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Coordinate representation of the two-spinon wave function and spinon interaction
in the Haldane-Shastry model
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By deriving and studying the coordinate representation for the two-spinon wave function, we show that
spinon excitations in the Haldane-Shastry model interact. The interaction is given by a short-range attraction
and causes an enhancement in the two-spinon wave function at short separations between the spinons. We
express the spin susceptibility for a finite lattice in terms of the enhancement, given by the two-spinon wave
function at zero separation. In the thermodynamic limit, the spinon attraction turns into the square-root diver-
gence in the dynamical spin susceptibility.
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I. INTRODUCTION By analyzing the real-space two-spinon wave function,

we show that spinons scatter by means of a short-range at-

One of the most important issues in contemporary physicgractive potential and analyze in detail the physical conse-

is spin fractionalization, which takes place in strongly inter-quences of the existence of this potential. The short range-

acting one-dimensionalLD) antiferromagnets. The first ex- ness of the interaction makes spinons free when they are
act solution of a 1D antiferromagnet goes back to an originalyigely separated. However, from the exact solution of the
paper by Betheabout the “Bethe ansatz(BA) solution of  gchrginger equation for two spinons we find that the ampli-

the Heisenberg modelHM). From Bethe's solution, des ,qe of the wave function is greatly enhanced when they are
Cloizeaux and Pearsoiound the dispersion relation of the on top of each other, a phenomenon that we refer to as

low-lying excitations of the HM. Subsequently, Fadeev an “probability enhancement.” While the density of states is

Takhtajari discovered that, at odds with what one would . .

o . uniform at low energy, probability enhancement causes the
expect, the elementary excitation of these systems is not Sverlap between the wave function for the localized spin
spin-1 spin wave, but a gapless “spjnspin wave,” later P P

named a “spinon” by Haldan&® wave and that for the spinon pair to be significant, but not
Spin fractionalization is a general phenomenon in 1p€nough to create a two-spinon bound state. The correspond-

spin antiferromagnetg. The large-scale physics of such "9 Matrix element is enhanced so as to make the spin-1

systems is given by “spinon gas” dynamitg herefore, in  €xcitation unstable. _ - _
this paper we will focus on a particular model, where the Physical consequences of the instability of the spin wave

excitations are easier to visualize, that is, the Haldane2PpPear in the functional form of the dynamical spin suscep-
Shastry modelHSM),*” where spins; located at the sites of tibility (DS xq(w). The DSS is the Fourier transform of
a circular lattice antiferromagnetically interact and the inter-the spin-spin correlation function. Its functional form can be
action is inversely proportional to the square of the chordexperimentally tested by means, for instance, of neutron-
between the two sites. scattering experiments, the probed quantity being the spec-
Fully polarizedN-spinon eigenstates of the HSM are de- tral density of states /Im Xq(w).13A system with a stable
rived by means of a correspondence with the spinless Sutfspin-1 excitation would show a sharp pole in yig(») at the
erland’s continuum version of the mofleind are param- corresponding dispersion relatian=w(qg). On the other
etrized in terms of BA-like “pseudomomenta.’Once the hand, instability of the spin wave against decay into spinons
energy of the many-spinon state is expressed in terms of theill generate a branch cut in Ip(q,») at the threshold
pseudomomenta, in the thermodynamic limit it appears to benergy for the creation of a spinon pair, which is a signal of
the sum of the energies df noninteracting particle¥ How-  the opening of a decay channel, corresponding to the lack of
ever, this does not imply the absence of an interaction bespin-wave integrity. Consequently, a sharp square-root sin-
tween spinons, which is encoded in the BA-like equationgularity shows up at the threshold for the creation of a spinon
defining the pseudomomenta. pair, on top of the broadening in the spectral density of
In this paper we carefully investigate the spinon interac-states. Experiments performed onto quasi-one-dimensional
tion in an exact solution of the HSM, by employing a for- antiferromagnets provide clear evidence for broad spectra,
malism based on analytic variables on the unit radiusvhile no sharp spin-1 resonance has been $&en.
circle!! By using real-space coordinates, the spiexcita- An exact calculation of the DSS cannot, in general, be
tions become easier to construct and visualize than by malperformed, even for models exactly solvable with the Bethe
ing use of plane wave$:® The formalism can be easily ansatz. However, the HSM has the remarkable property that
generalized to the study of other models. Such a formalisnthe wave function for a spin-1 excitation is fully decomposed
allows us to write a “real-space” representation of the two-in the basis of the two-spinon eigenstaté%his allows us to
spinon wave function. write an exact expression for the DSS even for a finite lattice,
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thus letting us explicitly show the relationship between the R N
probability enhancemertFig. 4) and the DSS. [Hys.S5]=0, S=2, S,. (2

The paper is organized as follows: In Sec. Il we shortly @
review the HS Hamiltonian and its symmetries; in Sec. llI
we introduce the ground state of the HSM and its represerni also possesses an additional symmetry generated by a vec-
tation as a function of analytic variables on the unit circle. Inyor operator independent &
terms of the analytic variables, the ground state takes the
same functional form as the fractional quantum Hall wave
function that corresponds to a nondegenerate disordered spin
singlet. We discuss at length several properties of the ground
state, how to derive the corresponding energy, and the mean-

ing of the disorder in the ground state. In Sec. IV we analyze . )
the one-spinon solution and derive its relevant properties; il "€ extra symmetry oft,s is the reason for the exceptional

Sec. V we focus on the two-spinon solution. We derive thel®generacy of the energy eigens7tates and does ultimately al-
energy eigenvalues, the corresponding eigenvectors, argW for the solution of the modél] as pointed out and dis-
their norms. A discussion about spinon statistics is provide@Ussed in Ref. 4. The algebra generated by the two vector
at the end of the section. The original derivation of the re-Symmetries oftys is referred to as Yangian and is discussed
sults in Secs. Ill, IV, and V is mainly due to Haldane andin Refs. 12 and 10A can be physically interpreted as the
Shastry*"® Our formalism allows for a simple derivation of Spin-current operator for the HSM, as we show in Appendix
those results, which we discuss at length in Secs. I, IV, and®.
V; Secs. VI and VIl contain the key results of our work. In  Starting from the next section we will review the proper-
Sec. VI we write the Schdinger equation for the two- ties of the ground state and of the one- and two-spinon ex-
spinon wave function, whose solutions are hypergeometri€ited states of the HSM. This will allow us to to define the
polynomials. From the behavior of the two-spinon waveformalism we will use in order to describe the relevant
function, we infer the nature of the interaction betweenphysical properties of the model.
spinons: a short-range attraction. The physical consequences
of such an interaction are discussed at length in Sec. VII,
where we derive an exact closed-form expression for the IIl. GROUND STATE
dynamical spin susceptibility in terms of the two-spinon |, this section we review some of the most important
wave functions and rigorously prove that the DSS is fully raqyits of the HS model, obtained by Haldane and Shégtry.
determined by spinon interaction. In the thermodynamiq et N pe even. We proceed by first giving the representation
limit spinon interaction tums into the square-root divergenceyf the ground staté¥ o< in terms of thez coordinates and
in the DSS. In Sec. VIII we provide our main conclusions. han proving that it is the actual ground stateMfs. | ¥ gs)

is defined in terms of its projection onto the set of states

Il. HALDANE-SHASTRY HAMILTONIAN with M=N/2 spins up and the remaining spins down.

