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Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires
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We present numerical calculations of the ballistic spin-transport properties of quasi-one-dimensional wires
in the presence of the spin-orbit~Rashba! interaction. A tight-binding analog of the Rashba Hamiltonian that
models the Rashba effect is used. By varying the robustness of the Rashba coupling and the width of the wire,
weak- and strong-coupling regimes are identified. Perfect electron-spin modulation is found for the former
regime, regardless of the incident Fermi energy and mode number. In the latter however, the spin conductance
has a strong energy dependence due to a nontrivial subband intermixing induced by the strong Rashba cou-
pling. This would imply a strong suppression of the spin modulation at higher temperatures and source-drain
voltages. The results may be of relevance for the implementation of quasi-one-dimensional spin-transistor
devices.
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I. INTRODUCTION

The electron-spin-precession phenomena at zero mag
field induced by a variable spin-orbit interaction in qua
two-dimensional electron-gas~2DEG! systems was first elu
cidated by Datta and Das1 as the basic principle for the rea
ization of a novel electronic device, the spin transistor. T
underlying idea is to drive a modulated spin-polarized c
rent ~spin inject and detect! entirely electrically, combining
just ferromagnetic metals and semiconductor materials.
this, the spin precession is controlled via the spin-orbit c
pling ~Rashba coupling2,3! associated with the interfacia
electric fields present in the quantum well that contains
2DEG channel. The tuning of the Rashba coupling by
external gate voltage was recently demonstrated in diffe
semiconductors by Nittaet al.4 and others,5–7 and more re-
cently by Grundler8 applying a back gate voltage while th
carrier density was kept constant. It has been also achie
in a p-type InAs semiconductor by Matsuyamaet al.9

Although spin injection has already been reported fr
ferromagnetic metals to InAs-based semiconductors,10,11 the
spin-polarization signatures reported are about 1% or l
making the results very controversial. Such low efficien
can be also attributed to extraneous effects, such as the
Hall effect,12,13 and to resistance mismatch at the interfac
between the ferromagnetic metal and the semiconduct14

Very recently, one of us proposed that the latter problem
be circumvented by growing atomically ordered and app
priately oriented interfaces of ferromagnetic metals and s
able semiconductors that act as perfect spin filters and m
injection of up to 100% spin-polarized electrons into sem
conductors possible in principle.15 If this prediction is con-
firmed experimentally, a major obstacle to the spin-inject
experiments will be overcome.

On the other hand, another crucial prerequisite to hav
an overall strong spin-current modulation is to restrict
angular distribution of electrons in the 2DEG by imposing
strong enough, transverse confining potential.1 This was the
original proposal of Datta and Das. It was argued that ifW is
the width of the transverse confining potential well, the co
dition W!\2/am* should be satisfied for the intersubba
0163-1829/2001/64~2!/024426~13!/$20.00 64 0244
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mixing to be negligible, which would ensure a perfect sp
current modulation. If we choose a typical channel in
In0.53Ga0.47As semiconductor, withm* 50.042mo and the
spin-orbit coupling constanta51.5310211 eV m, 6 this im-
plies W!0.38 mm. This width is of the order or much
smaller than the characteristic lateral widths of the 2DE
channels patterned in the current experimental studies of
injection.10–12 This would suggest that in order to achiev
better results in the spin-injection modulation, the b
choice would be ballistic quasi-one-dimensional systems~by
introducing split gates for instance!, where just a few popu-
lated subbands are allowed, rather than the quasi-t
dimensional situation, in which many propagation chann
exist ~Hall-bar experiments!, with a concomitant small sub
band spacing comparable to the zero-field spin-splitting
ergy of the 2DEG.

Recently, Moroz and Barnes16 in a theoretical study of the
effect of the spin-orbit interaction on the ballistic condu
tance and the subband structure of quasi-one-dimensi
~Q1D! electron systems showed that a drastic change in tk
dependence of the subband spectrum occurs with respe
the purely 2DEG system when relatively strong spin-or
coupling is considered. This yields additional subband
trema and subband anticrossings, as well as anomalous p
in the conductance of the Q1DEG. To what extent the
effects can influence the behavior of a quasi-one-dimensio
spin-modulator device has not been investigated, and th
the aim of the present work.

In this paper we investigate the effect of the strength
the Rashba spin-orbit coupling on the spin-transport prop
ties of narrow quantum wires. We find it convenient for th
purpose to work in a simple tight-binding approach in whi
an homologous version of the Rashba spin-orbit coupling
employed. In particular, we find that the spin-orbit intera
tion induces dramatic qualitative changes in the sp
polarized current transmitted through Q1DEG systems, p
vided that a strong spin-orbit coupling is present. A stro
dependence of the spin conductance on the incident Fe
energy is found to be correlated with subband mixing
duced by a robust spin-orbit coupling. This dependence
significantly suppress the spin modulation at finite tempe
©2001 The American Physical Society26-1
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FRANCISCO MIRELES AND GEORGE KIRCZENOW PHYSICAL REVIEW B64 024426
tures and/or bias voltages. These results may have impo
implications for prospective quasi-one-dimensional sp
injector devices at room temperature or under large app
voltages.

The remainder of the article is organized as follows:
Sec. II the theoretical approach is developed, starting wi
brief summary of the relevant features of the Rashba Ha
tonian and its induced spin-precession effect. A tight-bind
model for the Rashba Hamiltonian is also presented here
brief description of the conductance calculation is given
the end of the section. The numerical results and main c
clusions are given in Sec. III, and finally the criteria th
distinguish between theweakandstrongspin-orbit coupling
regimes and the method used to obtain the subband spec
are outlined in the appendices.

II. THEORETICAL MODEL

A. Hamiltonian for the Rashba effect

In the absence of a magnetic field, the spin degenerac
the 2DEG energy bands atk5” 0 is lifted by the coupling of
the electron spin with its orbital motion. This coupling aris
because of the inversion asymmetry of the potential that c
fines the 2DEG system. The spin-split dispersion involve
linear term ink, as was first introduced by Bychkov an
Rashba.2,3 The mechanism is popularly referred to as t
Rashba effect. The spin-orbit~Rashba! model is described by
the Hamiltonian

Hso5
a

\
~sW 3pW !z5 iaS sy

]

]x
2sx

]

]yD . ~1!

