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Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires
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We present numerical calculations of the ballistic spin-transport properties of quasi-one-dimensional wires
in the presence of the spin-orl{Rashba interaction. A tight-binding analog of the Rashba Hamiltonian that
models the Rashba effect is used. By varying the robustness of the Rashba coupling and the width of the wire,
weak and strongcoupling regimes are identified. Perfect electron-spin modulation is found for the former
regime, regardless of the incident Fermi energy and mode number. In the latter however, the spin conductance
has a strong energy dependence due to a nontrivial subband intermixing induced by the strong Rashba cou-
pling. This would imply a strong suppression of the spin modulation at higher temperatures and source-drain
voltages. The results may be of relevance for the implementation of quasi-one-dimensional spin-transistor
devices.
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[. INTRODUCTION mixing to be negligible, which would ensure a perfect spin-
current modulation. If we choose a typical channel in an
The electron-spin-precession phenomena at zero magnetic, s4Ga, 4As semiconductor, withm* =0.042n, and the
field induced by a variable spin-orbit interaction in quasi- spin-orbit coupling constant=1.5x 10" ** eV m,° this im-
two-dimensional electron-gd@DEG) systems was first elu- plies W<0.38 um. This width is of the order or much
cidated by Datta and DAss the basic principle for the real- smaller than the characteristic lateral widths of the 2DEG
ization of a novel electronic device, the spin transistor. Thechannels patterned in the current experimental studies of spin
underlying idea is to drive a modulated spin-polarized cur-njection’~12 This would suggest that in order to achieve
rent (spin inject and detegtentirely electrically, combining better results in the spin-injection modulation, the best
just ferromagnetic metals and semiconductor materials. Fathoice would be ballistic quasi-one-dimensional systéys
this, the spin precession is controlled via the spin-orbit couintroducing split gates for instangewhere just a few popu-
pling (Rashba couplimy) associated with the interfacial lated subbands are allowed, rather than the quasi-two-
electric fields present in the quantum well that contains thelimensional situation, in which many propagation channels
2DEG channel. The tuning of the Rashba coupling by arexist (Hall-bar experiments with a concomitant small sub-
external gate voltage was recently demonstrated in differertsand spacing comparable to the zero-field spin-splitting en-
semiconductors by Nittat al* and others;” and more re- ergy of the 2DEG.
cently by Grundlét applying a back gate voltage while the Recently, Moroz and Barntiin a theoretical study of the
carrier density was kept constant. It has been also achievesifect of the spin-orbit interaction on the ballistic conduc-
in a p-type InAs semiconductor by Matsuyareaal® tance and the subband structure of quasi-one-dimensional
Although spin injection has already been reported from(Q1D) electron systems showed that a drastic change ik the
ferromagnetic metals to InAs-based semiconduct8rsithe  dependence of the subband spectrum occurs with respect to
spin-polarization signatures reported are about 1% or lesshe purely 2DEG system when relatively strong spin-orbit
making the results very controversial. Such low efficiencycoupling is considered. This yields additional subband ex-
can be also attributed to extraneous effects, such as the locaéma and subband anticrossings, as well as anomalous peaks
Hall effect!?*®and to resistance mismatch at the interfacesn the conductance of the Q1DEG. To what extent these
between the ferromagnetic metal and the semiconddttor. effects can influence the behavior of a quasi-one-dimensional
Very recently, one of us proposed that the latter problem cagpin-modulator device has not been investigated, and this is
be circumvented by growing atomically ordered and approthe aim of the present work.
priately oriented interfaces of ferromagnetic metals and suit- In this paper we investigate the effect of the strength of
able semiconductors that act as perfect spin filters and makée Rashba spin-orbit coupling on the spin-transport proper-
injection of up to 100% spin-polarized electrons into semi-ties of narrow quantum wires. We find it convenient for this
conductors possible in principlé If this prediction is con-  purpose to work in a simple tight-binding approach in which
firmed experimentally, a major obstacle to the spin-injectionan homologous version of the Rashba spin-orbit coupling is
experiments will be overcome. employed. In particular, we find that the spin-orbit interac-
On the other hand, another crucial prerequisite to havingion induces dramatic qualitative changes in the spin-
an overall strong spin-current modulation is to restrict thepolarized current transmitted through Q1DEG systems, pro-
angular distribution of electrons in the 2DEG by imposing avided that a strong spin-orbit coupling is present. A strong
strong enough, transverse confining poteriti@ihis was the  dependence of the spin conductance on the incident Fermi
original proposal of Datta and Das. It was argued th&Yi§  energy is found to be correlated with subband mixing in-
the width of the transverse confining potential well, the con-duced by a robust spin-orbit coupling. This dependence can
dition W<#2/am* should be satisfied for the intersubband significantly suppress the spin modulation at finite tempera-
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tures and/or bias voltages. These results may have important 52
implications for prospective quasi-one-dimensional spin- " (k§+ ki) i aky+ ak,
injector devices at room temperature or under large applied [ em
H= : 2
voltages. _ 72
The remainder of the article is organized as follows: In —iaky+aky 2—*(k>2(+ k?)
m

Sec. Il the theoretical approach is developed, starting with a

brief summary of the relevant features of the Rashba Hamilwhere H=H,+H,,, with H, being the electronic kinetic-

tonian and its induced spin-precession effect. A tight-bindingenergy part in the absence of the Rashba effect. Clearly, the

model for the Rashba Hamiltonian is also presented here. AMamiltonianH produces two separate branches for the elec-

brief description of the conductance calculation is given atron states,

the end of the section. The numerical results and main con-

clusions are given in Sec. lll, and finally the criteria that

distinguish between theeakand strongspin-orbit coupling

regimes and the method used to obtain the subband spectrum

are outlined in the appendices. herek=|k| is the magnitude of the 2D wave vector in the
2DEG plane. Since the spin-orbit couplingdepends on the
interface electric field, it is possible to tune the strength of

hZ
— 2 .
E(k)_ﬁk * ak; 3

Il. THEORETICAL MODEL the splitting between the two branches by applying an exter-
nal gate voltage, which will alter the net effective electric
A. Hamiltonian for the Rashba effect field at the interface, as has been verified in several

H ,8,9
In the absence of a magnetic field, the spin degeneracy &xperiments!

