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Internal modes and magnon scattering on topological solitons
in two-dimensional easy-axis ferromagnets

Denis D. Sheka,1,* Boris A. Ivanov,2 and Franz G. Mertens1

1Physikalisches Institut, Universita¨t Bayreuth, D-95440 Bayreuth, Germany
2Institute of Magnetism, NASU, 03142 Kiev, Ukraine
~Received 12 January 2001; published 22 June 2001!

We study the magnon modes in the presence of a topological soliton in a two-dimensional Heisenberg
easy-axis ferromagnet. The problem of magnon scattering on the soliton with arbitrary relation between the
soliton radiusR and the ‘‘magnetic length’’D0 is investigated for partial modes with different values of the
azimuthal quantum numbersm. Truly local modes are shown to be present for all values ofm, when the soliton
radius is large enough. The eigenfrequencies of such internal modes are calculated analytically on the limiting
case of a large soliton radius and numerically for arbitrary soliton radius. It is demonstrated that the model of
an isotropic magnet, which admits an exact analytical investigation, is not adequate even for the limit of small
radius solitons,R!D0: there exists a local mode with nonzero frequency. We use the data of local modes to
derive the effective equation of soliton motion; this equation has the usual Newtonian form in contrast to the
case of the easy-plane ferromagnet. The effective mass of the soliton is found.

DOI: 10.1103/PhysRevB.64.024432 PACS number~s!: 75.10.Hk, 75.30.Ds, 75.70.Kw
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I. INTRODUCTION

Nonlinear topologically nontrivial excitations~solitons!
are well known to play a special role in low dimension
magnetic systems. For example, the presence of vort
in two-dimensional~2D! easy-plane~EP! magnets gives rise
to the Berezinski�-Kosterlitz-Thouless ~BKT! phase
transition.1,2 Kinks in 1D magnets and localized Belavin
Polyakov~BP! solitons3 in 2D isotropic magnets are respo
sible for the destruction of long-range order at finite tempe
ture. The soliton signatures in dynamical response functi
can be observed experimentally. Translational motion
solitons leads to the so-called soliton central peak.5–7 An-
other possibility to detect soliton signature is to look f
magnon modes, localized at the soliton@local modes~LM !#;
such modes are the cause of soliton magnetic resonan
the characteristic frequencies of ‘‘intrinsic’’ motion.8

This can be explained within the scope of the so-cal
soliton phenomenology, where the magnet can be descr
as a two-component gas of elementary excitations: solit
and magnons. Such an approach was developed for
magnets.4 It was shown that the contribution of magnons a
soliton-magnon interaction is important for this approach,
is obvious, for example, in the discussion of soliton magne
resonance.4 But for 1D magnets the soliton-magnon scatt
ing causes a change of the magnon density of states, whi
necessary for a self-consistent calculation of the tempera
dependence of the soliton density.4

For the 2D case, the concept of a soliton~vortex! gas has
been extended to describe EP magnets above the
vortex-antivortex unbinding transition, with a finite densi
of vortices.9,10 The concept of localized topological soliton
(p2-topological solitons, see details in Ref. 11! was used to
explain the EPR linewidth in easy-axis~EA! magnets.12–18

The classical example of a localized soliton is BP soluti
which exists in isotropic magnets. The scattering problem
such solitons allows an exact analytical solution becaus
0163-1829/2001/64~2!/024432~15!/$20.00 64 0244
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the scale and conformal invariance of the model.19,20For EA
magnets it is necessary to take account of some impor
modifications due to the breaking of such symmetries. T
is why, both for EA and EP 2D magnets, the soliton dens
has not been calculated, but has been used as an inpu
rameter. The general features of the 2D soliton dynamics
not clear at present. In particular, the form of inertial terms
the dynamical equations for the soliton center is unknown
the study of localized states is an issue of current resea
Note that the problem of the soliton dynamics and the pr
lem of the existence of LM are intimately connected to ea
other, and to the problem of soliton-magnon scattering.
example, using numerical data for the scattering amplitud
non-Newtonian effective equation of motion of the magne
vortex was constructed.21

Usually non-1D solitons and, especially, the problem
soliton-magnon scattering, are treated numerically.21–23 The
exceptions are the analytical study of the scattering prob
for EA and EP ferromagnets~FM! in the frameworks of the
Born approximation.24,25 However, such an approach is n
adequate for the problem with nonsmall soliton-magnon
teraction. Therefore it leads in Ref. 25 to thek dependence of
the scattering amplitude, which differ strongly from the a
curate result.21 Recently the analytical investigation of th
scattering problem has been done for the case of purely
tropic magnets, with the exact BP solution.26,27,19In particu-
lar, it was found that a soliton has a number of local mod
of zero frequency;26 such modes determine the main featur
of the scattering picture.19 However, even a small uniaxia
anisotropy leads to principal changes. Truly local modes~in
contrast to quasilocal ones, below! with nonzero frequencies
were found numerically in Ref. 28 for the soliton in EA FM
for some special values of the azimuthal quantum numbem;
namely the mode withm521 for the soliton with the topo-
logical chargeq51, and the mode withm52 for q52 were
investigated. It is natural that such local modes can not
found in the Born approximation, treated in Ref. 24. No
that local modes do not exist for the models of easy-pla
©2001 The American Physical Society32-1
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SHEKA, IVANOV, AND MERTENS PHYSICAL REVIEW B64 024432
and isotropic ferromagnets, where the magnon spectrum
a gapless dispersion law. The case of the 2D EP antife
magnet is an exception; for this model a finite–frequen
truly localized internal mode withm50 exists inside the
continuum spectrum.29

Recently there has also been renewed attention to the
ternal dynamics of the soliton. It is caused by the studying
small ferromagnetic particles in the so-called vortex st
~magnetic dots!. Magnetic dots are micron-sized magne
samples, placed on a nonmagnetic substrate; they have
ferent shapes: circular, quadratic, etc. The magnetic dots
interesting for the usage in the high-density magnetic stor
devices30,31 and from a fundamental point of view. As th
dots are rather large~the size of magnetic dot exceeds t
critical size of a single domain!, their ground state could b
inhomogeneous. Such a dot in the vortex state contain
magnetic singularity in the center of the vortex, or t
Belavin-Polyakov soliton type.32 The discrete magnon
modes were observed for the uniformly magnetized dots b
resonance technique;33 their theory was constructed using th
Landau-Lifshitz equations.34

In this paper we consider the magnon modes which e
in 2D Heisenberg EA FM with a topological soliton. Th
model of an easy-axis ferromagnet is presented in Sec. II
approximate solution for the soliton structure is examined
Sec. III we formulate equations, describing magnons
solitons. In Sec. IV truly local magnon modes are calcula
analytically by variational approach for the limiting cases
large and small radius solitons, and numerically for arbitr
radii. In Sec. V the problem of soliton-magnon scattering
formulated and treated numerically for different part
modes. The phenomenology of a pseudopotential is propo
in Sec. VI to analyze analytically both local states and
scattering problem. In Sec. VII we use results for loc
modes to derive the equations of soliton motion. Such eq
tions are of Newtonian type~with the account of gyroscopic
force!, in contrast to both the case of the BP soliton in t
isotropic magnet19 and the case of the vortex in the E
magnet.21 In the framework of this equation the soliton e
fective mass is calculated. A discussion and concluding
marks are presented in Sec. VIII.

