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Influence of quantum fluctuations on zero-temperature phase transitions between collinear
and noncollinear states in frustrated spin systems
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We study a square-lattice spﬁﬁHeisenberg model where frustration is introduced by competing nearest-
neighbor bonds of different signs. We discuss the influence of quantum fluctuations on the nature of the
zero-temperature phase transitions from phases with collinear magnetic order at small frustration to phases
with noncollinear spiral order at large frustration. We use the coupled-cluster method for high orders of
approximation(up to LSUBG and an exact diagonalization of finite systefmp to 32 sitesto calculate
ground-state properties. The role of quantum fluctuations is examined by comparing ferromagnetic-spiral and
antiferromagnetic-spiral transitions within the same model. We find clear evidence that quantum fluctuations
“prefer” collinear order, and that they may favor a first-order transition instead of a second-order transition
when there are no quantum fluctuations.
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INTRODUCTION While in the classical version of the model both situations
can be mapped onto each other, the quantum model behaves
While quantum fluctuations do not influence the critical basically different in both cases. This is because of ;he dif-
properties of phase transitions Bt-0, they play an impor- ferent nature of the collinear state: While the quantunelNe
tant role aff =0, and can yield to quantum phase transitions State on two-dimensional lattices exhibits strong quantum
which have attracted a lot of attention in recent tintese, ~fluctuations(the sublattice magnetization of the HAFM on
e.g., Ref. 1. Quantum fluctuations arise due to Heisenberg'she square lattice is only about 60% of its classical value
uncertainty principle, and play a role similar to those of ther-th€ ferromagnetic state is the same for the quantum and clas-
mal fluctuationgfor T>0) in classical transitions. The spin- sical models, and there are no quantum fluctuations in this

3 Heisenberg model is a basic model which shows stron&tate'

2

guantum fluctuations in the antiferromagnetic case. While We use the_coqpled-clu_st_er metHbt’ (CCM) and an
the ground-state of the pure Heisenberg antiferromagne‘?xaCt diagonalization of finite systems to calculate the
(HAFM) on the square lattice shows &ldong-range ordet, ground state. The CCM is a very powerful method and, par-

a competition of bonds can increase quantum fluctuationlgCUIarIy high-order implementations of this method can be

and may result in rotationally invariant paramagnetic statesused to obtain a consistent description of various aspects of

suppressing thécollineay Neel order. This was demon- uantum spin systemgor an overview see, for example,

strated by recent experiments ¢guasi) two-dimensional Re_fs. 19-24 We note that another important method for

Heisenberg systems, like Cal% (see, e.g., Refs. 3 and dr spin systems, the quantum Monte C.:arlo.method, cannot be

SICW(BOy), (see eé Refs 59and ,6 ’ used for frustrated spin systems since it suffers from the
3)2 ) Y., . .

Besides local singlet formation, magnetic frustration is anninus sign problem.

important mechanism to drive zero-temperature transitions.
In the classical Heisenberg model, strong frustration often MODEL

leads to noncollineafe.g., spiral spin states which may or We consider a spig-Heisenberg model on a square lat-

may not have counterparts in the.quantum case. It. IS geneéfjce with two kinds of nearest-neighbor bondandJ’, as
ally argued that quantum fluctuations prefer a collinear orspown in Fig. 1:

dering. A typical example is the frustrated sgin},—J,

model on the square lattigsee, e.g., Refs. 7—11Here the ,

classical version of thd;-J, model has a continuously de- H:‘]Z S-§+J 2 S-S @
generate ground state f>J,/2, but quantum fluctuations i (i

can remove this degeneracy, yielding to a collinear statdhe sums ovexij);, and(ij), represent sums over the
(“order from disorder” phenomenon; see, e.g., Refs. 12 andhearest-neighbor bonds, shown in Fig. 1 by dashed and solid
13). Moreover quantum fluctuations can shift the critical lines, respectively. Each square-lattice plaquette consists of
point of a collinear-noncollinear transition, so that the collin-threeJ bonds and ond’ bond. A model with such a zigzag
ear state can survive into a region where classically it ipattern has been treated with various methid82°

already unstabl&~16 In this paper we consider only cases in whittand J’

In this paper we extend our previous wdfkwhere we havedifferentsigns (i.e., one bond is ferromagnetic, while
have studied the transition from a collinear éllerder to  the other is antiferromagnetiso that the plaquettes are frus-
noncollinear spiral order in a frustrated sgifrJAFM, and  trated. The case with antiferromagnefidonds(i.e., J>0
now consider the transition from a collinear ferromagneticand hencel’ <0) was studied previously using linear spin-
order to a noncollinear spiral order within the same modelwave theory® exact diagonalization, and the coupled-cluster
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FIG. 1. lllustration of the classical spiral state for the square-
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lattice Heisenberg model of Eql), with two kinds of regularly Y50 —-4.0 -3.0 -20 -1.0 :'0_0
distributed nearest-neighbor exchange bordd&lashed linesand J’