the 2DEG energy bands kt- 0 is lifted by the coupling of _ _
the electron spin with its orbital motion. This coupling arises B. The Rashba spin-precession effect

because of the inversion asymmetry of the potential that con- The Rashba effect is the basis for the proposed, and yet to
fines the 2DEG system. The spin-split dispersion involves ge implementated, Datta and Das spin-modulator devine.
linear term ink, as was first introduced by Bychkov and thjs device, a spin-polarized current is injected from a ferro-
Rashb&:® The mechanism is popularly referred to as themagnetic material into a 2DEG at a inversion lagiermed
Rashba effect. The spin-orliRashbamodel is described by at a semiconductor heterojunctjoand then collected by a
the Hamiltonian second ferromagnetic materf#&lig. 1(a)]. In basic terms, the
idea is that the Rashba effect will induce a spin precession of
the electrons moving parallel to the interface, rotating them
a .. d d with respect to the magnetization direction of the second
Hso=7 (0 mz:'“(‘TY&_‘TX@)' @) ferromagnet(collectop. Then by adding a gate voltage the
net effective electric fieldand hence, the spin-orbit interac-
tion) at the interface can be modified, tuning the spin preces-

Here thez axis is chosen perpendicular to the 2DEG Sys_sion, and therefore, the transmitted spin-polarized current is
tem (lying in the x-y pland, a is the spin-orbit coupling Modulated accordingly.

constani{Rashba parametewhich is sample dependent and V\/.e.mentLon(.ad in the intrltl)duction that an importadntl pre-
- - : & ..~ requisite to having an overall strong spin-current modulation
's proportional  to the |.nterfaC(.a elgctnc *ﬂ.eld,a is that the angular distribution of the 2DEG be restricted by
=(0x,0y,0,) denotes the spin Pauli matrices, ands the i naing a transverse confining potential. Bearing this in
momentum operator. The experlmentalll\zlaluemdbr dit- mind, we will now summarize the essential physics of the
ferent materials range frory abc_)lznxao e\_/lrln at elec-  gpin-precession effect in a QLDEG system for the case of
tron densities oh=0.7x 10 om Eg 43_-% 10" eVmat  \yeakspin-orbit coupling. The summary will define the basic
electron densities 01'1:.2><I101 ¢m =" ™ _ conceptual framework that will be needed to understand our
The Rashba Hamiltoniail), which is derivable from egyits in the general multichannel case with arbitrary spin-
group theoretical argument$js invariant under time rever- o pt coupling strength and will also establish the notation to
sal, that is[ T,H¢,]=0. The time-reversal operator is repre- be used in the remainder of the paper.
sented here by =ia,C, with C the complex-conjugation ~ Consider a Q1DEG system that is defined by applying
operator. Since the degeneracy of the electronic stat&s atsplit gates to a 2DEG in a semiconductor heterostructure
=0 can be only lifted if the time-reversal symmetry of the [InyGa, _,As/In/Al;_,As, for instance, see Fig.(d]. Due
system is broken, it follows that the Rashba Hamiltonianto the confining potentiaV/(x), the electron motion will be
(due to its time-reversal invarianceannot produce a spon- quantized in thex direction, Fig. 1c). Following Datta and
taneous spin polarization of the electron states. NeverthelesBas; let's assume that the Rashba spin-orbit interactiQp
as mentioned earlier, it is capable of removing the spin deis sufficiently weak that its effect can be incorporated pertur-
generacy fork+0. This is made clear by noticing that the batively. For such a case, the unperturbed=0) Hamil-
total effective mass Hamiltonian for a 2DEG system, as donian will satisfyH,|n,o)=E]|n,o), where the eigenval-
result of the Rashba effefEq. (1)], has the form ues are given b)EﬁzEnJrhzkf,/Zm*, with n denoting the
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(a) with a3, the zeroth-order expansion for the coefficieats

Vg used to expand the perturbed states in terms of the known
unperturbed stateR,o). The result in Eq.(5) is valid as
long as the condition

*
* InAlAs +

Q2DEG
InGaAs

e——— L ——»

(Hso)nm nm_|
(E%_ n)

(6)

for m#n has been fulfilled, where Hgo)pm
=(n,o|Hsm,c’) are the matrix elements that intermix the
different subbands and spin states in the perturbed system.

(b) Explicitly they are given by
1l d
7 (Hso)nm= aKySpmt+ai n dx m), (7)
11 d
X (Hso)nm= @Ky Spm—ai n dx mj, (8)
InAlAs (Hso)hin=(Hso)ihn=0. 9
InGaAs QIDEG Clearly the perturbation is nondiagonal in the spin index

and it is linear ink, . If we suppose that the transverse con-
fining potentialV(x) has reflection symmetry ir, Egs.(7)
(C) and (8) will reduce to

A (Hso)hn=(Hso)an=aky . (10)

Inserting the results from Eq$9) and(10) into Eq. (5) we
get for each channe,

A\ /
> ES-E  ak, \/al
7
aky Er—E aﬁi
FIG. 1. (a)_ Cross-sectlonel schematic _of Datta-pas SPin-\vhich yields the eigenvalues
modulator device(b) cross-sectional schematic of a split gate de-
vice used to create a Q1DEG, afg) diagram of the quasi-one- 52
dimensional quantum channel. E*(k,)=E,+ —k2* ak (12)
y n m* - y:

subband index. The unperturbed spin degenerate eigenstates
have the form|n,o)— ey ¢, (x)|o), where o=1,| with
the definitions of the spinorg)=(¢), and||)=(3). Note
that the¢,(x) are the solutions of

Equation(12) shows that for Q1DEG systems, the Rashba

spin-orbit interaction introduce$o zeroth ordera lifting of

the spin degeneracy for each subband stafEhe nature of

the splitting is such that it allows electrons with the same

energy to have different wave vectols { andk,,), that is,

E* (ky1) =E" (ky2), wherek,, is the wave vector associated

+

br(X)=E (). (4) with the subbandE ™ with eigenvector %), wherea,, rep-
resents the wave vector associated with the subBEandith
eigenvector tl). Therefore, if we were to drive spin-up po-
larized electrons into the Q1DEG using a ferromagnetic ma-