II. MODEL AND ELEMENTARY EXCITATIONS

The dynamics of the classical ferromagnet is described
the Landau-Lifshitz equations for the normalized magneti
tion m. In angular variables,mx1 imy5sinu exp(if), these
equations correspond to the Lagrangian

L5AE d2xH 1

D
~12cosu!

]f

]t
2W~u,f!J ~1!

with the energy densityA•W(u,f),

W~u,f!5
1

2
~¹u!21

1

2
~¹f!2 sin2u1

1

2D0
2

sin2u, ~2!
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whereA5JS2, J is the exchange integral,S the atomic spin,
D05AA/K the characteristic scale~‘‘magnetic length’’!, K
the energy of the anisotropy, andD the spin-wave stiffness

The model of EA FM has well-known magnon excitatio
u5const!1, f5vt2k•r above the homogeneous groun
state. The dispersion law for the magnons has a finite a
vation frequencyv05D/D0

2,

v~k!5v01Duku2, ~3!

wherek is the wave vector.
The simplest nonlinear excitation in the system is the

namical~precessional! topological soliton11

f5w01qx1Vt, u5u0~r !, u0~0!5p, u0~`!50,
~4!

wherer andx are polar coordinates in the plane of the ma
net, the integerq plays the role of a topological charge, an
V (0,V,v0) is the frequency of the internal precessio
The necessity to consider solitons with internal precessio
caused by the fact that, according to the Derrick-Hobart th
rem, static solitons in models like Eq.~2! are unstable. For-
mally, there is no functionu0(r ), which could provide a
minimum of the energy

E5pAE
0

`

rdr H S du0

dr D 2

1sin2u0S 1

D0
2

1
q2

r 2 D J . ~5!

The precessional soliton corresponds to the conditional m
mum of the energy~5! for a given numberN of magnons
bound in the soliton

N5
N2

D0
2E0

`

rdr @12cosu0~r !#, ~6!

which is conserved for the uniaxial case (N252pA/\v0 is
the characteristic number of bound magnons in the
soliton!,36 see also Refs. 11 and 35. This corresponds to
condition d@E2N\V#50. The form of the functionu0(r )
is defined by the ordinary differential equation

d2u0

dr2
1

1

r

du0

dr
2sinu0 cosu0S 1

D0
2

1
q2

r 2 D 1
V

v0D0
2

sinu050,

~7!

with the boundary conditions~4!. The precession frequenc
V is fully determined by the number of bound magnonsN.
The dependenceV(N) was calculated numerically in Ref
36; large radius solitons (N@N2) have a very low precessio
frequency (V!v0), and V→v0 for small radius solitons
(N!N2).

In the case of large radius solitons,R@D0, the approxi-
mate ‘‘domain-wall’’ solution11

cosu0~r !5tanh
r 2R

D0
~8!

is applicable, which describes a 1D domain wall at the d
tanceR from the origin. One can obtain the relation betwe
the soliton radiusR and the frequency of the soliton prece
2-2
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sion V from variational condition, in whichR plays the role
of a fitting parameter for the function~8!. In the first approxi-
mationV(R)'v0•D0 /R.

The opposite case of small radius solitons,R!D0, corre-
sponds to the Belavin-Polyakov solution tan(u0/2)
5(R/r ) uqu, which describes the isotropic limit of the mod
~1!; it is valid for distancesr !D0.3 At larger distances the
algebraic decay is replaced by the general exponential fo

u0~r !}exp~2r /r 0!, r 05A D

v02V
. ~9!

The dependenceV(R) was calculated both analytically an
numerically in Refs. 36 and 37. The frequency of the soli
precession satisfiesV→v0 whenR→0, but the dependenc
V(N) is not analytic, anddV/dN→` asN/N2→0.36

To describe approximately the soliton structure in the
termediate case of arbitraryR, we use a fitting method.38 We
choose a trial function of the form

tan
u0

(fit) ~r !

2
5

R(fit)

r
•expF2

~r 2R(fit) !

r 0
G , ~10!

which has valid asymptotics forr→0 andr→` ~we discuss
the caseq51 only!. The parameterR(fit) can be found nu-
merically by fitting the trial function~10! to the numerical
solution of Eq.~7!. Such an approximation shows that th
trial function describes the soliton shape with an accurac
about 1022, see Table I. From this table one can see that
values of the fitting parameterR(fit) are very close to the
‘‘exact’’ soliton radii; it should be understood by the fa
thatu0(r 5R(fit) )5p/2. Numerical data foru0(r ) and fitting
results foru0

(fit) (r ) are plotted in Fig. 1.

III. MAGNON MODES

To analyze magnons on the soliton background, it is c
venient to introduce local coordinates$e1 ,e2 ,e3%, which de-
scribe the configuration of the magnetization unit vectorm in

TABLE I. Fitting of the trial solution~10! to the exact numerica
solution for u0(r ). The radius of the soliton is defined from th
conditionu0(R)5p/2.

Frequency of Soliton Fitting parameter, Std. erro
precession,V/v0 radius,R/D0 R(fit) /D0 31022

0.05 20.38 20.38 0.6
0.10 9.95 9.94 1.2
0.15 6.58 6.58 1.9
0.20 4.88 4.87 2.6
0.25 3.82 3.81 3.2
0.30 3.09 3.07 3.6
0.40 2.07 2.07 4.0
0.50 1.35 1.37 3.8
0.60 0.81 0.85 3.2
0.70 0.42 0.44 2.2
0.80 0.15 0.16 1.1
0.85 0.07 0.07 0.9
02443
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the unperturbed soliton:e3 coincides withm in the soliton
~4!, e15ey cosf02ex sinf0, ande25e33e1. Then the linear
oscillations around the soliton can be described in terms
projections of the magnetizationm on the local axes:m5m
•e1 and q52m•e2. In the absence of the soliton,u050,
f05Vt, such oscillations correspond to free magnons in
rotating coordinate frame.

The linearized equations forq andm can be presented in
the form

@2¹21U1~r !#q1
2q cosu0

r 2

]m

]x
5

1

v0D0
2

]m

]t
, ~11a!

@2¹21U2~r !#m2
2q cosu0

r 2

]q

]x
52

1

v0D0
2

]q

]t
~11b!

with the ‘‘potentials’’

U1~r !5S 1

D0
2

1
q2

r 2 D cos 2u0~r !2
V

v0D0
2

cosu0~r !,

~12a!

U2~r !52S du0~r !

dr D 2

1cotu0~r !¹ r
2u0

52S du0~r !

dr D 2

1S 1

D0
2

1
q2

r 2 D cos2u0~r !

2
V

v0D0
2

cosu0~r !, ~12b!

where¹ r
2 is the radial part of the Laplace operator.

It is convenient to represent the solutions of Eqs.~11! in
terms of a partial-wave expansion forq andm,

q5(
a

@ua~r !1va~r !#cos~mx1ṽat !, ~13a!