J’ (solid lineg. The spin orientations aA and B lattice sites are (R_R).K
defined by the angleg,=n® wheren=0,1,2 ..., and® is the FIG. 2. Ground-state structure fact@(k) X j c a€ll - i
characteristic angle of the spiral state. The state is shown fo<{S-S)) (i.e., the summation is taken over one sublajtife a

(J<0) with aJ’>|J|/3. For the antiferromagnetic caék>0 and  classical cases for various spiral vectars

J’<—J/3) all spins on theB sublattice are reversed. ) o )
high orders of approximation up to LSURGsing 1638 fun-

method'® In this paper we therefore focus our attention damental configurations

mainly on the ferromagnetic cagee., J<0 andJ’'>0), but We further exactly diagonalize finite lattices of rectangu-
compare the obtained results with those of the antiferromadar shape(LyXL,=4Xx4, 6X4, and 8<4) using periodic
netic case. boundary conditions. The longer sidg of the rectangle

corresponds to the direction of tl#é bonds, and so we can
diminish the influence of the boundary conditions by an in-

CLASSICAL GROUND STATE
crease oL, .

We consider the ground state of the classical version of

model(1), i.e., the spinsS, are assumed to be classical vec- COLLINEAR-NONCOLLINEAR TRANSITION

tors. For|J'|<[J|/3 (andJ andJ" having different signsthe While classically we always have a second-order phase

ground state of Eq(1) is collinear (i.e., ferromagnetic or  yangition from collinear order to noncollinear order Xt

antiferromagnetic depending on the sigripfAt the critical ~ _ —J/3, for the quantum case we obtain a different behavior

point Jo=—J/3, a second-order transition takes place frome,, the ferromagnetic and the antiferromagnetic case.

the coIImgar state to a no_nco!lmear state of splrall natsee Using the CCM, for the antiferromagnetic cask=(+1)

Fig. 1), with a characteristic pitch angfe= +[®g| given by e find indications for a shift of this critical point to a value
J.~—1.35(see Fig. 4. On the other hand, for the ferromag-

0, |\]’|<ﬂ, netic case J=1) we do not find such a shifsee Fig. 4.
D= 3 The exact diagonalizatiofED) data of the structure factor
[®al= 1 1 || 2 S(k) (see Figs. 2 and)3agree to these findings. Far
arccos - \/1+ —/|, |J|=—=. =+1 (see Fig. 2 the collinear Nel order [k=(0,0)]
2 9] 3 . : .
becomes unstable against the noncollinear spiral order
Note that for®=0 this is the collinear state. [k=(7/4,0] in the classical model fa}’ < —0.36, but in the

The spinsS, and Sz, belonging to theA and B sublat- ~ quantum case only fa}’ < —0.95. The situation for the fer-
tices, respectively, can be expressed in terms of the dpiral romagnetic caseJ —1) is again different. Here the results
vectorr® with k=(2®,0) (see Fig. 1L We note that this spiral Of the structure factotsee Fig. 3 show that the transition
state is incommensurate in thalirection. We also note that from k=(0,0) (collinear ferromagnetic ordgto k=(7/4,0)
for the classical model the antiferromagnetic case can béspiral ordey takes place at nearly the same value Jof
transformed into the ferromagnetic case by the simultaneous 0.36 for both the classical case and the quantum case.
substitutiond——J, J'——J" and S _g— —S.g. Hence Taking the deviation of the on-site magnetic momg}
the physics for both cases is classically the same. from its classical valuéS))¢ =3 as an indication of the de-
gree of quantum fluctuations, we can compare the strength of
quantum fluctuations near the collinear-noncollinear transi-
tions for both antiferromagnetic and ferromagnetic cases. As

To calculate the quantum ground state of HamiltortBn  reported in Ref. 16 fod=+1, the quantum fluctuations are
we use the CCM. Details concerning the treatment of modeparticularly strong near the antiferromagnetic-spiral transi-
(1) with the CCM are given in Ref. 16. We use the CCM for tion, leading to an on-site magnetic moment less than 20% of

CALCULATION OF THE QUANTUM GROUND STATE
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FIG. 3. Ground-state structure fac®(k) (see Fig. 2for a 8<4 FIG. 4. Pitch angle® vs |J'| for the quantum and classical
lattice (with ferromagneticJ=—1) for the quantum and classical cases. While® is classically the same for the ferromagnetic case
cases for various spiral vectoks (J=-1, J’>0) and for the antiferromagnetic cagéd=+1, J’

<0), the quantum pitch angle is different for both cases. The curves

its classical value. On the other hand, it can be seen fror§ft of the classical(dashed curve belong toJ=—1, and those

