,<m/a, then we may write these as
C,= = > ( - ){ZAe(q)Z—B (@9 1- ¥l (B48a
N T | EL (@)% ' !
_Js > ( )
Co=any, 2 | E, (g 12T @ (B48b)
Of course, note that now ,=2N,.. So it is convenient to introduce the notation - ), to denote (Z\Iuc)‘lEq. Then
C =J—S< -5 {ZAE(Q)Z—B+(Q)2(JS)1[1—7(q)]}> , (B49a
T 2\ Ed(@)e(0) ;
JS ( 1 )
=5\ | g AL Y@L} (B49b)

q
or
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c _1/1- y(0)?- 2 cog(aqgy/2)cos(aq,/2)[1— y(q)]
“ 4\ [1-co(agd2)cod(aq,/2)]V1- ¥(q) .

cﬁ=%< L9 > . (B50b)
q

(B50a

V1-cog(aqg,/2)cos(aq,/2)
In the approximation thay(q) =0, etc.C,=Cz= . Numerical evaluation yields

C,=0.1686, Cz=0.4210. (B51)

APPENDIX C: IN-PLANE Cu |-Cu; INTERACTION

Hs=53,SD, [c(k)—cy(k)][a(k)+aT(—k
Here we reproduce by perturbation theory the gap found 0 ! Ek: Lek)—e k) JLatk) (=h]

phenomenologically by Yildirinet al1®* We treat an antifer-
romagnet on a square latti¢ef lattice constang), in which
there are two sublatticea,andb. The lattice is shown in the
Fig. 6 with the magnetic unit cell within dashed lines. The
magnetic unit cell has basis vectors

X[bT(k)+b(—k)], (C5)

wherec, (k) = cosk.a andc,(k) = coska.

Since the effect we wish to treat involves energies of rela-
tive order (15), we now consider the fourth-order teris
o in the boson Hamiltonian, which we write as

ay=aé+arn,

V4:VJ+V5, (CG)
a,=—aé+an. (Cy where
We transform to bosons using Ed.3).

First we consider term®{ in the Ha_1m|Iton|an which are V,= _%JZ bjT(aiTvaj)zai , (C7)
guadratic in boson operators. We write {m

H=H;+Hs. (c2)  Where(ij) indicates that is summed ovea sites and over
nearest-neighboring sites and
Here
V5: 5J1<2> 0'5[_ %a;ra;rai(b;t-F b])
ij
Hy=438, {a'(g)a(a)+b(q)b(a) + ¥(q) R
q _Z(ai+ai)bjbjbj+ai albjbj], (CS)
x[a'(q)bT(—q)+a(q)b(—q)]}, C3
[ (@bi(~a)+a@b(-a)l} €3 whereo s is +1 for x bonds and-1 for y bonds.
with
k
y
() = 3[ cosq,a-+ cosqya]. (C4)
[ [}
and the sum over wave vectors is over the Brillouin zone ( ma,m/a)

associated with the magnetic unit c&ke Fig. 7. Also

“Nb.”
—> <— —>
FIG. 6. Unit cell of the square lattice. FIG. 7. Brillouin zone for the square lattice.
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We construct the effective quadratic Hamiltonian by tak-
ing all possible averages of pairs of operators out of theAHs= 5312 o —3ala(al(b]+b)))
fourth order terms. Thus we have the effective quadratic '
terms —3(ala]+aa)(ai(b/+bj)—3b/b(b;(al +a))

—5(b/b]+b;b)){(al +a;)b])+ (ab; +a;b])(bla;)
AHJ——-JE [aib]((bj+a])?)+2a;(b;+a) +(afbf+a Nab)] 13
i | iMj/ 1.