FIG. 1. Shape ofu0(r ) for different soliton radiiR/D0 (3
50.4, j55, (510). Lines: numerical data, symbols: fitting da
with the trial function~10!.
2-3
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SHEKA, IVANOV, AND MERTENS PHYSICAL REVIEW B64 024432
m5(
a

@ua~r !2va~r !#sin~mx1ṽat !, ~13b!

wherea5(k,m) is a full set of eigennumbers,k andm being
radial and azimuthal quantum numbers, respectively.
quantity ṽ5v2V is the magnon frequency in the rotatin
frame;k and ṽ are connected by the dispersion law, cf. E
~3!,

ṽ~k!5vgap1Duku2, v gap5v02V, ~38!

where vgap is the magnon gap frequency in the rotati
frame. Below we will replaceṽ by v, almost everywhere
without confusion, because we will work in the rotatin
frame mainly; the indexa will be omitted, too. Thus we then
finally obtain the following eigenvalue problem~EVP! for
the functionsu andv:

Ĥ1u[F Ĥ01
m2

r 2
1V~r !2

v

v0D0
2Gu5W~r !v, ~14a!

Ĥ2u[F Ĥ01
m2

r 2
2V~r !1

v

v0D0
2Gv5W~r !u, ~14b!

where Ĥ052¹ r
21U0(r ) is the 2D radial Schro¨dinger op-

erator; the ‘‘potentials’’ are

U0~r !5
1

2
~U11U2!, V~r !5

2qmcosu0

r 2
. ~15a!

Note, that Eqs.~15! are invariant under the conjugationsv
→2v, m→2m, and u↔v. In a classical theory we ca
choose any sign of the frequency; but in order to make c
tact with quantum theory, with a positive frequency and e
ergy Ek5\uvku, we will discuss the casev.0 only. Thus
there are two different sets of Eqs.~14! for m5unu and m
52unu. Besides, there appears a difference between E
~14a! and ~14b!. Since Eq. ~14b! has the asymptotically
equivalent form,2¹ r

2v1vv50, the functionv has an ex-
ponential behavior; at the same time Eq.~14a! yields oscil-
lating solutions. So, by choosingv.0, the variablev be-
comes a slave variable in the EVP~14!.

The ‘‘coupling potential’’W,

W~r !5
1

2
~U22U1!5

1

2 F sin2u0S 1

D0
2

1
1

r 2D 2S du0

dr D 2G ,

~15b!

is positive, it has a maximum value at a distance of about
soliton radiusR from the origin, vanishing both atr 50 and
far from the soliton. Using the domain-wall approximatio
~8!, one obtains that the maximum value ofW}1/R2, when
R@D0. In the opposite case of smallR, in the ranger<R the
soliton looks like the Belavin-Polyakov solution; he
r (du0 /dr)'2sinu0, and W50 in the main exchange
approximation.19 Therefore one can suppose thatW!1/D0

2

for any R. In fact, this is confirmed by numerical calcula
tions, see Fig. 2.
02443
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However, one can see below in Sec. IV that the probl
is impoverished when the ‘‘coupling potential’’W(r ) is ig-
nored; even in the limits of small~large! soliton radii, the
main properties of local modes vanish, if we assume t
W(r )50. The reason is that a set of more than one coup
Schrödinger-like equations has properties, which are abs
from a single equation. To explain this fact, remember t
for a single 1D Schro¨dinger equation there exist two inde
pendent solutions; for the eigenfrequencies inside the c
tinuous spectrum such solutions have oscillating asymp
ics. For a set of 2, 3, . . . equations there exist 4, 6, .
linearly independent solutions, respectively; some of th
can have exponential asymptotics. Naturally, the real mo
have an oscillational form here; we will use this fact belo
for the numerical analysis. But it is necessary to take i
account the exponential solutions, too. In particular, as w
shown in Ref. 29, such exponential asymptotics could co
spond to truly localized states inside the continuous sp
trum, which are forbidden for equations of the Schro¨dinger
form. In the reduced EVP with two independent equatio
like Eq. ~14! with W50, there is a continuous spectrumv
.vgap for the functionu(r ) (uÞ0, v50) andv,2vgap
for the functionv(r ) (u50, vÞ0). There are no limitations
for the lowest value of the discrete levels; in particular, t
frequencies of the discrete spectrum could be less t
2vgap for the functionu. At the same time, as follows from
the general set of coupled Eqs.~14!, frequencies of local
modes lie in the region2vgap,v,vgap . Therefore it is
necessary to solve the general EVP~14! for an exact analysis
of the problem.

We should note here that the model of an isotropic m
net is a special case, in which the ‘‘coupling’’ potential
exactly equal to zero. To study an EVP like Eq.~15! with
W50, it is sufficient to take into account one equation on
~namely, the equation for the variableu); the second one
which has unphysical solutions forv.0, was ignored in
Ref. 19. That is why the results for EA FM, obtained in th
paper, and the results for the isotropic magnet19 differ
strongly even for small anisotropy. One difference is cau
by the presence of truly local modes. Another one is due
the peculiar structure of the quasicontinuous spectrum w
v.vgap for a finite geometry: the spectrum of the EA FM

FIG. 2. Shape of the ‘‘coupling’’ potential for different solito
radii.
2-4
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INTERNAL MODES AND MAGNON SCATTERING ON . . . PHYSICAL REVIEW B64 024432
has a system of doublets with opposite signs ofm, while
there are no doublets for the isotropic magnet.

IV. LOCAL MODES

According to the dispersion law (38), free magnons only
exist whenv.vgap . It is naturally to look for local modes
in the range 0,v,vgap ~remember that we discuss the ca
v.0). In principle, such local modes could exist inside t
continuous spectrum, as for the case of the nonlineas
model, describing the EP antiferromagnet.29 However, our
study shows that this is not the case for the EA FM. Ex
tence of local modes in such a magnet was found num
cally in Ref. 28 for a soliton with some special paramete
namely the mode withm521 for the soliton with the topo-
logical chargeq51, and the mode withm52 for q52 were
calculated. Such modes appear in field theories, which
clude solitonlike solutions.20

To study local modes, note that near the soliton cen
r !D0, one can obtain the asymptotics of the magnon am
tudes in the following form:

um~r !5AmS r

D0
D uq2mu

@11O~r 2/D0
2!#, ~16a!

vm~r !5«AmS r

D0
D uq1mu

@11O~r 2/D0
2!#. ~16b!

Here the coefficientA can be determined by the normaliz
tion; the presence of a nonzero factor« is caused by the
‘‘interaction’’ W(r ) between Eqs.~14a! and~14b!; its value
cannot be found through this asymptotic expansion.

In the opposite case of large distance,r @D0, the EVP
~14! has the following general solution~here and below we
consider the most interesting case of solitons with unit to
logical chargeq51, which has lowest energy!:

um~r !'AmK um11u~¸1
2r !1BmI um11u~¸1

2r !, ~17a!

vm~r !'CmK um21u~¸1
1r !1DmI um21u~¸1

1r !, ~17b!

whereKn and I n are Macdonald and modified Bessel fun
tions, respectively, anḑ1

65A(v02V6v)/D. Note that at
large distances,z@1, the modified Bessel functions hav
exponential behavior,I n(z)}exp(z)/Az, Kn(z)}exp(2z)/Az,
so we use the asymptotical conditionum ,vm

}exp(2¸1
6r)/Ar to obtain the localized solutions.

