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Model quantum magnet: The effect of hyperfine interactions on the phase diagram
and dynamic susceptibility
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We study the effect of hyperfine interactions on static and dynamic properties of a model quantum magnet.
A mean field theory of the transverse Ising model with an additional hyperfine interaction term agrees rather
well with the experimentally obtained phase diagram and dynamic susceptibility measurements in LiHoF4

which of late, is being referred to as a model quantum magnet.
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I. INTRODUCTION

Magnetism has continued to remain a topic of great in
est in condensed matter physics due to its impact on
understanding of cooperative behavior and on technolog
applications. Of late, there has been widespread intere
the role of quantum fluctuations on the phase transition pr
erties of ideal magnets. At high temperatures~close to the
critical temperature!, the system can access different minim
of the free energy by thermal activation processes. At l
temperatures, however, the mechanism of relaxation is q
tum mechanical, due to tunneling between different mini
of the free energy surface. Since the thermal activation p
cesses die out as the temperature is lowered, tunne
through barriers due to quantum fluctuations becomes do
nant as they do not vanish when the temperature approa
zero.

All finite-temperature transitions are considered to
classical. This is so, because even in quantum systems~such
as a superconductor! sufficiently close to the critical tem
perature, quantum fluctuations are important at microsco
length scales but not at the longer length scales that con
the critical behavior. Of course, quantum mechanics
needed for the very existence of an order parameter, but
the classical thermal fluctuations that govern it at long wa
lengths. Therefore, a Landau-Ginzburg-type theory is
equate for describing the phase transition. At low tempe
tures, however, quantum tunneling plays the role of
disordering field such as temperature. Thus, even at
temperature, one can induce an order-disorder phase tr
tion by tuning the quantal fluctuations. This phenomenon
called a quantum phase transition because it occurs du
purely quantum fluctuations. It takes place atT50. Crossing
the phase boundary implies some fundamental changes i
quantum ground state.1

Second-order phase transitions are accompanied by
vergent correlation length and correlation time, i.e., the or
parameter fluctuates coherently over increasing distances
ever more slowly. The latter implies that there is a frequen
v* associated with critical fluctuations that goes to zero
the transition. Therefore a quantum system behaves cla
cally if the frequency-scale associated with the tempera
exceeds all frequencies of interest, includingv* . Since
0163-1829/2001/64~2!/024427~11!/$20.00 64 0244
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\v* !kBTc , close to the transition, the critical fluctuation
behave classically. Thus quantum phase transitions, w
Tc50 are qualitatively different and their critical fluctua
tions must be treated quantum mechanically.

Quantum phase transitions differ fundamentally fro
classical phase transitions and fall in a new universal clas
critical phenomena. The fascinating properties of a variety
systems involving transition metal oxides,2 the apparent
‘‘non-Fermi liquid’’ behavior of highly correlatedf-electron
compounds,3,4 and the unusual normal-state properties of
high Tc superconducting cuprates have all been attributed
the closeness of the quantum critical point. This class
problems is presently an active area of research.5

Although there is tremendous interest in high-precis
and controlled investigation of quantum critical phenome
unambiguous study of these systems is quite difficult, pa
because it is not always straightforward to define an or
parameter. There are only a few such systems that have
subjected to careful experimental investigation. Fortunat
one such system is the recently much-investigated6 dipolar
coupled ferromagnet LiHoF4. In fact, so well can the quan
tum phase transition be studied in this system, that it is be
referred to as a model quantum magnet. The experimen
measured critical temperature, for transition from the pa
magnetic to the ferromagnetic phase, in the absence of q
tal fluctuations, isTc51.53 K. In the experiments of Bitko
Rosenbaum, and Aeppli6 a small magnetic field transverse
the c axis is applied in the laboratory that causes an adm
ture of the ground-state doublet. The transverse field indu
quantum fluctuations and is the disordering field respons
for the quantum phase transition in the model mag
LiHoF4. An experimental phase boundary for the ferroma
netic transition in the transverse field–temperature plane
been obtained by Bitko, Rosenbaum, and Aeppli via m
netic susceptibility measurements. They calculated the me
field phase boundary using a Hamiltonian comprising of
electronic spin degrees of freedom of Ho31. The calculated
phase boundary agreed well with experimental meas
ments for values of temperature larger than 0.6 K. Howev
there was substantial deviation from experimental result
lower temperatures near the quantum phase transition. A
ther calculation involving the full Hamiltonian of the Ho31

ion with its 136 basis states~arising out of the 17 electronic
©2001 The American Physical Society27-1
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VARSHA BANERJEE AND SUSHANTA DATTAGUPTA PHYSICAL REVIEW B64 024427
states! and eight nuclear states~to account for the hyperfine
coupling between Ho nuclear spins with electrons! gave an
accurate match for all values of temperature. These calc
tions underscore the importance of hyperfine interactions
pecially at temperatures close to the quantum critical poin
is precisely this important issue that we focus on in t
paper and discuss its relevance on the static and dyna
properties of LiHoF4.

