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Coordinate representation of the two-spinon wave function and spinon interaction
in the Haldane-Shastry model
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By deriving and studying the coordinate representation for the two-spinon wave function, we show that
spinon excitations in the Haldane-Shastry model interact. The interaction is given by a short-range attraction
and causes an enhancement in the two-spinon wave function at short separations between the spinons. We
express the spin susceptibility for a finite lattice in terms of the enhancement, given by the two-spinon wave
function at zero separation. In the thermodynamic limit, the spinon attraction turns into the square-root diver-
gence in the dynamical spin susceptibility.

DOI: 10.1103/PhysRevB.64.024425 PACS number~s!: 75.10.Jm, 75.40.Gb, 75.50.Ee, 05.30.Pr
sic
r

-
ina

s
e
n
ld
ot

1D
h

he
ne
f
er
or

e-
ut

f t
b

b
io

ac
r-
iu

a
y
is
o

n,
at-

se-
ge-
are

the
li-
are
as

is
the

pin
ot

ond-
in-1

ve
ep-
f
be
on-
ec-

ns

of
k of
sin-
on
of

onal
tra,

be
the
that
ed

ce,
I. INTRODUCTION

One of the most important issues in contemporary phy
is spin fractionalization, which takes place in strongly inte
acting one-dimensional~1D! antiferromagnets. The first ex
act solution of a 1D antiferromagnet goes back to an orig
paper by Bethe1 about the ‘‘Bethe ansatz’’~BA! solution of
the Heisenberg model~HM!. From Bethe’s solution, de
Cloizeaux and Pearson2 found the dispersion relation of th
low-lying excitations of the HM. Subsequently, Fadeev a
Takhtajan3 discovered that, at odds with what one wou
expect, the elementary excitation of these systems is n
spin-1 spin wave, but a gapless ‘‘spin-1

2 spin wave,’’ later
named a ‘‘spinon’’ by Haldane.4,5

Spin fractionalization is a general phenomenon in
spin-12 antiferromagnets.6 The large-scale physics of suc
systems is given by ‘‘spinon gas’’ dynamics.5 Therefore, in
this paper we will focus on a particular model, where t
excitations are easier to visualize, that is, the Halda
Shastry model~HSM!,4,7 where spins-12 located at the sites o
a circular lattice antiferromagnetically interact and the int
action is inversely proportional to the square of the ch
between the two sites.

Fully polarizedN-spinon eigenstates of the HSM are d
rived by means of a correspondence with the spinless S
erland’s continuum version of the model8 and are param-
etrized in terms of BA-like ‘‘pseudomomenta.’’5 Once the
energy of the many-spinon state is expressed in terms o
pseudomomenta, in the thermodynamic limit it appears to
the sum of the energies ofN noninteracting particles.10 How-
ever, this does not imply the absence of an interaction
tween spinons, which is encoded in the BA-like equat
defining the pseudomomenta.5,9

In this paper we carefully investigate the spinon inter
tion in an exact solution of the HSM, by employing a fo
malism based on analytic variables on the unit rad
circle.11 By using real-space coordinates, the spin-1

2 excita-
tions become easier to construct and visualize than by m
ing use of plane waves.12,10 The formalism can be easil
generalized to the study of other models. Such a formal
allows us to write a ‘‘real-space’’ representation of the tw
spinon wave function.
0163-1829/2001/64~2!/024425~18!/$20.00 64 0244
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By analyzing the real-space two-spinon wave functio
we show that spinons scatter by means of a short-range
tractive potential and analyze in detail the physical con
quences of the existence of this potential. The short ran
ness of the interaction makes spinons free when they
widely separated. However, from the exact solution of
Schrödinger equation for two spinons we find that the amp
tude of the wave function is greatly enhanced when they
on top of each other, a phenomenon that we refer to
‘‘probability enhancement.’’ While the density of states
uniform at low energy, probability enhancement causes
overlap between the wave function for the localized s
wave and that for the spinon pair to be significant, but n
enough to create a two-spinon bound state. The corresp
ing matrix element is enhanced so as to make the sp
excitation unstable.

Physical consequences of the instability of the spin wa
appear in the functional form of the dynamical spin susc
tibility ~DSS! xq(v). The DSS is the Fourier transform o
the spin-spin correlation function. Its functional form can
experimentally tested by means, for instance, of neutr
scattering experiments, the probed quantity being the sp
tral density of states 1/p Im xq(v).13 A system with a stable
spin-1 excitation would show a sharp pole in Imxq(v) at the
corresponding dispersion relationv5v(q). On the other
hand, instability of the spin wave against decay into spino
will generate a branch cut in Imx(q,v) at the threshold
energy for the creation of a spinon pair, which is a signal
the opening of a decay channel, corresponding to the lac
spin-wave integrity. Consequently, a sharp square-root
gularity shows up at the threshold for the creation of a spin
pair, on top of the broadening in the spectral density
states. Experiments performed onto quasi-one-dimensi
antiferromagnets provide clear evidence for broad spec
while no sharp spin-1 resonance has been seen.13

An exact calculation of the DSS cannot, in general,
performed, even for models exactly solvable with the Be
ansatz. However, the HSM has the remarkable property
the wave function for a spin-1 excitation is fully decompos
in the basis of the two-spinon eigenstates.14 This allows us to
write an exact expression for the DSS even for a finite latti
©2001 The American Physical Society25-1
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thus letting us explicitly show the relationship between
probability enhancement~Fig. 4! and the DSS.

The paper is organized as follows: In Sec. II we shor
review the HS Hamiltonian and its symmetries; in Sec.
we introduce the ground state of the HSM and its repres
tation as a function of analytic variables on the unit circle.
terms of the analytic variables, the ground state takes
same functional form as the fractional quantum Hall wa
function that corresponds to a nondegenerate disordered
singlet. We discuss at length several properties of the gro
state, how to derive the corresponding energy, and the m
ing of the disorder in the ground state. In Sec. IV we anal
the one-spinon solution and derive its relevant properties
Sec. V we focus on the two-spinon solution. We derive
energy eigenvalues, the corresponding eigenvectors,
their norms. A discussion about spinon statistics is provid
at the end of the section. The original derivation of the
sults in Secs. III, IV, and V is mainly due to Haldane a
Shastry.4,7,5 Our formalism allows for a simple derivation o
those results, which we discuss at length in Secs. III, IV, a
V; Secs. VI and VII contain the key results of our work.
Sec. VI we write the Schro¨dinger equation for the two
spinon wave function, whose solutions are hypergeome
polynomials. From the behavior of the two-spinon wa
function, we infer the nature of the interaction betwe
spinons: a short-range attraction. The physical conseque
of such an interaction are discussed at length in Sec.
where we derive an exact closed-form expression for
dynamical spin susceptibility in terms of the two-spin
wave functions and rigorously prove that the DSS is fu
determined by spinon interaction. In the thermodynam
limit spinon interaction turns into the square-root divergen
in the DSS. In Sec. VIII we provide our main conclusions

II. HALDANE-SHASTRY HAMILTONIAN

The Haldane-Shastry model4,7 is defined on a lattice with
periodic boundary conditions. LetN be the number of sites
Let za , with za

N51, be a complex number representing

lattice site on which a spin-1
2 electron resides, and letSW a be

a Heisenberg spin operator acting on that electron.
Haldane-Shastry Hamiltonian takes the form

HHS5JS 2p

N D 2

(
a,b

N
SW a•SW b

uza2zbu2
, ~1!

whereJ is the coupling strength. The interaction is an an
lytic function of the coordinates. This is related to the pro
erty of a complex variablez laying on the unit circlez*
5z21, which implies

1

uza2zbu2
52

zazb

~za2zb!2
.

The representation in terms of the analytic variablesza ,
which we will use throughout the paper, proves to be v
useful for describing the properties of spinons in real spa
The Hamiltonian in Eq.~1! is clearly invariant under spin
rotations generated by the total spin:
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@HHS ,SW #50, SW 5(
a

N

SW a . ~2!

It also possesses an additional symmetry generated by a
tor operator independent ofSW :

@HHS ,LW #50, LW 5
i

2 (
aÞb

S za1zb

za2zb
D ~SW a3SW b!. ~3!