Here thez axis is chosen perpendicular to the 2DEG s
tem ~lying in the x-y plane!, a is the spin-orbit coupling
constant~Rashba parameter!, which is sample dependent an
is proportional to the interface electric field,sW

5(sx ,sy ,sz) denotes the spin Pauli matrices, andpW is the
momentum operator. The experimental values ofa for dif-
ferent materials range from about 6310212 eV m at elec-
tron densities ofn50.731012 cm22 to 3.0310211 eV m at
electron densities ofn5231012 cm22.4–6,9

The Rashba Hamiltonian~1!, which is derivable from
group theoretical arguments,17 is invariant under time rever
sal, that is,@ T̂,Hso#50. The time-reversal operator is repr
sented here byT̂5 isyĈ, with Ĉ the complex-conjugation
operator. Since the degeneracy of the electronic statesk
50 can be only lifted if the time-reversal symmetry of th
system is broken, it follows that the Rashba Hamilton
~due to its time-reversal invariance! cannot produce a spon
taneous spin polarization of the electron states. Neverthe
as mentioned earlier, it is capable of removing the spin
generacy fork5” 0. This is made clear by noticing that th
total effective mass Hamiltonian for a 2DEG system, a
result of the Rashba effect@Eq. ~1!#, has the form
02442
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H5S \2

2m*
~kx

21ky
2! iakx1aky

2 iakx1aky
\2

2m*
~kx

21ky
2!
D , ~2!

whereH5Ho1Hso , with Ho being the electronic kinetic-
energy part in the absence of the Rashba effect. Clearly,
HamiltonianH produces two separate branches for the el
tron states,

E~k!5
\2

2m*
k26ak; ~3!

herek5uku is the magnitude of the 2D wave vector in th
2DEG plane. Since the spin-orbit couplinga depends on the
interface electric field, it is possible to tune the strength
the splitting between the two branches by applying an ex
nal gate voltage, which will alter the net effective electr
field at the interface, as has been verified in seve
experiments.4,8,9

B. The Rashba spin-precession effect

The Rashba effect is the basis for the proposed, and ye
be implementated, Datta and Das spin-modulator device.1 In
this device, a spin-polarized current is injected from a fer
magnetic material into a 2DEG at a inversion layer~formed
at a semiconductor heterojunction! and then collected by a
second ferromagnetic material@Fig. 1~a!#. In basic terms, the
idea is that the Rashba effect will induce a spin precessio
the electrons moving parallel to the interface, rotating th
with respect to the magnetization direction of the seco
ferromagnet~collector!. Then by adding a gate voltage th
net effective electric field~and hence, the spin-orbit interac
tion! at the interface can be modified, tuning the spin prec
sion, and therefore, the transmitted spin-polarized curren
modulated accordingly.1

We mentioned in the introduction that an important p
requisite to having an overall strong spin-current modulat
is that the angular distribution of the 2DEG be restricted
imposing a transverse confining potential. Bearing this
mind, we will now summarize the essential physics of t
spin-precession effect in a Q1DEG system for the case
weakspin-orbit coupling. The summary will define the bas
conceptual framework that will be needed to understand
results in the general multichannel case with arbitrary sp
orbit coupling strength and will also establish the notation
be used in the remainder of the paper.

Consider a Q1DEG system that is defined by apply
split gates to a 2DEG in a semiconductor heterostruct
@ InxGa12xAs/InyAl12yAs, for instance, see Fig. 1~b!#. Due
to the confining potentialV(x), the electron motion will be
quantized in thex direction, Fig. 1~c!. Following Datta and
Das,1 let’s assume that the Rashba spin-orbit interactionHso
is sufficiently weak that its effect can be incorporated pert
batively. For such a case, the unperturbed (a50) Hamil-
tonian will satisfyHoun,s&5En

oun,s&, where the eigenval-
ues are given byEn

o5En1\2ky
2/2m* , with n denoting the
6-2
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BALLISTIC SPIN-POLARIZED TRANSPORT AND . . . PHYSICAL REVIEW B64 024426
subband index. The unperturbed spin degenerate eigens
have the formun,s&→eikyyfn(x)us&, where s5↑,↓ with
the definitions of the spinorsu↑&5(0

1), and u↓&5(1
0). Note

that thefn(x) are the solutions of

S 2
\2

2m*

d2

dx2
1V~x!D fn~x!5Enfn~x!. ~4!

We seek the eigenvalues for the system in which we h
a nonzero and weak spin-orbit interactionaÞ ~i.e., HsoÞ0
andH5Ho1Hso). From degenerate perturbation theory, w
obtain~to zeroth order! the following system of equations fo
each subbandn,

@En
o1~Hso!nn

ss2E#ans
o 1 (

s85” s

~Hso!nn
ss8ans8

o
50, ~5!

FIG. 1. ~a! Cross-sectional schematic of Datta-Das sp
modulator device,~b! cross-sectional schematic of a split gate d
vice used to create a Q1DEG, and~c! diagram of the quasi-one
dimensional quantum channel.
02442
tes

e

with ans
o the zeroth-order expansion for the coefficientsans

used to expand the perturbed states in terms of the kn
unperturbed statesun,s&. The result in Eq.~5! is valid as
long as the condition

U ~Hso!nm
ss8

~Em
o 2En

o!
U!1 ~6!

for m5” n has been fulfilled, where (Hso)nm
ss8

5^n,suHsoum,s8& are the matrix elements that intermix th
different subbands and spin states in the perturbed sys
Explicitly they are given by

~Hso!nm
↑↓ 5akydnm1a K nU d

dxUmL , ~7!

~Hso!nm
↓↑ 5akydnm2a K nU d

dxUmL , ~8!

~Hso!nm
↑↑ 5~Hso!nm

↓↓ 50. ~9!

Clearly the perturbation is nondiagonal in the spin ind
and it is linear inky . If we suppose that the transverse co
fining potentialV(x) has reflection symmetry inx, Eqs.~7!
and ~8! will reduce to

~Hso!nn
↑↓5~Hso!nn

↓↑5aky . ~10!

Inserting the results from Eqs.~9! and ~10! into Eq. ~5! we
get for each channeln,

S En
o2E aky

aky En
o2E

D S an↑
o

an↓
o D 50, ~11!

which yields the eigenvalues

E6~ky!5En1
\2

2m*
ky

26aky . ~12!