X (b{(bj+al))+2b](b;+al)((bj+a)a) Thus we need the averages

+(bj+a)Xab/)] (C9
X,=(b)=((b))?)=(af)=((a))?),  (Cl4a
and
X,=(b/bj)=(ala), (C14b
AH§:5~]12 U,s[—%a?(bf+b;)<a?ai>
W Yi=(bja)=(bfa)=Yo+a,Y, (C140
—3alai(a/(b{+b)))—3ala](ai(b]+b)) -
Zi;=(bla\=(b.a)y=Zo+ o 5Z, C14
—iai(b/+b))(afal)—3(al+a)b(bfb)) i) ={(ba) =20t o5 (C1ad
—zbb(bj(al+ay))—i(al+a)bf(bjb) where
—ib;bi((al +a)b]) +alai(blb;) +b/b(ala;) ) . .
foytalh! tolal Yo=iX Yij=12> (bfay), (C159
+ab<b a;) +a; bj(aib;)+bjai(ajb;) ] i
+bjai(blal)], (C10
] ) Y:%E UﬁYij:%E o;;(b;rai y (Cle
where(X) denotes an average with respect to the quadratic ] ]
Hamiltonian.
Since the quadratic Hamiltonian is real and Hermitian we . .
can equate averages lika/b/) and(a;b;). Also at this or- ZOZZ; Zij:Z; (bja), (C159

der of (15) we only need keep Hermitian contributions to
the effective Hamiltonian. Therefore we write

-Nb—-

Ej: _%2 O'g(bjai>, (ClSd
AH;= —-JE [(aib]+a]b)((b;+a)?)
where the sums ov@rare restricted to sites that are nearest

+4(a;+b, )(bj+a;r)<b;r(bj+a?))+(b;r+ ai)2<aib;r neighbors of sitd. Now drop terms which sum to zero be-
- : cause ofr s and also thosésuch a§ijaga;‘bj) which do not
+(bj+a)%aibj)]. (C11)  contribute at zero wave vector. Then we get

Next we consideAH 5. Here we can eliminate any terms L M
which involve local averagege.g., (a'a))) because they AH;+tAHs= _ZJ% [(2X,+4Yo)(aibj+aib))
multiply a function whose Fourier coefficient vanishes at :
zero wave vector. Thereby we have +Yo[ (b))?+ b7+ a7+ (a)?]+ 4(X,+ Zo)

X (a +b;)(aj+b])]

AH;= 03,3 of - safadal(b]+by))
i +§63,> [(Y+Z)[—4aja—4b]b;

—%al a‘r<a(b"+b)) bijj<bj(aiT+ai)> ) IJT ) T + +
—a?—(a 2—b<— b, 214+8Y(a'b; +ab!

_ijbj<(af+ai)b]T)+ainj(b}Lai) (&) 0] abran)

+82(ab] +ab)) (C16)
+a/b/(a;b;)+b/a(alb;) +b;a(b/al)]. (@ 1

(C12  The coefficients can be evaluated straightforwardly. For in-
stance, if one considerd; as the unperturbed Hamiltonian
Taking the Hermitian part of this we get and treatsH s as a perturbation, then one has
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Y= %; 05<b;rai>

(o
(C17)

where|0) is the spin-wave vacuum ardtlis the unperturbed
energy of the virtual state. We give the evaluations

+ 1
bj a; E,H(s

:2}_: oy

1 T
0)+(0|H,zb]ai[0),

PHYSICAL REVIEW B 64 024436

and Vf12 is obtained fromV$, by replacinge by f', x by
—X, y by —y and normally ordering the result. So we focus
on V3,. Eliminate terms linear in the boson operators by the
shifts

e—e+s,

ai—>ai+t, bi—>bi+t,

ci—Cjt+t, di—>di+t. (DZ)