The extra symmetry ofHHS is the reason for the exceptiona
degeneracy of the energy eigenstates and does ultimatel
low for the solution of the model,4,7 as pointed out and dis
cussed in Ref. 4. The algebra generated by the two ve
symmetries ofHHS is referred to as Yangian and is discuss
in Refs. 12 and 10.LW can be physically interpreted as th
spin-current operator for the HSM, as we show in Appen
C.

Starting from the next section we will review the prope
ties of the ground state and of the one- and two-spinon
cited states of the HSM. This will allow us to to define th
formalism we will use in order to describe the releva
physical properties of the model.

III. GROUND STATE

In this section we review some of the most importa
results of the HS model, obtained by Haldane and Shastr4,7

Let N be even. We proceed by first giving the representat
of the ground stateuCGS& in terms of thez coordinates and
then proving that it is the actual ground state ofHHS . uCGS&
is defined in terms of its projection onto the set of sta
with M5N/2 spins up and the remaining spins dow
If z1 , . . . ,zM are the coordinates of the up spins, o
defines the state uz1 , . . . ,zM& as uz1 , . . . ,zM&
5) j 51

M Sj
1)a51

N ca↓
† u0&, where u0& is the empty state. The

projections are given by4,7

CGS~z1 ,•••,zM !5)
j ,k

M

~zj2zk!
2)

j 51

M

zj , ~4!

wherez1 , . . . ,zM denote the locations of the↑ sites with all
others being↓. We can imagine the spin system as a 1
string of boxes populated by hard-core bosons, the↓ spin
state corresponding to an empty box and the↑ spin state
corresponding to an occupied one. The total number
bosons is conserved, as it is physically the same thing as
eigenvalue ofSz. Let us, now, review the main properties o
CGS(z1 , . . . ,zM).

A. The norm of CGS

CGS(z1 , . . . ,zM) is a homogeneous polynomial of de
greeN21 in the variablesz1 , . . . ,zM . Its norm can be com-
puted by using the following identity:
5-2
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CM5 (
z1 ,•••,zM

)
i , j

M

uzi2zj u4

5S N

2p i D
M R dz1

z1
. . . R dzM

zM
)
iÞ j

M S 12
zi

zj
D 2

, ~5!

where the integrals are calculated on the circle of radiu
The integral in Eq.~5! has been evaluated by Wilson.15 The
result is

S 1

2p i D
M R dz1

z1
. . . R dzM

zM
)
iÞ j

M S 12
zi

zj
D 2

5
~2M !!

2M
, ~6!

therefore

CM5
~2M !!

2M
NM. ~7!

B. Singlet sum rule

We shall prove that the ground state is a spin singlet
showing that uCGS& is annihilated by bothSz and S2.
SzuCGS&50 becauseuCGS& has an equal number of↑ and↓
spins

@S2CGS#~z2 , . . . ,zM !

5 (
a51

N

^z2 , . . . ,zMuSa
2uCGS&

5 lim
z1→0

(
l 51

N21
1

l ! H (
a51

N

za
l J ] l

]z1
l
CGS~z1 , . . . ,zM !50 ~8!

since(a51
N za

l 5Nd l0 , ~mod N!.

C. Coordinate invariance

Spin rotational invariance implies thatCGS is invariant
under the interchange of↑ and ↓ coordinates. More gener
ally, the quantization axis can be taken to be an arbitr
direction in spin space. Denoting the sites complementar
z1 , . . . ,zM by h1 , . . . ,hM , so that

)
k

M

~z2zk!~z2hk!5zN21, ~9!

we have for fixedj

)
kÞ j

M

~zj2zk!~zj2hk!5 lim
z→zj

zN21

z2zj
5Nzj

N21 , ~10!
02442
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)
j ,k

M

~zj2zk!
2)

j

M

zj5N)
j ,k

M
1

zj2hk

5~21!M)
j ,k

M

~h j2hk!
2)

j

M

h j .

~11!

D. Reality

The ground state is its own complex conjugate and the
fore is a real number:

CGS* ~z1 , . . . ,zM !5)
j ,k

M

~zj* 2zk* !2)
j

M

zj*

5)
j ,k

M

~zk2zj !
2)

j

M

zj
12N

5CGS~z1 ,•••,zM !. ~12!

E. Translational invariance

The crystal momentum of the stateq is defined~mod 2p)
by the equation

CGS~z1z, . . . ,zMz!5eiqCGS~z1 , . . . ,zM !, ~13!

wherez5exp(2pi/N). From Eq.~13! it comes out thatq can
be either 0 orp, according to whetherN is divisible by 4 or
not. CGS equals itself, up to an overall minus sign, whe
translated by one lattice constant.

F. Disordered state

uCGS& is a disordered state. The way spin-spin corre
tions fall off with the distance defines whether a sta
of a magnetic system takes order or not. The relev
quantity is the spin-spin correlation functionx(za)
5^CGSuS0

1Sa
2uCGS&/^CGSuCGS&, which can be expresse

in terms of two-spinon wave functions only, as we show
Sec. VII.

One-dimensional systems do not break continuous s
metries, so they are not alleged to order. However, there
substantial difference between half-integer spin chains

FIG. 1. Spin-spin correlation function decay forN560.
5-3
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integer spin ones.6 Both have a disordered ground state, b
the former have excitations above the ground state that
gapless in the thermodynamic limit while the latter have
gap that survives the thermodynamic limit and is given
D5\v/j, where v is the spin-wave velocity of a nearb
ordered state andj is the correlation length. The conse
quence of this is that the falloff of the spin correlations in t
ground state of half-odd spin chains is not as abrupt as
integer spin chains, where the correlations are suppre
within one or two lattice spacings~‘‘Haldane’s conjecture’’!.
Figure 1 shows that the behavior of the HSM is the o
expected for half-odd spin chains. Correlations decay
(21)x/x, according to Haldane’s conjecture.
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G. Ground-state energy

uCGS& is an eigenstate ofHHS with the eigenvalue4,7

HHSuCGS&52JS p2

24D S N1
5

ND uCGS&. ~14!

We trade sums over spins on the lattice for derivative ope
tors that are understood to act onto the analytic extensio
CGS(z1 , . . . ,zM), in which thezj ’s are allowed to take any
value on the unit circle. After computing the derivatives, w
constrain them again to lattice sites. We begin by observ
that @Sa

1Sb
2CGS#(z1 , . . . ,zM) is identically zero unless one

of the argumentsz1 , . . . ,zM equalsza . We have
F H (
bÞa

N Sa
1Sb

2

uza2zbu2J CGSG ~z1 , . . . ,zM !5(
j 51

M

(
bÞ j

N
1

uzj2zbu2
CGS~z1 , . . . ,zj 21 ,zb ,zj 11 , . . . ,zM !

5(
j 51

M

(
l 50

N22 H (
bÞ j

N
zb~zb2zj !

l

l ! uzj2zbu2 J S ]

]zj
D l H CGS~z1 , . . . ,zM !

zj
J

5 (
l 50

N22

(
j 51

M zj
l 11

l !
AlS ] l

]zj
l D H CGS~z1 ,•••,zM !

zj
J . ~15!

The coefficientsAl are evaluated in Appendix B. Their remarkable property is that they are zero forN. l .2. Hence, Eq.~15!
can be rewritten as

(
j 51

M H ~N21!~N25!

12
zj2

N23

2
zj

2 ]

]zj
1

1

2
zj

3 ]2

]zj
2J H CGS~z1 ,•••,zM !

zj
J

5H N~N21!~N25!

24
2

N23

2 (
j Þk

M
2zj

zj2zk
1 (

j ÞkÞm

M 2zj
2

~zj2zk!~zj2zm!
1(

j Þk

M zj
2

~zj2zk!
2J CGS~z1 , . . . ,zM !

5H 2
N

8
2(

j Þk

M
1

uzj2zku2
J CGS~z1 , . . . ,zM !. ~16!
d

In Eq. ~16! we have made use of the rule

za
2

~za2zb!~za2zg!
1

zb
2

~zb2za!~zb2zg!
1

zg
2

~zg2za!~zg2zb!