First note that for the special casesm50,11 there exist
‘‘zero modes’’ with v50. Such modes are caused by t
internal symmetry of the problem. They have the same fo
as for EP magnets.21 One of the zero modes, the so-calle
translational mode withm511,

u115
du0

dr
2

sinu0

r
, v115

du0

dr
1

sinu0

r
, ~18a!

describes the position shift of the soliton. Another one w
m50,

u05sinu0 , v052sinu0 , ~18b!
02443
-
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is a rotational mode, which corresponds to the presence o
arbitrary parameter, the phasew0, in the soliton structure~4!.
For the isotropic magnet, as well as for the EP magnet, s
lar modes exist, too; but there they are quasilocal due to t
slow power-law decay, 1/r , or 1/r 2. In the EA magnets the
decay has an exponential form.

The remaining modes could be investigated numerica
analytical results were obtained for some limiting cases on
see below. To study the EVP numerically, we use the tw
parameter shooting method for the integration of the se
Eqs.~14!; a similar one-parameter shooting scheme was p
posed in Ref. 29 to study the vortex-magnon scattering pr
lem in 2D antiferromagnets. Numerically, we ‘‘kill’’ two
growing exponents in Eqs.~17! by choosing two shooting
parameters« andv. As a result, we have found numerical
that there are a number of local modes. Modes with oppo
signs ofm bind to doublets; this picture is well pronounce
for umu.1 in the limit of largeR, see Fig. 3.

Such local modes exist only for not too small soliton ra
~not for large V). Eigenfrequencies for such modes wi
arbitrary azimuthal numbersm (umu.1) increase rapidly
with the decreasing of the soliton radius, and reach
boundary of the continuous spectrum. It looks as if all su
modes ‘‘leave’’ the region of the gap in the spectrum, if t
soliton radius is smaller than some critical valueRm

c , see
Table II. It is natural to suppose that all modes withumu
.1 transform to the quasilocal ones with decreasing ofR;
this fact can be tested numerically due to the singularities
the scattering amplitudes on such quasilocal modes, see
next section.

FIG. 3. Eigenfrequencies of local modes as functions of~a!
soliton radius and~b! frequency of internal precession of the so
ton. Lines: theoretical results from Eqs.~23b! and ~27!; symbols:
numerical data.
2-5



e

rg

yt

-

h

rec-
e

to

ro
n-

tion

e-
the

for

SHEKA, IVANOV, AND MERTENS PHYSICAL REVIEW B64 024432
Thus in the rangeR&1.52D0 there is only one local mode
with nonzero frequency,m521, see Fig. 3. That is why
only the mode withm521 was observed in Ref. 28 for th
soliton with q51.

The eigenfunctions of bound statesu andv are localized
near the soliton core. The functionsu and v are plotted in
Fig. 4 for the mode withm521; the picture of well-
localized eigenfunctions is specially pronounced for the la
radius solitons, see Fig. 4~a!.

In order to analyze the spectrum of local modes anal
cally, let us reformulate the EVP~14! as a variational prob-
lem for the functional

F@u,v#5E
0

`

rdr ~uĤ1u1vĤ2v22Wuv !. ~19!

We start with large radius solitons,R@D0, when the
domain-wall approximation~8! is valid. In the region of in-

TABLE II. Critical parameters for some lower modes withumu
.1. Remember that local modes always exist form50,61.

Rm
c /D0, Vm

c /v0, Vm
c /v0,

m data data from Eq.~24!

22 1.52 0.47 0.45
12 2.24 0.38 0.38
23 2.73 0.33 0.30
13 3.22 0.29 0.28

FIG. 4. Magnon amplitudes for local modes withm521.
02443
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terest,r .R@D0, the operatorĤ0 from the EVP~14! has in
the main approximation forD0 /R a simple reflectionless po
tential,

Ĥ0'L̂[2
d2

dr2
1

1

D0
2 F12

2

cosh2@~r 2R!/D0#
G

with a single localized statec0, corresponding to the zerot
eigenvalue

L̂c050, c0~r !5~2RD0!21/2/cosh@~r 2R!/D0#.

The other potentials in the EVP can be considered as cor
tions to L̂; this is the reason to put the trial functions in th
form u5ac0 , v5bc0 with trial parametersa and b. The
variational approach with such simple trial functions leads
eigenfrequencies for the different modes in the form

vm5ma1A~m2b2d!22g2,

a5K c0U 2 cosu0~r !

r 2 Uc0L , b5K c0U 1

r 2Uc0L ,

g5^c0uW~r !uc0&, d5 K c0U1r d

dr
1V cosu0~r !Uc0L ,

~20!

where^c0u•••uc0&5*0
`c0(•••)c0rdr . However, there is a

difference between the real solutionsu, v, and the trial func-
tion c0. This difference provides, e.g., the existence of ‘‘ze
modes.’’ We do not like to improve the form of the eige
functions, but only the coefficients in the Eqs.~20!, which
describe the eigenfrequencies. Using the additional condi
for zero modes,

vm50 for m50,11, ~21!

the eigenfrequenciesvm can be expressed through two ind
pendent coefficients only. It is convenient to present
eigenfrequencies in the form

vm5ma1umuAa21b2~m221!. ~22!

Using trial functionsc0, we can calculate the parametersa
andb for the large radius solitons,

a52v0~D0 /R!3, b5v0~D0 /R!2. ~23a!

In this case the spectrum has the form

vm

v0
5umuAS D0

R D 6

1
m221

~R/D0!4
2mS D0

R D 3

~23b!

This formula corresponds very well to the numerical data
R@D0, see Fig. 3. In the main approximation forD0 /R there
is a system of doublets~for all modes withumu.1) with
quadratic dependence of the mean frequency onD0 /R,

v̄6m'v0umuAm221S D0

R D 2

, ~23c!
2-6
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and the splitting is a small cubic correction,Dv6m
}m(D0 /R)3. For the special casem521 the dependence
v(R) has the form

vm521'2v0S D0

R D 3

. ~23d!

Equation~24b! describes qualitatively all modes with a
bitrary R. In particular, it describes the fact, mentione
above, that modes reach the boundary of the continu
spectrum at some finite frequency of the soliton precess
Vm

c . Let us estimate the positions of the crossover poi
where the modes ‘‘leave’’ the discrete spectrum. Using
~23b!, one can obtain the condition for the critical values
x5Vm

c /v0:

umuAx61~m221!x42mx3512x. ~24!

Results are very close to the numerical data, see Table II.
expect that the local modes transform into the quasilo
ones inside the continuous spectrum; but their frequen
can still be described by the formula~23b!, see Sec. VI.

For the small radius solitons,R!D0, there only exist lo-
cal modes withumu51. Thus we will consider this case
Constructing the trial functions, one can suppose that t
should be similar to the modes withm561. Eigenfunctions
for the translational zero mode,u11 and v11, are well
known, see Eq.~18a!. To construct the trial functions it is
convenient to use functionsu21 andv21 in the form

u215r 2u11 , v215r 2v11 ,

which coincide with the exact zero mode eigenfunctions
the mode with m521 in the limiting case of the BP
soliton.19 Now we can choose the trial functionsu andv as
follows:

u5a•u111b•u21 , v5c•v111d•v21. ~25!

The variational problem~19! can be solved analytically in
the main approximation forR/D0 using the explicit BP so-
lutions. Tedious calculations lead to the eigenfrequency
small R,

vm521'C•~v02V!. ~26!

Unfortunately, this method is not exact and leads to a va
of the constantC which is larger than the numerical valu
This is caused by the fact that the trial functions, which
constructed from zero modes, have the wrong asympto
behavior~9! at large distance,u0(r ), u08(r )}exp(2r/r0), in-
stead of Eq.~17!, i.e.,u}exp(2¸1

2r), v}exp(2¸1
1r). To im-

prove this result, one can change the asymptotical beha
of the functions~25! by exponential factors:

u→u•er (1/r 02¸1
2), v→v•er (1/r 02¸1

1).