We seek the eigenvalues for the system in which we haveesrial as in the Datta and Das deviffeig. 1(a)], the wave

a nonzero and weak spin-orbit interactiam* (i.e., Hso#0 emerging from the semiconductor wire would be represented

andH=H,+Hs,). From degenerate perturbation theory, wegs = ( ) efkyit+ (2 1) €2t wherelL is the length of the

obtain(to zeroth orderthe following system of equations for semiconductor wire. Therefore the probability of detecting a

each subband, spin-up (%) electron at the collector contact would be pro-

portional to

h? d?
- — 4 V(X
( 2m* dx? )

[En+(Hso)nn —Elan, + E (Hsolin 20/20' (5) [{(10)|¢)|?=4 co gﬂ (13

’
(r
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whereas if the collector contact is magnetized such that it(a)

detects only spin-down polarized electrons, the probability of

detecting a spin-down?) electron will be proportional to t,= 0 L#0 t,=0
SO [

(kya—kyo)L w

5 : (14 . % L
The results(13) and (14) are very important; they imply ., y
that if we inject and collect spin-polarizédp or dowr) elec-
trons into (and from a Q1DEG system, the Rashba effect Emitter Spin-orbit interaction region  Collector
will produce a modulation of the transmitted current at drain (D) (II) (1)
contact with a differential phase shift given = Ak,L,
where Ak,=k,,—Ky;. In other words, the Rashba effect ( )
would induce a spin precession of the transmitted electrons
with a phase shiftA # with respect to those injected at the
ferromagnetic emitter. From E¢l2), it is straightforward to z

y
X

[((01)|y)|?=4 sir?

determineAk, . SinceE+(ky1)=E‘(ky2) we have that

E*(ky)—E (k )Zh—z(k2 —K? )+ a(ky+kyp)=0 A N\ DF (*)
y1l y2 om* y1l y2 yl y2 ' SF (*) e N | (*)
(15) < \‘DF

which leads tck,,— ky, = 2m* a/#2. Therefore the differen-  OF ® - —

\ Ky — Ky , _InAlAS
tial phase shiftA 6 can be written ds ~

back gate InGaAs
2m*
A= 2 al, (16) FIG. 2. (a) Schematic of the tight-binding model for the system.

In the shaded areas the spin-orbit interaction is firtiig# 0. (b)

which is proportional to the strength of the Rashba paramete$chematic of a quasi-one-dimensional spin-modulator device.
a and to the separatioh between the magnetic contacts or
the length of the Q1DEG system. Then by applying a backyeneral the intersubband mixing that has been neglected in
gate voltage bias, the Rashba parameter can be varied the above discussion can be important, and the simple
principle, and hence, the degree of the electron-spin precegnergy-independent expressid) for the differential phase
sion would be tuned correspondingly. shift may then no longer apply. This results in important

Equation(16) suggests that spin-current modulation canqualitative changes in the electron-spin precession and in the
be attained in semiconductor nanowires, regardless of thgehavior of the spin-modulation devices as we will discuss
mode number and large applied bias, as indeed Datta arsklow.
Das concluded.Notice as well that the phase shift is energy  In the following section we present a tight-binding analog
independent. We should recall here that these results weesf the Rashba Hamiltonian that can be used to study spin
obtained with the premise that the Rashba spin-orbit interaaransport in cases where intersubband coupling is important
tion was weak enough, such that the confinement energy waghd perturbative theory fails, and also in more general geom-
much larger than the spin-splitting energy induced by theetries that do not lend themselves readily to analytic solu-
Rashba effect, and therefore, the intersubband mixing wagons. We then proceed to solve the multichannel scattering
neglected, in other words, whenever the conditiénis sat-  and spin-dependent transport problem exagtiymerically
isfied. For the hard wall confining potential considered herewithin the tight-binding formalism in a variety of situations

this means where intersubband mixing is significant and needs to be
, considered.
(Heo)? o am*W
os.o nn; ‘~ ~ <1, (17)
(Em— En)‘ h C. Rashba Hamiltonian: A tight-binding model

which would implyW<#2/am* and gives us a rough upper  In this section, the spin-orbit interaction given by the
limit of the width of the confinement for the intersubband Rashba Hamiltonian is reformulated within the tight-binding
mixing to be neglected. Typical values for* and« yield  approach in a lattice model. We consider a quasi-one-
widths of W<0.38 um. We will arrive at similar conclu- dimensional wire, which is assumed to be infinitely long in
sions using parabolic potential for the transverse confinemerthe propagation direction. The wire is represented by a two
V(X). dimensional grid with a lattice constaat We choose the

The criterion (17) for the validity of the perturbative coordinate system such that theaxis, with N, lattice sites,
theory discussed above is quite restrictive since it requires in the transverse direction, while tigaxis, withN, lattice
both weak spin-orbit coupling and a narrow wire. Thus in sites, is in the longitudinal direction, Fig(a&.
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We assume only nearest-neighbor spin-dependent interac- 1 0

tions for the Rashba perturbation. For the purpose of the \I’[mz)([m(o), and \If,{mle{m 1), (23
present model, the localized site orbitals will be assumed to
have the symmetry of states. Then the tight-binding analog with y =(I m o|W¥), with x7,, being the electronic wave
of Eq. (1) takes the form function at site [,m) and in spin stater=1,]. In Eq. (22),

Il m o)=C/,,/0), with |0) denoting the vacuum, and we

H'[Sli): _tsoz E (C|T+1m g"(io-y)C",U'/Cl,m,U' assumdl ,m’(_)-’“ m 0->: 5I,|’5m,m’5(r,0" '

l,m o We establish the correspondence between Efd.and
(1) and determine the value df, by noticing that for a
2DEG system with plane-wave solutions of the form

with an isotropic nearest-neighbor transfer intedeglthat  €'@!'"%2M “the HamiltoniarH yields the two-dimensional
measures the strength of the Rashba spin-orbit interactiotight-binding eigenvalues,
and will be shown below to have the valtig= «/2a, and

with C/ ., which represents the electron creation operator E(K)) = Eo(k)) = 2tso\sirP(k,a) +sir(kja),  (24)

at site (,m) with spin statec (o=71,|). Here o, and o, . _ L
are the Pauli spin matrices. Notice thg{>0, and in prin- \év(l)t:v elrzﬁi(oqugl Z:f;gﬁ%sqz‘?s);eig;%’a%rth; ZtEIthbmv?/Il?h‘g

ciple it can be tuned by an external electric field. ) . .
. A o . = . For smallk,a andk,a (setting the on-site en-
_ X 1 Ry X Yy
This Hamiltonian is formally similar to that studied pre ergy e equal to—4t), Eq. (24) reduces to

viously by Ando and Tamurdin the context of conductance

fluctuations and localization in quantum wires with 52

boundary-roughness scattering. We emphasize that in the E=——(K2+ ki)iZatSO\/kiTkﬁ. (25

present model no roughness scattering is present, and here 2m*

the physical origin of spin-orbit scattering is the asymmetry o , ) .