The corresponding Fourier transforms are shifted by a factor
VN¢. For example,

X1 =4C,(83113)2, (C18a
Yo=4Cp4(83,13)2, (C18b N;cl’ZEi a,=a(0)—a(0)+tyNye. (D3)
Y= 78C2a(00119), (C189 In what followse will denotee(q=0) and similarly for other
Z=—8Cyy(83,19), (C189 operators. Then the linear terms in the Hamiltonigp are
where V§=—463,,5N,S2(e"+e). (D4)
1 [c,(q) —cy(q)]z The quadratic zero-wave-vector terms in the isotropic part of
Coa= (C1938  the Hamiltonian are
& 128N 4§ e(q)?
) V,=(4J+2J3)S(a’a+b'b+cic+d'd)+4J,S(efe+ £1f)
e 1 Lex(@)—cy(a)] 2 (19 - - . ‘
2= 108N < PE Y@, (C199 +J8([al+dTf+[bT+cfle+[a+d]fT+[b+c]eh)
, +(2J+2J3)S(a’b’+c'dT+ab+cd)
1 c —C
Coc=ToaN [ X(q)( )g(q” [1+2v(q)?], +239afct+bfdt+ac+bd)+4J,5(etf T +ef)
q e(q
(C199 +JS([aT+dTef+[bT+cTfT+[a+d]e+[b+c]f).
Cq=C,—Cy, (C199 (D5)
where e(g)2=1— 7(6)%.Ca=Cyat Cap. We determine the shifts andt by requiring that
To summarize, the effect of quantum fluctuations of the
. ) . ) ; A(V1+Vy)
in-plane exchange anisotropy are contained in the effective oy o'
Hamiltonian of Eq.(C16). Since the result is given in real oe
space, we can apply it now to the 2342 structure where it N o _ I
gives rise to contributions to the dynamical matrices written NueS(—403127S/2+ 23,1
in Eq. (69). The terms proportional t¥,+ Z, are taken into +4J,5+ 231t +4J,8),
account by the spin-wave renormalization incorporated in
ZC " (7(V1+V2)
~ . °
APPENDIX D: IN-PLANE ANISOTROPIC I-lI
INTERACTION =N, (4J+235)t+J45S
We start from Eq.(71), which can be written a¥/;, +(2J+2J5)t+2J3t+J19)]. (D6)
=V¢,+Vl,, where 5
For J1,<4JJ, we have
Vi2:_5~]12\/3/22_ elei(atal  HdioHd, VS/2
. s=48)127g3 (D7)
2
—b_,—bi_y—ci y—cl ) —4831,5/S2
elee - =—0J1,8] sz (D8)
el +e— 8J+4J; 120912 3,(83+4J3)

X2

X [aiTerai +xt dinxdi—x"' biT—ybi —y+ CiT+yCi+y]
(D1)

s |+ 83152, (el +e)
I

As discussed in the text, these are the expected results.
Now we record the terms in the Hamiltoniaf, which
are cubic in boson operators
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Taking the Hermitian part of this, we get
HGI= 53,520 - ele(al, +a;+dl +di
iee (5J12)28

PMT T T1e), £

” [efi.stefl s+2effl
- bity_ bify_ci.r+y_ci+y)+2_2 eiTeiei
fee +26f;, s+ AfT, fi, s+ dele+ te2+ L(el)2+ 1F2,

+ 3 (el +e(@l @t dldi bl by +3(11 2+ 2(el el s+ i)
lee 6J 28

+ch ¢ )] (DY) -1 1&3)2 % {[6e(a)f'(a)+6e(q)f(a)
i+yvity/ (-

+8e(q)f(—q)+8e(q)ff(—q)](c,+c
Now make the replacements of Hip2) to get the quadratic (@f(-a) (@F(—a)liectey)
contribution fromH € as +16fT(q)f(q) +16e"(q)e(q) +2e'(g)e’(—q)

+2e(q)e(—q)+2f (@ ff(—a)+2f(q)f(—a)},

H(3’E):<e> 6‘]12VS/2| - 2 (ei‘r+ei)(ai‘r+x+ai+x+di1;x (D14)
lee

+di_— biT_y_ bify_CiT+y_Ci+y) which leads to Eq(75). _ _ _

Contributions from quartic terms in the ECy, interac-
tion are smaller, i.e., of orderd(;,)2J2,/(3J3), if we take
out one factor of e) and one factor ofa). Taking out two
(a) factors gives an even smaller result. Taking out tap
shifts from the Cyi Cy anharmonic term gives a contribution
of orderJ2,63%,/(3J5). All these terms are neglected.

