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Influence of quantum fluctuations on zero-temperature phase transitions between collinear
and noncollinear states in frustrated spin systems

Sven E. Krüger and Johannes Richter
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~Received 1 February 2001; published 22 June 2001!

We study a square-lattice spin-1
2 Heisenberg model where frustration is introduced by competing nearest-

neighbor bonds of different signs. We discuss the influence of quantum fluctuations on the nature of the
zero-temperature phase transitions from phases with collinear magnetic order at small frustration to phases
with noncollinear spiral order at large frustration. We use the coupled-cluster method for high orders of
approximation~up to LSUB6! and an exact diagonalization of finite systems~up to 32 sites! to calculate
ground-state properties. The role of quantum fluctuations is examined by comparing ferromagnetic-spiral and
antiferromagnetic-spiral transitions within the same model. We find clear evidence that quantum fluctuations
‘‘prefer’’ collinear order, and that they may favor a first-order transition instead of a second-order transition
when there are no quantum fluctuations.
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INTRODUCTION

While quantum fluctuations do not influence the critic
properties of phase transitions atT.0, they play an impor-
tant role atT50, and can yield to quantum phase transitio
which have attracted a lot of attention in recent times~see,
e.g., Ref. 1!. Quantum fluctuations arise due to Heisenber
uncertainty principle, and play a role similar to those of th
mal fluctuations~for T.0! in classical transitions. The spin
1
2 Heisenberg model is a basic model which shows str
quantum fluctuations in the antiferromagnetic case. Wh
the ground-state of the pure Heisenberg antiferromag
~HAFM! on the square lattice shows Ne´el long-range order,2

a competition of bonds can increase quantum fluctuati
and may result in rotationally invariant paramagnetic sta
suppressing the~collinear! Néel order. This was demon
strated by recent experiments on~quasi-! two-dimensional
Heisenberg systems, like CaV4O9 ~see, e.g., Refs. 3 and 4! or
SrCu2~BO3!2 ~see, e.g., Refs. 5 and 6!.

Besides local singlet formation, magnetic frustration is
important mechanism to drive zero-temperature transitio
In the classical Heisenberg model, strong frustration of
leads to noncollinear~e.g., spiral! spin states which may o
may not have counterparts in the quantum case. It is ge
ally argued that quantum fluctuations prefer a collinear
dering. A typical example is the frustrated spin-1

2 J12J2
model on the square lattice~see, e.g., Refs. 7–11!. Here the
classical version of theJ1-J2 model has a continuously de
generate ground state forJ2.J1/2, but quantum fluctuations
can remove this degeneracy, yielding to a collinear s
~‘‘order from disorder’’ phenomenon; see, e.g., Refs. 12 a
13!. Moreover quantum fluctuations can shift the critic
point of a collinear-noncollinear transition, so that the coll
ear state can survive into a region where classically i
already unstable.14–16

In this paper we extend our previous work,16 where we
have studied the transition from a collinear Ne´el order to
noncollinear spiral order in a frustrated spin-1

2 HAFM, and
now consider the transition from a collinear ferromagne
order to a noncollinear spiral order within the same mod
0163-1829/2001/64~2!/024433~4!/$20.00 64 0244
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While in the classical version of the model both situatio
can be mapped onto each other, the quantum model beh
basically different in both cases. This is because of the
ferent nature of the collinear state: While the quantum N´el
state on two-dimensional lattices exhibits strong quant
fluctuations~the sublattice magnetization of the HAFM o
the square lattice is only about 60% of its classical valu!,
the ferromagnetic state is the same for the quantum and c
sical models, and there are no quantum fluctuations in
state.

We use the coupled-cluster method17,18 ~CCM! and an
exact diagonalization of finite systems to calculate
ground state. The CCM is a very powerful method and, p
ticularly high-order implementations of this method can
used to obtain a consistent description of various aspect
quantum spin systems~for an overview see, for example
Refs. 19–24!. We note that another important method f
spin systems, the quantum Monte Carlo method, canno
used for frustrated spin systems since it suffers from
minus sign problem.

MODEL

We consider a spin-1
2 Heisenberg model on a square la

tice with two kinds of nearest-neighbor bondsJ and J8, as
shown in Fig. 1:

H5J(
^ i j &1

Si•Sj1J8 (
^ i j &2

Si•Sj . ~1!

The sums over̂ i j &1 , and ^ i j &2 represent sums over th
nearest-neighbor bonds, shown in Fig. 1 by dashed and s
lines, respectively. Each square-lattice plaquette consist
threeJ bonds and oneJ8 bond. A model with such a zigzag
pattern has been treated with various methods.16,25,26

In this paper we consider only cases in whichJ and J8
havedifferent signs ~i.e., one bond is ferromagnetic, whil
the other is antiferromagnetic! so that the plaquettes are fru
trated. The case with antiferromagneticJ bonds~i.e., J.0
and henceJ8,0! was studied previously using linear spin
wave theory,26 exact diagonalization, and the coupled-clus
©2001 The American Physical Society33-1
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method.16 In this paper we therefore focus our attenti
mainly on the ferromagnetic case~i.e., J,0 andJ8.0!, but
compare the obtained results with those of the antiferrom
netic case.

