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Model quantum magnet: The effect of hyperfine interactions on the phase diagram
and dynamic susceptibility
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We study the effect of hyperfine interactions on static and dynamic properties of a model quantum magnet.
A mean field theory of the transverse Ising model with an additional hyperfine interaction term agrees rather
well with the experimentally obtained phase diagram and dynamic susceptibility measurements i LiHoF
which of late, is being referred to as a model quantum magnet.
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[. INTRODUCTION how*<kgT., close to the transition, the critical fluctuations
behave classically. Thus quantum phase transitions, where
Magnetism has continued to remain a topic of great interT.=0 are qualitatively different and their critical fluctua-
est in condensed matter physics due to its impact on ouions must be treated quantum mechanically.
understanding of cooperative behavior and on technological Quantum phase transitions differ fundamentally from
applications. Of late, there has been widespread interest iclassical phase transitions and fall in a new universal class of
the role of quantum fluctuations on the phase transition properitical phenomena. The fascinating properties of a variety of
erties of ideal magnets. At high temperatufe®se to the systems involving transition metal oxidésthe apparent
critical temperaturg the system can access different minima‘“non-Fermi liquid” behavior of highly correlated-electron
of the free energy by thermal activation processes. At loncompounds;* and the unusual normal-state properties of the
temperatures, however, the mechanism of relaxation is quaiigh T, superconducting cuprates have all been attributed to
tum mechanical, due to tunneling between different minimahe closeness of the quantum critical point. This class of
of the free energy surface. Since the thermal activation proproblems is presently an active area of research.
cesses die out as the temperature is lowered, tunneling Although there is tremendous interest in high-precision
through barriers due to quantum fluctuations becomes domand controlled investigation of quantum critical phenomena,
nant as they do not vanish when the temperature approachasambiguous study of these systems is quite difficult, partly
zero. because it is not always straightforward to define an order
All finite-temperature transitions are considered to beparameter. There are only a few such systems that have been
classical. This is so, because even in quantum systenth  subjected to careful experimental investigation. Fortunately,
as a superconductosufficiently close to the critical tem- one such system is the recently much-investigatiidolar
perature, quantum fluctuations are important at microscopicoupled ferromagnet LiHoE In fact, so well can the quan-
length scales but not at the longer length scales that contrélim phase transition be studied in this system, that it is being
the critical behavior. Of course, quantum mechanics igeferred to as a model quantum magnet. The experimentally
needed for the very existence of an order parameter, but it isieasured critical temperature, for transition from the para-
the classical thermal fluctuations that govern it at long wavemagnetic to the ferromagnetic phase, in the absence of quan-
lengths. Therefore, a Landau-Ginzburg-type theory is adtal fluctuations, isT.=1.53 K. In the experiments of Bitko,
equate for describing the phase transition. At low temperaRosenbaum, and Aeppk small magnetic field transverse to
tures, however, quantum tunneling plays the role of ahec axis is applied in the laboratory that causes an admix-
disordering field such as temperature. Thus, even at zeruire of the ground-state doublet. The transverse field induces
temperature, one can induce an order-disorder phase trangiiantum fluctuations and is the disordering field responsible
tion by tuning the quantal fluctuations. This phenomenon idor the quantum phase transition in the model magnet
called a quantum phase transition because it occurs due tdHoF,. An experimental phase boundary for the ferromag-
purely quantum fluctuations. It takes placelat 0. Crossing netic transition in the transverse field—temperature plane has
the phase boundary implies some fundamental changes in thieen obtained by Bitko, Rosenbaum, and Aeppli via mag-
quantum ground state. netic susceptibility measurements. They calculated the mean-
Second-order phase transitions are accompanied by a dield phase boundary using a Hamiltonian comprising of the
vergent correlation length and correlation time, i.e., the ordeelectronic spin degrees of freedom of Ho The calculated
parameter fluctuates coherently over increasing distances aptiase boundary agreed well with experimental measure-
ever more slowly. The latter implies that there is a frequencyments for values of temperature larger than 0.6 K. However,
w* associated with critical fluctuations that goes to zero athere was substantial deviation from experimental results at
the transition. Therefore a quantum system behaves classbwer temperatures near the quantum phase transition. A fur-
cally if the frequency-scale associated with the temperaturéher calculation involving the full Hamiltonian of the Fio
exceeds all frequencies of interest, includiag. Since ion with its 136 basis statdarising out of the 17 electronic
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state and eight nuclear stat€to account for the hyperfine only the lowest Kramers doublet of the 17 crystal-field-split
coupling between Ho nuclear spins with electhiogave an  states is appreciabely populated at low temperatuies (
accurate match for all values of temperature. These calcula<2 K). Further, the sign of the crystal field is negative,
tions underscore the importance of hyperfine interactions, esience the lowest doublet corresponds to the highest spin sub-
pecially at temperatures close to the quantum critical point. Istates. Consequently, the off-diagonal terms of the dipolar
is precisely this important issue that we focus on in thisinteraction are effectively “quenched! yielding the so-
paper and discuss its relevance on the static and dynamaalled “truncated dipolar Hamiltonian.® The latter leads to
properties of LiHoR. the Ising form of interaction amongst the spins along the