Equation~12! shows that for Q1DEG systems, the Rash
spin-orbit interaction introduces~to zeroth order! a lifting of
the spin degeneracy for each subband staten. The nature of
the splitting is such that it allows electrons with the sam
energy to have different wave vectors (ky1 andky2), that is,
E1(ky1)5E2(ky2), whereky1 is the wave vector associate
with the subbandE1 with eigenvector (1

1), whereasky2 rep-
resents the wave vector associated with the subbandE2 with
eigenvector (21

1 ). Therefore, if we were to drive spin-up po
larized electrons into the Q1DEG using a ferromagnetic m
terial as in the Datta and Das device@Fig. 1~a!#, the wave
emerging from the semiconductor wire would be represen
asc5(1

1) eiky1L1(21
1 ) eiky2L, whereL is the length of the

semiconductor wire. Therefore the probability of detecting
spin-up (10) electron at the collector contact would be pr
portional to

u^~10!uc&u254 cos2
~ky22ky1!L

2
, ~13!

-
-

6-3
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FRANCISCO MIRELES AND GEORGE KIRCZENOW PHYSICAL REVIEW B64 024426
whereas if the collector contact is magnetized such tha
detects only spin-down polarized electrons, the probability
detecting a spin-down (1

0) electron will be proportional to

u^~01!uc&u254 sin2
~ky22ky1!L

2
. ~14!

The results~13! and ~14! are very important; they imply
that if we inject and collect spin-polarized~up or down! elec-
trons into ~and from! a Q1DEG system, the Rashba effe
will produce a modulation of the transmitted current at dr
contact with a differential phase shift given byDu5DkyL,
where Dky5ky22ky1. In other words, the Rashba effe
would induce a spin precession of the transmitted electr
with a phase shiftDu with respect to those injected at th
ferromagnetic emitter. From Eq.~12!, it is straightforward to
determineDky . SinceE1(ky1)5E2(ky2) we have that

E1~ky1!2E2~ky2!5
\2

2m*
~ky1

2 2ky2
2 !1a~ky11ky2!50,

~15!

which leads toky22ky152m* a/\2. Therefore the differen-
tial phase shiftDu can be written as1

Du5
2m*

\2
aL, ~16!

which is proportional to the strength of the Rashba param
a and to the separationL between the magnetic contacts
the length of the Q1DEG system. Then by applying a ba
gate voltage bias, the Rashba parameter can be varie
principle, and hence, the degree of the electron-spin pre
sion would be tuned correspondingly.

Equation~16! suggests that spin-current modulation c
be attained in semiconductor nanowires, regardless of
mode number and large applied bias, as indeed Datta
Das concluded.1 Notice as well that the phase shift is ener
independent. We should recall here that these results w
obtained with the premise that the Rashba spin-orbit inte
tion was weak enough, such that the confinement energy
much larger than the spin-splitting energy induced by
Rashba effect, and therefore, the intersubband mixing
neglected, in other words, whenever the condition~6! is sat-
isfied. For the hard wall confining potential considered h
this means

U ~Hso!nm
ss8

~Em
o 2En

o!
U'am* W

\2
!1, ~17!

which would implyW!\2/am* and gives us a rough uppe
limit of the width of the confinement for the intersubban
mixing to be neglected. Typical values form* and a yield
widths of W!0.38 mm. We will arrive at similar conclu-
sions using parabolic potential for the transverse confinem
V(x).

The criterion ~17! for the validity of the perturbative
theory discussed above is quite restrictive since it requ
both weak spin-orbit coupling and a narrow wire. Thus
02442
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general the intersubband mixing that has been neglecte
the above discussion can be important, and the sim
energy-independent expression~16! for the differential phase
shift may then no longer apply. This results in importa
qualitative changes in the electron-spin precession and in
behavior of the spin-modulation devices as we will discu
below.

In the following section we present a tight-binding anal
of the Rashba Hamiltonian that can be used to study s
transport in cases where intersubband coupling is impor
and perturbative theory fails, and also in more general ge
etries that do not lend themselves readily to analytic so
tions. We then proceed to solve the multichannel scatte
and spin-dependent transport problem exactly~numerically!
within the tight-binding formalism in a variety of situation
where intersubband mixing is significant and needs to
considered.

C. Rashba Hamiltonian: A tight-binding model

In this section, the spin-orbit interaction given by th
Rashba Hamiltonian is reformulated within the tight-bindi
approach in a lattice model. We consider a quasi-o
dimensional wire, which is assumed to be infinitely long
the propagation direction. The wire is represented by a
dimensional grid with a lattice constanta. We choose the
coordinate system such that thex axis, with Nx lattice sites,
is in the transverse direction, while they axis, withNy lattice
sites, is in the longitudinal direction, Fig. 2~a!.

FIG. 2. ~a! Schematic of the tight-binding model for the system
In the shaded areas the spin-orbit interaction is finite,tso5” 0. ~b!
Schematic of a quasi-one-dimensional spin-modulator device.
6-4
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We assume only nearest-neighbor spin-dependent inte
tions for the Rashba perturbation. For the purpose of
present model, the localized site orbitals will be assumed
have the symmetry ofs states. Then the tight-binding analo
of Eq. ~1! takes the form

Ĥso
tb52tso(

s,s8
(
l ,m

~Cl 11,m,s8
†

~ isy!s,s8Cl ,m,s

2Cl ,m11,s8
†

~ isx!s,s8Cl ,m,s!1H.c. ~18!

with an isotropic nearest-neighbor transfer integraltso that
measures the strength of the Rashba spin-orbit interac
and will be shown below to have the valuetso5a/2a, and
with Cl ,m,s

† , which represents the electron creation opera
at site (l ,m) with spin states (s5↑,↓). Here sx and sy
are the Pauli spin matrices. Notice thattso.0, and in prin-
ciple it can be tuned by an external electric field.

This Hamiltonian is formally similar to that studied pre
viously by Ando and Tamura19 in the context of conductanc
fluctuations and localization in quantum wires wi
boundary-roughness scattering. We emphasize that in
present model no roughness scattering is present, and
the physical origin of spin-orbit scattering is the asymme
of the electric field in the quantum well that contains t
2DEG.

