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Internal modes and magnon scattering on topological solitons
in two-dimensional easy-axis ferromagnets
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We study the magnon modes in the presence of a topological soliton in a two-dimensional Heisenberg
easy-axis ferromagnet. The problem of magnon scattering on the soliton with arbitrary relation between the
soliton radiusk and the “magnetic length"A is investigated for partial modes with different values of the
azimuthal quantum numbens Truly local modes are shown to be present for all values,affhen the soliton
radius is large enough. The eigenfrequencies of such internal modes are calculated analytically on the limiting
case of a large soliton radius and numerically for arbitrary soliton radius. It is demonstrated that the model of
an isotropic magnet, which admits an exact analytical investigation, is not adequate even for the limit of small
radius solitonsR<A: there exists a local mode with nonzero frequency. We use the data of local modes to
derive the effective equation of soliton motion; this equation has the usual Newtonian form in contrast to the
case of the easy-plane ferromagnet. The effective mass of the soliton is found.
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[. INTRODUCTION the scale and conformal invariance of the mddéf For EA
magnets it is necessary to take account of some important
Nonlinear topologically nontrivial excitationgsolitons modifications due to the breaking of such symmetries. That
are well known to play a special role in low dimensional is why, both for EA and EP 2D magnets, the soliton density
magnetic systems. For example, the presence of vorticds®s not been calculated, but has been used as an input pa-
in two-dimensional2D) easy-plandEP) magnets gives rise fameter. The general features of the 2D soliton dynamics are

to the BerezinskiKosterlitz-Thouless (BKT) phase hotclearatpresent. In particular, the form of inertial terms in
transition*? Kinks in 1D magnets and localized Belavin- the dynamical equations for the soliton center is unknown; so

Polyakov(BP) solitons in 2D isotropic magnets are respon- the study of localized states is an issue of current research.
sible for the destruction of long-range order at finite tempera!NOte that the problem of the soliton dynamics and the prob-

ture. The soliton signatures in dynamical response functionl%?e?f ;T]% ?;('?;eencfog';el‘n'\]ﬂo"’}r;ﬁttgni;e;y r?c?r?nsi(:t?gritr? e""‘:C(?r
can be observed experimentally. Translational motion o ' P g 9-

. i . - ~example, using numerical data for the scattering amplitude, a
solitons |e<’;.1d'S. o the so calleq SOI't.On Ce”"?' peakAn non-Newtonian effective equation of motion of the magnetic
other possibility to detect soliton signature is to look for

. ) vortex was constructett.
magnon modes, localized at the solifdocal modesLM)];

) . Usually non-1D solitons and, especially, the problem of
such modes are the cause of soliton magnetic resonance ﬁliton—magnon scattering, are treated numericiiy® The

the characteristic frequencies of “intrinsic” motién. exceptions are the analytical study of the scattering problem
This can be explained within the scope of the so-calledqy, Ea and EP ferromagnet&M) in the frameworks of the
soliton phenomenology, where the magnet can be describagorn approximatiorf*?> However, such an approach is not
as a two-component gas of elementary excitations: solitongdequate for the problem with nonsmall soliton-magnon in-
and magnons. Such an approach was developed for lfraction. Therefore it leads in Ref. 25 to thdependence of
magnets. It was shown that the contribution of magnons andthe scattering amplitude, which differ strongly from the ac-
soliton-magnon interaction is important for this approach, agurate result! Recently the analytical investigation of the
is obvious, for example, in the discussion of soliton magneticscattering problem has been done for the case of purely iso-
resonancé.But for 1D magnets the soliton-magnon scatter-tropic magnets, with the exact BP solutitfi?”°In particu-
ing causes a change of the magnon density of states, whichligr, it was found that a soliton has a number of local modes
necessary for a self-consistent calculation of the temperaturef zero frequency® such modes determine the main features
dependence of the soliton denstty. of the scattering pictur® However, even a small uniaxial
For the 2D case, the concept of a solif@orteX gas has anisotropy leads to principal changes. Truly local moges
been extended to describe EP magnets above the BKdontrast to quasilocal ones, belpwith nonzero frequencies
vortex-antivortex unbinding transition, with a finite density were found numerically in Ref. 28 for the soliton in EA FM
of vortices®*° The concept of localized topological solitons for some special values of the azimuthal quantum number
(,-topological solitons, see details in Ref.)Mas used to namely the mode witlm= —1 for the soliton with the topo-
explain the EPR linewidth in easy-axi§€A) magnets?™*®  |ogical chargeg= 1, and the mode witm=2 for q=2 were
The classical example of a localized soliton is BP solutionjnvestigated. It is natural that such local modes can not be
which exists in isotropic magnets. The scattering problem fofound in the Born approximation, treated in Ref. 24. Note
such solitons allows an exact analytical solution because ahat local modes do not exist for the models of easy-plane
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and isotropic ferromagnets, where the magnon spectrum haghereA=JS?, Jis the exchange integrabthe atomic spin,

a gapless dispersion law. The case of the 2D EP antiferroA ,=\/A/K the characteristic scalé'magnetic length”), K

magnet is an exception; for this model a finite—frequencythe energy of the anisotropy, amithe spin-wave stiffness.

truly localized internal mode withm=0 exists inside the The model of EA FM has well-known magnon excitations

continuum spectrurf® #=conskl, ¢=wt—k-r above the homogeneous ground
Recently there has also been renewed attention to the istate. The dispersion law for the magnons has a finite acti-

ternal dynamics of the soliton. It is caused by the studying of/ation frequencywo= D/AS,

small ferromagnetic particles in the so-called vortex state

(magnetic dots Magnetic dots are micron-sized magnetic w(K)= wo+DIk[?, (3

samples, placed on a nonmagnetic substrate; they have dikherek is the wave vector

ferent shapes: circular, quadratic, etc. The magnetic dots are i

interesting for the usage in the high-density magnetic storag

device®3! and from a fundamental point of view. As the

dots are rather largéhe size of magnetic dot exceeds the d=potax+Qt, 0=04(r), 6o(0)=1m, 6(*)=0,

critical size of a single domajntheir ground state could be (4)

inhomogeneous. Such a dot in the vortex state contains ah q | dinates in the ol fth
magnetic singularity in the center of the vortex, or the WNerer andy are polar coordinates in the plane of the mag-

Belavin-Polyakov soliton typ& The discrete magnon net, the integeq_ plays the role ofatopo_logical charge, "?‘”d
modes were observed for the uniformly magnetized dots by %](O<Q<w0) is the frequency of the internal precession.

The simplest nonlinear excitation in the system is the dy-
flamical (precessionaltopological solitoA®

2 1 2
+Sin290 q_2

—+
2
A0

resonance techniquétheir theory was constructed using the e necessity to consider solitpns with ‘”te”!a' precession is

Landau-Lifshitz equation¥ caused b_y the_fact that, accordllng to the Derrick-Hobart theo-
In this paper we consider the magnon modes which existem. static so_lltons in m(_)dels like EqZ) are unstable_. For-

in 2D Heisenberg EA FM with a topological soliton. The Mally, there is no functionfiy(r), which could provide a

model of an easy-axis ferromagnet is presented in Sec. 1. ARNnimum of the energy

approximate solution for the soliton structure is examined. In .