51. ~17!

We also have

F H (
bÞa

N Sa
z Sb

z

uza2zbu2J CGSG ~z1 , . . . ,zM !

5H 2
N~N221!

48
1(

j Þk

M
1

uzj2zku2J
3CGS~z1 , . . . ,zM !. ~18!

This completes the proof, since
HHS5
J

2 S 2p

N D 2H (
aÞb

N Sa
1Sb

2

uza2zbu2
1 (

aÞb

N Sa
z Sb

z

uza2zbu2J .

~19!

The wave functionCGS(z1 , . . . ,zM) was first introduced by
Haldane and Shastry4,7 in analogy to the exact Sutherlan
solution of the continuum limit of the problem.8 The proof
that this wave function is the actual ground state ofHHS is a
consequence of the factorization of the HS Hamiltonian~first
pointed out in Ref. 16, as we are going to discuss next!.

H. Factorization of HHS

In Appendix D we prove thatHHS can be written as

HHS5JS 2p

N D 2F2

9 (
a

N

DW a
†
•DW a2

N~N215!

48
1

N11

12
SW 2G .

~20!
5-4
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The operatorsDa are given by

DW a5
1

2 (
bÞa

N
za1zb

za2zb
@ i ~SW a3SW b!1SW b# ~21!

and they annihilateuCGS& ~see Appendix D!. Equation~20!
implies thatuCGS& is the ground state of the HSM becau
HHS can be written as a constant plus nonnegative defi
operators, and the only state satisfying the requiremen
minimum energy isuCGS&.

I. Degeneracy

The HSM ground state is not degenerate, but is nearly
We already pointed out that half-odd spin magnets hav
gapless spectrum. In the next sections we will see that
ementary excitations above the ground state are spinons
that their spectrum is relativistic. In particular, at the en
points of the Brillouin zone, the energy becomes the sam
the ground-state energy, modulo corrections that are subl
ing in the thermodynamic limit. This means that, in pri
ciple, one can have many states with the same energy a
ground state that are distinguished from one another by t
number of spinons.

An example is provided by the singlet state of tw
spinons with total momentump. It is given by

CS~z1 , . . . ,zM !5)
j ,k

M

~zj2zk!
2F12)

j 51

M

zj
2G . ~22!

Its energy is given by

HHSuCS&52JS p2

24D S N2
7

ND uCS& ~23!

and is the energy of the ground state plus corrections tha
to zero in the thermodynamic limit.

J. Spin current

We now show thatuCGS& is an eigenstate ofLz belonging
to the 0 eigenvalue. The action ofLz on the ground state
gives

LzuCGS&50. ~24!

Equation~24! can be proved as follows:

@LzCGS#~z1 , . . . ,zM !

5
1

2 (
j 51

M

(
bÞ j

N

zbS zj1zb

zj2zb
D

3 (
l 50

N21
~zj2zb! l

l !

]

]zj
l H CGS~z1 , . . . ,zM !

zj
J

5F2
N

4
~N22!1

N

4
~N22!GCGS~z1 , . . . ,zM !50,

~25!
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where we have made use of the results of Appendix B an
the technique described in detail in Sec. III F.

IV. ONE-SPINON WAVE FUNCTION

At odds with the naive idea that the elementary exci
tions for interacting magnets are integer spin states~spin
flips!, Fadeev and Takhtajan3 first conjectured that one
dimensional half-odd spin chains exhibit excitations carry
half-odd spin, later called spinons.4,5 For a chain with an
even number of sites, the ground state is a disordered
singlet but, if the number of sites is odd, the minimum po
sible value for the total spin is12 . In the thermodynamic
limit, it makes no difference whether one begins with an o
or an even number of sites. The short rangeness of the
relations in the ground state makes it insensitive to
boundary conditions, so in the thermodynamic limit, there
no way to distinguish between chains with an odd or ev
number of sites. States with half-odd spin are then allege
appear as eigenstates ofHHS with an odd number of spinons
In this section we shall present the one-spinon wave func
and discuss its properties. Following Haldane4 we consider a
wave function of the general form

C~z1 , . . . ,zM !5F~z1 , . . . ,zM !)
j ,k

M

~zj2zk!
2)

j

M

zj ,

~26!

wherez1 , . . . ,zM denote the position of the up spins. He
F is a homogeneous symmetric polynomial of degree l
than N22M12 in each variable. This latter conditio
causesC to be a polynomial of degree less thanN11 in
each of its variableszj , and thus allows the Taylor expan
sion technique used for the ground state to be applied. Do
so, we find that

HHSC5
J

2 S 2p

N D 2H l1
N

48
~N221!

1
M

6
~4M221!2

N

2
M2J C, ~27!

provided thatF satisfies the eigenvalue equation forl,

1

2 H (
j

M

zj
2 ]2F

]zj
2

1(
j Þk

M 4zj
2

zj2zk

]F

]zj
J 2

N23

2 (
j

M

zj

]F

]zj
5lF.

~28!

A. One-spinon spin doublet

We look for one-spinon and two-spinon wave functions
the functional form given by Eq.~26!. Here we analyze the
one-spinon wave function. Let the number of sitesN be odd
and let

Ca~z1 , . . . ,zM !5)
j

M

~za2zj !)
j ,k

M

~zj2zk!
2)

j

M

zj ,

~29!
5-5
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whereM5(N21)/2. This is a↓ spin on sitea surrounded
by an otherwise featureless singlet sea. It is worth stres
that Eq. ~29! makes perfect sense for anyza on the unit
circle. Nevertheless, asza coincides with a lattice site, i
represents a spin↓ localized at the corresponding site. Th
spin density of the corresponding state, plotted as a func
of the spinon position, will be uniformly zero, as appropria
for the disordered spin singlet, except for an abrupt dip c
tered atz5za ~see Fig. 2!. Such a dip is what we refer to a
a ‘‘real-space representation’’ of a spinon atza . Hence, a
spinon can be visualized as a local defect in an otherw
featureless singlet sea. This defect behaves like a
quantum-mechanical particle, as we will show in the follo
ing.

By definition, Ca is an eigenstate ofSz with eigenvalue
2 1

2 . In order to prove that it is a spin-1
2 state, we need to

show thatS2 annihilates it. Indeed, per Eq.~8! we have

(
bÞa

N

Sb
2Ca50, ~30!

which proves thatCa is the spin-12 component of a spin
doublet.

B. One-spinon energy

Equation~29! corresponds to a particular choice ofF in
Eq. ~26! given by

F~z1 , . . . ,zM !5Fa~z1 , . . . ,zM !5)
j 51

M

~za2zj !. ~31!

Equation~28!, once written for the stateFa , takes the form

H M ~M21!2za
2 ]2

]za
2

2
N23

2 FM2za

]

]za
G J Fa5lFa .

~32!

The eigenstate ofHHS is given by

FIG. 2. Spin and charge profiles of the localized spinonuCa&
defined by Eq.~29!. The dotted lines are a guide to the eye.
02442
ng
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Cm~z1 , . . . ,zM !5
1

N (
a51

N

~za* !mCa~z1 , . . . ,zM ! ~33!

and the energy eigenvalue is4,7

HHSuCm&5H 2JS p2

24D S N2
1

ND
1

J

2 S 2p

N D 2

mS N21

2
2mD J uCm&, ~34!

with 0<m<(N21)/2 andl5m@(N21)/22m#.

C. Crystal momentum

The stateuCm& is a propagating↓ spinon with crystal
momentum

q5
p

2
N2

2p

N S m1
1

4D ~mod 2p!, ~35!

per the definition

Cm~z1z, . . . ,zMz!5exp~ iq !Cm~z1 , . . . ,zM !, ~36!

wherez5exp(2pi/N). Rewriting the eigenvalue as

HuCm&5H 2JS p2

24D S N1
5

N
2

3

N2D 1EqJ uCm&, ~37!

we obtain the dispersion relation

E~q!5
J

2 F S p

2 D 2

2q2G~mod p! ~38!

plotted in Fig. 3. Note that the momenta available to t
spinon span only the inner or outer half of the Brillouin zon
depending on whetherN21 is divisible by 4 or not. The loss
of half of the states available for a regular fermion is a p
culiar property of the spinon spectrum. No negative ene
states appear, i.e., there is nothing like an ‘‘antispinon.’’ O
can picture a spinon as either an electron or a hole wh
charge has been pulled out by the interaction. According
such a picture, a spinon can arise either from an electron w
the same spin or from a hole with the opposite spin, wh
explains the halving of the Brillouin zone.