If z;,...,zy are the coordinates of the up spins, one
defines the state |z;,...,zy) as |z, ....Zu)
=H_}"'=l_sj*H§=1c£_l|O), where |0) is the empty state. The
projections are given

[Hus A1=0, A=3 (Z“Hﬁ (8.x8p). @

2 47 \Za— 24

The Haldane-Shastry mod¢lis defined on a lattice with
periodic boundary conditions. L&t be the number of sites.
Let z,, with 22'=1, be a complex number representing a
lattice site on which a spig-electron resides, and Iél be
a Heisenberg spin operator acting on that electron. The

Haldane-Shastry Hamiltonian takes the form M M
o Yoz, zw =11 (z-20%]1 7, @)
2m\2& S-S J=K =
Hus=I| —— 0 )
N &< |z,—24)? , , ,
@ P wherezq, . .. ,zy denote the locations of the sites with all

whereJ is the coupling strength. The interaction is an ana-others being|. We can imagine the spin system as a 1D
lytic function of the coordinates. This is related to the prop-string of boxes populated by hard-core bosons, [thepin
erty of a complex variable laying on the unit circlez* state corresponding to an empty box and thepin state

=z~ which implies corresponding to an occupied one. The total number of
bosons is conserved, as it is physically the same thing as the
1 2,24 eigenvalue of$*. Let us, now, review the main properties of
=7 . Vesz1, ... 1Zm)-
2zl (2am 2 oclZir - 2)

The representation in terms of the analytic variaktgs
which we will use throughout the paper, proves to be very
useful for describing the properties of spinons in real space. ¥Ygg(z;, . ...,Zy) is a homogeneous polynomial of de-
The Hamiltonian in Eq(1) is clearly invariant under spin greeN—1 in the variableg,, ... ,zy . Its norm can be com-
rotations generated by the total spin: puted by using the following identity:

A. The norm of Wq
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and thus

M
Cu= X H|Zi_zj|4

21,z 1<)

N \M [dzy dzy z\2
“loml 12PN [-3] @

J

M M M 1
H (Zj_Zk)ZH Zj:NH
i<k ]

Tk Zj— T

M M
=<—1>MJ_1<Ik (m—mzfj[ n; .

where the integrals are calculated on the circle of radius 1.

The integral in Eq(5) has been evaluated by WilséhThe (11)
result is
" M ) D. Reality
. I
(i) E N dﬂ (1_ ﬂ) :(ZM)' , (6) The ground state is its own complex conjugate and there-
2i z; Zy i#] Z 2M fore is a real number:
therefore M M
VEdz, ... ,zM)=jl;[k (Z,*—ZE)"’H zt
(2M)! M M
Cy= NM. 7 _
MM " =11 (z~2)*I1 ™"
i<k i
B. Singlet sum rule =Ves(Z1, - 2m)- (12)
We shall prove that the ground state is a spin singlet by ) .
showing that|Wsg) is annihilated by bothS? and S™. E. Translational invariance
S|V s9) =0 becaus¢V ;g has an equal number ¢fand | The crystal momentum of the stagaés defined(mod 277)

spins by the equation

Vos(212, ... zy2)=€9VWsg(zy, ... Zu), (13

SV Zy, ... 2 ) .
[ osl(zz w) wherez=exp(2#i/N). From Eq.(13) it comes out tha| can

N B be either 0 orr, according to whetheX is divisible by 4 or
= 21 (Z2, .- Zm|S, Va9 not. ¥ g equals itself, up to an overall minus sign, when
“ translated by one lattice constant.
N-1, (N | J
:le'To ;1 ﬁ[ ;1 Za]ﬁ_zllq’GS(Zb ceZm)=0 (8 F. Disordered state

|Wso is a disordered state. The way spin-spin correla-
since=N_,Z. =Ngjo, (mod N). tions fall off with the distance defines whether a state
ame ' of a magnetic system takes order or not. The relevant
quantity is the spin-spin correlation function(z,)
C. Coordinate invariance =(VsdSs S, | Vea/(WedVss), which can be expressed

Spin rotational invariance implies thalt o is invariant 1 t8rms of two-spinon wave functions only, as we show in

under the interchange df and | coordinates. More gener- Sec. V”c'j. ional d break .
ally, the quantization axis can be taken to be an arbitrary One-dimensional systems do not break continuous sym-

direction in spin space. Denoting the sites complementary tg'€tri€s, so they are not alleged to order. However, there is a

2 2 bY 71 7 SO that substantial difference between half-integer spin chains and
" 02—
<
l_k[ (Z—Zk)(Z_ ’r]k):ZN_l, (9) of .....o..?...‘;..?.é...?...o..o..o.o 4
&0 °
x( )_0.2
we have for fixed 04| |
0 /2
M ZN-1 N_1 9
Il (z-20(z— mo=lim——=Nz""*, (10
k#] Z—7 J FIG. 1. Spin-spin correlation function decay fide= 60.
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integer spin one8Both have a disordered ground state, but G. Ground-state energy

the form(_ar have excitations e_xboye_ the ground state that are | W is an eigenstate dffys with the eigenvalut’
gapless in the thermodynamic limit while the latter have a

gap that survives the thermodynamic limit and is given by 2
A=rfvlé, wherev is the spin-wave velocity of a nearby HHSI‘I’GQZ—J(Z
ordered state and is the correlation length. The conse-

quence of this is that the falloff of the spin correlations in thewe trade sums over spins on the lattice for derivative opera-
ground state of half-odd spin chains is not as abrupt as fofors that are understood to act onto the analytic extension of
integer spin chains, where the correlations are suppressebl;(z,, ... zy), in which thez;’s are allowed to take any
within one or two lattice spacing§Haldane’s conjecture).  value on the unit circle. After computing the derivatives, we
Figure 1 shows that the behavior of the HSM is the oneconstrain them again to lattice sites. We begin by observing
expected for half-odd spin chains. Correlations decay amat[S;S;\IfGS](zl, ...,Zy) is identically zero unless one
(—1)¥/x, according to Haldane’s conjecture. of the argumentg,, ... ,zy equalsz,. We have

5
N+N)|\PGS). (14)

Ves(Zy, oo Zj-1:28,Zj 415 - - - Zm)

N s's; M N
“ E —B}‘I’Gs (241, ---:ZM):E ;

fFa |z, 242 z
M N-2 N | |
_ 25(25~ 7)) ](i) (‘l’es(zl, ,ZM)]
PP J

B7i N|zj—z4% ) \ 97 4

(15

M |
= E J_!AI

The coefficientd\; are evaluated in Appendix B. Their remarkable property is that they are zekofor-2. Hence, Eq(15)
can be rewritten as

J

J )[‘I’Gs(zly' - rZM)]

&z} Z;

% (N-D(N-5)  N-3 , 4 1 , & [\Pes(zl,---,zM)]
zZ— r—+ |
i=1 12 ! 2 ) 072] 2 ]azl.z Z]'
N(N-1)(N-5) N-3 & 2z & 27 L,
_ _ + + Vedzy, ... 2
[ 24 2 jé:k Zi—Zx  j£k#m (Zj_Zk)(Zj—Zm) jé:k (Zj_zk)2 oslz: w)
N M
={ - == Vedzi,....,Zy). 16
[ g J_;k |zj—zk|2} e M) (16)
|
In Eqg. (16) we have made use of the rule N +a— N
1o 'HHSZE(Z—W)Z 2% + S5 .
7 . z; ) z 2\ N [ 478 |z,— 24> a78 |z,—2p|?
(Za—20)(Za—2,) (25— 2)(25-2,)  (2,-2,)(2,~25) , o (19
The wave functionV 5«z;, . . . ,zy) was first introduced by
=1. (17 Haldane and Shaslérsy in analogy to the exact Sutherland
We also have solution of the continuum limit of the problefnThe proof

that this wave function is the actual ground staté@fs is a
consequence of the factorization of the HS Hamiltor{iast