Sec. Il we formulate equations, describing magnons and E=77Af rdr[(% ] (5)

solitons. In Sec. IV truly local magnon modes are calculated 0 dr r

analytically by variational approach for the limiting cases of . . . -

large and small radius solitons, and numerically for arbitraryThe precessional soliton corre_sponds to the conditional mini-

radii. In Sec. V the problem of soliton-magnon scattering is"YM O.f the engrg;(S) for a given numbeN of magnons

formulated and treated numerically for different partial PoUNd in the soliton

modes. The phenomenology of a pseudopotential is proposed

in Sec. VI to analyze analytically both local states and the N= &fwrdr[l—coseo(r)] (6)

scattering problem. In Sec. VII we use results for local Ag 0 ’

modes to derive the equations of soliton motion. Such equa- . | o )

tions are of Newtonian typéwith the account of gyroscopic Which is conserved for the uniaxial case=27A/fiw is

force), in contrast to both the case of the BP soliton in thet® ch%gacterlstlc number of bound magnons in the 2D

isotropic magnéf and the case of the vortex in the EP solltqn_), see also Refs. 11 and 35. This corresponds to the

magnet? In the framework of this equation the soliton ef- condition {lE—N#A€Q]=0. The form of the functionfo(r)

fective mass is calculated. A discussion and concluding reiS defined by the ordinary differential equation

marks are presented in Sec. VIII. ’ )
d“6o 1d6p q .
——+———-—sinfycosby| —+— |+ sin6y,=0,
dr2 r dr A3 r?]  woA?

Il. MODEL AND ELEMENTARY EXCITATIONS )

The dynamics of the classical ferromagnet is described byith the boundary conditionét). The precession frequency
the Landau-Lifshitz equations for the normalized magnetizaQ is fu”y determined by the number of bound magnd}hs
tion m. In angular variablesm,+imy=sinfexp(¢), these  The dependenc€(N) was calculated numerically in Ref.

equations correspond to the Lagrangian 36; large radius solitond\>>N,) have a very low precession
frequency (Q<<wg), and Q— wq for small radius solitons
1 o6 (N<N,).
LzAf dzx[—(l—cosa)——w( 0,¢) (1) In the case of large radius solitorR> A, the approxi-
D Jt mate “domain-wall” solutiort*
with the energy densitA- (6, ), coseo(r)=tanhr;—R ®
0

1 1 1 is applicable, which describes a 1D domain wall at the dis-
W0, ¢)=5(V 6)%+ 5(V ¢)?sinf6+——siPg, (2)  tanceR from the origin. One can obtain the relation between
245 the soliton radiuRk and the frequency of the soliton preces-

024432-2



INTERNAL MODES AND MAGNON SCATTERING ON.. ..

TABLE . Fitting of the trial solution(10) to the exact numerical
solution for Ay(r). The radius of the soliton is defined from the
condition 6(R) = /2.

Frequency of Soliton Fitting parameter, Std. error,
precessionf)/w, radius,R/A, R /A, X 1072
0.05 20.38 20.38 0.6
0.10 9.95 9.94 1.2
0.15 6.58 6.58 1.9
0.20 4.88 4.87 2.6
0.25 3.82 3.81 3.2
0.30 3.09 3.07 3.6
0.40 2.07 2.07 4.0
0.50 1.35 1.37 3.8
0.60 0.81 0.85 3.2
0.70 0.42 0.44 2.2
0.80 0.15 0.16 1.1
0.85 0.07 0.07 0.9

sion () from variational condition, in whiclr plays the role
of a fitting parameter for the functiai). In the first approxi-
mation Q(R)~ wq-Ag/R.

The opposite case of small radius solitoRssz A, corre-
sponds to the Belavin-Polyakov solution tag2)
=(R/r)!9l, which describes the isotropic limit of the model
(1); it is valid for distanceg <A,.> At larger distances the
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FIG. 1. Shape offy(r) for different soliton radiiR/Ay (X
=0.4, 8=5, ©=10). Lines: numerical data, symbols: fitting data
with the trial function(10).

the unperturbed solitore; coincides withm in the soliton
(4), e,=g, COSPy—E€, SiN ¢y, ande,=e; X ;. Then the linear
oscillations around the soliton can be described in terms of
projections of the magnetizatian on the local axesu=m
-e; and 9=—m-e,. In the absence of the solitoly=0,
¢o=Qt, such oscillations correspond to free magnons in the
rotating coordinate frame.

The linearized equations fa¥ and x can be presented in
the form

algebraic decay is replaced by the general exponential form,

2qcosfy du 1 du

[—V2+Uy(r)]9+ 5 =———-, (113
Oo(r)ocexp(—riry), rO:‘,wOEiQ' (9) r ax woAj at
The dependenc@(R) was calculated both analytically and ) 2g cosfy 9 1 99
numerically in Refs. 36 and 37. The frequency of the soliton [= Vo Up(r) = 2 ay - A2 dt (11D
precession satisfi€d — wy whenR— 0, but the dependence @00
Q(N) is not analytic, andiQ/dN—o asN/N,—0.3¢ with the “potentials”
To describe approximately the soliton structure in the in-
termediate case of arbitraR; we use a fitting methotf We 5
choose a trial function of the form U(r)=| —+ q_2 cos 20,(r) — 5 cos(r),
. A r 0}
(fit) (fit) _ p(fit) 0 0=0
2 r o
2

which has valid asymptotics for—0 andr — (we discuss Uy(r)= _(deo(r)) +Coto(r)V20
the caseg=1 only). The parameteR(™ can be found nu- z dr oo
merically by fitting the trial function(10) to the numerical ) )
solution of Eq.(7). Such an approximation shows that the __(dﬁo(r)) I 9 coLo,(r)
trial function describes the soliton shape with an accuracy of dr AS r2 0
about 102, see Table I. From this table one can see that the
values of the fitting parametd®(™ are very close to the
“exact” soliton radii; it should be understood by the fact - Azcoseo(r), (12b

that 6y(r =R )= 77/2. Numerical data fofy(r) and fitting @030

results forag“) (r) are plotted in Fig. 1.

IIl. MAGNON MODES

whereV,2 is the radial part of the Laplace operator.
It is convenient to represent the solutions of E@d) in
terms of a partial-wave expansion forand u,

To analyze magnons on the soliton background, it is con-

venient to introduce local coordinatés, ,e,,e;}, which de-
scribe the configuration of the magnetization unit veatdn

=2, [Uy(r)+va(r)Jcogmy+w,t), (139
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—~ 0.12 1 1 1 1 1 1 1
w=2, [Ua(r)—vy(r)Isin(my+w,t),  (13b)
a s or N e
] ! \ —-——. R=
wherea=(k,m) is a full set of eigennumberk,andm being z N S S R=104 |
radial and azimuthal quantum numbers, respectively. The = 4
quantity o= w— ) is the magnon frequency in the rotating g 008 | y ]
frame; k andw are connected by the dispersion law, cf. Eq. £ oo0s b
3, 5 i \
© o002} -
- — 2 ’ ;i "'.\.
w(k)= wQaP+D|k| 1 Wgap™ W0 Q, 3) 0 AR TN T T R 2]