of the electric field in the quantum well that contains theNOte that Eq.(25) is just the continuum subband dispersion

2DEG. (3) and will correspond to the expectedlls?ashba subband lin-
We divide the wire into three main regions. In two of €ar SPlitting with the definitiony=2ats.

these[l and Il in Fig. 2(@)], which are near the ferromag-

netic source and drain, the spin-orbit hopping paramigter D. Spin transport calculation

is set to zero. We assume that the semiconductor interface at g, the study of the spin-dependent transport in a Q1DEG
which the Rashba effect occurs does not extend into thes@ystem the physical model we bear in mind is as follows:
two regions and thats,=0 there for that reason. In the Consider a QIDEG spin-modulator device as shown in Fig.
middle region(Il) the spin-orbit coupling is finitet(,:#0) at (). The device has two independent ferromagnetic source
the semiconductor interface. In the actual calculation, thigontacts with magnetizations oriented such that one of them
region(ll) is further divided into three to introduce the spin- can emit only spin-up polarized electrofisontact SE?)

orbit interaction adiabatically. Therefore, the full Hamil- \\hereas the second source contact SEan emit only spin-

tonian reads down polarized electrons. Likewise, two independent ferro-
magnetic draifDF) contacts DE) and DE!) are attached at
the opposite end of the device, which are able to detect just
spin-up and spin-down polarized electrons, respectively. A
perfect ohmic contact between the ferromagnetic materials
and the semiconductor is assumed. A back gate underneath
|3|0: 2 €C|T,m,gC|,m,a+t 2 (C|T+1,m,UC|,m,a the device_and directl_y below the Q1DEG channel will con-
Lm,o lm,o trol the spin precessiofthrough the Rashba effgcbf the
+ injected electrons. We will suppose that the device is set up
T Crmi10CimotH.C, (20 such that spin-polarized electrons are launched either from
and the SE") or SKY contacts, while both spin orientation$ (
and |) are being absorbed at the drain contacts, ensuring in
- s this way a spin-resolved measurement. In addition it is sup-
V:|;,r VimCim eClmo (21) posed that the electron-spin reorientation due to defect scat-
o tering can be neglected, i.e., the spin-relaxation time is much
with e the on-site energy,t the hopping energy t( longer than the electron dwell time in the device.
= —#?2m*a?), andV, ,, an additional confining potential. ~ We now discuss the approach used in this work to study
The full HamiltonianH will have eigenvectors given by spin transport in the Q1DEG system described above, spe-
cifically, for the calculation of the spin conductance. The
spin-transport problem was solved numerically through the
|‘I’>:; ;ﬂ Ximll M o), (22)  use of the spin-dependent Lippman-Schwinger equation,

’
T,

—ct

I, m+10

/(iUX)(r,U’Cl,m,U)+H'C' (18)

H=H,+V+HD (19

so?

where the spin diagonal parts Bif are given by

where we have defined the spinors, |W)=|D)+ Gy (E) 0| W), (26)
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21 (a) t,=00 | 1(b) . 1,=0.03
= st 16+ FIG. 3. Ballistic spin conduc-
< osl ‘ ] . 3. I pin conduc
“o Gf+G G1 tance in units ofe“/h against the
~  0.64 / 1 Fermi energy for a narrow quan-
© 0.4 + tum wire of widthW=6a, show-
0.2 1 G ing the spin modulation for differ-
G‘ ent values of the strength for the
0.01 ) E— spin-orbit hopping parameter.
Filled circles are G', empty
121 (c) t =008 1(d) ¢ =01 circles G}, and the solid lineG'
104 = et 1gt+at = ' +G'. In all casegas in the rest of
NE 0.8 1 D el € the calculations exclusively
2 46l ] spin-up polarized electrons are in-
O L, jected into the wire. Note that the
] spin-conductance modulation is
0.24 1 ; ct almost independent of the incident
0.0 Gf I IR | Fermi energy as in the model of
00 02 04 06 08 10 00 02 04 06 08 10 Datta and DagRef. J).
Energy (It]) Energy (It])

where|®) is the unperturbed wave function, i.e., an eigen-gion | in Fig. 2a)] into the spin-orbit interaction region

state forH,, while G,(E)=(E+ie—H,) ! is the Green’s (where the spin precession_ of the inciden; electron is |n
function for the system in the absence of any kind of scatduced. At the collector region, the transmitted current is
tering. HereQ =+ ., represents the scattering part, with Caculated separately for each spin, modeling the pair of

7 th ina d h " ol B drain contacts Df) and DEV in Fig. 2(b). Therefore, in
the scattering due to the confinement potentia blgg eneral we will have two contributions for the net transmit-
the spin-dependent part due to the Rashba coupling in t

) . h ; . d current, one coming from spin-up electrons that arrive at
semiconductor wire. The unperturbed functioli) and e collector(region I1l) and the other one from the collected

Go(E) are known analytically, see for instance Nonoyamag,n_qown electrons. We therefore define the conductances
et al“* Notice that the unperturbed Green'’s function is aIsoGT and G! associated with the currents flowing between

diagonal in spin index, that is, SHED and DE"), and DEV), respectively, by

<Iqmqaq|Go|Ima>=(lqmq|Go|Im)6m,q, (27) 2 :
Gl(E)=17- 2 7, (29
therefore, for a wave function at any sitg, (m;) and state h <
aq, the Lippman-Schwinger equation for this system can beand
rewritten as follows,
2
e
. . . GE)=r2 7. (30)
\P| q’m :(D| q’m + 2 [<|qmq|GO||m>Vlm I,m5<r,zrq h v
q''q qa'a I,mo
It is important to note that the spin-down partial conduc-
tance at the collector ferromagnét arises due to the in-
duced spin precession of the incident spin-up polarized elec-
trons and because no spin-down polarized electrons are