+22 [ei2+ 2e?ei]+22 (aLXaHX-i- diT—xdifx

lee lee
+ biirfybi 7y+ CiJr+yCi+y)] : (DlO)

Here we dropped the terms proportional (@). They are
smaller than those ife) by J1,/(4J)~1/50. Also, as before,
to this order in 15 we may replace the perturbation by its
Hermitian part. Then the sum of the effective quadratic terms 1. Self-energy due to cubic perturbations

from 1€ and# " are We start by discussing how one constructs the self-energy

(8119)%S due to cubic perturbations. The point is that we wish to avoid
H=T12 7 > {arat(g)a(g) +bt(q)b(q) the complexities involving Matsubara sums, etc. Let us sup-
43 7 pose that we have an unperturbed Hamiltonian in terms of
normal mode operators(q) andF(q):

APPENDIX E: IN-PLANE ANISOTROPIC II-I
INTERACTION

+c'(q)e(q)+d'(a)d(a)+e'(a)e(a) + f(a)f(a)]
tel(@e’(-ate(@e-a+fi(fi(-q H=2 o(E(QDE@+F(@F(@].  (ED
+H@H(—a)+[e(@)—H(a)+e'(—g)—F(—q)] Lo U

Now we want to identify the perturbative contributions to the

x[—a'(q)+b'(q)+c'(q)—d'(q)—a(—q) matricesA(q) andB(q). Suppose we wish to calculate per-
turbative contributions leading to an effective quadratic

+b(—ag)+c(—q)—d(-q)l}, ®1D  Hamiltonian of the form
which leads to Eq(74). . 1B(qEN(@E (- q) (E2)
Now we look at the fourth order terms in the GGy, 2Bg)Eq a-
isotropic exchange interaction. These are For this purpose we make the identification
1
Vom=—332 2 (€Tl fl,fis st fisselere 5B(Q)=<0‘E(Q)E(—Q)VEV 0>- (E3
+ Ze;reif;rﬂsfwa)- (D12 Thus forw(g)— 0 and considering only the ground state, we

o i o may write
Substituting in two shifts ofe), this is

1
sB(q)= < o‘ IVIIET(q)=aVIET(— q)‘0>
VDM:_%<e>ZJ2% [effii ot 2fl s st 26/, 5 ¢

1
+(fl, 2+ 2f, se+f. el +2ee+e’+2ele + < 0| aV/JE( —Q)EﬁV/ﬁET(Q)‘0> . (B9
+2ff st st 2(ef He) (s + 111 5)]. (D13  Similarly for the term in the Hamiltonian
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A(QET(@)F(q) (E5)
we make the identification

5A(q)=<0‘E(q)V%,VFT(q)O>. (E6)

Thus forw(q)—0 and considering only the ground state, we

may write

SA(Q)= < o’ &V/aET(q)%c7V/aF(q)’O>

+<OaV/&F(q)%aV/aET(q)‘O>. (E7)

This type of relation holds generally under the two assump-
tions: (a) we consider the perturbation to modes whose en-
ergy can be neglected in the energy denominatorglange
consider only the ground and low lying excited states, so that
boson occupation numbers are zero. We have made the iden-
tification in terms of the normal mode operators, but equally

we may transform to any set of modes.

2. Application to Cuy,-Cu,, in-plane interactions

We start from Eq(76) and implement the results of the

preceding subsection. For sméllwe write

T,=dV/de(k)

=5J2m; [f(a)+fT(—a)le’(a)(ce—cy),
T,=0dV/de'(k)

=5J2m; [f(a)+f'(—a)le(—a)(c,—cy),
Ty=dV/at(k)

=—6J2J28/—NW§ [e(a)+e(—a)]fT(a)(ci—cy),
T,=oVIofT(k)