We divide the wire into three main regions. In two
these@I and III in Fig. 2~a!#, which are near the ferromag
netic source and drain, the spin-orbit hopping parametertso
is set to zero. We assume that the semiconductor interfac
which the Rashba effect occurs does not extend into th
two regions and thattso50 there for that reason. In th
middle region~II ! the spin-orbit coupling is finite (tso5” 0) at
the semiconductor interface. In the actual calculation,
region~II ! is further divided into three to introduce the spi
orbit interaction adiabatically. Therefore, the full Ham
tonian reads

Ĥ5Ĥo1V̂1Ĥso
tb , ~19!

where the spin diagonal parts ofĤ are given by

Ĥo5 (
l ,m,s

eCl ,m,s
† Cl ,m,s1t (

l ,m,s
~Cl 11,m,s

† Cl ,m,s

1Cl ,m11,s
† Cl ,m,s1H.c.!, ~20!

and

V̂5 (
l ,m,s

Vl ,mCl ,m,s
† Cl ,m,s , ~21!

with e the on-site energy,t the hopping energy (t
52\2/2m* a2), andVl ,m an additional confining potential
The full HamiltonianĤ will have eigenvectors given by

uC&5(
s

(
l ,m

x l ,m
s u l m s&, ~22!

where we have defined the spinors,
02442
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C l ,m
↑ 5x l ,m

↑ S 1

0D , and C l ,m
↓ 5x l ,m

↓ S 0

1D , ~23!

with x l ,m
s 5^ l m suC&, with x l ,m

s being the electronic wave
function at site (l ,m) and in spin states5↑,↓. In Eq. ~22!,
u l m s&5Cl ,m,s

† u0&, with u0& denoting the vacuum, and w
assumê l 8m8s8u l m s&5d l ,l 8dm,m8ds,s8 .

We establish the correspondence between Eqs.~18! and
~1! and determine the value oftso by noticing that for a
2DEG system with plane-wave solutions of the for
ei (kxal1kyam), the HamiltonianĤ yields the two-dimensiona
tight-binding eigenvalues,

E~ki!5Eo~ki!62tsoAsin2~kxa!1sin2~kya!, ~24!

with Eo(ki)5e12t@cos(kxa)1cos(kya)# the tight-binding
conventional subband dispersion for a 2DEG, withki
5(kx ,ky,0). For smallkxa and kya ~setting the on-site en
ergy e equal to24t), Eq. ~24! reduces to

E5
\2

2m*
~kx

21ky
2!62atsoAkx

21ky
2. ~25!

Note that Eq.~25! is just the continuum subband dispersio
~3! and will correspond to the expected Rashba subband
ear splitting with the definitiona52atso .18

D. Spin transport calculation

For the study of the spin-dependent transport in a Q1D
system, the physical model we bear in mind is as follow
Consider a Q1DEG spin-modulator device as shown in F
2~b!. The device has two independent ferromagnetic sou
contacts with magnetizations oriented such that one of th
can emit only spin-up polarized electrons~contact SF(↑)!
whereas the second source contact SF(↓) can emit only spin-
down polarized electrons. Likewise, two independent fer
magnetic drain~DF! contacts DF(↑) and DF(↓) are attached a
the opposite end of the device, which are able to detect
spin-up and spin-down polarized electrons, respectively
perfect ohmic contact between the ferromagnetic mater
and the semiconductor is assumed. A back gate undern
the device and directly below the Q1DEG channel will co
trol the spin precession~through the Rashba effect! of the
injected electrons. We will suppose that the device is set
such that spin-polarized electrons are launched either f
the SF(↑) or SF(↓) contacts, while both spin orientations (↑
and↓) are being absorbed at the drain contacts, ensurin
this way a spin-resolved measurement. In addition it is s
posed that the electron-spin reorientation due to defect s
tering can be neglected, i.e., the spin-relaxation time is m
longer than the electron dwell time in the device.

We now discuss the approach used in this work to stu
spin transport in the Q1DEG system described above, s
cifically, for the calculation of the spin conductance. T
spin-transport problem was solved numerically through
use of the spin-dependent Lippman-Schwinger equation,

uC&5uF&1Go~E!ÛuC&, ~26!
6-5
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FIG. 3. Ballistic spin conduc-
tance in units ofe2/h against the
Fermi energy for a narrow quan
tum wire of widthW56a, show-
ing the spin modulation for differ-
ent values of the strength for th
spin-orbit hopping parameter
Filled circles are G↑, empty
circles G↓, and the solid lineG↑

1G↓. In all cases~as in the rest of
the calculations!, exclusively
spin-up polarized electrons are in
jected into the wire. Note that the
spin-conductance modulation i
almost independent of the inciden
Fermi energy as in the model o
Datta and Das~Ref. 1!.
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whereuF& is the unperturbed wave function, i.e., an eige
state forĤo , while Go(E)5„E1 i e2Ĥo…

21 is the Green’s
function for the system in the absence of any kind of sc
tering. HereÛ5V̂1Ĥso represents the scattering part, wi
V̂ the scattering due to the confinement potential, andĤso
the spin-dependent part due to the Rashba coupling in
semiconductor wire. The unperturbed functionsuF& and
Go(E) are known analytically, see for instance Nonoyam
et al.21 Notice that the unperturbed Green’s function is a
diagonal in spin index, that is,

^ l qmqsquGou lms&5^ l qmquGou lm&dssq
, ~27!

therefore, for a wave function at any site (l q ,mq) and state
sq , the Lippman-Schwinger equation for this system can
rewritten as follows,

C l q ,mq

sq 5F l q ,mq

sq 1 (
l ,m,s

@^ l qmquGou lm&VlmC l ,m
s ds,sq

2tsô l qmquGou l 11m&~ isy!s,sq
C l ,m

s

1tsô l qmquGou lm11&~ isx!s,sq
C l ,m

s

2tsô l qmquGou lm&~ isy!sq ,s* C l 11,m
s

1tsô l qmquGou lm&~ isx!sq ,s* C l ,m11
s #. ~28!

By solving the coupled linear equations resulting from t
equation above, it is possible to determine the pertur
wave function associated with the complete HamiltonianĤ
at any site of interest.