CLASSICAL GROUND STATE

We consider the ground state of the classical version
model ~1!, i.e., the spinsSi are assumed to be classical ve
tors. ForuJ8u,uJu/3 ~andJ andJ8 having different signs! the
ground state of Eq.~1! is collinear ~i.e., ferromagnetic or
antiferromagnetic depending on the sign ofJ!. At the critical
point Jc852J/3, a second-order transition takes place fro
the collinear state to a noncollinear state of spiral nature~see
Fig. 1!, with a characteristic pitch angleF56uFclu given by

uFclu5H 0, uJ8u,
uJu
3

,

arccosS 1

2
A11

1

uJ8u D , uJ8u>
uJu
3

.

~2!

Note that forF50 this is the collinear state.
The spinsSA and SB , belonging to theA and B sublat-

tices, respectively, can be expressed in terms of the spirk
vector16 with k5~2F,0! ~see Fig. 1!. We note that this spira
state is incommensurate in thex direction. We also note tha
for the classical model the antiferromagnetic case can
transformed into the ferromagnetic case by the simultane
substitutionJ→2J, J8→2J8 and Si PB→2Si PB . Hence
the physics for both cases is classically the same.

CALCULATION OF THE QUANTUM GROUND STATE

To calculate the quantum ground state of Hamiltonian~1!
we use the CCM. Details concerning the treatment of mo
~1! with the CCM are given in Ref. 16. We use the CCM f

FIG. 1. Illustration of the classical spiral state for the squa
lattice Heisenberg model of Eq.~1!, with two kinds of regularly
distributed nearest-neighbor exchange bonds:J ~dashed lines! and
J8 ~solid lines!. The spin orientations atA and B lattice sites are
defined by the anglesun5nF wheren50,1,2, . . . , andF is the
characteristic angle of the spiral state. The state is shown
F5p/12 andn50,1, . . . ,7, andrefers to the ferromagnetic cas
(J,0) with a J8.uJu/3. For the antiferromagnetic case~J.0 and
J8,2J/3! all spins on theB sublattice are reversed.
02443
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high orders of approximation up to LSUB6~using 1638 fun-
damental configurations!.

We further exactly diagonalize finite lattices of rectang
lar shape~Lx3Ly5434, 634, and 834! using periodic
boundary conditions. The longer sideLx of the rectangle
corresponds to the direction of theJ8 bonds, and so we can
diminish the influence of the boundary conditions by an
crease ofLx .

COLLINEAR-NONCOLLINEAR TRANSITION

While classically we always have a second-order ph
transition from collinear order to noncollinear order atJc8
52J/3, for the quantum case we obtain a different behav
for the ferromagnetic and the antiferromagnetic case.

Using the CCM, for the antiferromagnetic case (J511)
we find indications for a shift of this critical point to a valu
Jc8'21.35~see Fig. 4!. On the other hand, for the ferromag
netic case (J51) we do not find such a shift~see Fig. 4!.
The exact diagonalization~ED! data of the structure facto
S(k) ~see Figs. 2 and 3! agree to these findings. ForJ
511 ~see Fig. 2! the collinear Ne´el order @k5~0,0!#
becomes unstable against the noncollinear spiral o
@k5~p/4,0!# in the classical model forJ8&20.36, but in the
quantum case only forJ8&20.95. The situation for the fer
romagnetic case (J521) is again different. Here the result
of the structure factor~see Fig. 3! show that the transition
from k5~0,0! ~collinear ferromagnetic order! to k5~p/4,0!
~spiral order! takes place at nearly the same value ofJ8
'0.36 for both the classical case and the quantum case

Taking the deviation of the on-site magnetic moment^Si&
from its classical valuêSi&cl5

1
2 as an indication of the de

gree of quantum fluctuations, we can compare the strengt
quantum fluctuations near the collinear-noncollinear tran
tions for both antiferromagnetic and ferromagnetic cases.
reported in Ref. 16 forJ511, the quantum fluctuations ar
particularly strong near the antiferromagnetic-spiral tran
tion, leading to an on-site magnetic moment less than 20%

-

or

FIG. 2. Ground-state structure factorS(k)}S i , j PAei (Rj 2Ri )•k

3^Si•Sj& ~i.e., the summation is taken over one sublattice! for a
834 lattice ~with antiferromagneticJ511! for the quantum and
classical cases for various spiral vectorsk.
3-2
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its classical value. On the other hand, it can be seen f
Fig. 5 that the on-site magnetic moment takes its class
value 1

2 up toJ8'0.36 forJ521, and therefore virtuallyno
quantum fluctuations occur at the ferromagnetic-spiral tr
sition. Hence the shift of the criticalJc8 in the antiferromag-
netic case can clearly be attributed to the strong quan
fluctuations. In general, our findings are consistent with
statement that quantum fluctuations~which we have in the
antiferromagnetic case only! prefer a collinear ordering, so
that in this case the quantum collinear state can survive
a frustrated, region where classically the collinear state
already unstable.