In this case the calculations can be done numerically o
the value of the constantC'1. For the approximate descrip
tion of the eigenfrequency of the mode withm521 in the
intermediate case of arbitraryR, we use the trial function
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vm521
(tr ial ) ~z!5v0•

2z3~12z!

12z12z4
, z5

V

v0
. ~27!

Providing the asymptotically correct behavior, Eqs.~23d!
and~26!, this approximation reproduces to the numerical
sults with an accuracy of about 231023, see Fig. 3.

V. SCATTERING PROBLEM: NUMERICAL RESULTS

Let us describe the scattering of magnons by a solit
Note that without a soliton, free magnon modes have
form

um~r !}Jm~kr !, vm~r !50, ~28!

wherek is a ‘‘radial wave number,’’k andv are connected
by the dispersion law (38), andJm are Bessel functions. The
free modes likeum play the role of the partial cylinder wave
of a plane spin wave

exp~ ik•r2 ivt !5 (
m52`

`

i mJm~kr !eimx2 ivt. ~29!

To describe magnon solutions in the presence of a soli
one should note that far from the soliton,r @D0, the ‘‘cou-
pling potential’’ W(r ) is exponentially small. Therefore
there are two asymptotically independent EVP’s; the mag
amplitude vm has the same form~17b! as for the local
modes, but the functionum shows an oscillating behavio
like

um~r !}Jum11u~kr !1sm~k!Yum11u~kr !, ~30!

where Yum11u are Neumann functions. The quantitys(k)
derives from the soliton-magnon scattering; it can be int
preted as the scattering amplitude.

We use the one-parameter shooting method to study
merically the problem of soliton-magnon scattering, as
scribed in Ref. 29 for vortices in the antiferromagnet. Cho
ing the shooting parameter«, see Eq.~16!, we ‘‘kill’’ the
growing exponent in Eq.~17b!; as a result we have obtaine
a well-pronounced exponential decay forvm ; the corre-
sponding oscillating solutions forum differ from the asymp-
totical values~30! only in the vicinity of the soliton core, see
Fig. 5. The scattering amplitude was found from these d
by comparison with the asymptotics~30!. The results are the
following:

For all modes the scattering amplitudesm(k) tends to
zero ask→0. In the long-wavelength limit the maximal sca
tering is related to the mode withm521, for which the
behavior ofds/dk looks singular. However, other propertie
depend strongly on the soliton radius.

In the case of largeR, the scattering amplitudesm(k) is
positive for all modes in the long-wavelength limit. There
a maximum ofsm(k) at aboutkR;1 for modes withposi-
tive m; but there are two poles in the scattering amplitude
modes withnegative m, and one pole form50. Naturally,
there is no real divergence at such a pole: the physic
observed phase of the scattering, or the phase shiftdm
2-7
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52tansm , varies monotonically, see Fig. 6. Thus there a
principally different pictures for positive and negativem: the
total phase shift is

d m
tot[d~`!2d~0!5H 0, m.0

2p, m50,

22p, m,0

R@D0 .

~31a!

The scattering picture is quite different for the case
small radius solitons. Each mode withumu.1 has a single
pole only, the positionkpR of which increases whenm
grows. For the special case of the mode withm511, the

FIG. 5. Oscillating magnon amplitudesum for soliton with ra-
dius R510D0 for different wave numbersk.

FIG. 6. Scattering for a large radius soliton,R510D0. Numeri-
cal data.
02443
e
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scattering amplitude is anomalously small; for the mode w
m521 there appears a second pole with anomalously sm
values ofkp . These results are presented in Fig. 7. The to
phase shift is

d m
tot55

1p, m.1

0, m51

22p, m521

2p, m50, m,21

R!D0 . ~31b!

There appears a discontinuous change of the total ph
shift from Eq. ~31a! to Eq. ~31b! for all modes withmÞ0,
21 for the cases of intermediate soliton radii. This transiti
occurs independently for each mode at some critical val
km

c of the wave number.

VI. SCATTERING PROBLEM IN THE FRAMEWORK
OF THE PSEUDOPOTENTIAL METHOD

For the analytical description of the scattering proble
let us analyze the EVP qualitatively, replacing the real ‘‘p
tentials’’ ~15! in the EVP~14! by simplified ones, which are
amenable to an exact treatment. Such an approach is
known in the quantum physics of solids as the pseudopo
tial method. Sometimes it is useful even when the potentia
not small, see Ref. 39 for details.

Let us discuss the choice of the pseudopotential. The s
plest way is to describe the soliton structure in the m

FIG. 7. Scattering for a small radius soliton,R50.2D0. Solid
line: analytical asymptotics fork!1/D0 for the modem521 from
Eqs. ~46a!; dashed lines: analytical asymptotics fork@1/D0 from
Eqs.~38!; symbols: numerical data.
2-8
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approximation, using the ansatz

cosu0~r !'sgn j, j5
r 2R

D0
, ~32!

which is a good approximation for both small and large d
tances. Replacing the soliton by this configuration, wh
does not have any in-plane structure (sinu050), reduces the
complex EVP~14! to a very simple ‘‘centrifugal model’’
with vm[0:

S 2¹ r
21k21

um1sgn ju2

r 2 D um50. ~33!

This model describes quasifree magnons in each of the
gionsr ,R andr .R. The only effect of the soliton–magno
interaction is a shift of the mode indexes in comparison w
the free magnons~28!:

um~r !}H Jum21u~kr !, r ,R,

Jum11u~kr !1sm~k!Yum11u~kr !, r .R.
~34!

The usual matching condition for these solutions has
form

Fu8

u G
R

50, ~35!

where @•••#R[(•••)uR102(•••)uR20. Calculations lead to
the scattering amplitude in the form

s~¸!5
Jum21u8 ~¸!•Jum11u~¸!2Jum11u8 ~¸!•Jum21u~¸!

Jum21u~¸!•Yum11u8 ~¸!2Jum21u8 ~¸!•Yum11u~¸!
,

~36!

where¸5kR, see Fig. 8. The total phase shift in this mod
is

dm
tot5p•sgn m. ~37!

A. Small radius solitons,R™D0

The simple ‘‘centrifugal model’’ with the results~36! ex-
plains qualitatively the scattering data for the small rad
solitons, except for modes withm50,61, cf. Eq.~31b!. The
cause for these exceptions is the existence of truly lo

FIG. 8. Scattering for the centrifugal model.
02443
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modes~‘‘zero ones’’ for m50,11, and another one with
nonzero frequency form521); while such modes are ab
sent for the otherm. The existence of a local mode dimin
ishes the total phase shift byp ~and decreases the number
states in the continuum spectrum by 1, due to the conse
total number of magnon states!. Such a result is well known
in 1D, see, e.g., Ref. 7. Except for these cases, one can
pect for the scattering peculiarities atk;1/R@1/D0. In this
range the approximation by an isotropic magnet and BP s
tons is valid. The scattering problem for the isotropic ma
nets was studied in detail in Ref. 19. Over a wide range
wave numbers, 1/D0!k!1/R, the asymptotics for the
Belavin-Polyakov soliton are valid,19

smÞ21,0~k!52
p~kR!2

2umu~m11!
, ~38a!

sm50~k!5
p

2 ln~1/kR!
, ~38b!

sm521~k!5p~kR!2 ln~1/kR!. ~38c!