_tso<|qmq|Go|| +lm>(i0'y)a,oq Ig,m

+tso<|qmq|Go||m+ 1>(io-x)0',a'q I(rm

_tso<|qmq|Go||m>(|0'y): LW being |p_Jected. In Eq(29), 7, 1S .the partial transmlsslon
a probability (summed over the incident channetbat an in-
- o i inj )Y with spino=1 i -
+tso<|qmq|Go||m>(|0x)§q LS. (28)  cident electror(injected from SE)) with spino=1 is trans

mitted to the right ferromagnet DR, v denotes the outgoing
By solving the coupled linear equations resulting from thetransmitted mode, while,ﬂ is the partial transmission prob-
equation above, it is possible to determine the perturbedbility that an incident electron with the same spis 7T is
wave function associated with the complete Hamiltorifan ~ transmitted as a spin-down electron and measured & DF

at any site of interest. The partial transmission probability is given explicitly by
Once the wave functions for each statare known at the .
ferromagnetic contactgregions | and Il in Fig. 2a)] the 3 Uy o |2 (31)
spin-dependent conductance is obtained within the Landauer = o | e
Y23

framework?? which is appropriate if the electron-electron
interactions are unimportaft. In our calculations, only wherev? andv,, are the outgoing and incident-electron ve-
spin-up polarized electrons are injected from the emjter  locities at the Fermi energy with spin and modes and u
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the same order as the energy shift introduced by the inter-
subband mixing contribution, then the above condition no
longer holds. For this case we fi@ithin a two-subband
mode) a critical value for the spin-orbit couplingsee Ap-
pendix A), which is given by Bs,~(ma/W)?/[(wa/W)
+ake]=B<,, WhereBg,=tso/|t|, andke is the Fermi wave
number. The critical valugs, will therefore define aveak
spin-orbit coupling regime whenevgg < 85, and astrong
coupling regime if Bso> B¢, It should be noted that the
critical value a®=w?#2/[m*W(7+Wk:)] of the Rashba
spin orbit coupling parameter that corresponds tgg, and
therefore separates the weak- and strong-coupling regimes
depends on the widtkV of the wire.

In all our calculations, unless otherwise stated, the Rashba
spin-orbit interaction is turned on and off adiabatically
through a cosinelike function, withbeing the length of the
T ' T " T T T " T adiabatic region in lattice sites. For the remainder of the
paper we will work in units oft| for all the energies, hence
we will refer to B¢, andtg, interchangeably. It is remarked
that the calculations presented here are for narrow wires, in
which the quantization in the transverse direction to the
propagation is crucial.

In Fig. 3 we show the ballistic conductance for four
strength values of the spin-orbit hopping paramejgifor a

t., (Ith narrow wire of widthw=60 nm and length.=150 nm.
Here, as in the rest of the numerical results and as discussed

FIG. 4. Spin-orbit coupling strength dependence of the ballisticin Sec. Il, purely spin-up polarized electrons are injected into
spin conductance; solid line B!, dashed linés': (a) Narrow wire  the wire. Only the first mode is shown for clarity. In FigaB
of W=6a and uniform spin-orbit couplingdy= a,=2ats,). (b)  the case,,=0 is plotted and since there is no electron-spin
Same as in(@) but with a,=0 anda,=2ats,; perfect oscillations  precession, all the transmitted electrons are spin-up polar-
are seen for alls, . () Same as iria) with W=12a. (d) Modulation - jzed. When the spin-orbit parameter is increased to 0.03, Fig.
for W=12a, with ,=0 anday,=2ats,. The intersubband mixing  3) the precession effects become evident; about 70% of
clearly c_hanges the otherwise perfectly sinusoidal spln-conductan%e detected conductance is due to spin-up electrons, while
modulation. about 30% is due to spin-down electrons. Egr=0.08, Fig.

. ] 3(c), the spin conductance is now reversed with respect to
of the drain and source contacts, respectively. In 84,  (q), that is, the net detected conductance is due only to spin-
tsz is the partial transmission amplitude that an incident elecgown electronsG’'=0 andG'!=1.0 (in units of e2/h). In-
tron with spino=1 and modeu is transmitted in thee mode  creasing the spin-orbit parameter further to 0.1, the spin-up
with the same spin state=1, andt}, is the partial trans- conductanceG'#0 occurs once again and the spin-down
mission amplitude that an incident electron with spie]  conductance i$3'< 1.0, Fig. 3d). Notice that in all cases,
and modeu is transmitted in ther mode with the opposite the spin conductance is almost independent of the incident
spin state, i.e.g=. Fermi energy; the situation is more complex when strong
coupling is assumed, as we shall see later. The qualitative
behavior of the spin conductance described above is consis-
tent (to a good approximationwith the energy-independent

In order to study the dependence of the spin conductancelectron-spin modulation predicted by Datta and Das.
on the strength of the spin-orbit interaction, we will consider ~ The spin-conductance modulation is seen clearly when we
two cases, namelyweak and strong coupling. The criteria  plot G'! against the spin-orbit hopping parametgs, see
that distinguish these two cases are obtained in Appendix Aig. 4(@). Here the incident Fermi energy was fixed to
the physical considerations are essentially as follows: Sinc8.5 (ke~0.7a”') andW=6a=60 nm, which gives a criti-
in the multichannel scattering process the eigenstates of theal value B5,=0.22. This value ofBs, separates the sinu-
full Hamiltonian are(in general linear combinations of the soidal behavior ofG'! [predicted by Eqs(13), (14), and
different spin subband&lue to the Rashba tejntherefore, (16)] for Bs,<0.22 from its behavior forBs,>0.22 (the
in a pertubative sense, the contribution of the mixing of thestrong spin subband mixing regimehere the confinement
spin subbands should be negligible as long the subband spagnergy is of the order of the intersubband mixing energy.
ing (separation in energyAEyw=E,,—E, is much greater The effect is clearer for a wire witilV=120 nm[see Fig.
than the subband intermixing energy, E@&). However, if  4(c)] for which the critical value of3, is 0.07.
the confinement energy and/or the spin-orbit coupling are of The importance of the intersubband mixing contribution

1.0 4

G (e%/n)

G (e’h)

G (e%h)

G (e%/h)