FIG. 3. Top: spinon dispersion given by Eq.~38!. Bottom: al-
lowed values ofq for adjacent oddN.
5-6
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The spinon dispersion at low energies is linear inq with a
velocity

vspinon5
p

2
J. ~39!

The half band of single elementary excitations for oddN are
the onlyS5 1

2 states without extra degeneracies. The grou
state of the odd-N spin chain is four-fold degenerate and
given by uCm& for m50 and (N21)/2 and their↑ counter-
parts. This corresponds physically to a ‘‘leftover’’ spino
with momentum6p.

D. Spin current

We now study the action ofLz on the state for one propa
gating spinon. Working as for the ground state one gets

LzuCm&5H N21

4
2mJ uCm&, ~40!

and the eigenvalue ofLz comes out to be proportional to th
spinon velocity

dE~q!

dq
52

2pJ

N H N21

4
2mJ . ~41!

Equation~40! is proven by first lettingLz act on the stateCa
defined in Eq.~29!:

@LzCa#~z1 , . . . ,zM !

5
1

2 (
j 51

M

(
bÞ j

N

zbS zj1zb

zj2zb
D (

l 50

N21
~zj2zb! l

l !

3
]

]zj
l H Ca~z1 , . . . ,zM !

zj
J

5
1

2 H 2M ~N22!12(
j 51

M

(
iÞ j

M
zj

zj2zi
12(

j 51

M
zj

zj2za
J

3Ca~z1 , . . . ,zM !. ~42!

After taking M5(N21)/2 one gets

@LzCa#~z1 , . . . ,zM !5H N21

4
2za

]

]za
J Ca~z1 , . . . ,zM !,

~43!

which, on the basis of the statesuCm&, gives the result
quoted in Eq.~40!.

E. The norm

The squared norm ofCm is defined as

^CmuCm&5 (
z1 ,•••,zM

uCm~z1 , . . . ,zM !u2. ~44!

By means of a simple algebraic procedure, we generate
recursion relation between̂CmuCm& and ^Cm21uCm21&.
Such a procedure can be straightforwardly extended to
02442
d

a

e

norm of the multiple-spinon states. We discuss it at length
Appendix E. The induction relation is

^CmuCm&

^Cm21uCm21&
5

S m2
1

2D ~M2m11!

mS M2m1
1

2D . ~45!

This recursively gives

^CmuCm&5

G@M11#GFm1
1

2GGFM2m1
1

2G
GF1

2GGFM1
1

2GG@m11#G@M2m11#

CM ,

~46!

whereCM is the overall constant we have introduced in E
~5!.

V. TWO-SPINON WAVE FUNCTION

Let us now focus on the two-spinon state. Spinons ma
tain their integrity when many of them are present. This do
not mean that spinons are noninteracting. They can be s
rated at large distances, therefore being asymptotic state
the system. However, they also scatter strongly off e
other by means of a short-range attractive potential. The
teraction between spinons is not enough to create two-sp
bound states, but it generates a peculiar ‘‘piling up’’ of t
relative wave function when the two spinons are on top
each other~Fig. 4!. This is the reason for the huge deca
amplitude for a spin wave into a pair of spinons, that is,
spin fractionalization.

In this section we derive the two-spinon eigenstates, th
norm, and the corresponding value of the spin current. Mo
over, we show that the appropriate statistics they obey
neither fermionic nor bosonic. They are semions, i.e., p
ticles with 1

2 fractional statistics.

A. Two-spinon energy

Two ↓ spinons can be pictured as two↓ spins within an
otherwise featureless disordered sea. The state with tw↓
spinons centered atza andzb , respectively, is given by (N is
even andM5N/221)4,5,7

Cab~z1 , . . . ,zM !5)
j

M

~za2zj !~zb2zj !

3)
j ,k

M

~zj2zk!
2)

j

M

zj . ~47!

As for the one-spinon case,za and zb are not necessarily
lattice sites. If they are, Eq.~47! represents a pair of spinon
at za , zb . To derive the eigenvalue equation, we start fro
a wave function in the form of Eq.~26!, where we take the
function F to be equal to
5-7
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Fab5)
j

M

~za2zj !~zb2zj !. ~48!

Equation~28! can be rewritten forFab , yielding

1

2 H (
j 51

M

zj
2 ]2Fab

]zj
2

1(
j Þk

M 4zj
2

zj2zk

]Fab

]zj
J 2

N23

2 (
j 51

M

zj

]Fab

]zj

5H 2
za

2

za2zb

]

]za
2

zb
2

zb2za

]

]zb
2za

2 ]2

]za
2

2zb
2 ]2

]zb
2

1S N23

2 D Fza

]

]za
1zb

]

]zb
G

1@2M22M ~N22!#J Fab5lFab . ~49!

Let us now define the statesCmn as follows:

Cmn~z1 , . . . ,zM !5(
a,b

N
~za* !m

N

~zb* !n

N
Cab~z1 , . . . ,zM !.

~50!

A set of linearly independent states may be constructed
taking only theCmn with M>m>n>0, which shows the
overcompleteness of the set of statesCmn . On such a set of
states Eq.~49! becomes

1

2 H (
j 51

M

zj
2 ]2

]zj
2

1(
j Þk

M 4zj
2

zj2zk

]

]zj
2~N23!(

j 51

M

zj

]

]zj
J Cmn

5H 2
N2

48 S N2
19

N
1

24

N2D 1mS N

2
212mD

1nS N

2
212nD1

m2n

2 J Cmn

2(
l 50

l M

~m2n12l !Cm1 l ,n2 l , ~51!

wherel M5n if m1n,M , l M5M2m if m1n>M , and, in
deriving Eq.~51!, we used the identity

x1y

x2y
~xmyn2xnym!52 (

l 50

m2n

xm2 l yn1 l2~xmyn1xnym!.

~52!

We look for solutions to Eq.~51! that are linear combina
tions of the statesCm1 l ,n2 l :

Fmn5(
l 50

l M

al
mnCm1 l ,n2 l . ~53!

The coefficientsal are found to be8,4,7

al
mn5

2~m2n12l !

2l ~ l 1m2n11/2! (
k51

l

ak21
mn ~a051! ~54!
02442
y

and the corresponding two-spinon energies are given by

Emn52J
p2

24 S N2
19

N
1

24

N2D 1
J

2 S 2p

N D 2FmS N

2
212mD

1nS N

2
212nD2

m2n

2 G . ~55!

In terms of spinon momenta, the expression of the ene
is

Emn52JS p2

24D S N1
5

ND
1FE~qm!1E~qn!2

pJ

N

uqm2qnu
2 G~qm<qn!.

~56!

Emn is the sum of the ground-state contribution,EGS
52J(p2/24)(N15/N), and of the two-spinon energ
above the ground state,E(qm ,qn). E(qm ,qn) is the sum of
the energies of two isolated spinons plus a negative inte
tion contribution that becomes negligibly small in the the
modynamic limit.

Such a simple solution for the two-spinon problem is po
sible because the matrix to which Eq.~51! corresponds is
lower triangular, i.e., takes the form

matrix5F E0 0 0 0 •••

v10 E1 0 0

v20 v21 E2 0

v30 v31 v32 E3 •••

A A

G , ~57!

where

Ej5lm1 j ,n2 j and vpq52~m2n12p12q!,

and

lmn5mS N

2
212mD1nS N

2
212nD2

m2n

2
. ~58!

The eigenvalues of such a matrix are its diagonal eleme
and the corresponding eigenvectors are generated by re
sion.

The transformation in Eq.~53! can be inverted and i
takes the form

Cmn5(
l 50

l M

bl
mnFm1 l ,n2 l . ~59!