While the computation of the phase boundary is reas
ably tractable even though the basis states of the full Ha
tonian are large in number, the calculation of dynamic s
ceptibility becomes a very complex issue. As the imagin
part of the frequency-dependent susceptibility is associa
with dissipation, any treatment of dynamics has to neces
ily take into account the various relaxation processes. T
becomes an insurmountable problem if the Hilbert space
the ‘‘free’’ Hamiltonian is as large as in the present instan
~comprising of 136 states!. We, however, represent the ho
mium moments by Ising spins making use of the fact tha
low operating temperatures of LiHoF4, only the two lowest
crystal-field-split levels are predominantly occupied. Th
the dipolar interaction between holmium moments can
adequately described by an Ising Hamiltonian. For the sa
reason and for the fact that the uniaxial~along the Ising easy
axis! component of theg tensor is atleast an order of ma
nitude larger than the transverse component, the hype
interaction tensor can be assumed diagonal. How good
approximate model is can be tested by first computing
static phase diagram, in this mean field theory. We fin
good agreement with the experimental as well as analyt
results of Bitko, Rosenbaum, and Aeppli. Bolstered by th
we extend our model to calculate the frequency-depend
susceptibility for the model quantum magnet using a syst
plus-bath approach. It is to our satisfaction that we find t
the results derived for the dynamic susceptibility are also
qualitative agreement with experimental measurements
LiHoF4.

The outline of the paper is as follows. In Sec. II we intr
duce the Hamiltonian for the model quantum glass. T
mean field theory is discussed in Sec. III. The static prop
ties, viz., the phase diagram and the static susceptib
evaluated from the mean field equations are discussed in
IV. Section V is devoted to a discussion of relaxation ph
nomena in thermal equilibrium in terms of the dynamic s
ceptibility. The results and discussion relevant to this cal
lation are presented in Sec. VI. Finally in Sec. VII, w
present a few concluding remarks.

II. THE HAMILTONIAN

The transverse Ising model~TIM ! occupies a special po
sition in statistical mechanics not only because so many
its properties have been extensively studied, but also bec
of its wide applicability to condensed matter physics. A ve
recent application of the TIM involves the dipolar coupl
LiHoF4 quantum magnet. The system LiHoF4 belongs to a
class of compounds LiRF4, where R is a rare-earth elemen
The rare-earth moments of Ho31 are essentially dipola
coupled, but because of the presence of large crystal fi
02442
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only the lowest Kramers doublet of the 17 crystal-field-sp
states is appreciabely populated at low temperaturesT
,2 K). Further, the sign of the crystal field is negativ
hence the lowest doublet corresponds to the highest spin
states. Consequently, the off-diagonal terms of the dipo
interaction are effectively ‘‘quenched,’’7 yielding the so-
called ‘‘truncated dipolar Hamiltonian.’’8 The latter leads to
the Ising form of interaction amongst the spins along
crystallographicc axis. In the experiments of Bitko, Rosen
baum, and Aeppli, a small magnetic field transverse to thc
axis is applied in the laboratory that causes the admixture
the crystal-field-split doublet. Since this field couples to t
component of the spin perpendicular to thec axis, the trans-
verse Ising model provides a valid description of the sta
tical mechanics of the system. Keeping in mind the releva
of hyperfine interactions near the quantum phase transi
of LiHoF4, our starting point is the Hamiltonian for the TIM
including hyperfine interaction:

Hs52 (
i , j 51

N

Ji j s i
zs j

z2(
i 51

N

aIi
zs i

z2V(
i 51

N

s i
x . ~1!

Here, Ji j is the interaction between the Ising spins whic
recalling its origin in dipolar coupling, is given by8,9

Ji j 5g2m2@123 cos2~u i j !#/r i j
3 , ~2!

whereg is the gyromagnetic ratio,m is the Bohr magneton
and r i j andu i j are respectively the magnitude and the po
angle of the vector (r̄ i2 r̄ j ) connecting sitesi and j with
respect to thec axis. The radial dependence, 1/r i j

3 means that
the dipolar interaction is long ranged in nature and ma
more than nearest-neighbor interactions must be taken
account. The angular dependence@123 cos2(uij)# implies
that Ji j can change sign, and hence the interaction switc
from ferromagnetic for angles close to the Ising axis to a
tiferromagnetic for intermediate angles (55°<u i j <125°).
While the occurrence of competing interactions can ra
doubt on the uniqueness of the ground state, a class
analysis by Luttinger and Tisza had shown that the grou
state is that of a dipolar ferromagnet.10

The second term in Eq.~1! represents the hyperfine inte
action between the nuclear spinI i

z and the electronic spins i
z

of Ho31. It arises from the interaction of the Ho nucle
spins with the electronic states through a core polariza
effect11 and its practical relevance for the magnetic order
in quantum magnets is well understood.12 ‘‘ a’’ is a hyperfine
coupling constant, which for LiHoF4 is 0.039 K ~Refs. 11
and 13!. Normally, the hyperfine interaction is isotropic. Bu
for the same reasons of anisotropy mentioned before, wh
lead to the truncated form of the dipolar interaction, the o
diagonal components of the hyperfine interaction are a
effectively quenched. This explains the form of the hyperfi
interaction written in Eq.~1! that involves only thez compo-
nent ~i.e., along thec axis! of the nuclear and electroni
spins.