T T T v T v T v T
0.0 0.1 0.2 0.3 04

IIl. NUMERICAL RESULTS AND THEIR IMPLICATIONS
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FIG. 5. (a) Energy-subband dispersion for a
narrow wire of W=6a andty,=0.08 (weakspin-
orbit coupling regimg (b) Ballistic spin conduc-
tance for the wire ina), note that for this value of
tso, practically all the conductance is due to the
precessed spin-down electroriglashed ling
while that for the spin-up is almost zero for all
energies(solid line). (c) Oscillating behavior of
the spin conductance versus the effective length
of the spin-orbit interaction region, herg,
=0.08 as well. A wave length of =20a is ex-
tracted from the data.

can be illustrated as follows. Let us write the Rashba Hamiltative features seen here in the conductanceweak t,

tonian as the sum of two termsj,=HX+HY), with
H{) =iayoyalox andHY) = —iayo,dl 9y, where in general
ay=ay=a for a 2DEG. Therefore, Eq¢7) and (8) would
be rewritten as Klg,)lL= ayKySpmt ay(n|d/dx|m), and
(Hgo) bl = ayky 8nm— ay(n|d/dx|m), respectively. Now,
since the only matrix elements that incorporate the mixing of
the different subbands are given by,o|H¥|m,o"), with
n#m and o+ o', therefore by settingr, to zero(with «a,
#0), the contribution of these matrix elements can be fully

suppressed. This situation is shown in Fig&)4and 4d). NE
Note thatG'! are very similar in Figs. @) and 4b) for tg, Q
<0.22 [t4,<0.07, Fig. 4c)] but not for t;,>0.22 [tg, 0]

>0.07, Fig. 4c)]. Although settinga,=0 appears to be
rather unphysical, it shows very explicitly that the deviation
from the sinusoidal modulation @' for ts,>0.07 is owed
essentially to intersubband mixing induced by the Rashbe
spin-orbit coupling.

The subband dispersion fog,=0.08 is depicted in Fig.
5(a). The dispersion is calculated using the procedure de-
scribed in Appendix B; the rest of the simulation parameters
are the same as in Fig. 3. For this case, a linearly Rashbi .
spin-split subband is obtained as expected, giving for this £
particular caseAk=0.15%"1. The phase shift is thenA ¢ “o
=AkL=, where we have used the effective lendth preg
=20a. Using now formula(16), we obtain forB,=0.08 a
phase shift\ 6= 3.2, just slightly above what we obtain from
the subband dispersion calculati@tirhe corresponding spin
conductance is dotted in Fig(l9. Note that a fully reversed
spin polarization occurs for all modes. Thus the spins preces:
in unison in all of the subbands and even a relatively wide
multimode quantum wire should be expected to function as
an efficient Datta-Das spin transistor in this regime. For the

remain the same for wider wires and with a lateral constric-
tion in the region with spin-orbit coupling. For example in
Fig. 6(a) we have plotted the conductance for a wire having
twice the width discussed above, i.e., haié=120 nm,

° (a)
1
5{_. gt
- . G}
3] ,,,/'"'/
.]— Gl L
1 onmoj ':::::o"/oo 0°°°°°’d°
' conccaa"j 00°°°°°d°p °
0-' 00000000 tso = 0.05
6
1(b)

EL(It])

FIG. 6. Fermi energy dependence of the ballistic spin conduc-

same value ots,, Fig. 5c) shows the conductance vs the tance(in units of €¥/h) for a wire of widthW=12a and confine-
effective lengthL where the spin-orbit coupling is present. ment strength(curvature of the parabolic potentiai,=0.2. (a)

The oscillations ofG' andG' have a differential phase that Weakspin-orbit coupling case,,=0.05.(b) Strongspin-orbit cou-
corresponds exactly to the expected value for length pling casets,=0.4. Filled circles ar&’, empty circlesG!, and the
=20a in Eq.(16). It is important to emphasize that the quali- solid line G'+ G*.
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1.2+
1.0
= 08, FIG. 7. Ballistic spin conduc-
o ) tance for the strong spin-orbit
L) 0.6 coupling regime {5,>0.22) for
O] 0.4] the wire of Fig. 3. Only the first
: propagating mode for each spin is
0.2 shown. In this regime, bottG'
andG! are strongly dependent on
0.0+ the incident Fermi energy, with an
' oscillating behavior ads, is en-
1.2 hanced, which exhibits the energy
1.0 dependence of the spin preces-
—_ sion. Casesc) and(d) are particu-
NE 0.8 larly interesting. ForEr~1.0 in
2 o6l (d) the po_larlty of the _transmltted
) electrons is reverse@vith respect
o 0.4 to the injected spin-up polarized
electron$. Perfectly polarized
0.24 spin-up or spin-down electrons
0.04 can be emitted from the wire de-
1 pending on the Fermi energy.

00 04 08 12 16 00 04 08 12 16
Energy (|t]) Energy (|t])

wheret,,=0.05, and with a strength for a parabolic confin- the spin-orbit interaction is kept constant. In other words, it

ing potential ofw,=0.2 [here the confinement potential is can function as a spin transistor such that the switching can

given by w,(x/a)?, with w, in units of |t|]. We note the be tuned just by varying the Fermi energy rather than vary-

same steplike characteristic of the ballistic conductanceing the Rashba coupling, as in the Datta and Das spin tran-

Note that here as wellFig. 6(a@)] the modulation achieved sjstor.

betweenG' andG' remains constant regardless of the inci-  The subband dispersion for the casg=0.4 of Fig. b)

dent Fermi energy and number of populated subbands. s shown in Fig. 8). For this large value of,,, the spin-
Now we tumn —our aftention to the case8s,  subband dispersion deviates considerably from the typical

> (ma/W)*/[(ma/W) +ake], i.e., strong spin-orbit interac- jinear Rashba splitting for the weak spin-orbit interactian

tion; for the case withW=60 nm, S,=0.22. Figure 7 gimjjar dispersion was obtained recently by Moroz and

displays the spin conductance for four different values of thEBarneée). The subbands are no longer parabolic, which
strength fort;,. Here the adiabatic region is set lte 20a, ; |

dth ot th : - Fia. 3. For th K %ves rise to a dependence &k on the energy. Herdk is
and the rest ot the paramelers are as In Fig. s. Forin€ Sake fl, yitrerance between the wave vectors associated with the
simplicity we focus only on the first propagating mode. It is

evident that for this regime, the spin-conductance behavior i'éwo spin subbands at a given energk-— Ak(E) =ky(E)