The coefficientsbl
mn can be expressed in a closed-form fo

mula in terms of the coefficients of the two-spinon wa
functions. We provide their expression in Sec. VI.
5-8
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B. The norm

The squared norm of the stateFmn is defined as

^FmnuFmn&5 (
z1 , . . . ,zM

uFmn~z1 , . . . ,zM !u2. ~60!

As for the one-spinon wave function, we calculate the no
of the two-spinon states by means of mathematical induct
The details of our calculation are discussed in Appendix
The basic induction relations are given by

^FmnuFmn&

^Fm,n21uFm,n21&

5

S n2
1

2D S M2n1
3

2D ~m2n11!2

n~M2n11!S m2n1
3

2D S m2n1
1

2D ,

~61!

^FmnuFmn&

^Fm21,nuFm21,n&

5

~M2m11!S m2n1
1

2D S m2n2
1

2Dm

S M2m1
1

2D ~m2n!2S m1
1

2D .

~62!

From Eqs.~61! and~62! one gets the formula for the square
norm:

^FmnuFmn&5CM

M1
1

2

p

GFm2n1
1

2GGFm2n1
3

2G
G2@m2n11#

3

G@m11#GFM2m1
1

2G
GFm1

3

2GG@M2m11#

3

GFn1
1

2GG@M2n11#

G@n11#GFM2n1
3

2G . ~63!

Equation~63! basically agrees with the result quoted in R
17, although we derived it by making direct use of the o
eratorHHS ~see Appendix E!.

C. Spin current

The Cmn are eigenstates ofLz. Indeed, a manipulation
similar to the one-spinon case yields

LzuCmn&5H N22

2
2m2nJ uCmn&, ~64!
02442
n.
.

.
-

with the eigenvalue given by the sum of the two-spinon v
locities. We will skip the proof of Eq.~64!, which works
exactly like the proof of Eq.~40!.

D. Spinon statistics

Spinons are semions, i.e., particles obeying 1/2 fractio
statistics. Since the two-spinon wave functionCab has the
property

Cab* ~z1 , . . . ,zN/221!5~zazb!12N/2Cab~z1 , . . . ,zN/221!,

the Berry phase vector potential for adiabatic motion
spinona in the presence ofb is

1

2
F K cabUza

]

]za
cabL 1 K za

]

]za
cabUcabL

^cabucab&
G5

1

2 S 12
N

2 D .

~65!

The phase to ‘‘exchange’’ the spinons by movinga all the
way around the loop is thus

Df5 R 1

2 S 12
N

2 Ddza

za
56

p

2
i ~mod 2p!. ~66!

This number is 0 orp for bosons or fermions. The number o
states available tol ↓ spinons, determined by counting th
number of distinct symmetric polynomials of the form

FzA1
, . . . ,zAl

~z1 , . . . ,z(N2 l )/2!

5 )
j

(N2 l )/2

~zj2zA1
!3•••3~zj2zAl

! ~67!

is

N l
semi5S N/21 l /2

l D . ~68!

This is just halfway between the numbers

N l
fermi5S N/2

l D N l
bose5S N/21 l

l D , ~69!

likewise calculated assuming that the number of states av
able for one particle isN/2.

VI. PROBABILITY ENHANCEMENT

In this section we provide one of the key results of o
study: the analysis of the interaction between two spino
First, we properly define the real-space representation for
two-spinon relative wave function. Then, we study the b
havior of the corresponding amplitude as a function of
spinon separation. Here we construct the real-space w
function for a spinon pair and we show that our results p
vide clear evidence for spinons being interacting particle

The real-space representation for the two-spinon w
functions corresponding to the energy eigenstateuFmn&,
za

mzb
npmn(za /zb), is defined by the decomposition of th

state of two localized spinons atza and zb , uCab&, in the
5-9
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basis of the fully polarized two-spinon eigenstates

Cab5 (
m50

M

(
n50

m

~21!m1nza
mzb

npmnS za

zb
DFmn. ~70!

uFmn& is an eigenstate ofHHS with eigenvalueEmn . This
implies

^FmnuHHSuCab&5Emn̂ FmnuCab&. ~71!

From Eq.~49! we see that̂FmnuHHSuCab& can be written as
a differential operator acting on̂FmnuCab&. Cab is per-
fectly defined for anyza , zb on the unit circle, so the differ-
ential operator acts on the analytic extension of^FmnuCab&
as

^FmnuHHSuCab&5EGŜ FmnuCab&1
J

2 S 2p

N D 2

3H S M2za

]

]za
D za

]

]za

1S M2zb

]

]zb
D zb

]

]zb

2
1

2

za1zb

za2zb
S za

]

]za
2zb

]

]zb
D J

3^FmnuCab&. ~72!

In the differential operator in Eq.~72! we recognize the sum
of the energies of the two free spinons and a veloc
dependent interaction that diverges at small spinon sep
tions. Equation~72! allows for determination of the exac
expression ofpmn(za /zb). Indeed, by using Eqs.~70!–~72!,
we find the following equation forpmn(z) (z5zb /za):

z~12z!
d2pmn

dz2
1F1

2
2m1n2S 2m1n1

3

2D zG dpmn

dz

1
m2n

2
pmn50. ~73!

This equation is a special case of the hypergeome
equation18 where the parametersc,b,a are given by

FIG. 4. Left panel: square modulus of the two-spinon wa
function as a function of the separation between the two spinons
N51000. Right panel: the same plot on a log-log scale. The das
line is a guide to the eye. It is a plot of 1/x with an appropriate
offset @z5exp(iu)#.
02442
-
ra-

ic

c5
1

2
2m1n, b5

1

2
, a52m1n.

The solution is a hypergeometric series whose regular s
tion stops at a power ofz given byzm2n, thus becoming the
‘‘hypergeometric polynomial’’

pmn~z!5
G@m2n11#

GF1

2GGFm2n1
1

2G

3 (
k50

m2n GFk1
1

2GGFm2n2k1
1

2G
G@k11#G@m2n2k11#

zk. ~74!

The value of the spinon wave function at zero separat
between spinons can be computed by means of general i
tities among hypergeometric series.18 It is given by

pmn~1!5G@1/2#G@m2n11#/G@m2n11/2#. ~75!

According to Eq.~74!, upmn(z)u2 is the density of prob-
ability for two spinons as a function of the distance betwe
them.

The interpretation of our results is straightforwar
Spinons do actually behave like real particles. Indeed,
have been able to determine a differential equation forpmn ,
which for the two-spinon wave function is the same as
Schrödinger equation for a pair of ordinary particles. Th
interaction between spinons is clearly shown in Fig. 4, wh
we plot upmn(z)u2. At large separations, the probability de
sity oscillates and averages to 1, independently on the
tance between the spinons. This is a typical feature of n
interacting particles. Indeed, at large separations spinons
in fact noninteracting. However, at small separations,upmnu2

shows a probability enhancement that corresponds to a h
increase of the probability of configurations with the tw
spinons on top one of each other. The enhancement is h
est at a relative spinon momentum ofp. Such features are
clear evidence for the interaction among spinons, which
be characterized as follows:~1! It is attractive: it favors con-
figurations with spinons on top one of each other, and~2! it
is short ranged: spinons are free at large distances. AsN gets
larger, the probability enhancement peaks up.19 Hence, the
enhancement safely survives the thermodynamic limit, e
though in this limit, the energy for the two-spinon solution
the sum of the energies of the two isolated spinons. Ho
ever, the attraction is not strong enough to create a t
spinon bound state, even in the thermodynamic limit. T
corresponds to the absence of a low-energy stable sp
excitation, which is a typical feature of 1D spin-1

2 antiferro-
magnets.

The attractive force may also be inferred from the ene
eigenvalue if we rewrite it as

or
ed
5-10
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HHSuFmn&5H 2JS p2

24D S N1
5

ND1Eqm
1Eqn

1Vqm2qnJ uFmn&

5H 2JS p2

24D S N1
5

ND1E~qm ,qn!J uFmn&,

~76!

where

Vq52J
p

N
uqu. ~77!