Once the wave functions for each states are known at the
ferromagnetic contacts@regions I and III in Fig. 2~a!# the
spin-dependent conductance is obtained within the Land
framework,22 which is appropriate if the electron-electro
interactions are unimportant.23 In our calculations, only
spin-up polarized electrons are injected from the emitter@re-
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gion I in Fig. 2~a!# into the spin-orbit interaction region
~where the spin precession of the incident electron is
duced!. At the collector region, the transmitted current
calculated separately for each spin, modeling the pair
drain contacts DF(↑) and DF(↓) in Fig. 2~b!. Therefore, in
general we will have two contributions for the net transm
ted current, one coming from spin-up electrons that arrive
the collector~region III! and the other one from the collecte
spin-down electrons. We therefore define the conductan
G↑ and G↓ associated with the currents flowing betwe
SF(↑) and DF(↑), and DF(↓), respectively, by

G↑~E!5
e2

h (
y

ty
↑ , ~29!

and

G↓~E!5
e2

h (
y

ty
↓ . ~30!

It is important to note that the spin-down partial condu
tance at the collector ferromagnetG↓ arises due to the in-
duced spin precession of the incident spin-up polarized e
trons and because no spin-down polarized electrons
being injected. In Eq.~29!, ty

↑ is the partial transmission
probability ~summed over the incident channels! that an in-
cident electron~injected from SF(↑)) with spins5↑ is trans-
mitted to the right ferromagnet DF(↑), y denotes the outgoing
transmitted mode, whilety

↓ is the partial transmission prob
ability that an incident electron with the same spins5↑ is
transmitted as a spin-down electron and measured at D(↓).
The partial transmission probability is given explicitly by

ty
s5(

m
S vy

s

vm
s D utym

s u2 ~31!

wherevy
s andvm

s are the outgoing and incident-electron v
locities at the Fermi energy with spins and modesy andm
6-6
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BALLISTIC SPIN-POLARIZED TRANSPORT AND . . . PHYSICAL REVIEW B64 024426
of the drain and source contacts, respectively. In Eq.~31!,
tym
↑ is the partial transmission amplitude that an incident el

tron with spins5↑ and modem is transmitted in they mode
with the same spin states5↑, and tym

↓ is the partial trans-
mission amplitude that an incident electron with spins5↑
and modem is transmitted in they mode with the opposite
spin state, i.e.,s5↓.

III. NUMERICAL RESULTS AND THEIR IMPLICATIONS

In order to study the dependence of the spin conducta
on the strength of the spin-orbit interaction, we will consid
two cases, namely,weak and strong coupling. The criteria
that distinguish these two cases are obtained in Appendi
the physical considerations are essentially as follows: S
in the multichannel scattering process the eigenstates o
full Hamiltonian are~in general! linear combinations of the
different spin subbands~due to the Rashba term!, therefore,
in a pertubative sense, the contribution of the mixing of
spin subbands should be negligible as long the subband s
ing ~separation in energy! DEW5Em2En is much greater
than the subband intermixing energy, Eq.~6!. However, if
the confinement energy and/or the spin-orbit coupling are

FIG. 4. Spin-orbit coupling strength dependence of the balli
spin conductance; solid line isG↑, dashed lineG↓: ~a! Narrow wire
of W56a and uniform spin-orbit coupling (ax5ay52atso). ~b!
Same as in~a! but with ax50 anday52atso ; perfect oscillations
are seen for alltso . ~c! Same as in~a! with W512a. ~d! Modulation
for W512a, with ax50 anday52atso . The intersubband mixing
clearly changes the otherwise perfectly sinusoidal spin-conduct
modulation.
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the same order as the energy shift introduced by the in
subband mixing contribution, then the above condition
longer holds. For this case we find~within a two-subband
model! a critical value for the spin-orbit coupling~see Ap-
pendix A!, which is given by bso'(pa/W)2/@(pa/W)
1akF#5bso

c , wherebso5tso /utu, andkF is the Fermi wave
number. The critical valuebso will therefore define aweak
spin-orbit coupling regime wheneverbso,bso

c and astrong-
coupling regime ifbso.bso

c . It should be noted that the
critical value ac5p2\2/@m* W(p1WkF)# of the Rashba
spin orbit coupling parametera that corresponds tobso

c and
therefore separates the weak- and strong-coupling regi
depends on the widthW of the wire.

In all our calculations, unless otherwise stated, the Ras
spin-orbit interaction is turned on and off adiabatica
through a cosinelike function, withl being the length of the
adiabatic region in lattice sites. For the remainder of
paper we will work in units ofutu for all the energies, hence
we will refer to bso and tso interchangeably. It is remarke
that the calculations presented here are for narrow wires
which the quantization in the transverse direction to
propagation is crucial.

In Fig. 3 we show the ballistic conductance for fo
strength values of the spin-orbit hopping parametertso for a
narrow wire of widthW560 nm and lengthL5150 nm.
Here, as in the rest of the numerical results and as discu
in Sec. II, purely spin-up polarized electrons are injected i
the wire. Only the first mode is shown for clarity. In Fig. 3~a!
the casetso50 is plotted and since there is no electron-sp
precession, all the transmitted electrons are spin-up po
ized. When the spin-orbit parameter is increased to 0.03,
3~b!, the precession effects become evident; about 70%
the detected conductance is due to spin-up electrons, w
about 30% is due to spin-down electrons. Fortso50.08, Fig.
3~c!, the spin conductance is now reversed with respec
~a!, that is, the net detected conductance is due only to s
down electronsG↑50 andG↓51.0 ~in units of e2/h). In-
creasing the spin-orbit parameter further to 0.1, the spin
conductanceG↓5” 0 occurs once again and the spin-dow
conductance isG↑,1.0, Fig. 3~d!. Notice that in all cases
the spin conductance is almost independent of the incid
Fermi energy; the situation is more complex when stro
coupling is assumed, as we shall see later. The qualita
behavior of the spin conductance described above is con
tent ~to a good approximation! with the energy-independen
electron-spin modulation predicted by Datta and Das.1

The spin-conductance modulation is seen clearly when
plot G↑↓ against the spin-orbit hopping parametertso , see
Fig. 4~a!. Here the incident Fermi energy was fixed
0.5 (kF'0.7a21) andW56a560 nm, which gives a criti-
cal valuebso50.22. This value ofbso separates the sinu
soidal behavior ofG↑↓ @predicted by Eqs.~13!, ~14!, and
~16!# for bso<0.22 from its behavior forbso.0.22 ~the
strong spin subband mixing regime! where the confinemen
energy is of the order of the intersubband mixing ener
The effect is clearer for a wire withW5120 nm @see Fig.
4~c!# for which the critical value ofbso is 0.07.