While the computation of the phase boundary is reasonerystallographicc axis. In the experiments of Bitko, Rosen-
ably tractable even though the basis states of the full Hamilbaum, and Aeppli, a small magnetic field transverse tocthe
tonian are large in number, the calculation of dynamic susaxis is applied in the laboratory that causes the admixture of
ceptibility becomes a very complex issue. As the imaginarthe crystal-field-split doublet. Since this field couples to the
part of the frequency-dependent susceptibility is associatedomponent of the spin perpendicular to thaxis, the trans-
with dissipation, any treatment of dynamics has to necessakerse Ising model provides a valid description of the statis-
ily take into account the various relaxation processes. Thisical mechanics of the system. Keeping in mind the relevance
becomes an insurmountable problem if the Hilbert space o0bf hyperfine interactions near the quantum phase transition
the “free” Hamiltonian is as large as in the present instanceof LiHoF,, our starting point is the Hamiltonian for the TIM
(comprising of 136 statesWe, however, represent the hol- including hyperfine interaction:
mium moments by Ising spins making use of the fact that at "
low operating temperatures of LiHgFonly the two lowest
crystal-field-split levels are predominantly occupied. Thus Hy=— 2 Jjofol—2, alfoi-02> of. (1)
the dipolar interaction between holmium moments can be Wt o 1
adequately described by an Ising Hamiltonian. For the samgiere, J;; is the interaction between the Ising spins which,
reason and for the fact that the uniaxialong the Ising easy  recalling its origin in dipolar coupling, is given By
axis) component of they tensor is atleast an order of mag-
nitude larger than the transverse component, the hyperfine Jj=9%uq1-3 co§(0ij)]/rf}, 2
interaction tensor can be assumed diagonal. How good this
approximate model is can be tested by first computing thevhereg is the gyromagnetic ratiqy is the Bohr magneton,
static phase diagram, in this mean field theory. We find andr;; and 6;; are respectively the magnitude and the polar
good agreement with the experimental as well as analyticadngle of the vectorr{—r;) connecting sites andj with
results of Bitko, Rosenbaum, and Aeppli. Bolstered by thisyespect to the axis. The radial dependencerﬁ_/means that
we extend our model to calculate the frequency-dependenke dipolar interaction is long ranged in nature and many
susceptibility for the model quantum magnet using a systemmore than nearest-neighbor interactions must be taken into
plus-bath approach. It is to our satisfaction that we find thakiccount. The angular dependenice—3 cog(aij)] implies
the results derived for the dynamic susceptibility are also inhatJ;; can change sign, and hence the interaction switches
qualitative agreement with experimental measurements oftom ferromagnetic for angles close to the Ising axis to an-
LiHoF,. tiferromagnetic for intermediate angles (558;;<125°).

The outline of the paper is as follows. In Sec. Il we intro- while the occurrence of competing interactions can raise
duce the Hamiltonian for the model quantum glass. Thejoubt on the uniqueness of the ground state, a classical
mean field theory is discussed in Sec. Ill. The static properanalysis by Luttinger and Tisza had shown that the ground
ties, viz., the phase diagram and the static susceptibilitgtate is that of a dipolar ferromagriét.
evaluated from the mean field equations are discussed in Sec. The second term in Eq1) represents the hyperfine inter-
IV. Section V is devoted to a discussion of relaxation phe-action between the nuclear Spifnand the electronic Spin-iz
nomena in thermal equilibrium in terms of the dynamic sus-f Ho3*. It arises from the interaction of the Ho nuclear
lation are presented in Sec. VI. Finally in Sec. VII, we effect! and its practical relevance for the magnetic ordering

N N

present a few concluding remarks. in quantum magnets is well understold: a” is a hyperfine
coupling constant, which for LiHgFis 0.039 K (Refs. 11
Il THE HAMILTONIAN and 13. Normally, the hyperfine interaction is isotropic. But

for the same reasons of anisotropy mentioned before, which
The transverse Ising modérllM) occupies a special po- lead to the truncated form of the dipolar interaction, the off-

sition in statistical mechanics not only because so many ofliagonal components of the hyperfine interaction are also
its properties have been extensively studied, but also becauséfectively quenched. This explains the form of the hyperfine
of its wide applicability to condensed matter physics. A veryinteraction written in Eq(1) that involves only the compo-
recent application of the TIM involves the dipolar coupled nent (i.e., along thec axis) of the nuclear and electronic
LiHoF, quantum magnet. The system LiHpBelongs to a spins.
class of compounds LiRFwhere R is a rare-earth element.  The third term in Eqg.(1) induces tunneling effects by
The rare-earth moments of Fio are essentially dipolar mixing the eigenstates of the” operator, thus introducing
coupled, but because of the presence of large crystal fieldjuantum dynamics in the system. In the experiments of
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Bitko, Rosenbaum, and Aeppli, this is realized by the appli-
> TrexpBl(aM+H)o*—Qo*]}
M=-7/2