For larger wave numbers,k@umu/R, the scattering amplitude
has a general, so-called eikonal dependence,sm}1/kR,19

sm~k!5
p~m21!

kR
. ~38d!

Our numerical data in this region are very close to t
asymptotical behavior~38!, see Fig. 7. Note that the maxima
scattering in the region 1/D0!k!1/R occurs for the rota-
tional mode withm50, whose asymptotics~38b! has a sin-
gularity for k→0. There is one pole only for each mode; i
position corresponds to the pole in the Belavin-Polyakov
lution, kp;umu/R.19

Let us consider the local modes, for which the total pha
shift is diminished byp in comparison to the ‘‘centrifuga
model’’ ~37!; it is equal to 0,2p, 22p for the casesm
511, 0, 21, respectively.

There is one pole only for the simplest case of the mo
with m50. The scattering amplitude in the range 1/D0!k
!1/R is described by the formula~38b!. The position of the
pole is determined by the BP resultkp51/R.19 The reason
for such a nice agreement with the model of the isotro
magnet will be explained below in the text.

There is no pole for the translational mode withm511.
This is due to a unique property of the isotropic mod
where such a mode does not scatter at all;19 the magnon
amplitude in this limit has the form

um511~r !5J2~kr !2
2

kr
•

J1~kr !

~r /R!211
, ~39!

which agrees with our numerical data, see Fig. 9. T
unique property of reflectionlessness is caused by the h
internal symmetry of the problem.

Figure 7~a! shows that such a property is approximate
valid for the small radius soliton in the anisotropic magn
too: the scattering amplitude is anomalously small, so
2-9
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total phase shift is absent. Another effect of this symmetry
the isotropic magnet is that the scattering problem for the
model can be reduced to a simplified one with effectiv
smaller scattering. Such a ‘‘reduced model’’ has no lo
~and quasilocal! modes; it is described by shifted indexe
m→m21.19 It is natural to use the ‘‘centrifugal’’ approxi
mation for such a reduced model~36!. As a result,sm511
50 in the framework of the same centrifugal model; for t
other modes, Eq.~37! leads to the total phase shiftdm

tot5p
•sgn(m21). Taking into account that sgn 050, one can see
that such a simple dependence fordm

tot describes all modes
except ofm521. Its behavior is most interesting.

For the mode withm521 there are two poles, while i
should be one pole only for the Belavin-Polyakov soliton
Indeed, one of the poles lies in the region where the Bela
Polyakov approximation is valid; its value,kp'2.79/R
@1/D0, coincides exactly with the Belavin-Polyakov data19

The second pole lies in the regionk!1/D0, where the ap-
proximation by the isotropic magnet is not applicable. T
pole is caused by the presence of the local mode, the typ
wave number of such a mechanism iskp;¸1

6!1/D0. The
use of reduced or centrifugal models is certainly wrong
this case. We will discuss the scattering amplitude in t
region later, on the basis of a more general pseudopote
model, see Eq.~46a!.

B. Large radius solitons,RšD0:
Refinement of the pseudopotential model

Let us consider the case of large radius solitons,R@D0.
Here exist local modes for eachm. Therefore the simple
centrifugal model as well as other simple models withou
discrete spectrum seem to be wrong. This can be expla
by the fact that in the very simple model~33! we omit the
‘‘coupling potential’’; the real potentialW tends to zero at
the origin and at infinity, but has maxima at some fin
distances.

Thus we need a more general form of the pseudopo
tials which accounts for the potentialsU0 , V, and W. To
describe the soliton shape, we can again use the expre
~32! for the out-of-plane soliton configuration. However, w

FIG. 9. Magnon amplitudeu for the translational mode with
m511 (R50.2D0 , kD053). Lines: exact analytical solution~39!
for the isotropic magnet; symbols: numerical data for the EA F
02443
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need to consider the in-plane signature, too. According
Eq. ~32!, it could be described as

sin2u0~r !→d~j!.

Therefore we can suppose that the coupling potentialW(r ) is
nonzero only at some distance around the soliton radius
approximately replace it by ad potential as follows:

W~r !→ c1

D0
2
d~j!. ~40a!

The same assumptions lead to simple expressions for
other potentials in the EVP~14!,

U0~r !1
m2

r 2
6V~r !→ 12~V/v0!•sgn j

D0
2

1
um6sgnju2

r 2

1
c2

D0
2
d~j!. ~40b!

Herec1 andc2 are trial parameters.
We choose this pseudopotential model~40! for the fol-

lowing reasons:~i! it allows an exact analytical solution;~ii !
it guarantees the correct asymptotic behavior of the so
tions; ~iii ! it offers a possibility to identify the parameters o
the pseudopotential from the discrete spectrum~23!.

Let us consider the discrete spectrum in the framework
the pseudopotential~40!. Comparison with the eigenfrequen
cies ~23! provides a possibility to determine all trial param
etersck . For the discrete part of the spectrum, the EVP~14!
with potentials~40! has solutions like

um~r !}H I um21u~¸2
2r !, r ,R

K um11u~¸1
2r !, r .R,

~41a!

vm~r !}H I um11u~¸2
1r !, r ,R

K um21u~¸1
1r !, r .R,

~41b!

¸1
65A~v02V6v!/D, ¸2

65A~v01V6v!/D.

Now it is possible to calculate the eigenspectrum
matching the solutions~41a! and ~41b! at the distanceR,

@u8#R5
c2

D0
•uUR2

c1

D0
•vU

R

, ~42a!

@v8#R5
c2

D0
•vU

R

2
c1

D0
•uU

R

. ~42b!

Calculations lead to the eigenfrequencies in the form~20!.
Using the condition for the zero modes~21!, the eigenfre-

.

2-10
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quencies can be represented in the form~22!; the constants
c1 , c2 can be identified by comparison with the spectru
~22!,

c15
1

2 S b2
a2

b D , c25221c11ma1m2b2
D0

2

4R2
.

~43!

The parametersa and b were calculated by the variationa
approach,a}1/R3, b}1/R2, see Eq.~23a!.

Let us discuss the scattering problem. Solving the E
~14! with pseudopotentials~40!, we obtain for the continuum
spectrum,v.vgap , the following solutions. The functionu
for r ,R has the form

u~r !}H I um21u~¸2
2r !, when k,A2V/D,

Jum21u~k2
2r !, when k.A2V/D,

~44!

wherek2
25Ak222V/D. At large distances,r .R, it has the

usual oscillating form~30!. The functionv has the localized
form ~41b!. One can find the scattering amplitude by matc
ing the solutions~30!, ~44!, and~41b! at the distanceR, using
the condition~42!:

sm~k!5
@Cm~k!1Fm~k!#Jum11u~kR!2kD0Jum11u8 ~kR!

kD0Yum11u8 ~kR!2@Cm~k!1Fm~k!#Yum11u~kR!
,

~45!

here

Cm~k!5c22c1
2
•S c21¸2

1D0•
I um11u8 ~¸2

1R!

I um11u~¸2
1R!

2¸1
1D0•

K um21u8 ~¸1
1R!

K um21u~¸1
1R!

D 21

,

Fm~k!55 ¸2
2D0•

I um21u8 ~¸2
2R!