The importance of the intersubband mixing contributi

c

ce
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FIG. 5. ~a! Energy-subband dispersion for
narrow wire ofW56a andtso50.08~weakspin-
orbit coupling regime!. ~b! Ballistic spin conduc-
tance for the wire in~a!, note that for this value of
tso , practically all the conductance is due to th
precessed spin-down electrons~dashed line!,
while that for the spin-up is almost zero for a
energies~solid line!. ~c! Oscillating behavior of
the spin conductance versus the effective len
of the spin-orbit interaction region, heretso

50.08 as well. A wave length ofl520a is ex-
tracted from the data.
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can be illustrated as follows. Let us write the Rashba Ham
tonian as the sum of two terms,Hso5Hso

(x)1Hso
(y) , with

Hso
(x)5 iaxsy]/]x andHso

(y)52 iaysx]/]y, where in general
ax5ay5a for a 2DEG. Therefore, Eqs.~7! and ~8! would
be rewritten as (Hso)nm

↑↓ 5aykydnm1ax^nud/dxum&, and
(Hso)nm

↓↑ 5aykydnm2ax^nud/dxum&, respectively. Now,
since the only matrix elements that incorporate the mixing
the different subbands are given by^n,suHso

(x)um,s8&, with
n5” m and s5” s8, therefore by settingax to zero ~with ay
Þ0), the contribution of these matrix elements can be fu
suppressed. This situation is shown in Figs. 4~b! and 4~d!.
Note thatG↑↓ are very similar in Figs. 4~a! and 4~b! for tso
,0.22 @ tso,0.07, Fig. 4~c!# but not for tso.0.22 @ tso
.0.07, Fig. 4~c!#. Although settingax50 appears to be
rather unphysical, it shows very explicitly that the deviati
from the sinusoidal modulation ofG↑↓ for tso.0.07 is owed
essentially to intersubband mixing induced by the Ras
spin-orbit coupling.

The subband dispersion fortso50.08 is depicted in Fig.
5~a!. The dispersion is calculated using the procedure
scribed in Appendix B; the rest of the simulation paramet
are the same as in Fig. 3. For this case, a linearly Ras
spin-split subband is obtained as expected, giving for
particular caseDk50.157a21. The phase shift is thenDu
5DkL5p, where we have used the effective lengthL
520a. Using now formula~16!, we obtain forbso50.08 a
phase shiftDu53.2, just slightly above what we obtain from
the subband dispersion calculation.24 The corresponding spin
conductance is dotted in Fig. 5~b!. Note that a fully reversed
spin polarization occurs for all modes. Thus the spins prec
in unison in all of the subbands and even a relatively w
multimode quantum wire should be expected to function
an efficient Datta-Das spin transistor in this regime. For
same value oftso , Fig. 5~c! shows the conductance vs th
effective lengthL where the spin-orbit coupling is presen
The oscillations ofG↑ andG↓ have a differential phase tha
corresponds exactly to the expected value for lengthL
520a in Eq. ~16!. It is important to emphasize that the qua
02442
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tative features seen here in the conductance forweak tso
remain the same for wider wires and with a lateral const
tion in the region with spin-orbit coupling. For example
Fig. 6~a! we have plotted the conductance for a wire havi
twice the width discussed above, i.e., hereW5120 nm,

FIG. 6. Fermi energy dependence of the ballistic spin cond
tance~in units of e2/h) for a wire of width W512a and confine-
ment strength~curvature! of the parabolic potentialwx50.2. ~a!
Weakspin-orbit coupling case,tso50.05.~b! Strongspin-orbit cou-
pling case,tso50.4. Filled circles areG↑, empty circlesG↓, and the
solid line G↑1G↓.
6-8
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FIG. 7. Ballistic spin conduc-
tance for the strong spin-orbit
coupling regime (tso.0.22) for
the wire of Fig. 3. Only the first
propagating mode for each spin
shown. In this regime, bothG↑

andG↓ are strongly dependent o
the incident Fermi energy, with an
oscillating behavior astso is en-
hanced, which exhibits the energ
dependence of the spin prece
sion. Cases~c! and~d! are particu-
larly interesting. ForEF'1.0 in
~d! the polarity of the transmitted
electrons is reversed~with respect
to the injected spin-up polarized
electrons!. Perfectly polarized
spin-up or spin-down electron
can be emitted from the wire de
pending on the Fermi energy.
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wheretso50.05, and with a strength for a parabolic confi
ing potential ofwx50.2 @here the confinement potential
given by wx(x/a)2, with wx in units of utu#. We note the
same steplike characteristic of the ballistic conductan
Note that here as well@Fig. 6~a!# the modulation achieved
betweenG↑ andG↓ remains constant regardless of the in
dent Fermi energy and number of populated subbands.

Now we turn our attention to the casebso
.(pa/W)2/@(pa/W)1akF#, i.e., strong spin-orbit interac
tion; for the case withW560 nm, bso>0.22. Figure 7
displays the spin conductance for four different values of
strength fortso . Here the adiabatic region is set tol 520a,
and the rest of the parameters are as in Fig. 3. For the sa
simplicity we focus only on the first propagating mode. It
evident that for this regime, the spin-conductance behavio
markedly different from that with weak spin-orbit couplin
discussed previously. HereG↑↓ are both strongly energy de
pendent. We note that the probability of an injected spin
electron to pass unchanged through the spin-orbit region
creases with energy@Fig. 7~a!#, while the probability of de-
tecting a transmitted spin down-electron increases acc
ingly. For tso50.3, Fig. 7~b!, a full polarization develops
when reaching an incident energy ofEF50.8, although with-
out the spin flipping. The cases of Figs. 7~c! and~d! are quite
interesting. A clear precession ofG↑↓ with energy is ob-
served, having a sinusoidallike character. For instance
Fig. 7~c!, the polarization of the transmitted current has
opposite orientation of the polarization of the injected c
rent for EF50.65 and is reversed again atEF51.0. This
surprising result~which is due to intersubband coupling an
is therefore beyond the scope of the original theory of Da
and Das! would suggest that for certain values of the stren
of the spin-orbit interaction, just by varying the Fermi e
ergy, the device can work as a spin ‘‘switch’’ device, wh
02442
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the spin-orbit interaction is kept constant. In other words
can function as a spin transistor such that the switching
be tuned just by varying the Fermi energy rather than va
ing the Rashba coupling, as in the Datta and Das spin t
sistor.