N Z oZ

S.S

| E ﬁ] Ves|(Z1, - - 1Zm) pointed out in Ref. 16, as we are going to discuss next
ﬁ#a Za_Zﬁ

H. Factorization of Hyg

N(N2-1) X 1
:[ _ ( = )+j§k - |2} In Appendix D we prove that{s can be written as
j 4k
: 2m\ 2 & o, o N(N2+5) N1,
XWsdZ1, ... Zum)- (18 Hus=I| 5; D.Du~——g T3 5|
This completes the proof, since (20
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The operator® , are given by where we have made use of the results of Appendix B and of

the technique described in detail in Sec. Il F.
o1 z,+24
D

a

2 4. za—zﬂ['(S“XSﬁHSB] ) IV. ONE-SPINON WAVE FUNCTION
and they annihilaté¥ ¢o) (see Appendix @ Equation(20) At odds with the naive idea that the elementary excita-
implies that| W ) is the ground state of the HSM becausetions for interacting magnets are integer spin staggsn
Hys can be written as a constant plus nonnegative definitfliPs), Fadeev and Takhtajarfirst conjectured that one-

operators, and the only state satisfying the requirement dlimensional half-odd spin chains exhibit excitations carrying
minimum energy iSV so). half-odd spin, later called spinofiS.For a chain with an

even number of sites, the ground state is a disordered spin
singlet but, if the number of sites is odd, the minimum pos-
sible value for the total spin ig. In the thermodynamic
The HSM ground state is not degenerate, but is nearly sdimit, it makes no difference whether one begins with an odd
We already pointed out that half-odd spin magnets have ar an even number of sites. The short rangeness of the cor-
gapless spectrum. In the next sections we will see that ekelations in the ground state makes it insensitive to the
ementary excitations above the ground state are spinons ab@undary conditions, so in the thermodynamic limit, there is
that their spectrum is relativistic. In particular, at the end-no way to distinguish between chains with an odd or even
points of the Brillouin zone, the energy becomes the same asumber of sites. States with half-odd spin are then alleged to
the ground-state energy, modulo corrections that are subleagppear as eigenstates’df,s with an odd number of spinons.
ing in the thermodynamic limit. This means that, in prin- In this section we shall present the one-spinon wave function
ciple, one can have many states with the same energy as thed discuss its properties. Following Haldame consider a
ground state that are distinguished from one another by theivave function of the general form
number of spinons.

|. Degeneracy

An example is provided by the singlet state of two M M
spinons with total momentunt. It is given by V(zy,....2m)=P(zq, ... ’ZM)Hk (z]——zk)ZH z;,
J< J
M (26)
_ N P 2
Vs(zy, ’ZM)_JHK (z=20 {1 J-Hl 7. (22 wherez,, ... ,zy denote the position of the up spins. Here
o @ is a homogeneous symmetric polynomial of degree less
Its energy is given by than N—2M+2 in each variable. This latter condition
5 causesV to be a polynomial of degree less thaht+1 in
Hyd W =—1J T lNe 7 W) 23) each of its variableg;, and thus allows the Taylor expan-
HSITS 24 N/ S sion technique used for the ground state to be applied. Doing

) _ so, we find that
and is the energy of the ground state plus corrections that go

to zero in the thermodynamic limit. N

We now show thaltW s o) is an eigenstate of  belonging + M(4M 2_1)— EMZ] s (27)
to the 0 eigenvalue. The action @f* on the ground state 6 2
gives provided that® satisfies the eigenvalue equation far
A}V s9=0. (24)
¥ed 1 % PO S 47 o N—3§ ®_
i . — zi—— _ zZ—= .
Equation(24) can be proved as follows: 2|4 4 02 -2 2 4 9y
28
(A Wadl(z, ... 2u) (28)
1 M N + . .
_ - 2 . Zj+ g A. One-spinon spin doublet
2557 Zj— 12 We look for one-spinon and two-spinon wave functions in
N—1 | the functional form given by Eg26). Here we analyze the
% (zj=2p) 9 [Vedz1, .- 2Zw) one-spinon wave function. Let the number of sitébe odd
= I ﬁz'j Z; and let
N N M M M
=| g (N=2+ 7 (N=2) Wedlzy, ... .2m) =0, Yoz an=1l @]l @-20%11 7.
(25) (29
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0.5
<$Z> |-

-0.5

<Qa>"

FIG. 2. Spin and charge profiles of the localized spifdn,)
defined by Eq(29). The dotted lines are a guide to the eye.

whereM=(N—1)/2. This is a] spin on sitea surrounded

by an otherwise featureless singlet sea. It is worth stressing

that Eqg. (29) makes perfect sense for amy, on the unit
circle. Nevertheless, ag, coincides with a lattice site, it
represents a spif localized at the corresponding site. The

spin density of the corresponding state, plotted as a function
of the spinon position, will be uniformly zero, as appropriate
for the disordered spin singlet, except for an abrupt dip cen

tered az=z, (see Fig. 2 Such a dip is what we refer to as
a “real-space representation” of a spinonzt. Hence, a

PHYSICAL REVIEW B 64 024425

N=11

- -n/2 0 2 T

FIG. 3. Top: spinon dispersion given by E@8). Bottom: al-
lowed values ofy for adjacent odd\.

1 N
mZ]_,...,ZM = Za azl,...,ZM
L )= N 2 (2™ ) (33

and the energy eigenvalué'fs

4 1
Hig| W) =1 —J ﬂ)(N_N>
J 277)2 (N—l )
+§ _N m _2 —-—m ]|‘I’m>: (34)

with O=m=<(N—-1)/2 andA=m[(N—1)/2—m].

C. Crystal momentum

spinon can be visualized as a local defect in an otherwise The state|V ) is a propagating, spinon with crystal
featureless singlet sea. This defect behaves like a re@homentum

guantum-mechanical particle, as we will show in the follow-
ing.

By definition, ', is an eigenstate df* with eigenvalue
— 2. In order to prove that it is a spif-state, we need to
show thatS™ annihilates it. Indeed, per E¢8) we have

(30

which proves that¥', is the spins component of a spin
doublet.