cation of a magnetic fielth; perpendicular to the axis. This Z=
field can cause an admixture of the crystal-field-split states

yielding in perturbation theory a spin HamH'_tomar; that de-\yhere the trace now is over the eigenstates of the electronic
pends orno, with a prefactor() that is quadratic irH;. The spinsa” alone. Using the property of Pauli matrices, Eg.
transverse field) plays the role of a disordering field, like can pe simply rewritten as

the temperaturd. This is because a9 increases, it causes

an increasingly large amount of energy for the spins to order 7/2 N
along thez axis. Thus, even at zero temperature there is a Z=[ > cosr{,Bh(M)}} , (8
critical value() such that forQ) > () the system goes into a M==772

paramagnetic phase resulting in a quantum phase transitio here
With this background, it is evident that the Hamiltonian

described by Eq(1) provides a valid theoretical framework = J(aM+H)Zr 02
to study the static properties of the model quantum magnet h(M)=v(aM+H)"+ Q% ©

LiHoF,. The long-range nature of the dipolar interaction On the other hand. the magnetizati is qiven b
makes this Hamiltonian a suitable candidate for a mean field ' 9 i) is g y

analysis to evaluate the physical properties of the system. In Tr o?exp( B[ (al?+H)o?— Q"]

the next section, we discuss the mean field theory for the (%)= , (10
model and study the static properties. In fact, we will show > cosligh(M)]

that the mean field theory works rather well in understanding M

the experimental results at a qualitative level. o
where the trace, once again, is over both nuclear and elec-

tronic eigenstates. Taking trace and writiig”)=m* and
H=J(0)m? we can rewrite Eq(10) as
The basic idea of the mean field theory is to isolate a

IIl. MEAN FIELD THEORY

given spin, say theéth one, and embed it in an effective aM+J(0)m*
medium in which the local field at thieh site is given(self- % h(M) sinfL Bh(M)]
consistently, by the expectation value of the spin operator m’= . (13)
itself. Thus, in the mean field approximation, the Hamil- 2 cosh Bh(M)]
tonian in Eq.(1) can be rewritten as M
N N Equation(11) gives the self-consistent relation for theom-
He= —2 (alf+ Hi)of—QE af, (3)  ponent of magnetization. It is evident thaf goes to zero in
=1 =1 the limits of eitherQ) or T approaching infinity. Thus the
where transverse field), like the temperaturg, plays the role of a
N disordering field. The terms in E¢L1) can be rearranged as
Hi=2, J(of). (4 togive
=1 1 [BaM _
Further, in the “uniform” case(o7) is independent of the % ﬂh(M)[ mz T AIO)[sinfL Bh(M)]
site index j, yielding H;=H=J(0){c? where J(0) 1= . (12
=2;Jj; . The single-site Hamiltonian is thus 2 coshi Bh(M)]
M
Hs=—(al*+H)o*— Q" (5)

We now proceed to evaluate the phase boundary separat-
ing the ferromagnetic and the paramagnetic phases of the
Z=Tr(e P"s)=[Trexp{ B[ (al*+H)a?— Qa*]}|N, (6)  mModel system in thd@-( plane. Sincen” is small near the
phase boundary, E@9) can be approximated as

The partition function is given by

N being the number of sites. The trace in E§). is over the
electronic as well as the nuclear spin eigenstates. Labeling h(M)=ho(M) + a(M)n?, (13)
the eight nuclear eigenstates Hi), we have I7M)
=M|M), M=—2%...2. Thus the partition functiorz can  where ho(M)=\a?M?+Q? and a(M)=aMJ(0)/ho(M).

now be written as With this approximation, Eq(12) can be rewritten as
02J(0) , BJ(0)a’M?
= WSIHH,B\/B.ZMZ-FQZ)-F WCOSHﬂ\/aZMZ-FQZ)
1= . (14)

% cosli h(M)]
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FIG. 1. (a) Numerical evaluation of the phase
boundary separating the ferromagnetic phase
from the paramagnetic one using EG4) (solid
curve). The phase boundary computed in the ab-
1.6 sence of hyperfine interactiofdashed curveis
also shown for comparison(d) Comparison be-
tween experimentally obtained phase boundary of

05

(a)

T T T T T T T Bitko, Rosenbaum, and Aepplstars from sus-
14 | . ceptibility measurements and our calculated
mean-field phase boundafpluse$ in the pres-
12k i ence of hyperfine interactions. The data have
been scaled by the respective maximum values of
L the transverse field in each case.
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This is the main equation for our study of the static proper-of Bitko, Rosenbaum, and Aepplstars from susceptibility

ties of the model quantum magnet. In the limit 0, we get measurements and our calculated mean field phase boundary

the expected answer with the phase boundary being given kypluses in the presence of hyperfine interactions. The data
have been scaled by the largest valueofor comparison.