0 05 1 16 2 25 3 35 4

where wg,, is the magnon gap frequency in the rotating :
Distance, r/R

frame. Below we will replace» by w, almost everywhere
without confusion, because we will work in the rotating  FIG. 2. Shape of the “coupling” potential for different soliton
frame mainly; the indexx will be omitted, too. Thus we then ragii.

finally obtain the following eigenvalue probleiEVP) for

the functionsu andv: However, one can see below in Sec. IV that the problem

m2 | is impoverished when the “coupling potentialV(r) is ig-
Hyu=|Ho+ —+V(r)— SluU=W(r)v, (143  nored; even in the limits of smallarge soliton radii, the
r woAg) main properties of local modes vanish, if we assume that
i ) ) W(r)=0. The reason is that a set of more than one coupled
U AP w B Schralinger-like equations has properties, which are absent
Hau=| Ho+ r—z—V(r)+w0 2 v=W(ru, 14D fom 5 single equation. To explain this fact, remember that

A for a single 1D Schidinger equation there exist two inde-
where Hoz—Vr2+ Uo(r) is the 2D radial Schidinger op- pendent solutions; for the eigenfrequencies inside the con-

erator; the “potentials” are tinuous spectrum such solutions have oscillating asymptot-
ics. For a set of 2, 3, ... equations there exist 4, 6,

1 2gmcosé, linearly independent solutions, respectively; some of them

Uo(r)= §<ul+u2)' V()= r2 - (153 can have exponential asymptotics. Naturally, the real modes

have an oscillational form here; we will use this fact below

Note, that Eqs(15) are invariant under the conjugations  for the numerical analysis. But it is necessary to take into
——w, Mm——m, andu«<v. In a classical theory we can account the exponential solutions, too. In particular, as was
choose any sign of the frequency; but in order to make conshown in Ref. 29, such exponential asymptotics could corre-
tact with quantum theory, with a positive frequency and enspond to truly localized states inside the continuous spec-
ergy &=fi|wi|, we will discuss the case>0 only. Thus trum, which are forbidden for equations of the Salinger
there are two different sets of Eqd4) for m=|n| andm  form. In the reduced EVP with two independent equations
=—|n|. Besides, there appears a difference between Eqtike Eq. (14) with W=0, there is a continuous spectrum
(149 and (14b). Smce Eq.(14b has the asymptotically > wgap for the functionu(r) (u#0, v=0) andw<— wgqp
equivalent form,— V v+ wv=0, the functionv has an ex- for the functionv(r) (u=0, v+#0). There are no limitations

ponential behavior; at the same time Ef4a yields oscil-  for the lowest value of the discrete levels; in particular, the
lating solutions. So, by choosing>0, the variablev be- frequencies of the discrete spectrum could be less than
comes a slave variable in the EV(P4). — wgyp for the functionu. At the same time, as follows from
The “coupling potential” W, the general set of coupled Egdl4), frequencies of local
modes lie in the region- wgay<w<wg,,. Therefore it is
1 1 1 1 déy)? necessary to solve the general EMR) for an exact analysis
W(r) =5 (Up=Uh) = S|”290< r_2> - (W) of the problem.
We should note here that the model of an isotropic mag-

(15b . . ; . " - S
net is a special case, in which the “coupling” potential is

is positive, it has a maximum value at a distance of about thexactly equal to zero. To study an EVP like EG5) with
soliton radiusR from the origin, vanishing both at=0 and = W=0, it is sufficient to take into account one equation only
far from the soliton. Using the domain-wall approximation (namely, the equation for the variablg; the second one,
(8), one obtains that the maximum value\&k<1/R?, when  which has unphysical solutions fas>0, was ignored in
R>A,. In the opposite case of sm&) in the rangeg <R the  Ref. 19. That is why the results for EA FM, obtained in this
soliton looks like the Belavin-Polyakov solution; here paper, and the results for the isotropic maghatiffer
r(déy/dr)~—sinf,, and W=0 in the main exchange strongly even for small anisotropy. One difference is caused
approximationt® Therefore one can suppose thaf< l/A?J by the presence of truly local modes. Another one is due to
for any R. In fact, this is confirmed by numerical calcula- the peculiar structure of the quasicontinuous spectrum with
tions, see Fig. 2. 0> wgy, for a finite geometry: the spectrum of the EA FM
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has a system of doublets with opposite signsmpfwhile ] @
there are no doublets for the isotropic magnet. T
Continuum_———"_ |
0.8 r + m=-1 1
IV. LOCAL MODES x  m=-2
= m=+2
According to the dispersion law (3, free magnons only 06T . m:;%

exist whenw> wgq, . It is naturally to look for local modes
in the range < w<wg,, (remember that we discuss the case
®>0). In principle, such local modes could exist inside the
continuous spectrum, as for the case of the nonlinear
model, describing the EP antiferromagf&However, our 0
study shows that this is not the case for the EA FM. Exis-

tence of local modes in such a magnet was found numeri-

cally in Ref. 28 for a soliton with some special parameters; . B

04 r

Eigenfrequencies, w/ty

0.2

0 2 4 6 8 10 12 14
Soliton radius, R/Ag

namely the mode witim= —1 for the soliton with the topo- : m::;
logical chargeg=1, and the mode witm=2 for =2 were S osl . m=+2
calculated. Such modes appear in field theories, which in- é N mz;%
clude solitonlike solutiong’ 8 o6} - .
. e Continuum
To study local modes, note that near the soliton center, g
r<A,, one can obtain the asymptotics of the magnon ampli- g 04 x
tudes in the following form: 5 y
2 o2}
lg—m|
um(r)=Am<—> [1+O(r?/A%)], (163 0 i
Ao 0 02 04 06 08 1
Frequency of soliton, Q/wg
lq+m|
vm(r)=8Am(A—) [1+O(r2/A§)]. (16b FIG. 3. Eigenfrequencies of local modes as functions(af
0

soliton radius andb) frequency of internal precession of the soli-
Here the coefficientd can be determined by the normaliza- ton. Lines: theoretical results from Eq@3b) and (27); symbols:
tion; the presence of a nonzero factoris caused by the numerical data.

“interaction” W(r) between Eqs(143 and(14b); its value g 5 rotational mode, which corresponds to the presence of an
cannot be found through this asymptotic expansion. arbitrary parameter, the phagg, in the soliton structuré4).

In the opposite case of large distance; Ao, the EVP  For the isotropic magnet, as well as for the EP magnet, simi-
(14) has the following general solutiofiere and below we  |ar modes exist, too; but there they are quasilocal due to their
consider the most interesting case of solitons with unit toposjow power-law decay, i/ or 142, In the EA magnets the
logical chargeg=1, which has lowest energy decay has an exponential form.