The third term in Eq.~1! induces tunneling effects by
mixing the eigenstates of thesz operator, thus introducing
quantum dynamics in the system. In the experiments
7-2
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MODEL QUANTUM MAGNET: THE EFFECT OF . . . PHYSICAL REVIEW B 64 024427
Bitko, Rosenbaum, and Aeppli, this is realized by the ap
cation of a magnetic fieldHt perpendicular to thec axis. This
field can cause an admixture of the crystal-field-split sta
yielding in perturbation theory a spin Hamiltonian that d
pends onsx with a prefactorV that is quadratic inHt

2. The
transverse fieldV plays the role of a disordering field, lik
the temperatureT. This is because asV increases, it cause
an increasingly large amount of energy for the spins to or
along thez axis. Thus, even at zero temperature there i
critical valueVc such that forV.Vc the system goes into
paramagnetic phase resulting in a quantum phase transi

With this background, it is evident that the Hamiltonia
described by Eq.~1! provides a valid theoretical framewor
to study the static properties of the model quantum mag
LiHoF4. The long-range nature of the dipolar interacti
makes this Hamiltonian a suitable candidate for a mean fi
analysis to evaluate the physical properties of the system
the next section, we discuss the mean field theory for
model and study the static properties. In fact, we will sh
that the mean field theory works rather well in understand
the experimental results at a qualitative level.

III. MEAN FIELD THEORY

The basic idea of the mean field theory is to isolate
given spin, say thei th one, and embed it in an effectiv
medium in which the local field at thei th site is given~self-
consistently!, by the expectation value of the spin opera
itself. Thus, in the mean field approximation, the Ham
tonian in Eq.~1! can be rewritten as

Hs52(
i 51

N

~aIi
z1Hi !s i

z2V(
i 51

N

s i
x , ~3!

where

Hi5(
j 51

N

Ji j ^s j
z&. ~4!

Further, in the ‘‘uniform’’ case,̂ s j
z& is independent of the

site index j, yielding Hi5H5J(0)^sz& where J(0)
5S j Ji j . The single-site Hamiltonian is thus

Hs52~aIz1H !sz2Vsx. ~5!

The partition function is given by

Z5Tr~e2bHs!5@Tr exp$b@~aIz1H !sz2Vsx#%#N, ~6!

N being the number of sites. The trace in Eq.~6! is over the
electronic as well as the nuclear spin eigenstates. Labe
the eight nuclear eigenstates byuM&, we have I zuM &
5M uM &, M52 7

2 ... 7
2 . Thus the partition functionZ can

now be written as
02442
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Z5F (
M527/2

7/2

Tr exp$b@~aM1H !sz2Vsx#%GN

, ~7!

where the trace now is over the eigenstates of the electr
spinssz alone. Using the property of Pauli matrices, Eq.~7!
can be simply rewritten as

Z5F (
M527/2

7/2

cosh$bh~M !%GN

, ~8!

where

h~M !5A~aM1H !21V2. ~9!

On the other hand, the magnetization^sz& is given by

^sz&5
Tr@sz exp$b@~aIz1H !sz2Vsx#%#

(
M

cosh@bh~M !#

, ~10!

where the trace, once again, is over both nuclear and e
tronic eigenstates. Taking trace and writing^sz&5mz and
H5J(0)mz we can rewrite Eq.~10! as

mz5

(
M

aM1J~0!mz

h~M !
sinh@bh~M !#

(
M

cosh@bh~M !#

. ~11!

Equation~11! gives the self-consistent relation for thez com-
ponent of magnetization. It is evident thatmz goes to zero in
the limits of eitherV or T approaching infinity. Thus the
transverse fieldV, like the temperatureT, plays the role of a
disordering field. The terms in Eq.~11! can be rearranged a
to give

15

(
M

1

bh~M ! FbaM

mz 1bJ~0!Gsinh@bh~M !#

(
M

cosh@bh~M !#

. ~12!

We now proceed to evaluate the phase boundary sep
ing the ferromagnetic and the paramagnetic phases of
model system in theT-V plane. Sincemz is small near the
phase boundary, Eq.~9! can be approximated as

h~M !5h0~M !1a~M !mz, ~13!

where h0(M )5Aa2M21V2 and a(M )5aMJ(0)/h0(M ).
With this approximation, Eq.~12! can be rewritten as
15

(
M

V2J~0!