J(0) The good qualitative agreement with experimental data pro-
1= Ttanr(ﬁﬂ), (19 vides credence to the Ising approximation of the model and
its mean field treatment.
which in theQ)—0 limit gives us the value 08(0)=1/8, To understand the qualitative difference in the phase

=kgsTC. As mentioned earlier, the critical temperature of theboundary in the presence of hyperfine interactions in Fig. 1,
dipolar magnet in the absence of the transverse figld?, ~ we consider different limiting situations.
is 1.53 K. (1) For Q=0, Eq.(14) yields

IV. STATIC PROPERTIES

(i) Phase boundary: The numerical evaluation of the phase % Aol(O)costi saM)
boundary seperating the ferromagnetic phase from the para- 1= =BI(0). (16
magnetic one, evaluated using Ed4), is shown in Fig. >, coshigaM)
1(a). For comparison, we have also shown the phase bound- M
ary computed from Eq15) (dashed curve in the absence of
the hyperfine interaction. In Fig(l), we bring out the com- Thus,Tg is unaffected by the hyperfine interaction.
parison between the experimentally obtained phase boundary (2) In the region{)>a, Eq. (14) reduces to
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1- J(0) Q BI(0)a? M2 1

=g BMBMF Grppy & ML D

Furthur, if we consider low temperatures, Efj7) can be
further approximated as

J(0)

- BJ(0)a?

2
o toarn e M

(18

Writing Q/kg as ), alkg asa andXyM%(21+1)=1y,
we obtain a quadratic if)

02
02-QT1o- yT—°52 0, (19)
C

which to first order inT? yields
a2

§C=T2+ ’yT—. (20)
c

Thus we have an enhancementTqf in the presence of
hyperfine interactions whef@) () is large as compared @

PHYSICAL REVIEW B 64 024427

gradual loss of the quantization axlsading to a situation in
which the local field is dominated by the hyperfine coupling
alone. Thus, the ferromagnetic order persists for larger val-
ues of the transverse field as temperature approaches zero.
Hence, as also observed by Bitko, Rosenbaum, and Aeppli,
there is a characteristic upward tilt in the phase boundary for
temperatures less than 0.6 K.

(i) Static susceptibility: The static susceptibility can be
calculated by adding a small magnetic fiddléH along thez
axis. The average magnetizationt in the presence of the
field is

aM+H
h(M)

% sinH gh(M)]

m?=

, (21)
% coshi h(M)]

whereH=H+AH andh(M)=+/(aM+H)?+ Q2. Now, in
the paramagnetic phade,is small, hencéd is also small. In
this limit, we can expandi(M) in powers ofH, retaining
only the first-order terms. Writingl = J(0)m?+ AH, we ob-

and (b) the temperatures are close to the quantum criticaf@in from Eq.(21)

point.

The increment inQ), can also be understood from the

interaction proportional to the magnetization along the

axis. However, as the transverse field increases, the magne-

tization along thec axis goes on decreasirfjecause of the

mq 1—J(0)X]=AHX. (22)

following physical argument. For small values of the trans- 1€ static susceptibility is thus

verse field, the local mean-field is dominated by the effective X
X 123(0)X (23

where
1 2 o 202

2 oy 12 sint (M) 1+ Ba®Mho(M ) cost Sho(M) T}

(24)

% cosli Bho(M)]

The static susceptibility evaluated as a function of the transsusceptibility of the model quantum magnet. The Hamil-
verse fieldQ) is shown in Fig. 2. We have selected the tem-tonian of Eq.(5) describes the reversible quantum dynamics
perature to be 0.19 K, where the hyperfine interaction term isf the system. Although it leads to interesting physics by
dominant. For comparison, we show the variation of suscepitself, we now discuss irreversible effects to include dissipa-

tibility for the case when the hyperfine interaction term istive dynamics in the system. The irreversibility can be stud-
included(solid line) and for the case when it is not included jeqd by including a coupling to the surrounding heat bath in
(dashed ling In both situations, a cusp in the static suscepgq, (5)
tibility is observed at corresponding values of the critical
fields for the selected temperature of 0.19 K, indicative of a
phase transition. The inset shows a double logarithmic plot
of the susceptibility as a function ¢ —Q/Q | to bring out
the clear distinction between the divergences when hyperfinehereH, describes the interaction between the spin system
interactions are includegsolid line) and when they are not and the heat bath. This term needs to be selected appropri-
(dashed ling ately. In order to find the correct expression féf it is
useful to first diagonalizél g by rotating the coordinate sys-
tem about they axis in a clockwise direction by an angke

We now focus our attention on the evaluation of dynamic=arctan{}/h). The corresponding rotation operator in the
properties in terms of the frequency-dependent electronispin space of the subsystem is

Ho:Hs+H|+HB, (25)

V. DYNAMIC SUSCEPTIBILITY
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FIG. 2. Static susceptibility as a function of
the transverse field) at T=0.19 K, where the
hyperfine interaction is dominant. The solid line
corresponds to evaluation gfin the presence of
1 hyperfine interactions, while the dashed line cor-
5 25 2 15 4 responds to the evaluation in the absence of hy-
20 ) perfine interactions. The inset is a log-log plot
of the same data to distinguish between diver-
gence near the transition point in the two distinct
100 1 cases.
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(26) We now turn our attention to the evaluation of the
frequency-dependent dynamic susceptibilifiw). This, in

In the rotated frame, the total Hamiltonian is linear response theory, adapted to single-site mean-field ap-

proximation, is given b¥’

R_ ,—ifdY
Uy=e .