The remaining modes could be investigated numerically;
Un(M) ~AnK|m11)(%1 1)+ Bplimi (21 1), (178 analytical results were obtained for some limiting cases only,
see below. To study the EVP numerically, we use the two-
um(r)~CmK|m,1‘(xl+r)+Dml|m,1‘(xl+r), (17b parameter shooting method for the integration of the set of
» Eqgs.(14); a similar one-parameter shooting scheme was pro-
whereK, andl, are Macdonald and modified Bessel func- posed in Ref. 29 to study the vortex-magnon scattering prob-
tions, respectively, anet; = (0o~ * w)/D. Note that at |em in 2D antiferromagnets. Numerically, we “kill” two
large distancesz>1, the modified Bessel functions have growing exponents in Eqg17) by choosing two shooting
exponential behaviot,,(z) xexp@)/\z, K ,(z)<exp(-2)/\z, parameterg andw. As a result, we have found numerically
so we use the asymptotical conditionuy,,v,, thatthere are a number of local modes. Modes with opposite
«exp(— 2 T)/\r to obtain the localized solutions. signs ofm bind to doublets; this picture is well pronounced

First note that for the special cases=0,+1 there exist 0" [m/>1 in the limit of largeR, see Fig. 3. , )
“zero modes” with w=0. Such modes are caused by the Such local modes exist only for not too small soliton radii

internal symmetry of the problem. They have the same forn{n0t for large Q). Eigenfrequencies for such modes with
as for EP magnets. One of the zero modes, the so-called ar_bltrary aZ|muthr_:1I numberen (|m|>1) Increase rapidly
translational mode witim= -+ 1 ' with the decreasing of the soliton radius, and reach the

boundary of the continuous spectrum. It looks as if all such
d6, siné, d6, siné, mo.des “Iee.\ve”. the region of the gap in 'the spectrum, if the
Usi=gr — 7 v+1=W+ t (1839 soliton radius is smaller than some critical valRg,, see
Table IlI. It is natural to suppose that all modes wijth|
describes the position shift of the soliton. Another one with>1 transform to the quasilocal ones with decreasindrpf
m=0, this fact can be tested numerically due to the singularities of
the scattering amplitudes on such quasilocal modes, see the
Up=sinfy, vg=—sind, (18b  next section.
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TABLE Il. Critical parameters for some lower modes wijth| terest,r =R>A,, the operatoﬂo from the EVP(14) has in

>1. Remember that local modes always existrfor 0, 1. the main approximation foA,/R a simple reflectionless po-
tential,
an/Ao, Q::n/(x)o, Q?n/wo,
m data data from Eq(24) A : g2 1 ) 2
~l=——+— —
-2 1.52 0.47 0.45 0 dr? A2 cosR[(r —R)/A,]
+2 2.24 0.38 0.38 _ _ _ _
-3 273 0.33 0.30 with a single localized statg, corresponding to the zeroth
+3 3.22 0.29 0.28 eigenvalue

Lo=0, o(r)=(2RAq) Y4 cosh(r —R)/Ao].

Thus in the rang&=1.52A there is only one local mode The other potentials in the EVP can be considered as correc-

with nonzero fre'quencym= —1, see Fig.. 3. That is why jonq toL; this is the reason to put the trial functions in the
only the mode withm= —1 was observed in Ref. 28 for the ¢, U=ay, v=bi, with trial parametersx and b. The

soliton withq=1. - _ variational approach with such simple trial functions leads to
The elger!functlons of bound ;tatasandu are Iocallzed eigenfrequencies for the different modes in the form
near the soliton core. The functiomsandv are plotted in

Fig. 4 for the mode withm=—1; the picture of well- wn=Ma+ (M2B—8)2— 92,
localized eigenfunctions is specially pronounced for the large
radius solitons, see Fig(d.

In order to analyze the spectrum of local modes analyti- a_< 0 M llfo>, ,3=< Yo i ¢0>,
cally, let us reformulate the EVPL4) as a variational prob- r2 r2

lem for the functional

1d
y={o|W(r)| o), 5:<¢0Fa+900390(r) ‘/’o>,

F[u,v]=f:rdr(uﬂlu+vl:|2v—2WUU). (19 (20)

where( ol - - |o) =[5 wo(- - ) ordr. However, there is a

difference between the real solutiomsv, and the trial func-

tion . This difference provides, e.g., the existence of “zero

modes.” We do not like to improve the form of the eigen-

functions, but only the coefficients in the Eq&0), which

(@) R=1049 describe the eigenfrequencies. Using the additional condition
' ' for zero modes,

We start with large radius soliton$&>A,, when the
domain-wall approximatiori8) is valid. In the region of in-

wn,=0 form=0,+1, (21
0.8 t
;E the eigenfrequencies,, can be expressed through two inde-
5 067 . ] pendent coefficients only. It is convenient to present the
= oal Soliton shape eigenfrequencies in the form
02| wm=ma+|m|ya?+ gZ(m?—1). (22)
°0 s 10 15 20 25 Using trial functionsyy,, we can calculate the parameters
Distance, r/A, and g8 for the large radius solitons,
i (0) R=0.44 a=—wo(Ag/R)3,  B=wy(Ao/R)Z. (233
] ] In this case the spectrum has the form
08 | 1 w Ag\® m2-1 Ap\3
5 —n=|m| E(’) ;m(;‘)) (23D
g 06 1 o (RIA)
£ 4
BCEEER Soliton shapd This formula corresponds very well to the numerical data for
oz Ll 5 / P | R> A, see Fig. 3. In the main approximation g /R there
' is a system of doubletéfor all modes with|m|>1) with
0 T quadratic dependence of the mean frequenc R,

Distancs, 1/A, 2
: (230

_ Ag
® ™= wo| M| \/m2—1(3>

FIG. 4. Magnon amplitudes for local modes with=—1.

024432-6



INTERNAL MODES AND MAGNON SCATTERING ON ... PHYSICAL REVIEW B54 024432

and the splitting is a small cubic correctiodw. _ 283(1-9) Q
«m(Aq/R)3. For the special casm=—1 the dependence o) ()= wo- o = (27
o(R) has the form 1-70+2¢ @o
A3 Providing the asymptotically correct behavior, Eq23d)
Om—_1~2wg EO) (230 and(26), this approximation reproduces to the numerical re-
sults with an accuracy of about10™ 3, see Fig. 3.

Equation(24b) describes qualitatively all modes with ar-
bitrary R. In particular, it describes the fact, mentioned V- SCATTERING PROBLEM: NUMERICAL RESULTS

above, that modes reach the boundary of the continuous | ot s describe the scattering of magnons by a soliton.

spectrum at some finite frequency of the soliton precessiogyie that without a soliton, free magnon modes have the
QF,. Let us estimate the positions of the crossover pointSiorm

where the modes “leave” the discrete spectrum. Using Eq.
(23b),cone can obtain the condition for the critical values of Upn(r)ocd(kr), vy(r)=0, (28)
x=Q07/wg:
" wherek is a “radial wave number,’k and » are connected
|m| Vx8+ (m?—1)x*—mx®=1-x. (24) by the dispersion law (3, andJ,, are Bessel functions. The

) free modes likai, play the role of the partial cylinder waves
Results are very close to the numerical data, see Table IIl. Wgs 5 plane spin wave

expect that the local modes transform into the quasilocal

ones inside the continuous spectrum; but their frequencies %
can still be described by the formu(a3b), see Sec. VI. explik-r—iwt)= >, M3 (kr)emx~iot, (29)
For the small radius soliton®<<A, there only exist lo- m=-—e

cal modes withjm|=1. Thus we will consider this case. . . )
Constructing the trial functions, one can suppose that they 10 describe magnon solutions in the presence of a soliton,
should be similar to the modes with= = 1. Eigenfunctions ©N€ should note that far from the solitar¥- A, the “cou-

for the translational zero modey,; and v.,, are well pling potential” W(r) is ex_ponentlally small. Therefore
known, see Eq(18a. To construct the trial functions it is there are two asymptotically independent EVP’s; the magnon

convenient to use functions_; andv _, in the form amplitude v, has the same forni{l7b as for the local
modes, but the functiom,, shows an oscillating behavior
U =rlu,;, v ,=r?,,, like
which coincide with the exact zero mode eigenfunctions for Unm(1) % e 1) (KD + oK) Y a1 (KT, (30)

the mode withm=—1 in the limiting case of the BP
soliton® Now we can choose the trial functiomsandv as ~ where Y|, 1) are Neumann functions. The quantity(k)
follows: derives from the soliton-magnon scattering; it can be inter-
preted as the scattering amplitude.