~a2M21V2!3/2sinh~bAa2M21V2!1
bJ~0!a2M2

a2M21V2 cosh~bAa2M21V2!

(
M

cosh@bh~M !#

. ~14!
7-3
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FIG. 1. ~a! Numerical evaluation of the phas
boundary separating the ferromagnetic pha
from the paramagnetic one using Eq.~14! ~solid
curve!. The phase boundary computed in the a
sence of hyperfine interaction~dashed curve! is
also shown for comparison. 1~b! Comparison be-
tween experimentally obtained phase boundary
Bitko, Rosenbaum, and Aeppli~stars! from sus-
ceptibility measurements and our calculat
mean-field phase boundary~pluses! in the pres-
ence of hyperfine interactions. The data ha
been scaled by the respective maximum values
the transverse field in each case.
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This is the main equation for our study of the static prop
ties of the model quantum magnet. In the limita50, we get
the expected answer with the phase boundary being give

15
J~0!

V
tanh~bV!, ~15!

which in theV→0 limit gives us the value ofJ(0)51/bc

5kBTc
0. As mentioned earlier, the critical temperature of t

dipolar magnet in the absence of the transverse fieldV, Tc
0,

is 1.53 K.

IV. STATIC PROPERTIES

~i! Phase boundary: The numerical evaluation of the ph
boundary seperating the ferromagnetic phase from the p
magnetic one, evaluated using Eq.~14!, is shown in Fig.
1~a!. For comparison, we have also shown the phase bou
ary computed from Eq.~15! ~dashed curve!, in the absence o
the hyperfine interaction. In Fig. 1~b!, we bring out the com-
parison between the experimentally obtained phase boun
02442
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of Bitko, Rosenbaum, and Aeppli~stars! from susceptibility
measurements and our calculated mean field phase boun
~pluses! in the presence of hyperfine interactions. The d
have been scaled by the largest value ofV for comparison.
The good qualitative agreement with experimental data p
vides credence to the Ising approximation of the model a
its mean field treatment.

To understand the qualitative difference in the pha
boundary in the presence of hyperfine interactions in Fig
we consider different limiting situations.

~1! For V50, Eq. ~14! yields

15

(
M

bcJ~0!cosh~baM!

(
M

cosh~baM!

5bcJ~0!. ~16!

Thus,Tc
0 is unaffected by the hyperfine interaction.

~2! In the regionV.a, Eq. ~14! reduces to
7-4
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15
J~0!

V
tanh~bV!1

bJ~0!a2

V2~2I 11! (M M2. ~17!

Furthur, if we consider low temperatures, Eq.~17! can be
further approximated as

15
J~0!

V
1

bJ~0!a2

V2~2I 11! (M M2. ~18!

Writing V/kB as V̄, a/kB as ā and SMM2/(2l 11)5g,
we obtain a quadratic inV̄

V̄22V̄Tc
02g

Tc
02

Tc
ā250, ~19!

which to first order inTc
0 yields

V̄c5Tc
01g

ā2

Tc
. ~20!

Thus we have an enhancement ofTc in the presence o
hyperfine interactions when~a! V is large as compared toa
and ~b! the temperatures are close to the quantum crit
point.

The increment inVc can also be understood from th
following physical argument. For small values of the tran
verse field, the local mean-field is dominated by the effect
interaction proportional to the magnetization along thec
axis. However, as the transverse field increases, the ma
tization along thec axis goes on decreasing~because of the
n
m
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p
a
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gradual loss of the quantization axis! leading to a situation in
which the local field is dominated by the hyperfine coupli
alone. Thus, the ferromagnetic order persists for larger
ues of the transverse field as temperature approaches
Hence, as also observed by Bitko, Rosenbaum, and Ae
there is a characteristic upward tilt in the phase boundary
temperatures less than 0.6 K.

~ii ! Static susceptibility: The static susceptibility can
calculated by adding a small magnetic fieldDH along thez
axis. The average magnetizationmz in the presence of the
field is

mz5

(
M

aM1H̃

h~M !
sinh@bh~M !#

(
M

cosh@bh~M !#

, ~21!

whereH̃5H1DH andh(M )5A(aM1H̃)21V2. Now, in
the paramagnetic phase,H is small, henceH̃ is also small. In
this limit, we can expandh(M ) in powers ofH̃, retaining
only the first-order terms. WritingH̃5J(0)mz1DH, we ob-
tain from Eq.~21!

mz@12J~0!X#5DHX. ~22!

The static susceptibility is thus

x5
X

12J~0!X
, ~23!

where
X5

(
M

1

h0~M !3 $V2 sinh@bh0~M !#1ba2M2h0~M !cosh@bh0~M !#%

(
M

cosh@bh0~M !#

. ~24!
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The static susceptibility evaluated as a function of the tra
verse fieldV is shown in Fig. 2. We have selected the te
perature to be 0.19 K, where the hyperfine interaction term
dominant. For comparison, we show the variation of susc
tibility for the case when the hyperfine interaction term
included~solid line! and for the case when it is not include
~dashed line!. In both situations, a cusp in the static susce
tibility is observed at corresponding values of the critic
fields for the selected temperature of 0.19 K, indicative o
phase transition. The inset shows a double logarithmic
of the susceptibility as a function ofu12V/Vcu to bring out
the clear distinction between the divergences when hyper
interactions are included~solid line! and when they are no
~dashed line!.