=—6Jz¢28/Nuc§ [e(q)+ef(—q)If(—a)(c—c,),

(E®)

where c,=cos@q,) and c,=cos@q,). Thus if E denotes
—p, then

1 25(583,)? —
<T13T1>:S(N—u:)2 <[f(q)+f*(q)]eT(q)(cx—cy)

ap
1 —
xz[f(p)ﬂLfT(p)]eT(p)(Cx_Cy)>

_ 25(83,)? »

N <[|q5q_mq’7q](_mq5<?
uc q.p

PHYSICAL REVIEW B 64 024436

1 t,y sty ot
(Cx_Cy)E[_mpﬂ?’*"pap_]lpﬂp(cx_cy)

(Cx—cy)2I5m3
8J,Se(q)

_28(83,)°

Nuc q

_ (a9 ((cx—cy>2) y(@)°
AN T | e(q® | 4

where the normal mode operatayéq) and 5(q) were intro-
duced in Eq(B9). Similarly

1 1
TlETZ = TZE-Tl

(832 ((cx—cy>2>

(E9

AN T | «(g)?
1-e(q) y(q)?
><( 5 + 2 ) (E10

1\ [ 1\ (892 & [(c—cy)?|3¥(q)?
() im0 3 [T

(E12)
1 1
<T1E,T4> :<T4E,Tl
_(0%) < ((cx—cy>2)[1—e<q>]2
435Ny g e(g)® 4 .
(E12

Now we have the contribution to the coefficient efe,
which we denotedass, as

1 1
5a55: Tl ETz + TZETI
=[83513,][ —32C,— 16C ], (E13

whereC,, andC,,, were defined in Eq(C19).
Likewise the contribution to the coefficient ef f which
we denotedagg is

1 1
58.56: < T]_E.T4> + < T4 E.T1>
=[(832)%135][32C 4~ 16C5p]. (E19

Similarly, &b is the contribution to the coefficient gke'e’,
so that

1
obss= 2< Ty ET1> =[(832)%13,][ - 16Cy,] (E15H

and likewise
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1 1 T:l 1—0i0; a.Ta.+aTa.
5b5‘5:<leT3>+<TszT1>=[(5J2>2/J2][48c2b]. e @a )

(E16 +5(1+ai0))(a] +a)(a] +a))

__1 24t T
APPENDIX F: INTERPLANAR ANISOTROPIC Cu ,-Cu, To=—32(1+oj0))c(aja +aja))

INTERACTION .
+%[%(1_0i01)(a;r+ai)cﬂiﬂj+'UiS(ai_aiT)]
1. Pseudodipolar interactions

L1 ma)(al+a. ydioa(a —al
In order to facilitate the evaluation of the lattice sums we X[z(1-ojoj)(ajtaj)cuiujtiois(a;—a;)]

parametrize the anisotropic exchange interactions between
theith Cuy, spin in one plane and the nearest-neighboyiing

Cu, spin in an adjacent layer. We introduce the indicatorandT; is obtained fronil, by replacing siny by —cosy and
variable o; which is unity if i is on thee sublattice and is  cosy by siny. Thereby we get the site-diagonal contribution
—1if i is on thef sublattice. We also introduce a variakle  to the Hamiltonian as

to distinguish between the two nearest-neighboring sites with

the same value otr;. Then for the interaction between

(F5

nearest-neighboring Guspinsi andj in adjacent CuO layers

we use Fig. 4 to write the principal axes as

nt=[3(1+a0) p—3(1— 00 Elmin;, (F1a

NSV =[3(1+ oi0y) Ecosy+ 3(1— oi0;) 1 CoSYl i

+zsiny, (F1b

n§=[3(1+ O'iU'j)gSim/er%(1—0'i0j);75inl/f]ﬂiﬂj
—Zcosy. (Flo

We also write

S=—o0i(S—ala) &+ S2(af +a) n+iVS2a—a)za,
(F2)

where, in this appendixg; is the boson operator for spin
Then we have

§-n{V =3 (0~ o)) wini(S—afa) +3(1+0i0y)