u=a-u,;+b-u_4, v=cwv,td-v_y. (25 We use the one-parameter shooting method to study nu-
merically the problem of soliton-magnon scattering, as de-
scribed in Ref. 29 for vortices in the antiferromagnet. Choos-
ing the shooting parameter, see Eq.(16), we “kill” the
browing exponent in Eq17b); as a result we have obtained
a well-pronounced exponential decay fof,; the corre-
wn__1~C-(wg—Q) (26) sponding oscillating solutions far,, differ from the asymp-

m=-1 0 ' totical values(30) only in the vicinity of the soliton core, see

Unfortunately, this method is not exact and leads to a valuéig. 5. The scattering amplitude was found from these data
of the constanC which is larger than the numerical value. by comparison with the asymptoti€30). The results are the
This is caused by the fact that the trial functions, which argfollowing:
constructed from zero modes, have the wrong asymptotical For all modes the scattering amplitude,(k) tends to
behavior(9) at large distancedy(r), 5(r)=exp(=r/rp), in- zero a§<—>0. In the Iong-wavelength limit the maxi_mal scat-
stead of EQ(17), i.e.,uxexp(—sx, ), vxexp(—x,r). Toim-  tering is related to the mode wittih=—1, for which the_
prove this result, one can change the asymptotical behavidtehavior ofda/dk looks singular. However, other properties

The variational problen{19) can be solved analytically in
the main approximation foR/A, using the explicit BP so-
lutions. Tedious calculations lead to the eigenfrequency fo
smallR,

of the functions(25) by exponential factors: depend strongly on the soliton radius. _ _
In the case of larg®, the scattering amplitude (k) is
U—u-e Mro=x) U_w'er(l/role*)_ positive for all modes in the long-wavelength limit. There is

a maximum ofo (k) at aboutkR~1 for modes withposi-
In this case the calculations can be done numerically onlytive n but there are two poles in the scattering amplitude for
the value of the constai~1. For the approximate descrip- modes withnegative mand one pole fom=0. Naturally,
tion of the eigenfrequency of the mode witli=—1 in the there is no real divergence at such a pole: the physically
intermediate case of arbitra®, we use the trial function observed phase of the scattering, or the phase ghift
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1.5

— k=0.2/Ag
------- k=0.5/Aq
----- - k=1.0/A -

Soliton shape |

o
(5]

10 15 20 25
Distance, r/Aq

FIG. 5. Oscillating magnon amplitudes, for soliton with ra-
dius R=10A, for different wave numberk.

=—tano,, varies monotonically, see Fig. 6. Thus there are

principally different pictures for positive and negativethe
total phase shift is

0, m>0
—2m7, m<O0

(31a
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The scattering picture is quite different for the case of FIG. 7. Scattering for a small radius solitoR=0.2A,. Solid

small radius solitons. Each mode witim|>1 has a single
pole only, the positionk,R of which increases whem
grows. For the special case of the mode witk +1, the

(a) m>0
0.2 ————
A Raanas NSNS
0.1 3“’”“’“ R ]
5 ot ot
2=}
£ .01}
<
[}
@ 02 % 2
@ E "\‘
= %
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2 Xy —
Lo =1
e m=2.
. 18 mee
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o 05
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FIG. 6. Scattering for a large radius solitdRs= 10A,. Numeri-
cal data.

line: analytical asymptotics fdt<<1/A, for the modem= —1 from
Egs. (463; dashed lines: analytical asymptotics far 1/A, from
Egs.(38); symbols: numerical data.

scattering amplitude is anomalously small; for the mode with
m= —1 there appears a second pole with anomalously small
values ofk,,. These results are presented in Fig. 7. The total
phase shift is

+ 1, m>1

0, m=1

Sot= R<Ag. (31b)

—2m7, m=-1

— 1, m=0, m<-1

There appears a discontinuous change of the total phase
shift from Eq. (318 to Eqg. (31b) for all modes withm#+ 0,
—1 for the cases of intermediate soliton radii. This transition
occurs independently for each mode at some critical values
kg, of the wave number.

VI. SCATTERING PROBLEM IN THE FRAMEWORK
OF THE PSEUDOPOTENTIAL METHOD

For the analytical description of the scattering problem,
let us analyze the EVP qualitatively, replacing the real “po-
tentials” (15) in the EVP(14) by simplified ones, which are
amenable to an exact treatment. Such an approach is well
known in the quantum physics of solids as the pseudopoten-
tial method. Sometimes it is useful even when the potential is
not small, see Ref. 39 for details.

Let us discuss the choice of the pseudopotential. The sim-
plest way is to describe the soliton structure in the main
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modes(“zero ones” for m=0,+1, and another one with
nonzero frequency fom= —1); while such modes are ab-
sent for the othem. The existence of a local mode dimin-
ishes the total phase shift by (and decreases the number of
states in the continuum spectrum by 1, due to the conserved
total number of magnon staje$Such a result is well known

in 1D, see, e.g., Ref. 7. Except for these cases, one can ex-
pect for the scattering peculiarities lat- 1/R>1/A,. In this
range the approximation by an isotropic magnet and BP soli-
tons is valid. The scattering problem for the isotropic mag-
nets was studied in detail in Ref. 19. Over a wide range of
Wave number, kR wave numbers, Ny<k<1/R, the asymptotics for the
Belavin-Polyakov soliton are valitf,

Phase shift, /r

FIG. 8. Scattering for the centrifugal model.

m(kR)?
approximation, using the ansatz Oms—1,0K)=— Zm(m+ 1) (38a
r-R
€oSsfy(r)~sgn &, §=A—0, (32 Um:O(k):zm(Z/kR)’ (38D

which is a good approximation for both small and large dis-
tances. Replacing the soliton by this configuration, which om——1(K)=m(kR)?2In(1KkR). (380
does not have any in-plane structure (&#0), reduces the
complex EVP(14) to a very simple “centrifugal model”
with v, =0:

For larger wave numberks>|m|/R, the scattering amplitude
has a general, so-called eikonal dependengg; 1/kR,*°

2 _ ’7T(m—l)
[m+sgn | (k)= (38d)

(—V$+k2+ > Up=0. (33
r

This model describes quasifree magnons in each of the re- Our numerical data in this region are very close to the
gionsr <R andr >R. The only effect of the soliton—magnon asymptotical behavidi38), see Fig. 7. Note that the maximal

interaction is a shift of the mode indexes in comparison withScattering in the region Ap<k<1/R occurs for the rota-
the free magnon&8): tional mode withm=0, whose asymptotic&38b) has a sin-

gularity fork—0. There is one pole only for each mode; its

e {Jm”(kr), r<Rr, 34 FOSitiOE colrreﬁpolr;ds to the pole in the Belavin-Polyakov so-
m( )& ution, k,~|m|/R.
Ime g (KO +om(K)Y|me g (kr), - T=R. Let ug consider the local modes, for which the total phase
The usual matching condition for these solutions has th&hift is diminished by in comparison to the “centrifugal
form model” (37); it is equal to 0,—m, —27 for the casesn
. =+1, 0, —1, respectively.
u -0 (35) There is one pole only for the simplest case of the mode
uls ’ with m=0. The scattering amplitude in the rangeé\d«k