The subband dispersion for the casetso50.4 of Fig. 6~b!
is shown in Fig. 8~a!. For this large value oftso , the spin-
subband dispersion deviates considerably from the typ
linear Rashba splitting for the weak spin-orbit interaction~a
similar dispersion was obtained recently by Moroz a
Barnes16!. The subbands are no longer parabolic, wh
gives rise to a dependence ofDk on the energy. HereDk is
the difference between the wave vectors associated with
two spin subbands at a given energyDk→Dk(E)5k2(E)
2k1(E). We find for example that Dk(EF50.5)
50.6489a21, whereas Dk(EF51.0)50.4533a21, which
yields Du(EF50.5)56.2p andDu(EF51.0)54.3p, where
we have used an effective lengthL530a. The net change in
the differential phase between these two cases is
d(Du)'2p. This last result can be independently check
by looking at the spin-resolved conductancesG↑ andG↓ in
Fig. 8~b! where the oscillations of bothG↑ and G↓ exhibit
phase shifts of'2p betweenEF50.5 andEF51.0. We
have also plotted the spin conductance forEF51.0 versus
the length of the spin-orbit interaction region in the wi
@Fig. 8~c!#. A wave lengthl of 13.8a is extracted from the
data. The associated wave number isDk50.45, a value that
matches the one obtained independently from the band
persion calculation.

Now let us return to Fig. 6 in order to analyze thestrong
tso regime for a wider wire (L512a). In particular Fig. 6~b!
shows an analogous case to that studied in Fig. 6~a! but with
tso50.4. It is evident that the strong coupling here su
6-9
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FIG. 8. ~a! Energy-subband dispersion for
narrow wire ofW56a andtso50.4 ~strongspin-
orbit coupling regime!. Note that the subband
are no longer parabolic as in aweak tso regime,
resulting in aDk→Dk(E). ~b! Ballistic spin con-
ductance for the wire in~a!; filled circles areG↑,
empty circlesG↓, and the solid lineG↑1G↓. The
energy dependence is clearly evident here.~c!
Oscillating behavior of the spin conductance ve
sus the effective length of the spin-orbit intera
tion region (tso50.4). The wave length of the
oscillations isl'13.8a.
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presses the plateaus forG↑↓ to a significant degree. A rathe
complicated structure is obtained revealing the nontrivial
ture of the subband intermixing. We have also calculated
relative conductance change@defined as DG/Go5(G↑

2G↓)/(G↑1G↓)# against the spin-orbit parametertso for
three different effective lengths of the wire with the Rash
interaction (L54W, 8W, and 15W). This is shown in Fig. 9
for a wire with widthW56a and a uniform parabolic poten
tial strength ofwx51.8 over an effective length of 10a and
at the Fermi energyEF52.5 for the three cases. A beatlik
pattern is found due to the spin precession, developing no
as the length of the channel is increased.25 In the inset the
channel length dependence ofDG/Go is plotted for a typical
experimentaltso ; it is clear that for such relatively wea
spin-orbit interaction the relative conductance change ha
negative slope with a change in sign~indicative of a spin
precession! in the length range shown. This behavior r
sembles that observed recently by Huet al.26 in their length-
dependence measurements for the spin precession.

A final comment on the adiabaticity: the adiabaticity
the spin-orbit interaction was introduced in our calculatio
in order to model a smooth transition between the regi
with no spin-orbit coupling~i.e., near the ferromagnetic con
tacts! and the region with the finite Rashba spin-orbit co
pling along the quantum wire. For the weak-coupling regi
the calculations of the spin conductance vs Fermi ene
showed plateaus with small oscillations in the nonadiab
case, nevertheless the spin-precession behavior was fou
be qualitatively very similar to that observed in the adiaba
case. However, the strong-coupling regime showed dra
differences. Calculations without the adiabaticity showe
rather complicated behavior with a significant suppression
the conductance plateaus.

In summary, we have shown that a strong Rashba s
orbit interaction can produce dramatic changes in the s
resolved transmission of spin-polarized electrons injec
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FIG. 9. Plots of the relative conductance change@DG/Go

5(G↑2G↓)/(G↑1G↓)# against the strength of the spin-orbit p
rameter for three different effective lengths of the spin-or
~Rashba! interactionL54W, L58W, andL515W, with W56a.
Clearly the beatlike behavior is enhanced withL, showing the na-
ture of the electron-spin precession induced by the Rashba effec
the inset of~a! the relative conductance change is plotted as a fu
tion of the effective length for aweakspin-orbit hopping parameter
tso50.015. A change in sign forDG/Go as the length is increase
is evident showing that the effect of the spin precession is
important for such a regime.
6-10
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BALLISTIC SPIN-POLARIZED TRANSPORT AND . . . PHYSICAL REVIEW B64 024426
into ballistic narrow wires. The effects can be very sign
cant and can even suppress the expected spin modulatio
the strong~Rashba! coupling was found to induce a comple
dependence of the spin precession on the incident Ferm
ergy of the injected electrons. These results should be
importance for the spin injection~modulation! in quasi-one-
dimensional devices under large bias used to tune the Ra
effect.
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APPENDIX A: CRITERIA FOR WEAK AND STRONG
RASHBA COUPLING

In this appendix the criteria we have used to distingu
the regimes forweakandstrongRashba spin-orbit coupling
in a Q1DEG system are deduced analytically. ConsideruF&
the eigenstate solution of

HuF&5EuF&, ~A1!

whereH5Ho1Hso is the effective-mass Hamiltonian for
Q1DEG in the presence of the Rashba coupling, w
Houn,s&5En

oun,s&, andEn
o5En1\2ky

2/2m* (n is the sub-
band index ands5↑,↓), see Sec. II B. We expanduF& in
terms of the eigenstates for the system in the absence o
Rashba effect. That isuF&5(n,sansun,s&. Inserting this ex-
pansion into Eq.~A1! and multiplying from the left by
^m,s8u yields

~En
o2E!ans1 (

m,s8
~Hso!nm

s,s8ams850. ~A2!