X ipiSI2(al +ay), (F33
S-ngV=— %(S_a?ai)c(0i+0'j)ﬂiﬂj+ ;(1-0oi0))
X pipic\Sl2(al +a) +isoi\S/2(a;—a)),
(F3b)
S-n§=— %(S_a;rais(o'i+0'j)ﬂiﬂj +3(1-0i0y)
><,ui,ujs\/8/2(af+ a;)—icaiVJS/2(q —aiT),
(F30

wherec=cosy ands=siny. Then we have

3 3
Hij=S2, KnlS: NS Np]=S 2 KnTm, (F4

where, at quadratic order

SH=4AKSY, a]a;, (F6)
|

whereAK was defined in Eq(83).
The remaining contributions to the Hamiltonian are found
from Eq. (F4) to be

SH=3 2 {iKiS(1+a0))(al+a)(al+a))
iellj

+3K S 5¢3(1-0o0y)(a] +ay)(a] +a))
—ojo;s?(a—al)(aj—a)) +icsuiu(oy— o)

X (a +ay)(aj—a)]+- -1, (F7)
where- - - indicates further terms ik 5 obtained from those
of K, by replacing cog by sing and sing by —cosy andj

is summed over Gunearest neighbors in adjacent planes.
For g,=q,=0 the imaginary term gives zero contribution to
the dynamical matrices. Then, the terms with= o} give a
contribution to the Hamiltonian of

S
oH=7 2 X [Kya'+a)(a+ay)—Kys%(a—a)

I ]Z(J'J':U'i

X (aj—a])—Ksc¥(a—al)(a—a])]. (F8)

The terms witho;= —o; give a contribution to the Hamil-
tonian of

S
MZZE ) 2 [chz(ai‘i‘ai‘r)(aj‘i‘a;‘)
1 ]:0'j=*0'i

+Kps?(a—al)(aj—a)) +Kss*(a+a))(a;+a))

+K3c2(ai—a?)(aj—af)]. (F9)
The term in Eq(F6) and the number conserving terms in Eq.
(F8) reproduce Eq(82a and the other terms in EqF8)
reproduce Eq(82h). Equation(F9) reproduces Eqs(82h
and(82¢).
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2. Dipolar interactions wherec,=c0s(,c/2), i is a fixed site in thes sublattice, and

For the dipolar interactions it is convenient to constructtN€ Sum ovey is restricted to the planes adjacent to site
the Hamiltonian explicitly rather than to identify it with the _ TNis interaction is negligibly small except with respect to
pseudodipolar interaction. We substitute EB2) into the the lowest in-plane mode. So we only need the combination
dipolar interaction to get

d(ass+ bss—ase— bse)
Hij=9%uar; (S §=3(S 1y (S;-Fyp)] 3g%u3S .., .,
= 3 [oj(&-1ij)“—0oj(n-1ij)°C,]

—=39%udr (S (S Ty) etz = ez Ty
2
30%uk JOR 39°%usS
=—— B{—a'i[S—aiTai](f-rij)+ JS/2(a;+a) =j ”_ZE P [o(Xi; +Yi)) = ajC(xi; — Vi) ?].
rij el-4j= ij
X (- )+ S8 -aD) (2 1) (F139
i n . Note that the sum over sit¢sn an adjacent plane from site
X{—o[S—aja](& rij)+VS2(a+a)) i vanishes:
X(%F”)"‘lUJ \/S/Z(aj—ar)(ir”)} (F].O) U]Xﬁ U]yﬁ
. . . —= =0. (F14
Here we dropped the term 8- S; which may be included in jellizj=cl2 ri5j jellizj=cr2 rf}
the isotropic Heisenberg Hamiltonian. At quadratic order this
gives Thus
1 d(asst bss— ase— Dse)
H:Eij [ i
) € O XV
—6(1tcyggs > DN (g
ngﬂé . N o ) L " jE”:Zij:C/Z rlj
Ii’jE” 213 [oioi(aja;+aja) (&) —z(ai+ay)
. A A APPENDIX G: INTERPLANAR ANISOTROPIC Cu -Cu,
X(aj+a))(7-1ij)?+ soi0i(a—a) ) (aj—a)) (z-1jj)? INTERACTION
—ioy(aj+ ai‘r)(aj — a}r)(i ;ij ) (7 Fij )]. (F11) For the Cysites we introduce further indicator variables