V. DYNAMIC SUSCEPTIBILITY

We now focus our attention on the evaluation of dynam
properties in terms of the frequency-dependent electro
s-
-
is
p-

-
l
a
ot

e

c
ic

susceptibility of the model quantum magnet. The Ham
tonian of Eq.~5! describes the reversible quantum dynam
of the system. Although it leads to interesting physics
itself, we now discuss irreversible effects to include dissip
tive dynamics in the system. The irreversibility can be stu
ied by including a coupling to the surrounding heat bath
Eq. ~5!

H05HS1HI1HB , ~25!

whereHI describes the interaction between the spin sys
and the heat bath. This term needs to be selected appr
ately. In order to find the correct expression forHI it is
useful to first diagonalizeHS by rotating the coordinate sys
tem about they axis in a clockwise direction by an angleu
5arctan(V/h). The corresponding rotation operator in th
spin space of the subsystem is
7-5



f

e

r-
hy-
ot
r-

ct

VARSHA BANERJEE AND SUSHANTA DATTAGUPTA PHYSICAL REVIEW B64 024427
FIG. 2. Static susceptibility as a function o
the transverse fieldV at T50.19 K, where the
hyperfine interaction is dominant. The solid lin
corresponds to evaluation ofx in the presence of
hyperfine interactions, while the dashed line co
responds to the evaluation in the absence of
perfine interactions. The inset is a log-log pl
of the same data to distinguish between dive
gence near the transition point in the two distin
cases.
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. ~26!

In the rotated frame, the total Hamiltonian is

H̃05H̃S1H̃I1HB , ~27!

while the subsystem HamiltonianHS , which is now diago-
nal, is given by

H̃S5h0sy. ~28!

The effective fieldh0 is

h05A~aIz1H !21V2. ~29!

There is always the issue: what should be the form of
interaction termHI? We make the following choice as give
in Eq. ~30! and provide the rationale below:

H̃I5gbsx. ~30!

In Eq. ~30!, b is a heat-bath operator that acts on the Hilb
space of the bath HamiltonianHB and g is a multiplicative
coupling constant. The specific form of interaction that
have chosen@see Eq.~30!# guarantees that in the rotate
frame in whichHS is diagonal, the coupling with the hea
bath is purely off-diagonal, i.e.,HI involvessx alone and is
known to yield thermal fluctuations as in the Glaub
model.14 Unrotating Eq. ~30!, we find, in the laboratory
frame,

HI5
gb

h0
@~aIz1H !sx2Vsz#. ~31!

It is evident that when tunneling is absent~i.e., V50!, HS
reduces to the Ising Hamiltonian in the mean-field appro
mation and the coupling to the heat bath assumes the for
Eq. ~30!. In this limit, we recover the Glauber kinetics for th
ordinary Ising model. Thus we see that the full interacti
term provides spin flips of the Glauber type viasx and in-
coherent tunneling effects viasz, if we choosez, the Ising
easy axis as the axis of quantization.
02442
e
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We now turn our attention to the evaluation of th
frequency-dependent dynamic susceptibilityx~v!. This, in
linear response theory, adapted to single-site mean-field
proximation, is given by15

x~v!5b lim
d→0,s→2 iv1d

@12sC̃~s!#, ~32!

whereC̃(s) is the Laplace transform of the correlation fun
tion defined as

C~ t !5^sz~0!sz~ t !&eq. ~33!

Here the angular brackets denote the appropriate quan
and statistical average. The quantitys is related to the ap-
plied frequencyv, d is a small real-valued parameter to e
sure convergence of Laplace transforms, andb is the inverse
temperature.C(t) can be explicitly written in the equillib-
rium ensemble as

C~ t !5Tr~reqs
z~0!eiH 0tsz~0!e2 iH 0t!, ~34!

whereH0 is the total Hamiltonian as in Eq.~25! andZ0 is the
corresponding partition function. In the rotated frame t
correlation function reads

C~ t !5TrS r̃eqF ~aIz1H !

h0
sz2

V

h0
sxGeiH̃ 0tF ~aIz1H !

h0
sz

2
V

h0
sxGe2 iH̃ 0tD , ~35!

where H̃0 is the total Hamiltonian in the rotated frame, a
given by Eq.~27!. Assuming that the subsystem is weak
coupled to the heat bath, we can factorize the density ma
and write the correlation function as

C~ t !5
1

Zs
Tr~A!,
7-6
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A5e2bH̃sF ~aIz1H !

h0
sz2

V

h0
sxGTrBH e2bHB

ZB
S U~ t !