We further note an agreement between the CCM and
results beyond the criticalJc8 . By examining the structure
factors~see Figs. 2 and 3!, we find that for the antiferromag
netic ~ferromagnetic! case the transitions to a spiral sta
with a greaterk vector ~i.e., with a greater pitch angleF!
always occur in the quantum model at a greater~smaller!
absolutevalue ofJ8 than the corresponding classical tran
tions. This agrees with the CCM results of the pitch an
~see Fig. 4!, where we haveFqm,Fcl (Fqm.Fcl).

The discussion given above corresponds to our find
concerning the order of the transition. Clearly in the fer
magnetic case (J8521), both the classical and quantu
models show a second-order phase transition~see Figs. 4 and
5!. On the other hand, it was discussed in Ref. 16 that
collinear-noncollinear transition in the antiferromagne
case (J511) is probably a first-order phase transition f
the quantum model~cf. Fig. 4!, as opposed to the secon
order transition in the classical case.

FORMATION OF LOCAL SINGLETS

For sufficiently strong antiferromagneticJ8 bonds, system
~1! is characterized by a tendency to singlet pairing of
two spins coupled by aJ8 bond, and hence the long-rang
magnetic~collinear or noncollinear! order is destroyed. We
obtain clear indications of a second-order phase transitio

FIG. 3. Ground-state structure factorS(k) ~see Fig. 2! for a 834
lattice ~with ferromagneticJ521! for the quantum and classica
cases for various spiral vectorsk.
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a quantum paramagnetic dimerized phase at a certain cri
value of J85Js8 . For J8.Js8 the on-site magnetic momen
^Si& becomes zero. For the ferromagnetic case (J521) we
find Js8'1 using the extrapolated CCM-LSUBn results~see
Fig. 5!. We may also consider the inflection points of^Si&
versusJ8 for the LSUBn approximations, assuming that th
true curve will have a negative curvature up to the critic
point. We find the corresponding inflection points atJ8
'1.2 (n52), J8'0.76 (n54) and J8'0.74 (n56), indi-
cating a criticalJs8 even slightly smaller thanJs8'1.

The ED data give a similar approximation ofJs8 : For J8
'1, finite-size effects in spin-spin correlations disappear

FIG. 4. Pitch angleF vs uJ8u for the quantum and classica
cases. WhileF is classically the same for the ferromagnetic ca
~J521, J8.0! and for the antiferromagnetic case~J511, J8
,0!, the quantum pitch angle is different for both cases. The cur
left of the classical~dashed! curve belong toJ521, and those
right of it belong toJ511. Note that for the ferromagnetic cas
(J521) for J8.1 the pitch angleF becomes meaningless, sinc
the spiral order is already destroyed in this region~cf. Fig. 5!.

FIG. 5. On-site magnetic moment vsJ8 for the ferromagnetic
case (J521) calculated within the CCM-LSUBn approximations
and extrapolated ton5` ~the extrapolation is done as described
Ref. 16!.
3-3



g

tion

in-
nsi-
red
el
he
ear

the
ol-
dard

a-
n,

rst-
up-
the
nd

for

in
g
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most completely~for illustration, see Fig. 6!. This indicates
that spin-spin correlations are short ranged, with a len
scale smaller than the sizeLx .

We note that for the antiferromagnetic case (J511) the
strength of antiferromagneticJ8 needed for breaking Ne´el
order by formation of local singlets is much larger~Js8'3;
see Ref. 16!. The lower criticalJs8'1 in the ferromagnetic

FIG. 6. Nearest-neighbor spin-spin correlation of the two sp
connected via aJ8 bond vsJ8 for the ferromagnetic case usin
exact diagonalization~ED! data.
T.

K.
Y.

v.

y
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case is due to frustration which assists local singlet forma
~cf. Refs. 27 and 28!.

SUMMARY

Using CCM and ED techniques, we have studied the
fluence of quantum fluctuations on zero-temperature tra
tions between collinear ordered and noncollinear orde
states in a frustrated spin-1

2 square-lattice Heisenberg mod
with two kinds of nearest-neighbor exchange bonds. T
frustration drives a second-order transition between collin
~antiferromagnetic or ferromagnetic! and noncollinear~spi-
ral! states in the classical model. For the quantum model
CCM provides a consistent description of collinear, nonc
linear, and disordered phases, while some other stan
techniques~e.g., the quantum Monte Carlo technique! are not
applicable. We find a strong influence of quantum fluctu
tions on the nature of the collinear-noncollinear transitio
and quantum fluctuations~which favor collinear ordering!
may change the second-order classical transition to a fi
order quantum transition. If quantum fluctuations are s
pressed in the collinear phase of the quantum model,
transition to the spiral phase is similar for the quantum a
classical models.
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