B. One-spinon energy

Equation(29) corresponds to a particular choice ®fin
Eq. (26) given by

M
D(zg, ... 20)=D (21, ... ,zM)=j1:[1 (2,—7). (3D

Equation(28), once written for the stat® ,, takes the form

v

The eigenstate of{yg is given by

a2
M(M~—1)-2—
0z

a

N—3

2

14
—Z,
“0z,

D,=\D,,.
(32

= TNk 2 (mod 2 35
q—E N m+Z(mo 7)), (35
per the definition

Vn(z1z, ... zwz)=expiq) ¥z, ... Zu), (36)

wherez=exp(27i/N). Rewriting the eigenvalue as

2

T 5
H|\I’m>: —J N+N——2

24

+Eq] v, (37

we obtain the dispersion relation

J[{\? )
5 (E —qg°|(mod ) (38

E(Q)=5

plotted in Fig. 3. Note that the momenta available to the
spinon span only the inner or outer half of the Brillouin zone,
depending on whethéd — 1 is divisible by 4 or not. The loss

of half of the states available for a regular fermion is a pe-
culiar property of the spinon spectrum. No negative energy
states appear, i.e., there is nothing like an “antispinon.” One
can picture a spinon as either an electron or a hole whose
charge has been pulled out by the interaction. According to
such a picture, a spinon can arise either from an electron with
the same spin or from a hole with the opposite spin, which
explains the halving of the Brillouin zone.
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The spinon dispersion at low energies is lineagivith a  norm of the multiple-spinon states. We discuss it at length in

velocity Appendix E. The induction relation is
77 1
UspinonZE‘]- (39 (m_ —)(M—I’TH- 1)
(V) |72 s
The half band of single elementary excitations for dtldre (V1P 1) 1 '
the onlyS= 3 states without extra degeneracies. The ground m M-m+3
state of the oddN spin chain is four-fold degenerate and is
given by|¥ ) for m=0 and N—1)/2 and their] counter- This recursively gives
parts. This corresponds physically to a “leftover” spinon
with momentum= 7. 1 1
I'rMm+1]r m+§ I{M—m+§
D. Spin current <qu|\pm>: 1 Cu,
We now study the action of? on the state for one propa- F[E}F M + > I'm+1]'[M—m+1]
gating spinon. Working as for the ground state one gets (46)
AW, )= {¥_ m} W), (400  WhereCy is the overall constant we have introduced in Eq.
(5).
and the eigenvalue of* comes out to be proportional to the
spinon velocity V. TWO-SPINON WAVE FUNCTION
dE(q) 273 (N—1 Let us now focus on the two-spinon state. Spinons main-
dqg N 7 —m (41)  tain their integrity when many of them are present. This does

not mean that spinons are noninteracting. They can be sepa-
Equation(40) is proven by first letting\ * act on the statd’,  rated at large distances, therefore being asymptotic states of
defined in Eq(29): the system. However, they also scatter strongly off each

other by means of a short-range attractive potential. The in-
[A*W,](z1, ... Zv) teraction between spinons is not enough to create two-spinon

1M oN 4 ( ) bound states, but it generates a peculiar “piling up” of the
—— 2 zg 4itZp 4~ %8 relative wave function when the two spinons are on top of
2 =1 57 Zj—1Zg) (=0 It each other(Fig. 4). This is the reason for the huge decay
amplitude for a spin wave into a pair of spinons, that is, the
xi Vo (z1, ... 2Zu) spin fractionalization.
9z Z; In this section we derive the two-spinon eigenstates, their
) norm, and the corresponding value of the spin current. More-
1 AL 2 L over, we show that the appropriate statistics they obey is
=3 ~M(N-2)+2> > — ~+22, o— neither fermionic nor bosonic. They are semions, i.e., par-
=1 %] Z] Z; i=1 Zl Z, . w1 . L.
ticles with 5 fractional statistics.
XU (21, ....2Zm)- (42
After takingM =(N—1)/2 one gets A. Two-spinon energy
Two | spinons can be pictured as twospins within an
AZP _IN-1 _ J Wy otherwise featureless disordered sea. The state with|two
[ a](zll et !ZM)_ i Za_ a(zll . !ZM)I . . . . .
4 dz, spinons centered af, andzg, respectively, is given byN is

(43)  even andVi=N/2—1)*>7

which, on the basis of the stat¢¥ ), gives the result M
uoted in Eq(40).
g a{40 Wop(Ze, - - ’ZM):H (24— 2))(25—Z)

E. The norm M M
The squared norm o¥, is defined as <[] (Zj_zk)2H Z;. (47)
i<k ]
_ 2
<‘I’m|‘1’m>—Zl EZM (Wim(za, - zw)|% (44 As for the one-spinon case, andz, are not necessarily

lattice sites. If they are, Eq47) represents a pair of spinons
By means of a simple algebraic procedure, we generated @ z,, z;. To derive the eigenvalue equation, we start from
recursion relation betweetW |V ) and (¥, 1|¥,_1).  a wave function in the form of Eq26), where we take the
Such a procedure can be straightforwardly extended to thiinction ® to be equal to
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M
Pop=11 (2.~ 2)(25-2). (48)
Equation(28) can be rewritten fofb,, 5, yielding
% 32‘Daﬁ+§ 0Pg| % 9P o
= ,9Zj ik zJ—zl< 9z =1 % 9z;
2 2 2 2
[ I B N
—_ — a2 B 2
Za Zﬁ F?Za ZB Za (?ZB (yza (92,8
N N—3 J d
—2 Zaa—Za‘f‘ZBa—Zﬁ
+[2M?=M(N=2)]{ D 5= D 5. (49)
Let us now define the staték,,, as follows:
N *\M (% \N
Z,)" (zp)
‘I’mn(Zl, P ,ZM):ZB A aB(Zl, e ,Zm).
(50)

A set of linearly independent states may be constructed b
taking only the¥,, with M=m=n=0, which shows the
overcompleteness of the set of stafles,,. On such a set of

states Eq(49) becomes

M

12 2 47°
1> Z—+ ——(
2|1 &ZJ-Z 7k Zj— Z 9Z;

% iy
Z_—
& Tz T

B N2 \ 19+24+ (N L
] 487 N N2 mz—+—m
N m—n

Im
— 2 (MmNt 2) Wiy, (51
wherely=n if m+n<M, Iy=M—-mif m+n=M, and, in
deriving Eq.(51), we used the identity

m-—n
X+

—(X y —x ym) 22 XM= | n+| (men+xnym)_
(52

We look for solutions to Eq(51) that are linear combina-

tions of the state® | n—;:

I'm
CDmnzlzzo "W - (53
The coefficientsy, are found to b&*’
[
—(m—n+2l)
a™ T2l(0+m—n+1/2) ¢ 2 ag’y (ap=1) (59

PHYSICAL REVIEW B 64 024425

and the corresponding two-spinon energies are given by

E_wz 19 24 szle
m- | NN T e Tl W) Mz
N 1 m—n E5
tnj5-1-nj-— (59
In terms of spinon momenta, the expression of the energy
is
=—J| == il N+5
24 N
J |9 =0l
E(qm>+E<qn>——M<qm -

(56)

Enn is the sum of the ground-state contributioBgg
=—J(7%/24)(N+5/N), and of the two-spinon energy
above the ground stat&(q,,,qd,).- E(qm.q,) is the sum of
the energies of two isolated spinons plus a negative interac-
yon contribution that becomes negligibly small in the ther-
modynamic limit.

Such a simple solution for the two-spinon problem is pos-
sible because the matrix to which E¢1) corresponds is
lower triangular, i.e., takes the form

"E, O O 0 -7
vig B 0 O

matrix=| vz vz Ez O , (57)
Uzo Us1 Usy Eg
where
Ei=Am+jn-j and vpe=—(m—n+2p+2q),
and
N LY N4 LU
mn=m 5 m|+n 5 n 5 (58

The eigenvalues of such a matrix are its diagonal elements,
and the corresponding eigenvectors are generated by recur-
sion.

The transformation in Eq(53) can be inverted and it
takes the form

(59

Im
:IEO bi’nnq)mﬂ,n—l .

The coefficientd™" can be expressed in a closed-form for-
mula in terms of the coefficients of the two-spinon wave
functions. We provide their expression in Sec. VI.
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B. The norm with the eigenvalue given by the sum of the two-spinon ve-
locities. We will skip the proof of Eq(64), which works

The squared norm of the st is defined as
d & exactly like the proof of Eq(40).