HOZH5+H|+HB, (27)
x(@)=B lim [1-sC(s)], (32)

while the subsystem Hamiltoniadg, which is now diago- ,
5—05s——iw+é

nal, is given by

whereC(s) is the Laplace transform of the correlation func-

H.— y
Hs=hoo?. (28) tion defined as

The effective fieldh, is

ho=V(al?*+H)?+ 02 (29
Here the angular brackets denote the appropriate quantum

~ There is always the issue: what should be the form of theynd statistical average. The quantitys related to the ap-
interaction termH,;? We make the following choice as given plied frequencyw, & is a small real-valued parameter to en-

C(t):<o'z(0)0'z(t)>eq- (33

in Eq. (30) and provide the rationale below: sure convergence of Laplace transforms, gris the inverse
~ temperatureC(t) can be explicitly written in the equillib-
H,=gbo*. (300 rium ensemble as

In Eqg. (30), b is a heat-bath operator that acts on the Hilbert
space of the bath Hamiltoniadg and g is a multiplicative
coupling constant. The specific form of interaction that we
have choserjsee Eq.(30)] guarantees that in the rotated
frame in whichHg is diagonal, the coupling with the heat
bath is purely off-diagonal, i.eH, involves ¢* alone and is
known to vyield thermal fluctuations as in the Glauber ,
frr;rgil.“ Unrotating Eq.(30), we find, in the laboratory C(t)=Tr(“ﬁe{(al +H) az—gax}e‘ﬁot

C(1)=Tr(peqr’(0)eo'a?(0)e Mo, (34)

whereH, is the total Hamiltonian as in EqR5) andZ, is the
corresponding partition function. In the rotated frame the
correlation function reads

(al*+H)
ho 7
0

ho ho

e*iﬁot ’ (35)

gb Q X
H|=h—0[(a|Z+H)0'X—Qa'Z]. (31 —h—OO'

It is evident that when tunneling is abséite., 2=0), Hs  \yheref, is the total Hamiltonian in the rotated frame, as
reduces to the Ising Hamiltonian in the mean-field approxiiyen by Eq.(27). Assuming that the subsystem is weakly
mation and the coupling to the heat bath assumes the form Qb pled to the heat bath, we can factorize the density matrix
Eq. (30). In this limit, we recover the Glauber kinetics for the 5,4 \write the correlation function as

ordinary Ising model. Thus we see that the full interaction

term provides spin flips of the Glauber type vid and in- 1

coherent tunneling effects via’, if we choosez, the Ising C(t)= =Tr(A),

easy axis as the axis of quantization. Zs
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_gnj@rtH) Q9 e AHs where @M+H) has been denoted bijl. In writing this
A=e s ho o= h_oa Trg Zs U(t) equation, we have used the properties of the Liouville opera-
Z tors (refer to chapter 1 of Ref. 1%&s well as the notation
(al*+H) Q
R R [ (36 (urlLl' v = 8, ulH 'y = 3, [HI ), (4D

) ) ) where L is the Liouville operator corresponding to the
The trace, as before is over the Ising spin states as well as g, mjitonianH. In order to make further progress we need to
nuclear spin state; and E;I'!s over the bath degrees of free- compute the matrix elements P (s)].,. The latter being a
dom alone[U(t)] is the time development operator to be gyperoperator in the space of the subsystem alone, is charac-
computed with the aid of the total Hamiltonian given by EQ. igrized by 16 elements, because the subsystem itself is re-

(27). The Laplace transform dE(t) reads stricted to a two-dimensional Hilbert space in the present
case. Using Eq41) the matrix elements dfg can be written
,é B 1_|_ 7,8A|-‘| (aIZ+H) , QO « as
(s)—Zs re h o hoa
_ (al*+H) O (vplL v ) =2 NM) (= )8, 8, (42)
X[U(s)]a v a'z—h—(rx ) (37 Y]
0 0 Explicitly,
In Eq.(37), [U(s)],, denotes the Laplace transform of the 00 0 0
time-development operatdd (t). As discussed extensively 0 0 0 0

in Ref. 15, it is the physics of a given problem that decides
the nature of the time-development operator. In the present
context, we have adopted a system-plus-reservoir approach
in order to give a proper treatment of the dissipative interac-
tion term and systematically “project out” the bath degrees 0 0 0 2> h(M)
of freedom. This can be most conveniently achieved by writ- M

ing a resolvent expansion @ﬁ(s)]av in which the interac-  \yhere the rows and columns labeled|by) take the values
tion term H, is treated perturbatively. Such an expansion| 4 +) |- —), |+—) and|—+), respectively.

yields the following general expression fdd(s)],,:*° The next step is the evaluation of the relaxation matrix.
Treating the heat bath in the Markovian approximation, it is
[U(s)]a=[s—iLs+3(s)] 7Y, (38)  Possible to approximate the relaxation matrix by

Ls=| 0 © —2§M‘, h(M) 0 (43

whereLs is the Liouville operator associated with the spin S(5)=3(0)= jwdt L(exfdi(Ls+Le)tDL,. (49
HamiltonianHg, defined in Eq(5) andX.(s) is the so-called 0
relaxation Tatrix, to be specified below. While it is possible 5 typical sample as evaluated from Eg4) is of the form
to evaluated (s) to arbitrary orders in perturbation theory, it
suffices for the purpose of obtaining Markovian dynamics to W, =(++|3(0)|++)
use an expansion up to second ordeHin which yields .