Now since (Hso)nm
s,s850 for all s5s8 @see Eq.~9!#, there-

fore Eq.~A2! will read

~En
o2E!ans1 (

s85” s

~Hso!nn
s,s8ans8

1 (
s85” s,m5” n

~Hso!nm
s,s8ams850. ~A3!

The second term in Eq.~A3! which is diagonal in the sub
band index, will correspond to the linear Rashba splitti
while the third term gives rise to the spin-subband interm
ing. In a two-subband model~denoted below byn and n
11), the system of Eqs.~A3! can be rewritten as

S En
o2E aky 0 2aDso

aky En
o2E aDso 0

0 aDso En11
o 2E aky

2aDso 0 aky En11
o 2E

D S an↑
an↓

an11↑
an11↓

D 50,

~A4!

with the definition of the intersubband mixing termDso
5^n11ud/dxun&. The eigenvalues of Eq.~A4! are explicitly
02442
, as

n-
of

ba

n
ta

h

h

he

,
-

E1,25
1

2
~En11

o 1En
o!6

1

2
A~DEW22aky!21~2aDso!

2,

~A5!

and

E3,45
1

2
~En11

o 1En
o!6

1

2
A~DEW12aky!21~2aDso!

2

~A6!

with DEW5En11
o 2En

o5En112En . Notice that for small
aDso , after a zeroth order Taylor-series expansion of
radicals in Eqs.~A5! and ~A6!, the equations will reduce
exactly to that given by Eq.~12! for the energy-subband
linear splitting. Such expansion will hold as long as the co
dition

~2aDso!
2

~DEW62aky!2
!1, ~A7!

is satisfied. Thus, Eq.~A7! will lead us to a criterion for
which the subband intermixing is, on the other hand,
neglectable. For such a case, explicitly

U 2aDso

DEW62aky
U'1 . ~A8!

Modeling the potential that defines the Q1DEG as a h
well confining potential, we haveDEW5En11

o 2En
o5(2n

11)(ap/W)utu, and Dso5@n(n11)/2n11#(4/W). Insert-
ing this expression in Eq.~A8! and replacingky→kF , where
kF is the Fermi wave number, we get

a'U ~2n11!2~pa!2utu

8n~n11!W62~2n11!kFW2U , ~A9!

therefore, for the first subband (n51), and using a
52absoutu, we get@choosing the positive solution in order t
get the lowest value for the ratio in Eq.~A9!#

bso'
~pa/W!2

~pa/W!1akF
. ~A10!

Equation~A10! defines the critical value of the spin-orb
coupling at which the intersubband mixing becomes r
evant. Therefore we can define a regime where the spin-o
coupling is weak, whenever bso,(pa/W)2/@(pa/W)
1akF#, and a regime where the spin-orbit coupling
strong, such that spin-subband intermixing becomes imp
tant, that is, wheneverbso.(pa/W)2/@(pa/W)1akF#.

APPENDIX B: SUBBAND SPECTRUM CALCULATION

In this appendix we describe the transfer-matrix meth
for the calculation of the subband structure of an unifo
quantum wire with a Rashba spin-orbit interaction. T
method is a generalization of the spin-independent An
calculation.20 The dispersion is calculated within the lattic
model for a wire with a finite and uniform spin-orbit inte
action and a lateral confinement potential.
6-11
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By applying the stateŝlmsu anduC& to the left and right
of Eq. ~19!, respectively, we arrive at the following discre
coupled equations~for clarity, the notations56 is used
instead of the arrow symbols to denote spin-up and s
down states!

~Wl ,m
6 2E!x l ,m

6 1t ~x l 11,m
6 1x l 21,m

6 1x l ,m11
6 1x l ,m21

6 !

7tso~x l 11,m
7 2x l 21,m

7 !2 i t so~x l ,m11
7 2x l ,m21

7 !50.

~B1!

Here we definedWl ,m
s 5e1Vl ,m . Now, if we set the on-site

energye524t, and since a uniform~along they axis! con-
finement potential is assumed,Vl ,m→Vl , and thus,Wl ,m

s

→Wl . Hence the equation above can be written in a ma
form as follows
ev

G

.

02442
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x

~Ho2E!Am
61Tso

6 Am
71t~Am11

6 1Am21
6 !

1 i t so~Am21
7 2Am11

7 !50. ~B2!

Here we have defined the vectorAm
s as themth column

Am
s 5S x1,m

s

x2,m
s

A

x l ,m
s

A

xNx ,m
s

D , ~B3!

and theHo andTso
6 areNx3Nx matrices given by
itudinal
e

Ho5S W1 t 0 0 ••• 0

t W2 t 0 ••• 0

0 t W3 t ••• 0

0 0 t � � 0

A A A � � t

0 0 0 0 t WNx

D and Tso
6 5S 0 7tso 0 0 ••• 0

6tso 0 7tso 0 ••• 0

0 6tso 0 7tso ••• 0

0 0 6tso � � 0

A A A � � 7tso

0 0 0 0 6tso 0

D . ~B4!

Now, since both the confinement potential and the spin-orbit interaction are assumed to be uniform along the long
direction ~propagation direction!, the system has translational symmetry along they axis. Therefore we can make use of th
Bloch theorem. We can define thenAm11

s 5eikyaAm
s andAm

s 5eikyaAm21
s , henceAm11

s 5lAm
s , with l5eikya. Inserting this last

expression forAm11
s in Eq. ~A2!, we get

~Ho2E!Am
61Tso

6 Am
71ltAm

61tAm21
6 1 i t soAm21

7 2 iltsoAm
750, ~B5!

which can be rewritten in a matrix form as follows,

S Ho2E Tso
1 t i t so

Tso
2 Ho2E itso t

1 0 0 0

0 1 0 0

D S Am
1

Am
2

Am21
1

Am21
2

D 5lS 2t i t so 0 0

i t so 2t 0 0

0 0 1 0

0 0 0 1

D S Am
1

Am
2

Am21
1

Am21
2

D . ~B6!

By solving the (4Nx)3(4Nx) generalized eigenvalue problem for a given incident Fermi energyE, all the eigenvaluesl
are determined, as are, hence, allky(E), yielding the desired subband spectrum.
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