<CI)mn|‘I’mn>:z 2 , |Pmn(Zes - - - sz)|2- (60) D. Spinon statistics

1o M

As for the one-spinon wave function, we calculate the norm S_pinons are semions, i'e." particles obey.ing 1/2 fractional
of the two-spinon states by means of mathematical inductions.trit'set'rcs' Since the two-spinon wave functid,s has the
The details of our calculation are discussed in Appendix gProperty

The basic induction relations are given by iz, . vZN/27l):(Zazﬁ)l_N/Z\I’aﬁ(zla e ZN)s
(P P ) the Berry phase vector potential for adiabatic motion of
(Pmn-1|Pmn_1) spinone in the presence of is
1 3 5 d N d
n_z M_n+§ (m_n+l) 1 waﬁ Zaazalpaﬁ Zaaza¢aﬁ lpaB _1<1 N)
- 3 1)’ 2 Vsl Ve —21 7 2)
n(M—n+1) m—n+§ m—n+§ < B|¢ﬁ> (65)
61) The phase to “exchange” the spinons by moviagall the
way around the loop is thus
<q)mn|q)mn> 1 N dza ’7T_
<<I)mfl,n|q)mfl,n> Ap= éz 1—5 Z—aziEI (mod 27). (66)
(M—m-+ 1)( m—n+ E m—n— E) m This number is 0 otr for bosons or fermions. The number of
B 2 2 states available tb | spinons, determined by counting the
1 1 number of distinct symmetric polynomials of the form
(M—m+§ (m—n)? m+ 5
Dy, 2 (Zas o Z(n-y2)
(62) 1 1
(N=1)12
From.Eqs.(Gl) and(62) one gets the formula for the squared = 11 (Zi—za) X X(zj—2a) (67
norm: i
M ! r ! r > ©
(B D y=C I N R o [(NI2F12
mnl = mn, M T Fz[m—n+1] N| = | . (68)
1 This is just halfway between the numbers
I''m+1]' M — m+§
- [N/2 N/2+1
X 3 A[Iferm|:( ) Nlbose: ' (69)
Fm+§ I'M-—m+1] I I
likewise calculated assuming that the number of states avail-
ot F[M—n+1] able for one particle iN/2.
2
X 3 (63 VI. PROBABILITY ENHANCEMENT
'n+1''M—n+ = ) _ )
2 In this section we provide one of the key results of our

¢ study: the analysis of the interaction between two spinons.
First, we properly define the real-space representation for the
two-spinon relative wave function. Then, we study the be-
havior of the corresponding amplitude as a function of the
spinon separation. Here we construct the real-space wave
function for a spinon pair and we show that our results pro-
The ¥, are eigenstates ok? Indeed, a manipulation vide clear evidence for spinons being interacting particles.
similar to the one-spinon case yields The real-space representation for the two-spinon wave
functions corresponding to the energy eigenstabe, ),
ZaZgPmn(Z4/2p), is defined by the decomposition of the
state of two localized spinons af, and zz, |\Ifa3), in the

Equation(63) basically agrees with the result quoted in Re
17, although we derived it by making direct use of the op-
eratorHyg (see Appendix E

C. Spin current

N—2
Az|q,mn>:[T_m_n} |\Pmn>! (64)
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10' 1
K c=—=-—m+n, b=§, a=-—m+n.

[Pmal€®)? |
The solution is a hypergeometric series whose regular solu-
tion stops at a power afgiven byz™ ", thus becoming the

“hypergeometric polynomial”

% 2z o /2
0 0
FIG. 4. Left panel: square modulus of the two-spinon wave Prr(2) = I[m-n+1]
function as a function of the separation between the two spinons for r 1 rlm— 1
N=1000. Right panel: the same plot on a log-log scale. The dashed 2 m-—n-+ 2
line is a guide to the eye. It is a plot ofXLivith an appropriate
offset[ z=exp(6)]. 'l k+ 1 F{m N—k4 1
m-n A —n—- A
2
basis of the fully polarized two-spinon eigenstates X kZO T[k+ 1T [m=n—K+1] . (79

Prn (70 The value of the spinon wave function at zero separation

. ' _ . _ between spinons can be computed by means of general iden-
|®mp is an eigenstate of{,s with eigenvalueEy,,. This  tities among hypergeometric serfésit is given by
implies

M m
Za
\PaB: 2 2 (_1)m+n2222pmn<z_ﬁ

m=0 n=0

(P rn Hitsl ¥ ap) = Emik Ponel W ) - (71 Prmn(1)=T[1/2]T[m—n+1)/T[m—n+1/2]. (75

From Eq.(49) we see that® | Hpg| ¥, 5) can be written as
a differential operator acting ot |V ,z5). ¥,z is per-
fectly defined for any, , z; on the unit circle, so the differ-
ential operator acts on the analytic extensior{@tnn|\1faﬁ>

According to Eq.(74), |pmn(2)|? is the density of prob-
ability for two spinons as a function of the distance between

them.
as The interpretation of our results is straightforward.
3202 Spinons do actually behave like real particles. Indeed, we
D il Hitd W 0 s) = Ea P Vo) + = _) have been able to determine a differential equatiorpfgy,
(Pl Hus p)=Eesl il ) 2\ N which for the two-spinon wave function is the same as the

J P Schralinger equation for a pair of ordinary particles. The
X { ( M—z ) interaction between spinons is clearly shown in Fig. 4, where

“oz,) %oz, 2 | i
a a we plot|pmn(2)|*. At large separations, the probability den-
9 P sity oscillates and averages to 1, independently on the dis-
+| M —zﬁ—) Zg— tance between the spinons. This is a typical feature of non-
dzg) " dzg interacting particles. Indeed, at large separations spinons are
12,424 9 9 in fact nonintera.c_ting. However, at small separatidpg,|?
- = 2y~ g shows a probability enhancement that corresponds to a huge
2z,~25\ “9z, dzg

increase of the probability of configurations with the two

><<<Dmn|‘1’a3>- (72) spinons on top one of each other. The enhancement is high-
est at a relative spinon momentum of Such features are

In the differential operator in Eq72) we recognize the sum clear evidence for the interaction among spinons, which can

of the energies of the two free spinons and a velocityhe characterized as followét) It is attractive: it favors con-

dependent interaction that diverges at small spinon separggurations with spinons on top one of each other, &3t

tions. Equatlon(72) allows for determination of the exact is short ranged: Spinons are free at |arge distance®l Qs[s

expression opy,(z,/2). Indeed, by using Eq$70)—(72),  |arger, the probability enhancement peaks'Uplence, the

we find the following equation fopy,(2) (z=24/2,): enhancement safely survives the thermodynamic limit, even
though in this limit, the energy for the two-spinon solution is
d’ppn 1 3\ [ dpmn the sum of the energies of the two isolated spinons. How-
2(1-2) 47 Tl —mEn=| —mtn+5jzi— o ever, the attraction is not strong enough to create a two-
spinon bound state, even in the thermodynamic limit. This
m—n corresponds to the absence of a low-energy stable spin-1
+Tpmn:0- (73 excitation, which is a typical feature of 1D spjnantiferro-
magnets.
This equation is a special case of the hypergeometric The attractive force may also be inferred from the energy
equation® where the parametersb,a are given by eigenvalue if we rewrite it as
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7T2 > — * VKX
Huel @) =1 =3 57| N+ | +Eq, +Eq, S, =2 (Z)NSi—iS)) (g=2wk/N). (79
+V ] | ) A peculiar property of the HSM is that a spin flipat is the
Am—dn m : . .
same as a spinon pair at the same %it€herefore, we can
72 5 fully decomposeS, W¢s in the basis of the two-spinon
= _J(ﬂ (N+N +E(CIm,Qn)]|<Dmn>, eigenstates:
(76) ; M m
— — * — m+n
Where SqWos= 2 (Z) Wau=N 2 3 (=1)™ "pmy(1)
y X o(m+n—K)d,,. (80
Vq:_‘]ﬁ|q|- (77) mn

_ ) ) The susceptibility is given by
Note that this potential vanishes Bls—~, as expected for
particles that interact only when they are close together.