=g? J dt

e+i% h(M)t<b(O)b(t)>

~ 1
E(S): L|7L| . (39)
s—ils—ikg ], —i D h(Mt
te 4 (b(t)b(0))
A calculation along similar lines was done by us earlier in o

the context of the quantum spin gld§sA prototypical ex- =gZHMJ' dtfe™ MY p(0)b(t))
perimental quantum spin glass is the yttrium-diluted LijoF e
viz., LiHo,Y;_,F,, for a concentration ok=0.167 (Ref. 1 e—ih(M)t
17). Differences in the calculation arise due to an enlarged © (b(b(0))]
state-space in the present context, where additional degrees =TyWY, (45)

of freedom are present due to the inclusion of nuclear hyper- ) )
fine interactions. Writing out the trace over the subsystemwhere the bath correlations are defined as

we obtain using Eqc37) (b()b(0))=Tr[ peeetb(0)e Metb(0)],  (46)

~ 1 DS e § pg being the density operator of the heat bath. Further, the
C(s)= Z.% ', h2(M) (u[Ho?=Qo*v) quantitiesw" _ andW" . are related as
wv, v
X(vul[0(9)]afv' w ) (' [Ho? = Qo |u'),  (40) W =ezfntMwM (47)
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Equation(47) expresses the detailed balance of transitions as N A
it can be rewritten as 1 s+ E—Zlho 5

peYM)WY_ =pSA M)W, 48 YsTgsin)ranam) A o

e I = s+ - +2ihg
wherepS{M) denote the equilibrium probabilities 2 2
e Bh(M) (53
e
piM) = ot BV g BR(M) - (49 We are now ready to insert E¢51) in Eq. (40) to get the

final expression for the Laplace-transformed correlation
Having fixed the detailed balance condition we now turnfunction defined in Eq(37)
our attention to evaluating the bath correlation functions. All

. ™2 2

elements of2,(0) can be expressed in terms of certain bath C(s)=AE SZH—+)\p2(|v|) +2 ———|(S+\)
correlation function$® These correlations are not evaluated M h*(M) w ho(M)

here explicitly but simply parametrized in terms of a phe- h2(M)

nomenological relaxation ratk by first making use of a +2ip(M) ——|, (54)
Kubo relation. As discussed {fi,under the assumption that

the fluctuations in the heat bath have a very short life time, L ) ! )
becomes real and can be approximated by the following ex/here the local polarizatiop(M) is defined via
pression: h(M)

N PEM) — (M) = ——=p(M)=tanti sh(M)]. (55)
)\%ﬁx dt({(b(t)b(0))+(b(0)b(t)})). (50 -

Finally, we are in a position to write an expression for the
dynamic susceptibility using Eq$32) and (54). Comparing
with Eq. (44) of Ref. 16, the dynamic susceptibilify(w) for
the model quantum magnet is

Using this simplification, the matrix elementsb{0) can be
easily computed.

Coupled with Eq(43), as worked out in detail in Ref. 16,
the time development operator for the system is given by

00 . R? )
Ua 0 —Iwm'f')\p (M)
-1 _
U&= | 61 B x(@)=1-2 ot
Ug
00 02 {)\_,( L (M)hZ(M)”
Here, we have substituted s iwhz(M) Weep H
1 [s+ApSAM)  ApS{M) W (w?—4h* (M) +iw\
UaTssmo | apsim s+)\pe°(M)) 62 (56)
and In particular, the real part of(w) is given by
|
2ﬁ2 02 hZ(M)
> hf’mﬂzpz(lvl)) > [Haz)(v)(w—Zp(M) - (w2—4h2(M)))+w)\
B (0)=1- B - 5 NCY

while the imaginary part, related to the dissipation in theln Egs.(57) and(58), (w*+ \?) has been denoted ly; and

system is given by {(w?—4[h(M)]?)+ w*\?} by D,, respectively. We discuss
~5 below the numerical evaluations of the real and imaginary
E N H —pA(M) parts of dynamical susceptibility to study the dependence on
& @ hZ(M) P the transverse field, the temperature, and the hyperfine inter-
B '"(w)= 5 actions in the forthcoming section.
1
wp(M) VI. RESULTS AND DISCUSSION OF DYNAMICAL
> 4w)\92(1— PROPERTIES
M 2H . . .
+ . (58 In Fig. 3(a@), we show the numerical evaluation of the real
D part of the ac susceptibility’ for temperaturel of 0.2 K
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o Lt . . \ . FIG. 3. (&) Numerical evaluation of the real
0 1 2 3 4 5 part of the ac susceptibilityy’ for temperaturel