Note that this potential vanishes asN→`, as expected for
particles that interact only when they are close togeth
However, as we already pointed out, the vanishing of
interaction potential in the thermodynamic limit does n
mean that no residual effects survive such a limit. The pr
ability enhancement when the two spinons are on the s
site does survive the thermodynamic limit and it is the m
reason for the instability of the spin-1 spin wave, as we d
cuss at length in the next section.

Before concluding this section, we provide the express
of the coefficientsbl

mn in Eq. ~59!. From Eq. ~74! it is
straightforward to prove that

bl
mn5

G@m2n12l 11#

GF1

2GGFm2n12l 1
1

2G 3

GF l 1
1

2G
G@ l 11#

GFm2n1 l 1
1

2G
G@m2n1 l 11#

.

~78!

VII. SPIN SUSCEPTIBILITY

In this section, we work out the dynamical spin suscep
bility for the HSM. We show that the DSS depends only
the pmn’s calculated atz51, which allows us to obtain for
any finiteN a simple closed-form expression for the DSS a
to relate it to the spinon interaction. By carefully taking t
thermodynamic limit of our result, we obtain the Haldan
Zirnbauer formula for the DSS in the thermodynamic limit14

The Haldane-Zirnbauer formula shows that there is no lo
energy spin-1 pole in the DSS, but the function takes a sh
square-root singularity at the two-spinon threshold on top
a branch cut, corresponding to the lack of integrity of t
spin-1 excitation. Our analysis definitely proves that t
square-root sharp edge on top of the broad spectrum is n
ing but the interaction between spinons. The probability
hancement is the square-root singularity in the spin sus
tibility. This result is of the utmost importance, since
represents a way to experimentally test the interaction am
spinons in one dimension. We will come back to such a po
in the concluding remarks.

Let us begin with the calculation of the spin susceptibil
for a finite lattice. The DSS is the dynamical propagator
a spin-1 spin flip. A spin flip with momentumq is created by
acting onuCGS& with Sq

2 , defined as
02442
r.
e
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n
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r

Sq
25(

a
~za* !k~Sa

x 2 iSa
y ! ~q52pk/N!. ~79!

A peculiar property of the HSM is that a spin flip atza is the
same as a spinon pair at the same site.14 Therefore, we can
fully decomposeSq

2CGS in the basis of the two-spinon
eigenstates:

Sq
2CGS5(

a
~za* !kCaa5N (

m50

M

(
n50

m

~21!m1npmn~1!

3d~m1n2k!Fmn . ~80!

The susceptibility is given by

xq~v!5(
X

u^XuSq
2uCGS&u2

^XuX&^CGSuCGS&

2~EX2EGS!

~v1 ih!22~EX2EGS!
2

,

~81!

(uX& is an exact eigenstate ofHHS with energyEX). Then,
from Eqs.~80! and~81! we have thatxq(v) takes a nonzero
contribution only if uX&5uFmn&. Then, Eq.~81! becomes

xq~v!5N2 (
m50

M

(
n50

m
^FmnuFmn&

^CGSuCGS&
pmn

2 ~1!

3d~m1n2k!
2~Emn2EGS!

~v1 ih!22~Emn2EGS!
2

.

~82!

Equation~82! is another relevant result of our work. It show
that only thepmn(z)’s at z51 determinexq(v). Therefore,
the spin susceptibility is completely determined by spin
interaction.

Let us analyze the thermodynamic limit of Eq.~82!. In the
thermodynamic limit the gamma functions can be appro
mated by using Stirling’s formula:

G@z#'Ap~z21!(z21/2)e2(z21), ~83!

From Eqs.~63!, ~75!, and~83! we get in the thermodynamic
limit

N2
^FmnuFmn&

^CGSuCGS&
pmn

2 ~1!

5

pNS m2n1
1

2D
An~M2n!S m1

1

2D S M2m2
1

2D . ~84!

Since the joint two-spinon density of states is flat, the su
over m andn become integrals over the~halved! one-spinon
Brillouin zone
5-11
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(
m

→2ME
2p/2

p/2 dq

p
. ~85!

From Eqs.~83!–~85!, we see that Eq.~82! turns, in the ther-
modynamic limit, into the Haldane-Zirnbauer formula for th
DSS ~Ref. 14!:

xq~v!5
J

2E2p/2

p/2

dq1E
2p/2

q1
dq2

uq12q2ud~q11q22q!

AE~q1!E~q2!

3
2E~q1 ,q2!

~v1 ih!22E2~q1 ,q2!
, ~86!

whereE(q) and E(q1 ,q2) are the one-spinon and the two
spinon energies, respectively. Integration overq1 , q2 in Eq.
~86! provides

xq~v!

5
J

4

Q@v2~q!2v#Q@v2v21~q!#Q@v2v11~q!#

Av2v21~q!Av2v11~q!
,

~87!

wherev21(q) andv11(q) are the threshold energies for
spinon pair with momentumq, according to whether 0<q
<p or p<q<2p, respectively. They are given b
v21(q)5(J/2)q(p2q), v11(q)5(J/2)(2p2q)(q2p).
v2(q)5(J/2)q(2p2q) is the upper threshold for the spin-
excitation. From Eq.~87! we see that the enhancement giv
by pmn

2 (1) has turned into a square-root singularity inxq(v)
vs v at fixed q, with the branch cut originating either a
v21(q) or atv11(q), depending on the value ofq. Because
the two-spinon joint density of states is uniform, the ma
conclusion we trace out from our calculation is that t
branch cut inxq(v), i.e., the broadness of the spectral de
sity of states, is the spinon interaction.

A measurement ofxq(v) in 1D spin-12 antiferromagnets
can be performed by means of neutron-scatter
experiments.13 The result of the measurements13 does, in
fact, show a sharp threshold followed by a broad spectr
in good agreement with predictions of Eq.~87!. In light of
our present discussion, we conclude that what is actu
seen in such an experiment is a direct consequence o
spinon interaction in 1D antiferromagnets. Hence, the exp
ments provide evidence that spinons do interact and tha
spinon interaction is what determines the peculiar lo
energy physics of spin-1

2 antiferromagnetic chains.
From Eq. ~80! we also derive the formula for the spin

spin correlation functionx(za) in terms of the two-spinon
wave function atz51:
02442
-

g

,

ly
he
i-
he
-

x~za!5
^CGSuS1

1Sza

2 uCGS&

^CGSuCGS&

5 (
m50

M

(
n50

m

~za!m1n ^FmnuFmn&

^CGSuCGS&
pmn

2 ~1!. ~88!

Equation~88! is the formula we have plotted in Fig. 1.

VIII. CONCLUSIONS

In this paper we developed a simple approach to the st
of spinon excitations of the Haldane-Shastry model, based
the formalism of the analytic variables. Within our approa
we picture spinons as local defects in the disordered sea.
formalism allows for a consistent real-space representa
of the wave function for two spinons. We construct t
Schrödinger equation, whose solution is the two-spin
wave function, which shows that spinons behave as
quantum-mechanical particles. By means of a careful st
of the real-space two-spinon wave function, we reveal
main result: the existence of spinon interaction and its s
vival in the thermodynamic limit. Spinon interaction is
short-range attraction that generates an enhancement o
probability for two spinons to be at the same site. Such
interaction determines the low-energy physics of 1D intera
ing antiferromagnets. Since the low-energy joint density
states is uniform, the broadness in the spectral densit
exclusively caused by the enhancement, as we show from
finite-N expression for the spin susceptibility~Sec. VII!. In
the thermodynamic limit the probability enhancement dev
ops a square-root singularity followed by a branch cut, wh
is the broadness in the spectral density of states. The bra
cut reflects the instability of the spin wave towards dec
into a spinon pair. Then, we show that even though in
thermodynamic limit the interaction is irrelevant, its ma
effect, the probability enhancement, peaks up. In conclus
we analyzed spinon interaction in an exact solution of
Haldane-Shastry model and its consequences for the
energy physics of 1D spin-1

2 antiferromagnets.
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APPENDIX A: FOURIER SUMS

In this appendix we will prove some of the formulas w
used throughout the paper. Since the lattice sitesza are roots
of unity we have

)
a

N

~z2za!5zN21. ~A1!