— 2
However, as we already pointed out, the vanishing of the X (w)=2 |<X|Sq Vo9l 2(Ex—Egy)
interaction potential in the thermodynamic limit does not " X AXIXNWed¥es) (w+in)2—(Ex—Egg)?’
mean that no residual effects survive such a limit. The prob- (82)

ability enhancement when the two spinons are on the same

site does survive the thermodynamic limit and it is the main(|X) is an exact eigenstate @f,,5 with energyEy). Then,

reason for the instability of the spin-1 spin wave, as we disfrom Egs.(80) and(81) we have thaj,(w) takes a nonzero

cuss at length in the next section. contribution only if|[X)=|®,». Then, Eq.(81) becomes
Before concluding this section, we provide the expression

of the coefficientsb"" in Eq. (59). From Eq.(74) it is M m (Do B )
straightforward to prove that =N2 T n2 (1
g p Xq(w) mE:O “~ <\I,GS|\I,GS> Pmn(1)
1 1
i+ ''m-—-n+I1+ 2 2(Enn—E
g LIm—n+21+1] 2 { 2 X S(M+ N K)—— (Zmn cs) y
| _r 1. ops L [[1+1] T[m—n+I1+1]" (0+i7)°—(Emn—Egs)
2| MmNty (82
(78

Equation(82) is another relevant result of our work. It shows

that only thep,(z)’'s atz=1 determiney,(w). Therefore,

the spin susceptibility is completely determined by spinon
In this section, we work out the dynamical spin suscepti-interaction.

bility for the HSM. We show that the DSS depends only on  Let us analyze the thermodynamic limit of E§2). In the

the py,n's calculated az=1, which allows us to obtain for thermodynamic limit the gamma functions can be approxi-

any finiteN a simple closed-form expression for the DSS andmated by using Stirling’s formula:

to relate it to the spinon interaction. By carefully taking the

thermodynamic limit of our result, we obtain the Haldane- ~ _1\(z-12)a—(z-1)

Zirnbauer formula for the DSS in the thermodynamic liffit. Iiz] Vm(z=1) € ’ ®3

The Haldane-Zirnbauer formula shows that there is no low ; ;

energy spin-1 pole in the DSS, but the function takes a shar]:rc}m Eqs(63), (79, and(83) we get in the thermodynamic

square-root singularity at the two-spinon threshold on top o

a branch cut, corresponding to the lack of integrity of the

VII. SPIN SUSCEPTIBILITY

spin-1 excitation. Our analysis definitely proves that the 2<q)mn|q)mn> 2 (1)
square-root sharp edge on top of the broad spectrum is noth- (VedV¥se Pmn

ing but the interaction between spinons. The probability en-

hancement is the square-root singularity in the spin suscep- WN( m—n+3
tibility. This result is of the utmost importance, since it 2

represents a way to experimentally test the interaction among = . (84
spinons in one dimension. We will come back to such a point \/n(M —n) M —m— E)
in the concluding remarks. 2

Let us begin with the calculation of the spin susceptibility
for a finite lattice. The DSS is the dynamical propagator forSince the joint two-spinon density of states is flat, the sums
a spin-1 spin flip. A spin flip with momentuipis created by  overm andn become integrals over th@alved one-spinon
acting on|¥ g with S, , defined as Brillouin zone

1
m+ -
2
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2 d VedSi'S, | ¥
D _}_MJ daa 85) 2 ):< eSS, [Wes)
m —ml2 T “ (Yed¥ey
& S men (@ P
From Eqs.(83)—(85), we see that Eq82) turns, in the ther- = E_O ZO (z,) mpmn(l)- (88)
modynamic limit, into the Haldane-Zirnbauer formula for the m=on= esm e
DSS(Ref. 14: Equation(88) is the formula we have plotted in Fig. 1.

VIIl. CONCLUSIONS

) J (w2 g ay la;—q,|8(a,+9,—q) In this paper we developed a simple approach to the study
Xq(w)= EJ QJ a2 of spinon excitations of the Haldane-Shastry model, based on
2 e VE(a1)E(d2) the formalism of the analytic variables. Within our approach
2E(qy,0,) we picture spinons as local defects in the disordered sea. Our
1:42

, (86)  formalism allows for a consistent real-space representation
(w+i7)>—E*(q1,0,) of the wave function for two spinons. We construct the
Schralinger equation, whose solution is the two-spinon
wave function, which shows that spinons behave as real
whereE(q) andE(qy,d,) are the one-spinon and the two- gquantum-mechanical particles. By means of a careful study
spinon energies, respectively. Integration oger d, in Eq.  of the real-space two-spinon wave function, we reveal the
(86) provides main result: the existence of spinon interaction and its sur-
vival in the thermodynamic limit. Spinon interaction is a
short-range attraction that generates an enhancement of the

Xq(®) probability for two spinons to be at the same site. Such an
interaction determines the low-energy physics of 1D interact-

I 0[wy(q)~w]Oleo—w_1(4)]O[w—ow.1(q)] ing antiferromagnets. Since the low-energy joint density of
T4 Jo—o_1(q)Jo—o.,1(q) ' states is uniform, the broadness in the spectral density is

exclusively caused by the enhancement, as we show from the
(87)  finite-N expression for the spin susceptibilitgec. V1. In
the thermodynamic limit the probability enhancement devel-
. ops a square-root singularity followed by a branch cut, which
wherew_,(q) andw.4(q) are the threshold energies for a jg yhe proadness in the spectral density of states. The branch
spinon pair with momentung, according to whether€q ¢ reflects the instability of the spin wave towards decay
<7 or w=<q<2m, respectively. They are given by inig a spinon pair. Then, we show that even though in the
w_1(q)=(I/2)a(7—-q), w.1(q)=(I2)(27—0q)(d—m).  thermodynamic limit the interaction is irrelevant, its main
w2(q) =(I/2)q(27—q) is the upper threshold for the spin-1 effect, the probability enhancement, peaks up. In conclusion,
excitation. From Eq(87) we see that the enhancement givenwe analyzed spinon interaction in an exact solution of the
by pﬁm(l) has turned into a square-root singularityi( w) Haldane-Shastry model and its consequences for the low-
vs w at fixed g, with the branch cut originating either at energy physics of 1D spik-antiferromagnets.
w_1(q) or atw, 1(q), depending on the value of Because
the two-spinon joint density of states is uniform, the main ACKNOWLEDGMENTS
conclusion we trace out from our calculation is that the

branch cut inyq(w), i.e., the broadness of the spectral den- This work was supported primarily by the National Sci-
sity of states, is the spinon interaction. ence Foundation under Grant No. DMR-9813899. Additional

support was provided by the U.S. Department of Energy un-
ier Contract No. DE-AC03-76SF00515 and by the Bing
oundation.