<1/R is described by the formulé8h). The position of the

pole is determined by the BP restiy=1/R.*® The reason

for such a nice agreement with the model of the isotropic

, , magnet will be explained below in the text.

o ()= Jim-1)(%) - Jjm+ 1) (%) = Iy 2)(%) - Ijm—1)(%) 7 There is no pole for the translational mode with= + 1.
J‘m_1|(x)-Y"m+1|(x)—\]"m_1|(%)~Y|m+1‘(x) This is due to a unique property of the isotropic model,

(36)  where such a mode does not scatter at-athe magnon
amplitude in this limit has the form

where[---]g=(--)|rs0— (- *)|r_o- Calculations lead to
the scattering amplitude in the form

wherex=KkR, see Fig. 8. The total phase shift in this model
is

2 J.(kr
Uz 1 1(1) = Ja(Kr) — il

_——, 39
kr (r/R)2+1 (39

St=7r.sgnm. (37

which agrees with our numerical data, see Fig. 9. This

unigue property of reflectionlessness is caused by the high
The simple “centrifugal model” with the result$86) ex-  internal symmetry of the problem.

plains qualitatively the scattering data for the small radius Figure 7a) shows that such a property is approximately

solitons, except for modes witih=0,*1, cf. Eq.(31b. The valid for the small radius soliton in the anisotropic magnet,

cause for these exceptions is the existence of truly localoo: the scattering amplitude is anomalously small, so the

A. Small radius solitons,R<A,,
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0.6 T need to consider the in-plane signature, too. According to
04 | 1 Eq. (32), it could be described as
0.2 | .
ol Sinf0g(r)— 8(£).
:E 0.2 - l Therefore we can suppose that the coupling poteWiial) is
-04 | ] nonzero only at some distance around the soliton radius and
0.6 ] approximately replace it by & potential as follows:
-0.8
A W) — 2 s 40
0 1 2 3 4 5 6 7 (r)— A2 (&). (409
Distance, r/Ag 0
FIG. 9. Magnon amplitudel for the translational mode with The same assumptions lead to simple expressions for the

m=+1 (R=0.2A,, kAy=3). Lines: exact analytical solutiai39) other potentials in the EVIPL4),
for the isotropic magnet; symbols: numerical data for the EA FM.

m? —(Q/wg) -sgn g |m=+sgné|?
total phase shift is absent. Another effect of this symmetry in Uy(r)+ — +V(r)_> 5 5
the isotropic magnet is that the scattering problem for the BP r? Ag r
model can be reduced to a simplified one with effectively
smaller scattering. Such a “reduced model” has no local 25(5) (40b)
(and quasilocalmodes; it is described by shifted indexes, (2) '

m—m-—1219 It is natural to use the “centrifugal” approxi-
mation for such a reduced mOd(@B) As a I’esult,(rm:H Herecl and c, are trial parameters.

=0 in the framework of the same centrifugal model; for the \we choose this pseudopotential mod40) for the fol-
other modes, Eq(37) leads to the total phase shiff;'=7  |owing reasons(i) it allows an exact analytical solutiofij)

-sgn(m—1). Taking into account that sgn<00, one can see it guarantees the correct asymptotic behavior of the solu-
that such a simple dependence &' describes all modes, tions; (iii) it offers a possibility to identify the parameters of
except ofm= —1. Its behavior is most interesting. the pseudopotential from the discrete spect(@s3).

For the mode withm= —1 there are two poles, while it Let us consider the discrete spectrum in the framework of
should be one pole only for the Belavin-Polyakov solitons.the pseudopotenti&aft0). Comparison with the eigenfrequen-
Indeed, one of the poles lies in the region where the Belavineies (23) provides a possibility to determine all trial param-
Polyakov approximation is valid; its valuek,~2.79R  etersc,. For the discrete part of the spectrum, the EXIR)
>1/A,, coincides exactly with the Belavin- Ponakov data. with potentials(40) has solutions like
The second pole lies in the regidc1/A,, where the ap-

proximation by the isotropic magnet is not applicable. This lim-1/(%27), r<R

pole is caused by the presence of the local mode, the typical m(r) [ _ (419
wave number of such a mechanismkis~ x; <1/A,. The Kim+1y(21 1), >R,

use of reduced or centrifugal models is certainly wrong for

this case. We will discuss the scattering amplitude in this [|m+1|(%z+r), r<R

region later, on the basis of a more general pseudopotential m(r . (41b
model, see Eq(463). Kim-1/(%1 1), >R,

% =(wg—Q+0)ID, %, =\(we+Q*w)/D.

Now it is possible to calculate the eigenspectrum by

Let us consider the case of large radius solittRls,_Ao. matching the solutions418 and (41b) at the distance
Here exist local modes for eaah. Therefore the simple

centrifugal model as well as other simple models without a

B. Large radius solitons, RS>A:
Refinement of the pseudopotential model

discrete spectrum seem to be wrong. This can be explained [u’]R=2~u R_&.v (429

by the fact that in the very simple mod&3) we omit the A Ao g

“coupling potential”; the real potentialV tends to zero at

the origin and at infinity, but has maxima at some finite c c

distances. [0/ ]r=—2v| ——=-u| . (42b)
Thus we need a more general form of the pseudopoten- = Ao g

tials which accounts for the potentials,, V, and W. To
describe the soliton shape, we can again use the expressi@Qalculations lead to the eigenfrequencies in the f¢Ro).
(32) for the out-of-plane soliton configuration. However, we Using the condition for the zero modé21), the eigenfre-
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qguencies can be represented in the f@@9); the constants For the other values ofm, we can restore the general
C1, C, can be identified by comparison with the spectrumdependence of the amplitude of the magnon scattering on the

(22), large radius solitonR>A:
1 o Y oo T(kR2Z™ KR<1. (46b
Clzi ,B—E), Cr,=—2+Ci+tmMa+m ﬁ_ﬁ Om=—1( )—|m+1|!(|m+1|_1)!, <1. (46b

(43 The scattering amplitude, according to E46b), is positive
The parametersr and 8 were calculated by the variational for all modes in the long-wavelength limit.
approacha=1/R3, Bx1/R?, see Eq(239. In the range R<k<1/\/RA, the asymptotics fod(z),
Let us discuss the scattering problem. Solving the EVPY(z) for z>1 are valid, which in the main approximation for
(14) with pseudopotential&t0), we obtain for the continuum A,/R leads to a linear dependence of the scattering phase
SPeCtrumw> wgyq, , the following solutions. The function  shift onkR,

for r<R has the form
m+1l7 IR
||m,1|(%£r), when k<+/2Q/D, Sm(k)~ %— Z—kR, 1<kR< A_
0

a4
Jim-1/(ky1), when k>2Q/D, 44 (460

wherek;, = k?—2Q/D. At large distances,>R, it has the  For this range ok, all curves look like a family of parallel
usual oscillating forn{30). The functionv has the localized lines with equal distance of about/2. Note that the real
form (41b). One can find the scattering amplitude by match-values of the trial parameters andc, lead to the correc-

ing the solutiong30), (44), and(41b) at the distanc®, using  tions in Egs.(46) like Ay/R.

the condition(42): Naturally the pseudopotential method cannot explain the
scattering results fok=1/A,, where the influence of truly
local modes and the differences between the real potential
and theé function are dominant. Nevertheless, the method
gives quite good results even for the casel/A,, where the
linear asymptotics does not work. Corresponding curves are

u(r)ec

[€n(K) +Fm(K)19jms+ 1/ (KR) =KAo/ 1 (KR)

KA oY 1) (KR) = [€(K) + Fm(K) 1Y 1 (KR)
(45)

om(k)=

here

| |’m+ 1\(%; R)
lm+1)(%2 R)

-1

Cm(K)=Co—C2-| Cot x5 Ag-

. Knoy(2R)
%180~ 1.