@ : equal to 0.2 K and a frequeney of the applied

ac field equal to 0.1R on thex axis is the ratio of

03 T T T T T T T T T T Q(T)/Q(T). (b) Imaginary part of the ac sus-
ceptibility ¥’ as a function ofR for the same
N value of T and w as in Fig. 3a).
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and a frequencw of the applied ac field equal to 0.1. In all Figure 4 shows the variation of”({2) for a series of

numerical evaluations, we have selected the phenomenologiemperature values ranging from=0.05 K (topmost curve

cal relaxation rata to be 10 units. Small values afresulted  where the hyperfine interaction is most effective, to 0.3 K
in extremely slow relaxation as opposed to the very fast reflower most curvewhere the effect of the hyperfine interac-
laxation for large values of. However, the results presented tion is small. For all values of temperaturg’(Q)) shows a
here are fairly robust over at least a decade oflues. The peak at the critical field),(T), where the ferromagnetic
variation shown in the figure is with respect to the r&&iof  transition occurs. We have also shown corresponding curves
the transverse fiel@)(T) to the value of the critical trans- (dashed linesin the absence of hyperfine interaction, for
verse field();(T) at T=0.2K. As expected, there is a sharp comparison. Strong differences observed for low values of
drop inx'(R) atR=1.0. In Fig. 3b), we plot the imaginary temperature indicate that the presence of hyperfine interac-
part of the ac susceptibility, vizy"(R), for the same values tions radically affects the response of the Ising system. As
of T and w as above. The sharp peak yf occurs atR  expected, the peak response shifts to higher values of the
=1.0, thus coincident with the rapid drop 1(R), sugges- transverse field, since corresponding values(Q{T) are

tive of a dynamical phase transition &t(T)=Q.(T). We larger in the presence of hyperfine interactions. It can also be
would like to comment that a similar qualitative behavior in seen that the response is quenched in the presence of hyper-
both, x' (R) andx”(R) has been observed experimentally by fine interactions. This is because the hyperfine field itself
Bitko, Rosenbaum, and Aeppli. There is, however, an imporacts as a local mean field. At higher temperatures, thermal
tant difference in that the sharp rise jti and the cusp iry” relaxational processes dominate over all other relaxational
observed by them occurs at values(®fmuch smaller than processes leading to rapid relaxation. This explains why the
the corresponding values @ .(T), i.e., atR values less peak value of the response falls with increasing temperature.
than 1. Finally, in Fig. 5a) we show the numerical evaluation of
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FIG. 4. Variation ofy"(Q) for a series of tem-
perature values ranging froffi=0.05 K (highest
curve, where the hyperfine interaction is most
effective, to 0.3 K(lowest curve where the effect
of hyperfine interaction is small. The other values

of Tare 0.1 and 0.2. Dashed lines are correspond-
ing curves in the absence of hyperfine interaction.

FIG. 5. (a) Evaluation ofy"(w) vs w for T
=0.14 K for values oR ranging from 0.2lowest
curve to 0.8 (highest curvg with an interval of
R=0.2. Dashed lines are corresponding curves in
the absence of hyperfine interactiofls). Suscep-
tibility curves (corresponding to presence of hy-