A measurement of,(w) in 1D spin4 antiferromagnets
can be performed by means of neutron-scatterin
experiments? The result of the measuremetitsloes, in
fact, show a sharp threshold followed by a broad spectrum,
in good agreement with predictions of E&7). In light of APPENDIX A: FOURIER SUMS
our present discussion., we qonclut_je that what Is actually In this appendix we will prove some of the formulas we
seen in such an experiment is a direct consequence of thuesed throughout the paper. Since the lattice sifeare roots
spinon interaction in 1D antiferromagnets. Hence, the experi-

ments provide evidence that spinons do interact and that th%]c unity we have

spinon interaction is what determines the peculiar low- N
energy physics of spig-antiferromagnetic chains. oV oN_
From Eg.(80) we also derive the formula for the spin- 1;[ (z=z,)=2"~1. (A1)
spin correlation functiony(z,) in terms of the two-spinon
wave function az=1: Then for 0=m=<N we have
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FIG. 5. Contours used in Eq6A2) and (A3).

P4

-1

Zm
a=lza_1
N z" 1dz
2mi Je(z—1)(2N-1)
N é z"1dz
2 Jer(z—1)(N-1)
N
T2
m—1 m—1 5
+ + +
y % 1 1 X 2 x dx
N\ (N NY 2
+ + +
1)\ 2/ X g )X
CN+1 -
=5 -m (A2)
and
y z
a=1 |Za_1|2
N—-1 Zm+1
 E (g1
B N % z"dz
27 Je(z-1)A(N-1)
B N % z"dz
2mi Jer(z—1)4(N-1)
1
2w
m—1 m—1 5
+ + +
Xé’ el Pl o X dx
N\ (N NY 3
+ + +
2] 3%
N°—1 m(N—-1) m(m—-1
= _m )+ ( ). (A3)

12 2 2

(Integration contours are shown in Fig) 5.
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APPENDIX B: CALCULATIONS OF THE COEFFICIENTS
AL

In this appendix we work out the coefficierds that ap-
pear in the eigenvalue equations for the eigenfunctions of the
HSM are defined as

N—-1 22
A|:—a§=:l (Z——C]V_)Z_I. (Bl)

They can be computed by using the equations from Appen-
dix A. In particular we have

N—-1
Z2

a=1(2,—1)%'
<  Z. _(N-1)(N-5)
12 '

Erlz-12

A= —;1 2(z,—1)'7%=0, (1>2).

(B2)

APPENDIX C: THE SPIN CURRENT

In this appendix we provide the physical interpretation of

the operator/i, as the spin-current operator. In order to do
so, we first construct the continuous interpolation of the lat-

tice spin field, given by the spin-density operai¢e). Then,
we define a current density on the unit cirq’f(ez). We prove

thatﬁ andf obey an equation, which once restricted to the
lattice, takes the form of the continuity equation for the spin
density. The operatoﬁ comes out to be the global operator
whose density is given by(z).

The first step of such a construction is defining the field
interpolating the spin operators into the interstices by means
of the formula

N

>

B

ZN/2_ a N/2

2N

->

z+z
B
Sg.

B

a(z)= (Cy

zZ— Z,B

Then we can associate ﬁ)(z) a “o model-like” Hamil-
tonian given by

1 do| | do|dz
24 | |%az| | %dz| z
N g & 2
2 S.Ss 3 S
——— > =T L Z(N-1)+—, (C2
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where the integral is performed over the unit circle. Ep) N2 N 2222,
gives the Haldane-Shastry Hamiltonian plus an irrelevant [Q , Vssl(zh, ... .2u)= m b _’8 =
constant and an operator that commutes with it. =0 (1" p#a Za=2p
We also have spin-density and spin-current density opera-
tors P y P ¥ op a_l[\l,GS(Za! e !ZN/Z)]
0z Zy
p(2)=—id(2)xa(2), Nz, 1
- -2\ 5+8S;,
p7a Za—2Zg 2
- 1. do do 1 N—1
j(Z)—E[UX ZE}—{ dz XO'J (C3 X §+S§3 +T}

Thatp(z) is an appropriate definition of the spin density may XWed(zy,....zw)=0 (D2

be seen by taking the limit—z,, z, being a site on the
lattice. One gets for all «. However sincéV ) is a spin singlet the irreduc-
ible representations of the rotation group present in this op-
R R erator must destrojW ) separately. The scalar component
lim p(2)=S,. (C4  is identically zero. The vector component is

z—2Z,

N

That f(z) is a proper spin current can be inferred from the +33]|‘1’Gs> 0. (D3)
continuity equation B*a
- N . Since| ¥ g is also its own time-reverse it must be destroyed
lim zﬂ+ E Sa~S,32'5 —0. (C5) by the time-reverse of the vector operator, i.e.,
z—2, dz a#p |Za_zﬁ|
N *
The zero-momentum component of this conserved current [|(S ><SB)+SB]
density is b7 Z,—7;
N
Zg
1 [ .dz . =—§ - [.(s XSg)+Ssl. (DY)
— ¢ [—=A. (C6) pra

2i z

The difference of these is the trivial operatﬁgxs and
The operatoV\ is then a scaled spin current. Its action on thetheir sum is ZD
state with a fixed number of propagating spinons, E28S), We prove, now, the factorizability dfs. In order to do
(40), and(64), is definitely consistent with such an interpre- 5o we need the following identities:
tation.

N
APPENDIX D: FACTORIZABILITY OF  Hys > [i(SxS,)+8]-D,= > [iS-(S,xD,)+SD,]
In this appendix we will prove the factorization formula, 3
Eqg. (20). In order to do so, we split the proof in two steps. =_S.A, (D5)
2

First, we will show that the operatdﬁa annihilates| ¥ sg),
then we will prove the factorization equation. Let us begin
with the first proof. The operator N

> [i(SxS,)+S]-[i(S,xS)+8]= ;[N—l]sz,

(D6)
+ zZ_, Z |
Q,= /;a 7z, S S| St )| St
N - -
N-1 1 Ss-S, 1, 3
———| S+ =- -5+ =N
2 (S“ 2” (b1) ﬁg#a (Zh—25) (24— 2p) 2 8
Y S,.-S

annihilates ¥ ). Indeed, by using the technique we devel- 2> = B . (D7)
oped in Sec. lIl, we find a7 |2,~ 2|7
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Y888
2
a#ﬁ#’y(za_zy)(za_zﬁ)

N V4
:|2 a4 §

N
_i ( t2y
2 a#B#y Za_z'y
(D8)
By putting together the identity
[1(SexS,)+S,1T-[1(S,x Sp) +Sg]

(2, —Z3) (24— 2p)

N N
> 2
Fa yFa

>

AeN

N 3 3
=2 DD+ 55 A+ g(N-1)S? (D9)
and the identity
[—i(SaXS,)+S,]-[1(S,x Sp) +S4]

(ZZ_Z’;/)(Za_ZB)

1

N
BFa yFa (24 —23)(2,—2p)

X[S, - Sp+iS, (S, % Sp)]
SZ
2

3 S.-Ss N(N?+5)
= — 3 + _
2| 7B |z2,— 24 16

+S-A

(D10)

the proof is complete.
Since(®|D!-D,|®) is nonnegative for any wave func-
tion |®), this provides an explicit demonstration thdtg )

PHYSICAL REVIEW @ 024425

M M M
V. (zg, ... ’ZM):H (Z“_Zj)iE[j (zi—zj)ZH z.
(E2
W, is of the form® , X ¥ s, where® ,=11)"(z,~z).
We will prove the formula for the norm of the state ),

Eq. (46), by mathematical induction. In order to do so, let us
define the symmetric operator

el(Zl, ...,ZM)=21+"'+ZM. (E3)

For any wave function of the ford X Vg, where® is a

symmetric polynomial with degrees less thBr-2M +2,
we have

J(2m\?