3F ~aIz1H !

h0
sz2

V

h0
sxG D J . ~36!

The trace, as before is over the Ising spin states as well a
nuclear spin states and TrB is over the bath degrees of free
dom alone.@U(t)# is the time development operator to b
computed with the aid of the total Hamiltonian given by E
~27!. The Laplace transform ofC(t) reads

C̃~s!5
1

Zs
TrS e2bH̃sF ~aIz1H !

h0
sz2

V

h0
sxG

3@Ũ~s!#avF ~aIz1H !

h0
sz2

V

h0
sxG D . ~37!

In Eq. ~37!, @Ũ(s)#av denotes the Laplace transform of th
time-development operatorU(t). As discussed extensivel
in Ref. 15, it is the physics of a given problem that decid
the nature of the time-development operator. In the pres
context, we have adopted a system-plus-reservoir appro
in order to give a proper treatment of the dissipative inter
tion term and systematically ‘‘project out’’ the bath degre
of freedom. This can be most conveniently achieved by w
ing a resolvent expansion of@Ũ(s)#av in which the interac-
tion term HI is treated perturbatively. Such an expansi
yields the following general expression for@Ũ(s)#av:15

@Ũ~s!#av5@s2 iL s1S̃~s!#21, ~38!

whereLs is the Liouville operator associated with the sp
HamiltonianHs , defined in Eq.~5! andS̃(s) is the so-called
relaxation matrix, to be specified below. While it is possib
to evaluateS̃(s) to arbitrary orders in perturbation theory,
suffices for the purpose of obtaining Markovian dynamics
use an expansion up to second order inHI , which yields

S̃~s!5FLI

1

s2 iL s2 iL B
LI G

av

. ~39!

A calculation along similar lines was done by us earlier
the context of the quantum spin glass.16 A prototypical ex-
perimental quantum spin glass is the yttrium-diluted LiHoF4,
viz., LiHoxY12xF4, for a concentration ofx50.167 ~Ref.
17!. Differences in the calculation arise due to an enlarg
state-space in the present context, where additional deg
of freedom are present due to the inclusion of nuclear hyp
fine interactions. Writing out the trace over the subsyste
we obtain using Eq.~37!,

C̃~s!5
1

Zs
(
M

(
m,n,m8,n8

ebh~M !m

h2~M !
^muH̃sz2Vsxun&

3~nmu@Ũ~s!#avun8m8!^n8uH̃sz2Vsxum8&, ~40!
02442
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where (aM1H) has been denoted byH̃. In writing this
equation, we have used the properties of the Liouville ope
tors ~refer to chapter 1 of Ref. 15! as well as the notation

~mnuLum8n8!5dnn8^muHum8&2dmm8^n8uHun&, ~41!

where L is the Liouville operator corresponding to th
HamiltonianH. In order to make further progress we need
compute the matrix elements of@U(s)#av. The latter being a
superoperator in the space of the subsystem alone, is ch
terized by 16 elements, because the subsystem itself is
stricted to a two-dimensional Hilbert space in the pres
case. Using Eq.~41! the matrix elements ofLS can be written
as

~nmuLSun8m8!5(
M

h~M !~m2n!dnn8dmm8 . ~42!

Explicitly,

LS5S 0 0 0 0

0 0 0 0

0 0 22(
M

h~M ! 0

0 0 0 2(
M

h~M !

D , ~43!

where the rows and columns labeled byunm! take the values
u11!, u22!, u12! and u21!, respectively.

The next step is the evaluation of the relaxation matr
Treating the heat bath in the Markovian approximation, it
possible to approximate the relaxation matrix by

S̃~s!'S̃~0!5E
0

`

dt LI~exp@ i ~LS1LB!t# !LI . ~44!

A typical sample as evaluated from Eq.~44! is of the form

W115~11uS̃~0!u11 !

5g2E
2`

1`

dtFe1 i(
M

h~M !t^b~0!b~ t !&

1e2 i(
M

h~M !t^b~ t !b~0!& G
5g2PME

2`

1`

dt@e1 ih~M !t^b~0!b~ t !&

1e2 ih~M !t^b~ t !b~0!&#

5PMW11
M , ~45!

where the bath correlations are defined as

^b~ t !b~0!&[Tr@rBeiH Btb~0!e2 iH Btb~0!#, ~46!

rB being the density operator of the heat bath. Further,
quantitiesW12

M andW21
M are related as

W12
M 5e2bh~M !W21

M . ~47!
7-7
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Equation~47! expresses the detailed balance of transitions
it can be rewritten as

p2
eq~M !W12

M 5p1
eq~M !W21

M , ~48!

wherep6
eq(M ) denote the equilibrium probabilities

p6
eq~M !5

e6bh~M !

e1bh~M !1e2bh~M ! . ~49!