Then for 0<m<N we have
5-12
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(
a51

N21 za
m

za21

5
N

2p i RC

zm21dz

~z21!~zN21!

52
N

2p i RC8

zm21dz

~z21!~zN21!

52
N

2p i

3 R H 11S m21

1 D x1S m21

2 D x21•••

S N

1 D 1S N

2 D x1S N

3 D x21•••

J dx

x2

5
N11

2
2m, ~A2!

and

(
a51

N21 za
m

uza21u2

52 (
a51

N21 za
m11

~za21!2

52
N

2p i RC

zmdz

~z21!2~zN21!

5
N

2p i RC8

zmdz

~z21!2~zN21!

5
1

2p i

3 R H 11S m21

1 D x1S m21

2 D x21•••

S N

1 D 1S N

2 D x1S N

3 D x21•••

J dx

x3

5
N221

12
2

m~N21!

2
1

m~m21!

2
. ~A3!

~Integration contours are shown in Fig. 5.!

FIG. 5. Contours used in Eqs.~A2! and ~A3!.
02442
APPENDIX B: CALCULATIONS OF THE COEFFICIENTS
AL

In this appendix we work out the coefficientsAl that ap-
pear in the eigenvalue equations for the eigenfunctions of
HSM are defined as

Al52 (
a51

N21 za
2

~za21!22 l
. ~B1!

They can be computed by using the equations from App
dix A. In particular we have

A052 (
a51

N21 za
2

~za21!2
,

(
a51

N21
za

uza21u2
5

~N21!~N25!

12
,

A152 (
a51

N21 za
2

za21
52

N23

2
,

A252 (
a51

N21

za
251,

Al52 (
a51

N21

za
2~za21! l 2250, ~ l .2!. ~B2!

APPENDIX C: THE SPIN CURRENT

In this appendix we provide the physical interpretation
the operatorLW , as the spin-current operator. In order to
so, we first construct the continuous interpolation of the l
tice spin field, given by the spin-density operatorrW (z). Then,
we define a current density on the unit circlejW(z). We prove
that rW and jW obey an equation, which once restricted to t
lattice, takes the form of the continuity equation for the sp
density. The operatorLW comes out to be the global operat
whose density is given byjW(z).

The first step of such a construction is defining the fie
interpolating the spin operators into the interstices by me
of the formula

sW ~z!5FzN/22z2N/2

2N G(
b

N S z1zb

z2zb
DSW b . ~C1!

Then we can associate tosW (z) a ‘‘s model-like’’ Hamil-
tonian given by

1

2p i R Fz
dsW

dz
G•Fz

dsW

dz
Gdz

z

52
2

N (
aÞb

N
SW a•SW b

uza2zbu2
1

3

8
~N21!1

S2

8
, ~C2!
5-13
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where the integral is performed over the unit circle. Eq.~C2!
gives the Haldane-Shastry Hamiltonian plus an irrelev
constant and an operator that commutes with it.

We also have spin-density and spin-current density op
tors

rW ~z!52 isW ~z!3sW ~z!,

jW~z!5
1

2i H sW 3Fz
dsW

dz
G2Fz

dsW

dz
G3sW J . ~C3!

Thatr(z) is an appropriate definition of the spin density m
be seen by taking the limitz→za , za being a site on the
lattice. One gets

lim
z→za

rW ~z!5SW a . ~C4!

That jW(z) is a proper spin current can be inferred from t
continuity equation

lim
z→za

H z
d jW

dz
1F (

aÞb

N
SW a•SW b

uza2zbu2
,rW G J 50. ~C5!

The zero-momentum component of this conserved cur
density is

1

2p i R jW
dz

z
5LW . ~C6!

The operatorLW is then a scaled spin current. Its action on t
state with a fixed number of propagating spinons, Eqs.~25!,
~40!, and~64!, is definitely consistent with such an interpr
tation.

APPENDIX D: FACTORIZABILITY OF HHS

In this appendix we will prove the factorization formul
Eq. ~20!. In order to do so, we split the proof in two step
First, we will show that the operatorDW a annihilatesuCGS&,
then we will prove the factorization equation. Let us beg
with the first proof. The operator

Va5 (
bÞa

N
za

za2zb
FSa

1Sb
22S Sa

z 1
1

2D S Sb
z 1

1

2D
2

N21

2 S Sa
z 1

1

2D G ~D1!

annihilatesuCGS&. Indeed, by using the technique we dev
oped in Sec. III, we find
02442
t

a-

nt

@VaCGS#~z1 , . . . ,zM !5 (
l 50

N22 H 1

l ! (
bÞa

N
zazb~zb2za! l

za2zb
J

3
] l

]za
l H CGS~za , . . . ,zN/2!

za
J

2 (
bÞa

N
za

za2zb
F22S 1

2
1Sa

z D
3S 1

2
1Sb

z D1
N21

2 G
3CGS~z1 , . . . ,zM !50 ~D2!

for all a. However sinceuCGS& is a spin singlet the irreduc
ible representations of the rotation group present in this
erator must destroyuCGS& separately. The scalar compone
is identically zero. The vector component is

(
bÞa

N
za

za2zb
@ i ~SW a3SW b!1SW b#uCGS&50. ~D3!

SinceuCGS& is also its own time-reverse it must be destroy
by the time-reverse of the vector operator, i.e.,

(
bÞa

N za*

za* 2zb*
@ i ~SW a3SW b!1SW b#

52 (
bÞa

N
zb

za2zb
@ i ~SW a3SW b!1SW b#. ~D4!

The difference of these is the trivial operatorSW a3SW , and
their sum is 2DW a .

We prove, now, the factorizability ofHHS . In order to do
so, we need the following identities:

(
a

N

@ i ~SW 3SW a!1SW #•DW a5(
a

N

@ iSW •~SW a3DW a!1SW •DW a#

5
3

2
SW •LW , ~D5!

(
a

N

@ i ~SW 3SW a!1SW #•@ i ~SW a3SW !1SW #5
3

2
@N21#S2,

~D6!

(
bÞgÞa

N
SW b•SW g

~za* 2zg* !~za2zb!
52

1

2
S21

3

8
N

12 (
aÞb

N
SW a•SW b

uza2zbu2
, ~D7!
5-14
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i (
aÞbÞg

N
SW g•~SW a3SW b!

~za* 2zg* !~za2zb!

5 i (
aÞbÞg

N
zazg

~za2zg!~za2zb!
SW a•~SW g3SW b!

5
i

2 (
aÞbÞg

N S za1zg

za2zg
D ~SW a3SW g!•SW b

5LW •SW . ~D8!

By putting together the identity

(
a

N

(
bÞa

N

(
gÞa

N
@ i ~SW a3SW g!1SW g#†

•@ i ~SW a3SW b!1SW b#

~za* 2zg* !~za2zb!

5(
a

N

DW a
†
•DW a1

3

2
SW •LW 1

3

8
~N21!S2 ~D9!

and the identity

(
a

N

(
bÞa

N

(
gÞa

N
@2 i ~SW a3SW g!1SW g#•@ i ~SW a3SW b!1SW b#

~za* 2zg* !~za2zb!

5
3

2 (
a

N

(
bÞa

N

(
gÞa

N
1

~za* 2zg* !~za2zb!

3@SW g•SW b1 iSW g•~SW a3SW b!#

5
3

2 F3 (
aÞb

SW a•SW b

uza2zbu2
1

N~N215!

16
2

S2

2
1SW •LW G ,

~D10!

the proof is complete.
Since^FuDW a

†
•DW auF& is nonnegative for any wave func

tion uF&, this provides an explicit demonstration thatuCGS&
is the true ground state. The annihilation operators and t
equivalence toHHS when squared and summed were ori
nally discovered by Shastry.16 They are lattice versions o
the Knizhnik-Zamolodchikov operators known from studi
of the Calogero-Sutherland model, the 1D Bose gas w
inverse-square repulsions.20,21,8

APPENDIX E: THE NORM OF THE STATES

In this appendix we provide the proof of the formula f
the norm of the one-spinon and of the two-spinon eig
states. Throughout this section and the following one,
will make use of the scalar product between symmetric po
nomials f (z1 , . . . ,zM) defined as

^ f ug&5 (
z1 ,•••,zM

f * ~z1 , . . . ,zM !g~z1 , . . . ,zM !. ~E1!