HHS(D‘I'GSZEGS‘D‘I’GS+§ N Vs

« 1
2

N—3z 1%
2 i Zj(?ZJ'

2

52 z
2 Z]2—2+42
J

i J
9zt [Fk gL 97

D, (E4)

and thus

Huse1PVis— e Hys®PVes

J[2m\2 9 N-=3
_- (= 2~ L =
_Z(N) \I’G{ZZ + > e

d.
Tz

(E5

From the definition ofP , one then obtains

M
> 20 _ (E6)
j ! (92] @

J
2
el+MZa—Zaﬁ—ZLj(ba.

is the true ground state. The annihilation operators and thefequation(E6) implies the following identity for¥ -
equivalence tdHys when squared and summed were origi-

nally discovered by Shast.They are lattice versions of Ecs
the Knizhnik-Zamolodchikov operators known from studies | H— 3272/N2 [e1¥m]=[M(M—m)+M][e;¥p]
of the Calogero-Sutherland model, the 1D Bose gas with (J27°)

inverse-square repulsiof%?1® +[M—=(m-1)]¥,,_;.

(E?

['H is the scaled Hamiltoniart{="H,s/(J272/N?)]. Then,
the following identity chain is proven:

APPENDIX E: THE NORM OF THE STATES

In this appendix we provide the proof of the formula for
the norm of the one-spinon and of the two-spinon eigen
states. Throughout this section and the following one, we

will make use of the scalar product between symmetric poly- (M=1)(M=m+1)(Wp_|e;| V)

nomialsf(z,, . ..,zy) defined as E
=<~1fm_1 He s [elwm]>
(fly= 2z, ... 2w0(z1, ... 2w). (ED (2
A =[M+m(M—m) (¥ ,_qfe| V)

Let us begin with the one-spinon eigenstates. The state for
one spinon in coordinate space,(z;, ...,zy) has been
defined in Eq(29), in the oddN casg M =(N—1)/2], to be

+F(M=—m+ 1)V 1| V1), (E8)
thus, Eq.(E8) implies the identity
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M-m+1 N \M [dz dzy z\?
(W sV = = (W[ W), cu=lom] P § U [1-2)
2(M—m+§ el Zl ZM i #] Z]
2M)!
(E9) :NM( M) _ (E15
In order to determine a suitable induction relation, let us 2
introduce the operator Equations(E14) and (E15 complete the proof.
Now we work out the formula for the two-spinon eigen-
em(zy, ... Zm) =2y - Zy . states. In this cas®l =N/2—1 and Eq.(E5) becomes
Clearly HedVgs—eHOPWgs
1 1 =y 2 z ~le,|®, (E16
em(z, -..,ZM)eM(Z_, ...,Z—)Zl. (E10 GS{ ! t?Z] 2/t
1 M

where again we work with the Hamiltonian in scaled units.

Since all the¥,’s are products of the ground-state factor Equation(E6) now becomes
Vs times a symmetric polynomial of degrees less than 2in wm

each variable, we have E z ‘ D,5=2[e;D 4]
(Uin-aleg| V) =([efy W mlledl[enVm-11) , d ,
+|Mz,—z,—+Mz;—25,—|D
=(Uy-ml€|¥m-mi1)- (E1D Za” 2 Z, 28~ % 325} “p
At this point, we use again EqE9) in order to write Eq. (E17)
(E11) as where the staté,; has been defined in E¢48). Hence, by

letting e; act onto the two-spinon eigenstabg,,,, we obtain

m
(Ty-melVm-mi)=——7T———AYu-mlPv-m _ﬁ _ _§
2<m_ %> s (€10 ] = | Aot M= 5| (€10 ]
_ J
1 (V| V). (E12 _J:1 Zl(?
o|m-3|
2 s (@M ()

. . ) ) 2 a N N
Equation(E12) closes the induction relation k a,f=1

d J
1 _ 2 7 2 7
(m——)(M—m+1) 2[e1\I'a5]+( Mz,— 22 ZaJerrg ZB&ZB)
(V| W) 2
W W (E13
m-1lPm-1 m<M_m+§ XW ., (E18)
o which implies
The formula generated by recursion is
Fos Aot M+ = ey
1 BN 5] |8
(J—§)<M—j+1> Sl
<\Pm|q}m>: H CM
= 1 - mn —m—
j=i,.m j(M_m+j+_ Ekak ([M m—k+1]
1 1 m+k—1,n—k
I[M+1]r|m+ > F[M—m+§ X2 bj Prnke 10t
= CM'
1 +[M—n+k+1
I M+ 5 |Tm+ 1T (M —m+1] [M=n ]
(E14) X; b D ko1 ( - (E19)

The constanC,, is expressed in terms of Wilson's integral [See Eqgs(54) and (78) for the definition of the coefficient
as ay", by and Eq.(58) for the definition of\ ,,.]
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Let us now take the scalar product of both sides of Eq.

i . <q)m,n—1|e1|q)mn> _ <(I)M—n,M—m|e1|(DM—n+1,M—m>
(E19 with ®,_; ,. The result can be recast in the form

<q)mn|q)mn> - <q)mn|q)mn>
<q)mfl n|ellq)mn> M-m+1 n
’ =— . E20 - _
<q)m—1,n|q)m—1,n> 1 ( ) - 1\ (E24)
2 2
On the other hand, by taking the scalar producthaf, 1 Hence, the proof is given by the following induction rela-
with both sides of Eq(E19), we obtain: tions:
()\m,nl_ Apn—M— %) <q)m,nfl|el|q)mn> (n— E ( M—-—n+ §) (m—n+ 1)2
(Pl P 2 2
D1 Prn1) 3 1\’
-3 aE“{[M—m—k+1] (-1 ®mn-1) n(M—n+1){ m-n+> m—n+§)
K
(E29
X; bjm+kil’n7k<q)m,nfl|q)m+kfl+j,nfkfj> <(Dmn|q)mn>
(P10 P10
+[M—n+k+1]> bIrrkn-kt 1 L
i (M=—m+1)l m—n+z|]{m—n—z|m
3 2 2
X(P -1 Py 1) (E21) 1 1
m,n—11* m+k+j,n—k—j—1/ (s M_m+§ (m—l’])2 m+§
which implies the relation (E26
Equations(E25 and (E26) imply
<(Dm,nfl|ellq)mn>
<(I)m,n—1|q)m,n—1> F[m—n+£ I m_n+§
2 2
3 = /
(M—n+ E)(m—m—l)2 (el Prmn) = Cry ryfm-n+1]
- 3 1 ' 1
2 m—n+§ m—n+§ (M—n+1) I'[m+1]r M—m+§
X
(E22 I m+ 3| IM=m-+1]
In order to complete the proof, we need two more identities
that can be proven in the same way as we did for(E4.3): 1
(@ ey @) r n+§F[M—n+1]
-1nl€1
w:<(I)an,Mfm|el|q)an,Mfm+l> x 3] (E27)
(Ponel Prue) F[n+1]r|M—n+>
1
m-+ ) (m—n)? and the constant,, is now given by
- , i 1)’ 1
mnimmnz M(ZM)!M+§
Cu=N (E28
(E23 2M T
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