I um21u~¸2
2R!

, k,A2V/D,

k2
2D0•

Jum21u8 ~k2
2R!

Jum21u~k2
2R!

, k.A2V/D.

It is easy to analyze the expression for the scattering
plitude ~45! in some limiting cases. In the long-waveleng
limit, k!1/R!1/D0, one can use the asymptotics for th
cylindrical functionsJ(z), Y(z) at z!1 and, at the same
time, the asymptotics forI (z), K(z) for z@1. Simple calcu-
lations show that the scattering intensity is maximal for
mode withm521,

sm521~k!5
p

2 ln~1/kR!
, kR!1, ~46a!

which agrees with the numerical data, see Fig. 6~b!. Note
that Eq. ~46a! was obtained using one condition only,kR
→0. Therefore it is valid for the case of smallR, too, ex-
plaining the existence of the second pole for the modem
521 both for large and small radii.
02443
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For the other values ofm, we can restore the genera
dependence of the amplitude of the magnon scattering on
large radius soliton,R@D0:

smÞ21~k!5
p~kR/2!2um11u

um11u! ~ um11u21!!
, kR!1. ~46b!

The scattering amplitude, according to Eq.~46b!, is positive
for all modes in the long-wavelength limit.

In the range 1/R!k!1/ARD0 the asymptotics forJ(z),
Y(z) for z@1 are valid, which in the main approximation fo
D0 /R leads to a linear dependence of the scattering ph
shift on kR,

dm~k!'
um11up

2
2

p

4
2kR, 1!kR!A R

D0
.

~46c!

For this range ofk, all curves look like a family of parallel
lines with equal distance of aboutp/2. Note that the real
values of the trial parametersc1 and c2 lead to the correc-
tions in Eqs.~46! like D0 /R.

Naturally the pseudopotential method cannot explain
scattering results fork*1/D0, where the influence of truly
local modes and the differences between the real pote
and thed function are dominant. Nevertheless, the meth
gives quite good results even for the casek&1/D0, where the
linear asymptotics does not work. Corresponding curves
plotted in Fig. 10 using the general dependence~45! with
trial parametersc1 andc2. Fitting of these parameters gives
result in the zeroth-order approach forD0 /R: c1'0, c2
'0.4 instead ofc1'0, c2'22, according to Eq.~43!. The
difference is caused by the limitations of the model~40!. For
example, the above-mentioned model leads to an increas
the scattering phase whenk increases; the total phase sh
for this model is dm

tot5sgn m•p, as for the centrifugal
model, see Eq.~37!, i.e., the qualitative properties of thes
models are equivalent. The appearance of a local mode
minishes the total phase shift byp. As a result, there is no
total phase shift for all modes with positivem; but d tot

522p for all modes withm,0.
The scattering picture in the short-wavelength limit,k

@umu/R, gives the general, so-called eikonal depende
sm'Am /k. However, in contrast to the case of the isotrop
magnet~38d!, the scattering amplitude has the same s
Am,0 for all modes due to the presence of the effect
attractive potential, which causes the existence of lo
modes. When the soliton radius decreases and the local m
disappears, the sign ofsm changes; the result becomes sim
lar to Eq.~38d!.

Thus we explain the particularities in the scattering p
ture of EA magnets, in comparison with the isotropic ca
by the influence of local modes. To examine this influen
let us consider the scattering datasm for the modesm
512 andm522 with different soliton radiiR as functions
of the parameterkR, i.e.,s5sm(kR); this gives a possibility
to compare the scattering data with the isotropic model,
Fig. 11. For the small radii the scattering picture is similar
the BP case~solid lines in Fig. 11!. When the soliton radius
2-11
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SHEKA, IVANOV, AND MERTENS PHYSICAL REVIEW B64 024432
FIG. 10. Scattering amplitudedm for large radius soliton (R
510D0) vs kR in the rangekD0,0.8. Lines: analytical solution
from Eq. ~45!; symbols: numerical data.

FIG. 11. Bifurcations for the scattering datadm vs kR: ~a! criti-
cal soliton radiusRm512

c 52.24D0, ~b! Rm522
c 51.52D0. Solid line

corresponds to the Belavin-Polyakov asymptotics~38!.
02443
increases, the scattering phase jumps up byp, decreasing the
total phase shift. Such a bifurcation takes place for the m
with m512 at R52.24D0, and for the mode withm521
at R51.52D0. These values agree with the crossover poi
Rm

c , see Table II. Thus it is natural to suppose that the bif
cation is connected with the appearance of the quasilo
modes inside the continuum spectrum forR.Rm

c . Simple
calculations show that the positionskp of the poles corre-
spond to the frequencies of quasilocal modes, which can
estimated by Eq.~23b!.

VII. TRANSLATIONAL MODES AND DESCRIPTION
OF THE SOLITON DYNAMICS

The foregoing analysis of the spectrum for the mod
with umu51 can be used to describe the translational mot
of the soliton. Such an approach was proposed in Ref.
where an effective mass of the vortex in a 2D EP magnet
calculated from numerical data for the eigenmode spect
of the finite-size magnet. Important progress for the vortic
in FM was achieved in Ref. 21; the specific structure of t
spectrum of modes withumu51 ~namely the existence of a
Goldstone mode withv}1/L2, and a number of doublet
with mean frequencyv̄}1/L and a small splitting! leads to
non-Newtonian equations of motion with 3rd, 5th, . . . tim
derivatives. Such equations were derived and discussed
lier in Ref. 41, using a phenomenological approach, fo
review see Ref. 42. The analytical calculation21 verified their
adequacy; besides, it allows to calculate the coefficients
the equations of motion with an error of only about 0.8
Thus it is possible to describe in this way such unusual pr
erties as the appearance of the non-Newtonian equation
motion.

The spectrum of magnon modes withumu51 has a differ-
ent structure for the isotropic FM. First of all, there are
doublets;19 for an approximate description of the dynami
only two modes are sufficient: the translational Goldsto
mode with dependencev}1/L2 and another mode withm
521. Therefore the effective equations of motion have
Newtonian form with an effective mass, which diverges
L2, see Ref. 19. Such behavior agrees with the direct ca
lations done by Zaspel.15

Let us note that all magnets mentioned above, i.e., EP
isotropic systems, have a gapless dispersion law and,
result, a strong interaction of the soliton with the boundar
of the magnet; the interaction force is proportional to 1/L for
the EP vortices21 and 1/L2 for the Belavin-Polyakov
solitons.19 The absence of a gap manifests itself in the p
ticularities of the dynamical coefficients~the effective mass
M for the BP soliton in the isotropic FM,19 and the coeffi-
cientG3 in the term with@ez3]3X/]t3# for the vortex in the
EP FM Ref. 41!. This can be explained as follows. The e
istence of the massM and the gyroscopical forceG@ez
3]X/]t# leads to a finite frequency of the Larmor prece
sion of the soliton. For a gapless dispersion law, this f
quency lies in the continuous spectrum. Thus the Larm
motion of the vortex leads to the generation of magnons.
a finite-size system without dissipation, such magnons
distributed through the whole magnet; the Larmor dynam
2-12
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of the soliton center is strongly coupled with a ‘‘magno
cloud,’’ having a scale of about the system size. Theref
the position of the soliton center, which can be determined
a point with mz521 ~BP soliton!, or mz561 ~vortex!, in
fact plays the role of a collective variable which governs
motion of the magnon cloud. Then it is not surprising th
the corresponding equations of motion are nonlocal, lead
to the divergence of the dynamic coefficients asL→`.