Fig. 5 that the on-site magnetic moment takes its classice{fght of it belong toJ=+1. Note that for the ferromagnetic case
J=

value% up t0Jd' ~0.36 forJ= —1, and therefore virtuallyio —1) for J’>1 the pitch angleb becomes meaningless, since

guantum fluctuations occur at the ferromagnetic-spiral tranEhe spiral order is already destroyed in this regioh Fig. 5.

sition. Hence the shift of the criticdl; in the antiferromag-  , \;antum paramagnetic dimerized phase at a certain critical
netic case can clearly be attributed to the strong quantun)y e of 3’ =3’ . For J’>J’ the on-site magnetic moment
S* S

fluctuations. In general, our findings are consistent with th%s_> becomes zero. For the ferromagnetic cabe 1) we
statement that quantum fluctuatiofwhich we have in the finld J'~1 using thé extrapolated CCM-LSWRresults(see
S

antiferromagnetic case onlprefer a collinear ordering, so _. . . - .
that in this gase the quantu)% collinear state can sur\?ive intg'g' 5. }’Ve may also conS|der'the .|nflect|on pqmts(ﬁ}

a frustrated, region where classically the collinear state i%/ersusJ for Fhe LSUBn appr(_)X|mat|ons, assuming that_t_he
already unstable. rue curve vy|ll have a negat|ve_cur\{ature.up to j[he critical
We further note an agreement between the CCM and glpoint. We fmd/ the corresponding /|nflect|on points J?“

results beyond the critical,. By examining the structure %1..2(n—2.)., J ,%0'76 (n74) and J'~0.74 (’n—6), indi-
factors(see Figs. 2 and)3we find that for the antiferromag- cating a criticallg even S,I'g_htly smaller thgdswl. .
netic (ferromagnetit case the transitions to a spiral state 1 ne ED data give a similar approximation af: ForJ
with a greaterk vector (i.e., with a greater pitch anglé®) ~1, finite-size effects in spin-spin correlations disappear al-
always occur in the quantum model at a gredwnalle)
absolutevalue ofJ’ than the corresponding classical transi- 0.5 E
tions. This agrees with the CCM results of the pitch angle <Si> :
(see Fig. 4, where we haveb ;< ® (P> D). 04 F
The discussion given above corresponds to our finding £
concerning the order of the transition. Clearly in the ferro- 2
magnetic caseJ =—1), both the classical and quantum 0.3
models show a second-order phase transisee Figs. 4 and
5). On the other hand, it was discussed in Ref. 16 that the

collinear-noncollinear transition in the antiferromagnetic 0.2 ¢

case (=+1) is probably a first-order phase transition for E

the quantum mode(cf. Fig. 4), as opposed to the second- r —— LSUB2 ]

order transition in the classical case. 0.1 peeses LSUB4 E
s~ . SUBG E

TTTTTT

-4+ extrapol. LSUBn
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FORMATION OF LOCAL SINGLETS

For sufficiently strong antiferromagneti¢ bonds, system
(1) is characterized by a tendency to singlet pairing of the FIG. 5. On-site magnetic moment i for the ferromagnetic
two spins coupled by d" bond, and hence the long-range case §=—1) calculated within the CCM-LSUM approximations
magnetic(collinear or noncollineagrorder is destroyed. We and extrapolated tn= (the extrapolation is done as described in
obtain clear indications of a second-order phase transition tRef. 16.
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FIG. 6. Nearest-neighbor spin-spin correlation of the two spin
connected via &’ bond vsJ' for the ferromagnetic case using
exact diagonalizatiofED) data.

most completely(for illustration, see Fig. 6 This indicates

S
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case is due to frustration which assists local singlet formation
(cf. Refs. 27 and 28

SUMMARY

Using CCM and ED techniques, we have studied the in-
fluence of quantum fluctuations on zero-temperature transi-
tions between collinear ordered and noncollinear ordered
states in a frustrated spinsquare-lattice Heisenberg model
with two kinds of nearest-neighbor exchange bonds. The
frustration drives a second-order transition between collinear
(antiferromagnetic or ferromagnetiand noncollinearspi-
ral) states in the classical model. For the quantum model the
CCM provides a consistent description of collinear, noncol-
linear, and disordered phases, while some other standard
techniquege.g., the quantum Monte Carlo technigaee not
applicable. We find a strong influence of quantum fluctua-
tions on the nature of the collinear-noncollinear transition,
and quantum fluctuationévhich favor collinear ordering
may change the second-order classical transition to a first-
order quantum transition. If quantum fluctuations are sup-
pressed in the collinear phase of the quantum model, the
transition to the spiral phase is similar for the quantum and

that spin-spin correlations are short ranged, with a lengti¢lassical models.

scale smaller than the sizs,.

We note that for the antiferromagnetic case=(+1) the
strength of antiferromagnetid’ needed for breaking ¢
order by formation of local singlets is much larggt~3;
see Ref. 18 The lower criticald_~1 in the ferromagnetic
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