markedly different from that with weak spin-orbit coupling ~ku(E). 7\{Ve find for example that Alf(lEF:O,'S)
discussed previously. He@!! are both strongly energy de- — 0-648%® , whereas Ak(E¢=1.0)=0.453& -, which
pendent. We note that the probability of an injected spin-up//€!ds A 0(Eg=0.5)=6.2m and A §(E¢ = 1.0)=4.3m, where
electron to pass unchanged through the spin-orbit region déve have used an effective lendth=30a. The net change in
creases with energFig. 7(a)], while the probability of de- the differential phase between these two cases is thus
tecting a transmitted spin down-electron increases accordi(A#)~2m. This last result can be independently checked
ingly. For ty,=0.3, Fig. 7b), a full polarization develops by looking at the spin-resolved conductan&@sandG" in
when reaching an incident energy®$= 0.8, although with-  Fig. 8b) where the oscillations of bot' and G' exhibit

out the spin flipping. The cases of Figgciand(d) are quite  phase shifts of~27 betweenEr=0.5 andEr=1.0. We
interesting. A clear precession @'’ with energy is ob- have also plotted the spin conductance Egr=1.0 versus
served, having a sinusoidallike character. For instance, ithe length of the spin-orbit interaction region in the wire
Fig. 7(c), the polarization of the transmitted current has an[Fig. 8(c)]. A wave lengthn of 13.& is extracted from the
opposite orientation of the polarization of the injected cur-data. The associated wave numbeAls=0.45, a value that
rent for Ez=0.65 and is reversed again Bg=1.0. This matches the one obtained independently from the band dis-
surprising resultwhich is due to intersubband coupling and persion calculation.

is therefore beyond the scope of the original theory of Datta Now let us return to Fig. 6 in order to analyze tsteong

and Dagwould suggest that for certain values of the strengtht, regime for a wider wire Il =12a). In particular Fig. 6b)

of the spin-orbit interaction, just by varying the Fermi en- shows an analogous case to that studied in K. lBut with
ergy, the device can work as a spin “switch” device, while t;,=0.4. It is evident that the strong coupling here sup-
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(a) °
L4
=
L3 NE
31 2 O FIG. 8. (a) Energy-subband dispersion for a
L1 narrow wire ofW=6a andts,=0.4 (strongspin-
o orbit coupling regimg Note that the subbands
. ! . are no longer parabolic as inveeak t, regime,
= 2 \ \ Iy 0 L %Itl) 3 4 resulting in aAk— Ak(E). (b) Ballistic spin con-
w ‘ \\ \ /f f — ot ol 1.2 ductancg for the wire irfa); fiI_Ieo! circles areG',
LU /‘,-/ / (€) R = [1.0 empty circlesG!, and the solid lin&'+G'. The
\\\ \V/ -/'i'[ \o/\o \o/o \o/\,/ lo.g ener_gy_dependehce is clear_ly evident hed®.
1] \\ \ 1 I -t 0.6 '“f, Oscillating behawor of the spin co.nduct.ar.lce ver-
\ /i /-’g & sus the _effectlve length of the spin-orbit interac-
| \(//5/5 d \ \ /0 ‘\w Gt [04 tion region ¢;,=0.4). The wave length of the
= \AA Ji . ’ 0.2 oscillations is\~13.8&.
t, = 0.4 Ak / \/ j VUL
3340 7 3 3 10 20 30 40 50 60
k(a") Length (a)
presses the plateaus f6r' ! to a significant degree. A rather 10
complicated structure is obtained revealing the nontrivial na- ] 10 ofso= 0-015
ture of the subband intermixing. We have also calculated the, o 0'5'_ 5 '.
relative conductance changpdefined as AG/G,=(G' Q o0l ®
—GY/(G"+Gl)] against the spin-orbit parametey, for 2 0.5 5lL=5wW ®
three different effective lengths of the wire with the Rashba ~ _, , 1(a) L = 4W 2I.5en 531 (2)5
interaction L =4W, 8W, and 1W). This is shown in Fig. 9 ' ——T—— g, —
for a wire with widthW=6a and a uniform parabolic poten-
tial strength ofw,=1.8 over an effective length of &0and 1.0 4 L=8w
at the Fermi energ¥= 2.5 for the three cases. A beatlike o 05
pattern is found due to the spin precession, developing node¢ 1
as the length of the channel is increadeth the inset the ) 0'0'_
channel length dependence®G/G, is plotted for a typical < -0.5
experimentalt,,; it is clear that for such relatively weak -1.04(b)
spin-orbit interaction the relative conductance change has T T T T T T T
negative slope with a change in sigimdicative of a spin
precession in the length range shown. This behavior re- 1.0 4 L= 15W
sembles that observed recently by etual 26 in their length- . 054
dependence measurements for the spin precession. V) 0.0
A final comment on the adiabaticity: the adiabaticity in ©
the spin-orbit interaction was introduced in our calculations < '0'5'_
in order to model a smooth transition between the regions -1.0{(c)

with no spin-orbit couplindi.e., near the ferromagnetic con-
tacty and the region with the finite Rashba spin-orbit cou-
pling along the quantum wire. For the weak-coupling regime t. (It
the calculations of the spin conductance vs Fermi energy _
showed plateaus with small oscillations in the nonadiabatic FlTG' % PIoTts Of the r_elat|ve conductance char{_gbG/C_;o

case, nevertheless the spin-precession behavior was found 4G ~G /(G +GH] against the strength of the spin-orbit pa-

o o . . . rameter for three different effective lengths of the spin-orbit
be qualitatively very similar to that observed in the adlabath_(RashbaiinteractionL=4W, L=8W, andL=15W, with W=6a.

case. However, the strong-coupling regime showed drastigjeqrly the beatlike behavior is enhanced withshowing the na-
differences. Calculations without the adiabaticity showed yre of the electron-spin precession induced by the Rashba effect. In
rather complicated behavior with a significant suppression ofhe inset of(a) the relative conductance change is plotted as a func-
the conductance plateaus. tion of the effective length for aeakspin-orbit hopping parameter,

In summary, we have shown that a strong Rashba spin;,=0.015. A change in sign fakG/G, as the length is increased
orbit interaction can produce dramatic changes in the spinis evident showing that the effect of the spin precession is still
resolved transmission of spin-polarized electrons injectedmportant for such a regime.