Having fixed the detailed balance condition we now tu
our attention to evaluating the bath correlation functions.

elements ofS̃(0) can be expressed in terms of certain b
correlation functions.18 These correlations are not evaluat
here explicitly but simply parametrized in terms of a ph
nomenological relaxation ratel by first making use of a
Kubo relation. As discussed in,16 under the assumption tha
the fluctuations in the heat bath have a very short life timel
becomes real and can be approximated by the following
pression:

l'E
2`

1`

dt~^b~ t !b~0!&1^b~0!b~ t !&!. ~50!

Using this simplification, the matrix elements ofS̃(0) can be
easily computed.

Coupled with Eq.~43!, as worked out in detail in Ref. 16
the time development operator for the system is given b

@U~s!#av5(
M S UA

0 0

0 0

0 0

0 0
UB

D . ~51!

Here, we have substituted

UA5
1

s~s1l! S s1lp1
eq~M ! lp2

eq~M !

lp1
eq~M ! s1lp2

eq~M !
D ~52!

and
he

02442
s

ll

h
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x-

UB5
1

s~s1l!14h2~M ! S s1
l

2
22ih0

l

2

l

2
s1

l

2
12ih0

D .

~53!

We are now ready to insert Eq.~51! in Eq. ~40! to get the
final expression for the Laplace-transformed correlat
function defined in Eq.~37!

C̃~s!5A(
M

Fs
H̃2

h2~M !
1lp2~M !G1(

M

BV2

h2~M ! F ~s1l!

12ip~M !
h2~M !

H̃
G , ~54!

where the local polarizationp(M ) is defined via

p1
eq~M !2p2

eq~M !5
h~M !

H̃
p~M !5tanh@bh~M !#. ~55!

Finally, we are in a position to write an expression for t
dynamic susceptibility using Eqs.~32! and ~54!. Comparing
with Eq. ~44! of Ref. 16, the dynamic susceptibilityx~v! for
the model quantum magnet is

b21x~v!512(
M

S 2 iv
H̃2

h2~M !
1lp2~M ! D

~ iv1l!

2(
M

iv

V2

h2~M ! Fl2 i S v22p~M !
h2~M !

H D G
„v224h2~M !…1 ivl

.

~56!

In particular, the real part ofx~v! is given by
b21x8~v!512

(
M

S v2H̃2

h2~M !
1l2p2~M !D

D1
2

(
M

F vV2

h2~M ! S v22p~M !
h2~M !

H
„v224h2~M !…D1vlG

D2
, ~57!
s
ary

on
ter-

al
while the imaginary part, related to the dissipation in t
system is given by

b21x9~v!5

(
M

vlS H̃2

h2~M !
2p2~M ! D

D1

1

(
M

4vlV2S 12
vp~M !

2H D
D2

. ~58!
In Eqs.~57! and~58!, (v21l2) has been denoted byD1 and
$„v224@h(M )#2

…1v2l2% by D2 , respectively. We discus
below the numerical evaluations of the real and imagin
parts of dynamical susceptibility to study the dependence
the transverse field, the temperature, and the hyperfine in
actions in the forthcoming section.

VI. RESULTS AND DISCUSSION OF DYNAMICAL
PROPERTIES

In Fig. 3~a!, we show the numerical evaluation of the re
part of the ac susceptibilityx8 for temperatureT of 0.2 K
7-8
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FIG. 3. ~a! Numerical evaluation of the rea
part of the ac susceptibility,x8 for temperatureT
equal to 0.2 K and a frequencyv of the applied
ac field equal to 0.1.R on thex axis is the ratio of
V(T)/Vc(T). ~b! Imaginary part of the ac sus
ceptibility x9 as a function ofR for the same
value ofT andv as in Fig. 3~a!.
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and a frequencyv of the applied ac field equal to 0.1. In a
numerical evaluations, we have selected the phenomeno
cal relaxation ratel to be 10 units. Small values ofl resulted
in extremely slow relaxation as opposed to the very fast
laxation for large values ofl. However, the results presente
here are fairly robust over at least a decade ofl values. The
variation shown in the figure is with respect to the ratioR of
the transverse fieldV(T) to the value of the critical trans
verse fieldVc(T) at T50.2 K. As expected, there is a sha
drop inx8(R) at R51.0. In Fig. 3~b!, we plot the imaginary
part of the ac susceptibility, viz.,x9(R), for the same values
of T and v as above. The sharp peak inx9 occurs atR
51.0, thus coincident with the rapid drop inx8(R), sugges-
tive of a dynamical phase transition atV(T)5Vc(T). We
would like to comment that a similar qualitative behavior
both,x8(R) andx9(R) has been observed experimentally
Bitko, Rosenbaum, and Aeppli. There is, however, an imp
tant difference in that the sharp rise inx8 and the cusp inx9
observed by them occurs at values ofV much smaller than
the corresponding values ofVc(T), i.e., at R values less
than 1.
02442
gi-
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Figure 4 shows the variation ofx9(V) for a series of
temperature values ranging fromT50.05 K ~topmost curve!
where the hyperfine interaction is most effective, to 0.3
~lower most curve! where the effect of the hyperfine intera
tion is small. For all values of temperature,x9(V) shows a
peak at the critical fieldVc(T), where the ferromagnetic
transition occurs. We have also shown corresponding cu
~dashed lines! in the absence of hyperfine interaction, f
comparison. Strong differences observed for low values
temperature indicate that the presence of hyperfine inte
tions radically affects the response of the Ising system.
expected, the peak response shifts to higher values of
transverse field, since corresponding values ofVc(T) are
larger in the presence of hyperfine interactions. It can also
seen that the response is quenched in the presence of h
fine interactions. This is because the hyperfine field its
acts as a local mean field. At higher temperatures, ther
relaxational processes dominate over all other relaxatio
processes leading to rapid relaxation. This explains why
peak value of the response falls with increasing temperat