Let us begin with the one-spinon eigenstates. The state
one spinon in coordinate spaceCa(z1 , . . . ,zM) has been
defined in Eq.~29!, in the odd-N case@M5(N21)/2#, to be
02442
ir

h

-
e
-

or

Ca~z1 , . . . ,zM !5)
j

M

~za2zj !)
i , j

M

~zi2zj !
2)

j

M

zj .

~E2!

Ca is of the formFa3CGS, whereFa5) j
M(za2zj ).

We will prove the formula for the norm of the stateuFm&,
Eq. ~46!, by mathematical induction. In order to do so, let
define the symmetric operator

e1~z1 , . . . ,zM !5z11•••1zM . ~E3!

For any wave function of the formF3CGS, whereF is a
symmetric polynomial with degrees less thanN22M12,
we have

HHSFCGS5EGSFCGS1
J

2 S 2p

N D 2

CGS

3H 1

2 F(
j

zj
2 ]2

]zj
2

14(
j Þk

zj
2

zj2zk

]

]zj
G

2
N23

2 (
j

zj

]

]zj
J F, ~E4!

and thus

HHSe1FCGS2e1HHSFCGS

5
J

2 S 2p

N D 2

CGSF(
j

zj
2 ]

]zj
1

N23

2
e1GF.

~E5!

From the definition ofFa one then obtains

(
j

M

zj
2 ]

]zj
Fa5Fe11Mza2za

2 ]

]za
GFa . ~E6!

Equation~E6! implies the following identity forCm :

FH2
EGS

~J2p2!/N2G @e1Cm#5@m~M2m!1M #@e1Cm#

1@M2~m21!#Cm21 .

~E7!

@H is the scaled Hamiltonian:H5HHS /(J2p2/N2)]. Then,
the following identity chain is proven:

~m21!~M2m11!^Cm21ue1uCm&

5K Cm21UFH2
EGS

~J2p2!/N2GU@e1Cm#L
5@M1m~M2m!#^Cm21ue1uCm&

1~M2m11!^Cm21uCm21&, ~E8!

thus, Eq.~E8! implies the identity
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^Cm21ue1uCm&52
M2m11

2S M2m1
1

2D ^Cm21uCm21&.

~E9!

In order to determine a suitable induction relation, let
introduce the operator

eM~z1 , . . . ,zM !5z1•••••zM .

Clearly

eM~z1 , . . . ,zM !eMS 1

z1
, . . . ,

1

zM
D51. ~E10!

Since all theCm’s are products of the ground-state fact
CGS times a symmetric polynomial of degrees less than 2
each variable, we have

^Cm21ue1uCm&5^@eM* Cm#ue1u@eM* Cm21#&

5^CM2mue1uCM2m11&. ~E11!

At this point, we use again Eq.~E9! in order to write Eq.
~E11! as

^CM2mue1uCM2m11&52
m

2S m2
1

2D ^CM2muCM2m&

52
m

2S m2
1

2D ^CmuCm&. ~E12!

Equation~E12! closes the induction relation

^CmuCm&

^Cm21uCm21&
5

S m2
1

2D ~M2m11!

mS M2m1
1

2D . ~E13!

The formula generated by recursion is

^CmuCm&5 )
j 51, . . . ,m

S j 2
1

2D ~M2 j 11!

j S M2m1 j 1
1

2D CM

5

G@M11#GFm1
1

2GGFM2m1
1

2G
GFM1

1

2GG@m11#G@M2m11#

CM .

~E14!

The constantCM is expressed in terms of Wilson’s integr
as
02442
s

n

CM5S N

2p i D
M R dz1

z1
. . . R dzM

zM
)
iÞ j

M S 12
zi

zj
D 2

5NM
~2M !!

2M
. ~E15!

Equations~E14! and ~E15! complete the proof.
Now we work out the formula for the two-spinon eige

states. In this caseM5N/221 and Eq.~E5! becomes

He1FCGS2e1HFCGS

5CGSF (
j 51

M

zj
2 ]

]zj
1S M2

1

2De1GF, ~E16!

where again we work with the Hamiltonian in scaled uni
Equation~E6! now becomes

(
j 51

M

zj
2 ]

]zj
Fab52@e1Fab#

1FMza2za
2 ]

]za
1Mzb2zb

2 ]

]zb
GFab ,

~E17!

where the stateFab has been defined in Eq.~48!. Hence, by
letting e1 act onto the two-spinon eigenstateFmn , we obtain

FH2
EGS

~J2p2!/N2G @e1Fmn#2S lmn1M2
3

2D @e1Fmn#

5(
j 51

M

zj
2 ]

]zj
Fmn

5(
k

ak
mn (

a,b51

N
~za* !m

N

~zb* !n

N

3F2@e1Cab#1S Mza2za
2 ]

]za
1Mzb2zb

2 ]

]zb
D

3CabG , ~E18!

which implies

FH2
EGS

~J2p2!/N2
2S lmn1M1

1

2D Ge1Fmn

5(
k

ak
mnH @M2m2k11#

3(
j

bj
m1k21,n2kFm1k211 j ,n2k2 j

1@M2n1k11#

3(
j

bj
m1k,n2k21Fm1k1 j ,n2k212 j J . ~E19!

@See Eqs.~54! and ~78! for the definition of the coefficient
ak

mn ,bk
mn and Eq.~58! for the definition oflmn .]
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Let us now take the scalar product of both sides of E
~E19! with Fm21,n . The result can be recast in the form

^Fm21,nue1uFmn&

^Fm21,nuFm21,n&
52

M2m11

2S M2m1
1

2D . ~E20!

On the other hand, by taking the scalar product ofFm,n21
with both sides of Eq.~E19!, we obtain:

S lm,n212lmn2M2
1

2D ^Fm,n21ue1uFmn&

5(
k

ak
mnH @M2m2k11#

3(
j

bj
m1k21,n2k^Fm,n21uFm1k211 j ,n2k2 j&

1@M2n1k11#(
j

bj
m1k,n2k21

3^Fm,n21uFm1k1 j ,n2k2 j 21&J , ~E21!

which implies the relation

^Fm,n21ue1uFmn&

^Fm,n21uFm,n21&

52

S M2n1
3

2D ~m2n11!2

2S m2n1
3

2D S m2n1
1

2D ~M2n11!

.

~E22!

In order to complete the proof, we need two more identit
that can be proven in the same way as we did for Eq.~E13!:

^Fm21,nue1uFmn&

^FmnuFmn&
5^FM2n,M2mue1uFM2n,M2m11&

52

S m1
1

2D ~m2n!2

2S m2n1
1

2DmS m2n2
1

2D ,

~E23!
02442
.

s

^Fm,n21ue1uFmn&

^FmnuFmn&
5

^FM2n,M2mue1uFM2n11,M2m&

^FmnuFmn&

52
n

2S n2
1

2D . ~E24!

Hence, the proof is given by the following induction rel
tions:

^FmnuFmn&

^Fm,n21uFm,n21&
5

S n2
1

2D S M2n1
3

2D ~m2n11!2

n~M2n11!S m2n1
3

2D S m2n1
1

2D ,

~E25!

^FmnuFmn&

^Fm21,nuFm21,n&

5

~M2m11!S m2n1
1

2D S m2n2
1

2Dm

S M2m1
1

2D ~m2n!2S m1
1

2D .

~E26!

Equations~E25! and ~E26! imply

^FmnuFmn&5CM8

GFm2n1
1

2GGFm2n1
3

2G
G2@m2n11#

3

G@m11#GFM2m1
1

2G
GFm1

3

2GG@M2m11#

3

GFn1
1

2GG@M2n11#

G@n11#GFM2n1
3

2G , ~E27!

and the constantCM8 is now given by

CM8 5NM
~2M !!

2M

M1
1

2

p
. ~E28!
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