T T T T T T T 1
00 01 02 03 04 05 06 07 08
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into ballistic narrow wires. The effects can be very signifi- 1 1
cant and can even suppress the expected spin modulation, as El,z=§(Eﬁ+1+ Eg)tz\/(AEW_2aky)2+(2aAso)2,
the strong(Rashba coupling was found to induce a complex (A5)
dependence of the spin precession on the incident Fermi en-

ergy of the injected electrons. These results should be ¢ind

importance for the spin injectiofmodulatior) in quasi-one- 1 1

g;rf];izsmnal devices under large bias used to tune the Rashba E3,4=§(Eﬁ+l+ Eﬁ)iE\/(AEWJr 2aky)2+(2aAso)2

(A6)
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APPENDIX A: CRITERIA FOR WEAK AND STRONG dition
RASHBA COUPLING (20 .0)?
' i iteri istingui <, (A7)
In this appendix the criteria we have used to distinguish (AEy+20ak,)?

the regimes fomweakand strong Rashba spin-orbit coupling

in a Q1DEG system are deduced ana|ytica||y_ Cons|i®r is satisfied. Thus, ECKA?) will lead us to a criterion for
the eigenstate solution of which the subband intermixing is, on the other hand, not

neglectable. For such a case, explicitly

H|®)=E|D), (A1)
2aA
whereH =H,+ H,, is the effective-mass Hamiltonian for a AE a+ 250 =1 (A8)
Q1DEG in the presence of the Rashba coupling, with w= £y

Holn,o)=EgIn,o), andEy=E,+#2kj/2m* (n is the sub-
band index andr=1,]), see Sec. IIB. We expand) in
terms of the eigenstates for the system in the absence of t
Rashba effect. That isb) ==, ,a,,/n,o). Inserting this ex-
pansion into Eq.(Al) and multiplying from the left by
(m,o’| yields

Modeling the potential that defines the Q1DEG as a hard
r\]/veII confining potential, we havé\Ey=E;,,—E.=(2n
¥1)@m/w)|t|, and Ag,=[n(n+1)/2n+1](4MW). Insert-
ing this expression in E4A8) and replacingky— kg, where
kg is the Fermi wave number, we get

(2n+1)X(ma)?t| |
8n(n+1)W=2(2n+ 1)keW?

(E3—E)an,+ 2 (Hso) % amg =0. (A2) a~ ' (A9)

m,o’

Now since . ,‘1’;;’/=O for all o=0"' [see Eq/(9)], there- therefore, for the first subbandn€1), and using «
fore Eq.(A2) will read =2ap4/t|, we get{choosing the positive solution in order to
get the lowest value for the ratio in EGA9)]

(ER=B)an,+ 2 (Hsoii anys _ (maiwy? AL0)
o'to Bso (ma/W)+akg
+ 2 (Hsof ame=0. (A3) Equation(A10) defines the critical value of the spin-orbit
o'4omén coupling at which the intersubband mixing becomes rel-

The second term in EqA3) which is diagonal in the sub- evant. Therefore we can define a regime where the spin-orbit
band index, will correspond to the linear Rashba splitting,coupling is weak whenever Bq,<(ma/W)?/[(7a/W)
while the third term gives rise to the spin-subband intermix-+akg], and a regime where the spin-orbit coupling is
ing. In a two-subband modd€benoted below byn and n strong such that spin-subband intermixing becomes impor-

+1), the system of EqgA3) can be rewritten as tant, that is, wheneveB,> (wa/W)?/[ (7ra/W) + akg].
[0}
En—E  aky 0 —also |\ [ ay APPENDIX B: SUBBAND SPECTRUM CALCULATION
0_
ak,  E,~E @Aso 0 an| -0 In this appendix we describe the transfer-matrix method
0 als, Ep—E aky Any1g ' for the calculation of the subband structure of an uniform

quantum wire with a Rashba spin-orbit interaction. The
(A4) method is a generalization of the spin-independent Ando

calculation?’ The dispersion is calculated within the lattice
with the definition of the intersubband mixing terdg,  model for a wire with a finite and uniform spin-orbit inter-
=(n+1|d/dx|n). The eigenvalues of E4A4) are explicitly  action and a lateral confinement potential.

—alg, 0 aky oy~ E/ \anig
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By applying the stateddmo| and| V) to the left and right (Ho—E)An+ToAn+t(Ar,  +AS )
of Eq. (19), respectively, we arrive at the following discrete _ B B
coupled equationgfor clarity, the notationo=* is used Fitso(Ap-1=Any1)=0. (B2

instead of the arrow symbols to denote spin-up and spin- .
down states Here we have defined the vectaf, as themth column

-+ + + + + + o
(Wf’m— E)Xfm+t (Xr+1,m+Xlifl,m+XI7,m+1+X|7,m71) Xim
Itso(XIIJrl,m_leil,m) - itso(XII,erl_Xli,mfl) =0.

(B1) ar=| 83

Here we definedV/ .= e+V, . Now, if we set the on-site X"'m
energye= —4t, and since a uniforntalong they axis) con-
finement potential is assume¥, ,—V,, and thus, W/, XN m
— W, . Hence the equation above can be written in a matrix .
form as follows and theH, and T, are N, x N, matrices given by
W, t 0 O 0 0 =t O 0 0
t W, t O 0 Tt 0  Ftg, O 0
0 t W; t 0 . 0 =+t 0 Ftg 0
Hy,= o o t - 0 and T_,= 0 0+t 0 (B4)
t +1so
0 0 0 0 t Wy 0 0 0 0 =*t,, O

Now, since both the confinement potential and the spin-orbit interaction are assumed to be uniform along the longitudinal
direction (propagation direction the system has translational symmetry alongyttaxis. Therefore we can make use of the
Bloch theorem. We can define tha,, ; =ev2A7 andAZ=e*2A7 | henceAd, ,=\AZ,, with A =e'2. Inserting this last
expression foA7,, ; in Eq. (A2), we get

(Ho—E)AL+ T Am+MAL A, +itsAm 1 —iNtgAL=0, (B5)

which can be rewritten in a matrix form as follows,

HomE  Toy  t itsg) [ Ap —t ite, O O\ [ AL
T, Ho—E ity t /i,; | —t00 /i;, .
1 o o of|Ar, 0 0 1 of|Af,
0 1 0 o0 - o o o 1la_,

By solving the (MN,) X (4N,) generalized eigenvalue problem for a given incident Fermi enErgll the eigenvaluea
are determined, as are, hence,lgl[E), yielding the desired subband spectrum.
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