Kim-1/(%1 R)

I (%R
%EAO'M, k<\2Q/D,

plotted in Fig. 10 using the general dependefd® with

trial parameters, andc,. Fitting of these parameters gives a
result in the zeroth-order approach fap/R: ¢;=~0, ¢,
~0.4 instead ot,~0, c,~—2, according to Eq43). The
difference is caused by the limitations of the mo@HJ). For
example, the above-mentioned model leads to an increase of
the scattering phase whénincreases; the total phase shift
for this model is 6%'=sgnm-, as for the centrifugal
model, see Eq(37), i.e., the qualitative properties of these
models are equivalent. The appearance of a local mode di-
minishes the total phase shift lay. As a result, there is no

e > R
Fm(K) = m-(%2 R) total phase shift for all modes with positive; but &'
_ o Im-1y(k2R) = — 2 for all modes withm<0.
Ky Ao'—JI ‘(k‘R)’ k>y2Q/D. The scattering picture in the short-wavelength linkt,
m—1]{Hh2

>|m|/R, gives the general, so-called eikonal dependence

It is easy to analyze the expression for the scattering amZm™Am/k. However, in contrast to the case of the isotropic
plitude (45) in some limiting cases. In the long-wavelength Magnet(38d, the scattering amplitude has the same sign

limit, k<1/R<1/A,, one can use the asymptotics for the A,<0 for all modes due to the presence of the effective

cylindrical functionsd(z), Y(z) at z<1 and, at the same attractive potential, yvhich causes the existence of local
time, the asymptotics far(z), K(z) for z>1. Simple calcu- modes. When thq soliton radius decreases and the Iocal_ m'ode
lations show that the scattering intensity is maximal for thediSaPpears, the sign of, changes; the result becomes simi-
mode withm=—1, lar to Eq.(38d.
Thus we explain the particularities in the scattering pic-
ture of EA magnets, in comparison with the isotropic case,

aa
Om=-1K)=57—75, KR<l, (468 by the influence of local modes. To examine this influence,
2 In(1kR) i .
let us consider the scattering datg, for the modesm
which agrees with the numerical data, see Fifh).6Note  =+2 andm= —2 with different soliton radiR as functions

that Eq. (468 was obtained using one condition onkR  of the parametekR, i.e., o= o,(kR); this gives a possibility
—0. Therefore it is valid for the case of sm&@t| too, ex- to compare the scattering data with the isotropic model, see
plaining the existence of the second pole for the mode Fig. 11. For the small radii the scattering picture is similar to
= —1 both for large and small radii. the BP casésolid lines in Fig. 11 When the soliton radius
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FIG. 10. Scattering amplitudé,, for large radius soliton R
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corresponds to the Belavin-Polyakov asymptofigg).
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increases, the scattering phase jumps ugrpglecreasing the
total phase shift. Such a bifurcation takes place for the mode
with m=+2 atR=2.24A, and for the mode wittm=—1

at R=1.52A,. These values agree with the crossover points
R, see Table Il. Thus it is natural to suppose that the bifur-
cation is connected with the appearance of the quasilocal
modes inside the continuum spectrum ®RFR;,. Simple
calculations show that the positiokg of the poles corre-
spond to the frequencies of quasilocal modes, which can be
estimated by Eq(23b).

VIl. TRANSLATIONAL MODES AND DESCRIPTION
OF THE SOLITON DYNAMICS

The foregoing analysis of the spectrum for the modes
with |[m|=1 can be used to describe the translational motion
of the soliton. Such an approach was proposed in Ref. 40,
where an effective mass of the vortex in a 2D EP magnet was
calculated from numerical data for the eigenmode spectrum
of the finite-size magnet. Important progress for the vortices
in FM was achieved in Ref. 21; the specific structure of the
spectrum of modes withm|=1 (namely the existence of a
Goldstone mode withwe1/L?, and a number of doublets

with mean frequencwe1/L and a small splittingleads to
non-Newtonian equations of motion with 3rd, 5th, ... time
derivatives. Such equations were derived and discussed ear-
lier in Ref. 41, using a phenomenological approach, for a
review see Ref. 42. The analytical calculafibverified their
adequacy; besides, it allows to calculate the coefficients in
the equations of motion with an error of only about 0.8%.
Thus it is possible to describe in this way such unusual prop-
erties as the appearance of the non-Newtonian equations of
motion.

The spectrum of magnon modes wjth|=1 has a differ-
ent structure for the isotropic FM. First of all, there are no
doublets!® for an approximate description of the dynamics
only two modes are sufficient: the translational Goldstone
mode with dependencex1/L? and another mode witm
=—1. Therefore the effective equations of motion have a
Newtonian form with an effective mass, which diverges as
L2, see Ref. 19. Such behavior agrees with the direct calcu-
lations done by Zaspé?.

Let us note that all magnets mentioned above, i.e., EP and
isotropic systems, have a gapless dispersion law and, as a
result, a strong interaction of the soliton with the boundaries
of the magnet; the interaction force is proportional tb fgr
the EP vortices and 1L? for the Belavin-Polyakov
solitons!® The absence of a gap manifests itself in the par-
ticularities of the dynamical coefficientshe effective mass
M for the BP soliton in the isotropic FNf, and the coeffi-
cientGg in the term with[ e,x 93X/ dt*] for the vortex in the
EP FM Ref. 4). This can be explained as follows. The ex-
istence of the mas$1 and the gyroscopical forc&[e,

X aX/dt] leads to a finite frequency of the Larmor preces-

sion of the soliton. For a gapless dispersion law, this fre-
quency lies in the continuous spectrum. Thus the Larmor
motion of the vortex leads to the generation of magnons. For
a finite-size system without dissipation, such magnons are
distributed through the whole magnet; the Larmor dynamics
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of the soliton center is strongly coupled with a “magnon 4.5
cloud,” having a scale of about the system size. Therefore
the position of the soliton center, which can be determined as
a point withm,=—1 (BP solitor), or m,= =1 (vortex), in

fact plays the role of a collective variable which governs the

motion of the magnon cloud. Then it is not surprising that

the corresponding equations of motion are nonlocal, leading
to the divergence of the dynamic coefficientsLas .