perfine interactionsof Fig. 5@a) scaled by the
peak height and peak frequency i.e.,
X" ()] x"(wp) VS wl wp, for a set of values oR.
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X"(®) Vs » in the quantum limit, for a value ofT dominant mechanism of relaxation, thus resulting in broad-
—0.14K, where the hyperfine interaction term is effective.eNing ofx"(w) with increasing transverse field.
The curves correspond to different valuesRofanging from
0.2 (lower most curvgto 0.8 (topmost curve The dashed
lines below each curve correspond to the evaluation of Techniques for studying dynamic properties of quantum
x"(w) in the absence of hyperfine interactions for the samesystems are few and far between. Quantum Monte Carlo
R values. There is a very important difference between theénethods have also not been perfected for analyzing time-
two sets of curves. We find that in the absence of hyperfin€lependent correlation functions. In view of these difficulties,
interactions, the peak value of the response occurs at th&e have used a rather simple mean field approach to calcu-
same value of frequencyw=0.09), irrespective of the late the static phase diagram as well as the dynamic suscep-
strength of the transverse field. On the other hand, on includiPility of a model quantum magnet. We find that the trans-
ing the hyperfine interactions, we find that the peak value o¥€rse Ising model with hyperfine interaction term provides a
the response moves to higher frequencies for higher value&lid framework for describing the physical properties of a
of the transverse field. Interestingly, such observations havBUantum magnet such as LiHpFThe inclusion of the hy-
been made experimentalf?°in the context of the yttrium perfine interaction term in our callculatl_ons is crucial to ac-
diluted disordered quantum ferromagnet viz., count for experlmental o_bservatlons in this system. The
LiHOo 44Y o564 but to the best of our knowledge, have not quantum fluctuat_lons, Wh_lch speed up the relaxatlon pro-
been reported for pure LiHQF This signature has also been C€SS€S, are manipulated in the laboratory by the application
observed in LiHg 15Y o sads Which behaves as a quantum of atransyerse field perpendlcglar to thaxls o_f the system.
spin glass in the presence of a transverse fiefdThe shift ~BOth static as well as dynamic properties in the guantum
in peak is purely because of the quantum mechanical natut€9ime show novel features explicable only by the inclusion
of the system. We have checked this by evaluaifigm) vs of_ hyperfine interactions. We conclude that hyperfine cou-
o for the classical ferromagnet. Thus we see that the incluP!i"d Plays an important role in the low-temperature regime,
sion of hyperfine interactions is crucial to mimic the relax- Wh.'Ch Is the most interesting regime in the pres_ent context.
ational behavior of a quantum magnet such as LiHoF This ha; motivated us to look at nuclear magnetic resonance
We have also enquired whether the transverse field ha MR,) line shapes for quantum. magnets that may shed fur-
any effect on broadening the dynamic response. In Fig), 5 ther light on the r(_)le of hy_perfme interactions. The NMR
we plot the susceptibility” (), scaled by the peak height line-shape calculations are in progress and will be presented
and peak frequency, i.ex’(w)/x"(wp) Vs w/w,. There is at a later date.
no broadening of these curves as the transverse field is in-
creased. Once again we point out here that such broadening
effects have been seen in experiments on the disordered We thank Dr. D. Bitko for sending us a copy of his Ph.D.
magnet, but have not been reported for the pure ¥hShe  thesis and Dr. G. Aeppli for useful discussions. V.B. is
disordered magnet is like a quantum spin glass, in whictgrateful to the Council of Scientific and Industrial Research
tunneling though barrieréwvhich are numeroysbecomes a of the Government of India for a research grant.

VII. CONCLUSIONS

ACKNOWLEDGMENTS

*Email address: varsha@physics.iitd.ernet.in 9C. P. SlichterPrinciples of Magnetic Resonanédarper & Row,
TEmail address: sdgupta@boson.bose.res.in New York, 1963.
3. Sachdev, Phys. World, 25 (1995, cond-mat/9705266; H. 1°J. M. Luttinger and L. Tisza, Phys. Re¥0, 954 (1946.
Reiger and A. P. Young, Lecture notes in Physi€pringer-  *'G. Mennenga, L. J. DeJongh, and W. J. Huiskamp, J. Magn.
Verlag, Heidelberg, 1996 cond-mat/9607005; R. N. Bhatt, in Magn. Mater.44, 59 (1984).
Spin Glasses and Random Fieléslited by A. P. YoungWorld ~ '°K. Andres, Phys. Rev. B, 4295(1973.

Scientific, Singapore 1997 133, Megarino, J. Tuchendler, P. Beauvillian, and I. Laursen, Phys.
23. A. Carteret al, Phys. Rev. Lett67, 3440(1991); Phys. Rev. B Rev. B21, 18 (1980.
48, 16841(1993. 14K, Kawasaki, inPhase Transitions and Critical Phenomereai-
3H. V. Lohneysenet al, Phys. Rev. Lett72, 3262 (1994; B. ited by C. Domb and M. S. Greefcademic, London, 1972
Bogenberger and H. V. Lohneysehid. 74, 1016 (1995. Vol. 2.
4M. B. Mapleet al, J. Low Temp. Phys99, 223 (1995. 153, DattaguptaRelaxation Phenomena in Condensed Matter Phys-
°S. Sachdev and J. Ye, Phys. Rev. L&t 169(1993; A. Sokol ~_ ics (Academic, Orlando, 1987
and D. Pinesjbid. 71, 2813(1993; A. W. Sandvik and M. J. V. Banerjee and S. Dattagupta, J. Phys.: Condens. Mader
Vekic, ibid. 74, 1226(1995. - 8351(1998. _ _
6D. Bitko, T. F. Rosenbaum, G. Aeppli, Phys. Rev. L&, 940 W. Wu, B. Ellman, T. F. Rosenbaum, G. Aeppli, and D. H. Reich,
(1996. Phys. Rev. Lett67, 2076(1991); W. Wu, D. Bitko, T. F. Rosen-
’D. D. Betts, inPhase Transitions and Critical Phenomereaited baum, and G. Aepplibid. 71, 1919(1993)_-
by C. Domb and M. S. GreefAcademic, London, 1972Vol.  *°S. Dattagupta, B. Tadi®R. Pirc, and R. Blinc, Phys. Rev. &4,
3. 4387(1991); 47, 8801(1993.
8A. Abragam,The Theory of Nuclear Magnetisf®xford Univer- 19D, H. Reichet al, Phys. Rev. B42, 4631(1990.
sity Press, London, 1961 20D, Bitko, Ph.D. thesis, University of Chicago, lllinois, 1992.

024427-11