The situation is quite different for the case of the EA FM
Our numerical analysis and analytical calculations show
the picture of doublets for local modes withumu and2umu is
valid for largeR, see Sec. IV. On the other hand, the eige
frequencies of these modes lie in the gap for the large sol
radii, v,vgap , so one can expect the existence of a fin
mass in the effective equations of the soliton motion. The
fore for the phenomenological description of the soliton d
namics we can use the 2nd-order differential equation

M
]2X

]t2
2GFez3

]X

]t G5Fe~X!, ~47!

which corresponds to the picture with the lowest doublet
local modes. Note that further generalizations for the fin
size magnet take into account the next doublets of quasi
tinuous modes. Here the hierarchy of the effective equati
of motion containing only even-order time derivatives ma
fests itself. In Eq.~47! X describes the position of the soliton
M is the mass coefficient,G the gyrocoefficient,ez the unit
vector along the easy~z! axis, andFe the external force
acting on the soliton due to the boundary or other solito
Assuming that deviations of the soliton from the equilibriu
position are small,Fe'2aX, the effective equation of mo
tion ~47! can be solved by a harmonic ansatz, which lead

v0,15
G

2M
6A G2

4M2
1

a

M
. ~48!

For the localized solitons, the interaction between soliton
boundary~or between two solitons! has an exponential deca
as exp(2L/r0), r 05AD/vgap, see Eq.~9!. Thusa/M can be
neglected for a large system sizeL, so the frequencies~48!
have the form

v050, v15G/M . ~49!

The zero frequencyv0 corresponds to the Goldstone mo
~position shift of the soliton!, in which all spins rotate with
the frequency of the soliton precessionV in the laboratory
frame. The presence of the rotating frame frequencies in
phenomenological description of the soliton dynamics ha
simple explanation.

The frequencies~49! describe, in essence, the motion
the soliton center. Let us discuss their link with the freque
cies of small oscillations, see Eq.~13!. It is easy to write
down expressions for the magnetization components in
laboratory coordinate frames:
02443
e
s

e
t
g

.
at

-
n

-
-

f
-
n-
s

-

s.

to

d

e
a

-

e

mx1 imy5Fsinu01cosu0(
a

~ua1va!cos~mx1ṽat !

1 i(
a

~ua2va!sin~mx1ṽat !G•eiqx1 iVt,

mz5cosu02sinu0(
a

~ua1va!cos~mx1ṽat !.

One can see that the in-plane components have no sim
frequency dependence, including the combined valuesṽ
6V. At the same time, the out-of-plane componentsmz de-
pend on the frequencyṽ in the rotating frame only. In our
phenomenological description only thez components contain
information about the position of the soliton centerX, deter-
mined by the conditionmz521. Thus just the frequencyṽ,
which is calculated above and plotted in all figures, det
mines the soliton motion.

The solution of the effective Eq.~47! with the nonzero
frequencyv1 allows us to calculate the effective mass of t
soliton, M5G/v1. The value of the gyroconstant is we
known, G54pqA/D, see Refs. 35 and 7. As a result, th
soliton mass is finite for every soliton radius~the local mode
with v1 exists for everyR, see Fig. 3!. This fact corresponds
qualitatively to the calculations in Ref. 43. The soliton ma
we have obtained numerically from thev1 data is plotted in
Fig. 12 as a function ofR.

In the limit of a large radius soliton the formula~23d!
yields the dependence

M5M0S R

D0D 3

, M05
\N2

D
, R@D0 , ~50a!

which agrees with the results obtained in Ref. 43 and
numerical data, see Fig. 12.

In the case of small radius,R!D0, the dependence~26! is
valid, thus

M5M0•
2v0

v02V
5

4pA

D2
•r 0

2 , R!D0 , ~50b!

FIG. 12. TheR dependence of the mass. Lines: analytical
ymptotics from Eqs.~50!; symbols: numerical data.
2-13
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SHEKA, IVANOV, AND MERTENS PHYSICAL REVIEW B64 024432
wherer 0 was introduced in Eq.~9!. This result corresponds
to the one for the Belavin-Polyakov soliton,19 M
54pAD22

•L2 , because here the characteristic lengthr 0 is
to be replaced by the system sizeL.

VIII. CONCLUSION

We have studied the magnon-soliton system in the mo
of the 2D Heisenberg easy-axis ferromagnet. Combining
merical and analytical methods, we have obtained comp
results about bound and scattering magnon states in the
tem. A rich spectrum of truly local modes was found alo
with bifurcations of these modes with the change of the s
ton radius. For the modes with higher azimuthal numbersm,
we have verified the picture of doublets with small splittin
for large soliton radiiR. The spectrum changes strongly wi
decreasing ofR: all modes withumu.1 ‘‘leave’’ the region
of the discrete spectrum, transforming to quasilocal mod
Such modes could be observed experimentally by sol
magnetic resonance as was done for 1D solitons.8 Usually
the magnetic resonance experiments are carried out with
saturated samples of FM, i.e., under strong enough magn
field H along the easy axis. In this case it is convenient
watch the resonance by the field controlling. Our resu
were calculated without such field in order that do not e
cumber the text. One can see that the influence of the fielH
leads to the shift both frequency of the soliton precessionV
and the magnon frequencyv on the valuegH, whereg is the
gyromagnetic relation. In the external field the soliton stru
ture is stable in the region of frequencies:gH,V,v0
1gH.

The influence of truly local modes is important for th
scattering problem, leading to the bifurcations of the ph
shift. As a result, whenR,1.52D0, the scattering picture is
qualitatively the same as for the isotropic magnet wh
could be explained in the framework of a simple centrifug
model. There is one exception only,m521, where the local
mode exists for every soliton radius.
o
:

r,

s

,
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Our investigations can be applied to the description of t
eigenmodes of magnetic dots. In the present paper we
velop the theory of local modes on the soliton background;
could be a good guide for the study of the normal modes
the vortex-state magnetic dots. Our theory is constructed
the soliton in the model~1!, where the soliton is stabilized by
the internal precession. It is clear that such a model can
guarantee the quantitative correspondence with the case
vortex-state magnetic dots, where the static soliton struct
is stabilized by the magnetic-dipole interaction. We did n
consider this type of interaction in the paper, as it is difficu
to account for. Nevertheless, we believe that the main fe
tures of the problem studied above are generic. First of a
we expect the appearance of modes with anomalously sm
frequencies, e.g., the mode of the translational oscillations
the vortex center. The nonzero frequency of this mode
caused by the interaction with the boundary only. Secon
doublets withm56n, n.1, should appear when the radiu
of the vortex is rather large.

We have used the results on the local modes for the m
interesting case of the translational modes withumu51 to
describe the soliton motion in the infinite-size magnet: it
possible to identify the soliton mass, which is finite due
the localized soliton structure. In contrast to both th
Belavin-Polyakov soliton in the isotropic FM and the mag
netic vortex in the easy-plane FM, the soliton motion in ou
case of the easy-axis FM is similar to the motion of a fini
mass charged particle in a magnetic field.

Thus the localized precessional soliton in the easy-a
FM is an example of a 2D topological magnetic soliton wit
truly particlelike properties.
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