The situation is quite different for the case of the EA FM.
Our numerical analysis and analytical calculations show that 157 +
the picture of doublets for local modes wiim| and—|m| is 1 s
valid for largeR, see Sec. IV. On the other hand, the eigen- 6 1t 2 3 4 5 &
frequencies of these modes lie in the gap for the large soliton Solfton radius, R/Aq
radii, ®<wga,, SO ONe can expect the existence of a finite
mass in the effective equations of the soliton motion. There
fore for the phenomenological description of the soliton dy-
namics we can use the 2nd-order differential equation

35

Soliton mass, In(M/M,)

FIG. 12. TheR dependence of the mass. Lines: analytical as-
ymptotics from Eqs(50); symbols: numerical data.

M, +imy=|sin 6+ c0s6y>, (U,+0v,)cosmy+,t)

=Fe(X), (47)

-I—iE (ua—va)sirl(mX+Z,at) Lgiax+iot

which corresponds to the picture with the lowest doublet of
local modes. Note that further generalizations for the finite-
size magnet take into account the next doublets of quasicon-
tinuous modes. Here the hierarchy of the effective equations

of motion Containing Only even-order time derivatives mani-One can see that the in_p|ane components have no Simp|e
fests itself. In Eq(47) X describes the position of the soliton, frequency dependence, including the combined valdes

M is the mass coefficienG the gyrocoefficiente, the unit . At the same time. the out-of-plane componemtsde-

vector along the easyz) axis, andF. the external force d on the f ~ in the rotating f Vo]
acting on the soliton due to the boundary or other solitonspﬁn on el r(_aquledncgo I'nt' € rola;;g rame onty. n tOl.”
Assuming that deviations of the soliton from the equilibrium phenomenological description only taéomponents contain

position are smallF .~ — aX, the effective equation of mo- information about t-h.e position of the .soliton cen)(ardetgr-
tion (47) can be solved by a harmonic ansatz, which leads ténined by the conditiomn,= —1. Thus just the frequenay,
which is calculated above and plotted in all figures, deter-
mines the soliton motion.
_G G* a The solution of the effective Eq47) with the nonzero
@o1m 50 — AM2 MV (48) frequencyw, allows us to calculate the effective mass of the
soliton, M=G/w4. The value of the gyroconstant is well
(I]mown, G=4mwqA/D, see Refs. 35 and 7. As a result, the
Soliton mass is finite for every soliton radi(tbe local mode
with w, exists for evenR, see Fig. 3 This fact corresponds
qualitatively to the calculations in Ref. 43. The soliton mass
we have obtained numerically from tleg data is plotted in
Fig. 12 as a function oR.
In the limit of a large radius soliton the formul@3d)
wp=0, w;=G/M. (49 vyields the dependence

m,=Cos6—SiN6p2, (U,+v,)cogmy+m,t).
[e3

For the localized solitons, the interaction between soliton an
boundary(or between two solitonsas an exponential decay
as exp(-L/rg), ro=yD/wyqap, See Eq(9). Thusa/M can be
neglected for a large system sikzeso the frequencie&t8)
have the form

The zero frequencw, corresponds to the Goldstone mode R\3 AN,
’ MO_ R>AO! (503)

(position shift of the solitopy in which all spins rotate with M= MO(KO =7
the frequency of the soliton precessitnin the laboratory

frame. The presence of the rotating frame frequencies in th@hich agrees with the results obtained in Ref. 43 and our
phenomenological description of the soliton dynamics has gumerical data, see Fig. 12.

simple explanation. o _ In the case of small radiuR<A,, the dependeno@6) is
The frequencies49) describe, in essence, the motion of y4id, thus
the soliton center. Let us discuss their link with the frequen-
cies of small oscillations, see E@L3). It is easy to write
down expressions for the magnetization components in the M=M, ——=——.r2, R<A (50b)
. . 0 wn—0 2 0 0>
laboratory coordinate frames: 0 D

024432-13



SHEKA, IVANOV, AND MERTENS PHYSICAL REVIEW B64 024432

wherer was introduced in Eq(9). This result corresponds Our investigations can be applied to the description of the
to the one for the Belavin-Polyakov solitdh, M eigenmodes of magnetic dots. In the present paper we de-
=47AD 2.L?, because here the characteristic lengflis  velop the theory of local modes on the soliton background; it

to be replaced by the system size could be a good guide for the study of the normal modes in
the vortex-state magnetic dots. Our theory is constructed for
VIIl. CONCLUSION the soliton in the moddll), where the soliton is stabilized by

) ) ] the internal precession. It is clear that such a model cannot

We have studied the magnon-soliton system in the mode}arantee the quantitative correspondence with the case of
of the 2D Heisenberg easy-axis ferromagnet. Combining nugortex-state magnetic dots, where the static soliton structure
merical and analytical methods, we have obtained completg stapilized by the magnetic-dipole interaction. We did not
results about bound and scattering magnon states in the sygsnsider this type of interaction in the paper, as it is difficult
tem. A rich spectrum of truly local modes was found alongip account for. Nevertheless, we believe that the main fea-
with bifurcations of these modes with the change of the soliyyres of the problem studied above are generic. First of all,
ton radius. For the modes with higher azimuthal numiners \ve expect the appearance of modes with anomalously small
we have verified the picture of doublets with small splitting frequencies, e.g., the mode of the translational oscillations of
for Iarge. soliton radiR. The spectrum changes strongly With the vortex center. The nonzero frequency of this mode is
decreasing oR: all modes withim|[>1 “leave” the region  caused by the interaction with the boundary only. Second,
of the discrete spectrum, transforming to quasilocal modeyoyplets withm= +n, n>1, should appear when the radius
Such modes could be observed experimentally by solitoRy the vortex is rather large.
magnetic resonance as was done for 1D solifobsually We have used the results on the local modes for the most
the magnetic resonance experiments are carried out with thﬁteresting case of the translational modes witlj=1 to
saturated samples of FM, i.e., under strong enough magnetifascribe the soliton motion in the infinite-size magnet: it is
field H along the easy axis. In this case it is convenient toyassiple to identify the soliton mass, which is finite due to
watch the resonance by the field controlling. Our result§pe |ocalized soliton structure. In contrast to both the

were calculated without such field in order that do not en-gg|ayin-Polyakov soliton in the isotropic FM and the mag-
cumber the text. One can see that the influence of thelfleld netic vortex in the easy-plane FM, the soliton motion in our

leads to the shift both frequency of the soliton preces§lon ¢ase of the easy-axis FM is similar to the motion of a finite
and the magnon frequeneyon the valuggH, wheregis the  mass charged particle in a magnetic field.

gyromagnetic relation. In the external field the soliton struc-  Thys the localized precessional soliton in the easy-axis
ture is stable in the region of frequencigH<Q<wy  FM is an example of a 2D topological magnetic soliton with

+gH. ) o truly particlelike properties.
The influence of truly local modes is important for the

scattering problem, leading to the bifurcations of the phase
shift. As a result, wheiR<<1.52A,, the scattering picture is
qualitatively the same as for the isotropic magnet which
could be explained in the framework of a simple centrifugal D.D.Sh. thanks the University of Bayreuth, where part of
model. There is one exception onip= —1, where the local this work was performed, for kind hospitality. Work at Kiev
mode exists for every soliton radius. was partially supported by INTAS-97-31311 Grant.
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