Finally, in Fig. 5~a! we show the numerical evaluation o
7-9
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FIG. 4. Variation ofx9~V! for a series of tem-
perature values ranging fromT50.05 K ~highest
curve!, where the hyperfine interaction is mo
effective, to 0.3 K~lowest curve! where the effect
of hyperfine interaction is small. The other value
of T are 0.1 and 0.2. Dashed lines are correspo
ing curves in the absence of hyperfine interactio

FIG. 5. ~a! Evaluation ofx9(v) vs v for T
50.14 K for values ofR ranging from 0.2~lowest
curve! to 0.8 ~highest curve! with an interval of
R50.2. Dashed lines are corresponding curves
the absence of hyperfine interactions.~b! Suscep-
tibility curves ~corresponding to presence of hy
perfine interactions! of Fig. 5~a! scaled by the
peak height and peak frequency i.e
x9(v)/x9(vp) vs v/vp , for a set of values ofR.
024427-10
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x9(v) vs v in the quantum limit, for a value ofT
50.14 K, where the hyperfine interaction term is effectiv
The curves correspond to different values ofR ranging from
0.2 ~lower most curve! to 0.8 ~topmost curve!. The dashed
lines below each curve correspond to the evaluation
x9(v) in the absence of hyperfine interactions for the sa
R values. There is a very important difference between
two sets of curves. We find that in the absence of hyper
interactions, the peak value of the response occurs at
same value of frequency (v50.09), irrespective of the
strength of the transverse field. On the other hand, on inc
ing the hyperfine interactions, we find that the peak value
the response moves to higher frequencies for higher va
of the transverse field. Interestingly, such observations h
been made experimentally19,20 in the context of the yttrium
diluted disordered quantum ferromagnet vi
LiHo0.44Y0.56F4, but to the best of our knowledge, have n
been reported for pure LiHoF4. This signature has also bee
observed in LiHo0.167Y0.833F4, which behaves as a quantu
spin glass in the presence of a transverse field.17,16 The shift
in peak is purely because of the quantum mechanical na
of the system. We have checked this by evaluatingx9(v) vs
v for the classical ferromagnet. Thus we see that the inc
sion of hyperfine interactions is crucial to mimic the rela
ational behavior of a quantum magnet such as LiHoF4.

We have also enquired whether the transverse field
any effect on broadening the dynamic response. In Fig. 5~b!,
we plot the susceptibilityx9(v), scaled by the peak heigh
and peak frequency, i.e.,x9(v)/x9(vp) vs v/vp . There is
no broadening of these curves as the transverse field is
creased. Once again we point out here that such broade
effects have been seen in experiments on the disord
magnet, but have not been reported for the pure case.20 The
disordered magnet is like a quantum spin glass, in wh
tunneling though barriers~which are numerous! becomes a
024427
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dominant mechanism of relaxation, thus resulting in broa
ening ofx9(v) with increasing transverse field.

VII. CONCLUSIONS

Techniques for studying dynamic properties of quantu
systems are few and far between. Quantum Monte Ca
methods have also not been perfected for analyzing tim
dependent correlation functions. In view of these difficultie
we have used a rather simple mean field approach to cal
late the static phase diagram as well as the dynamic susc
tibility of a model quantum magnet. We find that the tran
verse Ising model with hyperfine interaction term provides
valid framework for describing the physical properties of
quantum magnet such as LiHoF4. The inclusion of the hy-
perfine interaction term in our calculations is crucial to a
count for experimental observations in this system. T
quantum fluctuations, which speed up the relaxation pr
cesses, are manipulated in the laboratory by the applicat
of a transverse field perpendicular to thec axis of the system.
Both static as well as dynamic properties in the quantu
regime show novel features explicable only by the inclusio
of hyperfine interactions. We conclude that hyperfine co
pling plays an important role in the low-temperature regim
which is the most interesting regime in the present conte
This has motivated us to look at nuclear magnetic resonan
~NMR! line shapes for quantum magnets that may shed f
ther light on the role of hyperfine interactions. The NMR
line-shape calculations are in progress and will be presen
at a later date.
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