(which tells the direction of the momerdand p (which dis-
We now consider what contributions this gives to the dy-Criminates between sublattiesuch thatr=p=1 for ana
namical matrix forg,=d,=0. Then the imaginary term can site, —7=p=1 for ab site, 7=p=—1 for ac site, andr
be dropped. For simplicity we truncate the sums to include= —p=1 for ad site. Then, from Fig. 5, we have the prin-
only interactions between adjacent planes. Then we have cipal axes for the siteisandj wherei (j) is in the Cy (Cu)
sublattice as

39°ugS

Sass= >, ——5—[(£-1)° =3¢ T)° = 3¢,(2-1;)7] . o
55 e |’i3] ij 2C; i 2C7 ij m(llj):_pl_\/ij[§+7i77]' (Gla
39°uES . .
T2 (&) (F123 S piojsing . .
je rij m(2IJ)=ZCOS¢+ L e i/z [7]—Ti§], (Glb)
39°%u8S. | - - -
Sase= 2, — 5[~ 3 (nTy)*+ 32Ty’ - pirCOSh .
< ij my)=—zsing+ ———[n— ri&]. G1g
30242S In checking the above it is useful to note that changing the
Sbss= > g ’;LB [—5(7-T)2+3(z-1))?]c,, sign of eitherp; or o; induces a 180rotation about thez
jee I‘ij axis.
(F120 Also we use Eq(F2) for the Cy, spins and
3g2u3S S=mn(S—ala) i+ VS2(a+a) p+inS2Aal-a)z

6b56=2f 5 [—3(7-1i)%—3(z-1)]c,, (G2
ij

] e

(F12d  for the Cy spins. Thus ifi labels a Cuspin we have
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3 3 3
. PiTTj - “ ,
m{". §=——="[~(S—ala) - VS2(a+a])], Hij= 2 My S12 [Mp-§1=SY KiTy, (G5
J2 m=1 m=1 m=1
(G3a and at quadratic order we have
o 1 T,=iroa'a+ala]+i[a+a][a+al], (G6a
m(ZIJ)'S:T[_Pio'js(s_aiTai)"'Pio'js\/S/Z(ai+aiT) S
2 T,=370;57ala+aa;]
+ircySal—a)], (G3b irc
+ %Pio'js(ai'f'ar)_"f(a?_ai)

1

m§". §=—=[~piojc(S—a/a) +piojcS/2(a; +a)

\/5 1 t iUJC t
X| zpiojs(aj+a))+ —=(a;—a;) |, (G6b)
~insVS(a-ay)] (G390 2
and ifj labels a Cy spin we have : : foims
Ts=370c7ala+aja]| 3piojc(a+al)— E(ai —a;)
ﬁwg‘”-sj=%[(s—a}aj)—Tiaj\/yz(aﬁaj*)], .
io;s
(G43 - %piajc(aj+a])—T’2(aj—a}) : (G60)
~ i 1 + + We drop terms which do not contribute to the dynamical
m; 'SJ:E[PiTiS(S_ aja;) + pjojsyS2(a;+a)) matrix for g,=0g,=0 and thereby find that
+iajc\/§(aj—a;r)], (G4b H= >, H;j
iell,jell
i) . g — 1 T f t
m3 'SJ—E[PiTiC(S_aiai)“LPi‘TiC S/2(aj+ay) =S ; ) {i(al +a)(a] +a) (K] +Kjs?+Kje?)
—io;sVS(a;—al,, (G40 ~i(al-a)(a-ah)(Kic2+ KD moy).  (G7)
wherec=cos¢ ands=sin¢. We now write This result reproduces that of E®O).
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