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Nonequilibrium relaxation study of Ising spin glass models
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As an analysis of equilibrium phase transitions, the nonequilibrium relaxation method is extended to the spin
glass~SG! transition. The6J Ising SG model is analyzed for three-dimensional~cubic! lattices up to the linear
size of L5127 and for four-dimensional~hypercubic! lattice up toL541. These sizes of systems are quite
large as compared with those calculated, so far, by equilibrium simulations. As a dynamical order parameter,
we calculate the clone correlation function~CCF! Q(t,tw)[@^Si

(1)(t1tw) Si
(2)(t1tw)&F#, which is a spin cor-

relation of two replicas produced after the waiting timetw from a simple starting state. It is found that the CCF
shows an exponential decay in the paramagnetic phase, and a power-law decay after aginglike development
(t@tw) in the SG phase. This provides a reliable upper bound of the transition temperatureTg . It is also found

that a scaling relation,Q(t,tw)5tw
2lqq̄(t/tw), holds just around the transition point providing the lower bound

of Tg . Together with these two bounds, we propose a new dynamical way for the estimation ofTg from much
larger systems. In the SG phase, the power-law behavior of the CCF fort@tw suggests that the SG phase in
short-range Ising models has a rugged phase space.

DOI: 10.1103/PhysRevB.64.024416 PACS number~s!: 75.50.Lk, 05.70.Ln, 05.10.2a
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I. INTRODUCTION

The picture of the spin glass~SG! phase is established i
the mean-field level1,2 based on the replica symmetry brea
ing ~RSB!.3–5 It is characterized by the multivalley structu
of the free-energy landscape in the order-parameter s
with the so-called ultrametric structure. Since the upper c
cal dimensions of the SG systems are large, such a m
field picture might be improper in some physical situatio
Studies on the short-range SG model have played an im
tant role to interpret and understand the experimentally
served SG phenomena. Now the lower critical dimension
the SG transitions and the validity of the RSB picture
short-range SG models are the important remaining pr
lems. Since randomness and frustration make it difficult
treat short-range SG models analytically, as well as num
cally, many efforts have been devoted to overcome it in
last two decades.

In the middle of 1980’s, some extensive and efficie
Monte Carlo simulations were presented for the6J Ising
model in three dimensions.6–8 The equilibrium quantities rel-
evant to SG transitions were estimated to conclude the e
tence of the SG phase. The estimated transition tempera
Tg51.175;1.2 in units ofJ/kB , was consistent with tha
obtained by series expansion,9 providing the confirmation of
the equilibrium SG transition in three dimensions. With
such studies, the problems have remained unsettled bec
of frustration and randomness. The recent result obtaine
Monte Carlo simulation in equilibrium states10 with the same
strategy as in Ref. 6 shows a slightly lower value of the
transition temperatureTg51.11(4). It also changes the
physical picture of the SG phase in three dimensions
Kosterlitz-Thouless-like marginal phase11 was suggested in
Ref. 6, while a finite SG ordering is suggested in Ref.
The main advantage of the simulation in Ref. 10 to that
0163-1829/2001/64~2!/024416~10!/$20.00 64 0244
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Ref. 6 is the amount of calculations that are spent to incre
the system size from 163 to 243 and to lower the temperatur
range fromT>1.0 to T>0.95. As stated in Ref. 10, thes
problems are still unsettled, and further investigations
necessary. However, because of the slow relaxation in
SG system, equilibration and averaging takes much time
standard equilibrium Monte Carlo simulations. Larger sy
tems are much difficult to simulate.

Slow dynamics is one of the peculiar properties char
terizing the SG phase.5,12–19 A typical realization of slow
dynamics is the so-called ‘‘aging’’:13–17 The relaxation be-
havior depends strongly on the waiting time from which t
environment of the system is changed. Since the equilib
tion time in real SG materials would be longer than the o
servation time, the SG phenomena observed in experim
are in a nonequilibrium relaxation process to the equilibriu
state. While direct analysis for the equilibrium state has b
a main part of the SG theory to show that the phenomeno
a kind of thermodynamic phase transition, analysis for n
equilibrium relaxation is also an important step to understa
the SG. Recent progress on the theory of SG is partly ow
to studies on nonequilibrium phenomena.15–20

The study of the nonequilibrium relaxation~NER! process
is shown to be useful to analyze the equilibrium phase d
gram and the critical phenomena.21–29 It was first applied to
the study on ferromagnetic~FM! transitions to estimate the
critical point and the dynamic critical exponent quite acc
rately. One may simulate the relaxation process from
all-up state and measure the total magnetizationm(t). The
statistical average is taken from independent Monte Ca
runs. In the nonequilibrium process, simulation steps
equilibration are not necessary, and therefore we can t
large systems for which the equilibrium simulation is u
reachable.

In the present paper, we show the applicability of t
©2001 The American Physical Society16-1
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NER method to SG transitions. In the NER analysis of S
systems, the difficulties that restrict possible system size
equilibrium Monte Carlo studies, become milder, and o
may simulate much larger systems. Further, since the st
tical averaging is taken from independent samples, it is e
to eliminate the systematic bias, which is likely to misle
the conclusions of simulation study. In spite of such adv
tages for the NER method, two problems arise to extend
the SG case. One is how to prepare a good initial, none
librium state, which is the all-up state in the FM case. T
other is what the good dynamical order parameter is inst
of the magnetization. These problems correspond to
question of the proper static order parameter for the equ
rium SG phase. One answer to this question is the rep
overlap, and the clone correlation function~CCF!6,16–19 is
adopted here. It measures the spin correlation between
replicas produced after the relaxation for a waiting timetw
from the all-up state. We investigate the behavior of the C
for the6J Ising SG model in three and four dimensions. T
linear sizes simulated are up toL5127 with timestw<108

and t<23108 MCS in three dimensions andL541 in four
dimensions. It has been found that the asymptotic beha
of the CCF and the scaling behavior aroundt5tw provide a
new dynamical way for the estimation of the SG transiti
temperature, which is more reliable with much larger sizes
is shown that the asymptotic behavior of the CCF in the
phase is quite different from that in the FM phase. This
dicates a complex phase space like in the mean-field mo

The organization of this paper is as follows. In the ne
section, the basic idea of the NER method is described
the FM case, and the CCF is introduced for the SG ca
Several candidates for the NER function are examined
Sec. III, the basic properties of the CCF are investiga
numerically for the6J Ising model in three dimensions
Two time regimest.tw and t,tw , and three temperatur
regimesT.Tg T;Tg , and T,Tg are distinguished. The
asymptotic behavior of the CCF is investigated for seve
systems in Sec. IV to clarify the usefulness of the NE
analysis to the SG case. It reveals the structure of the
energy in the SG phase. In Sec. V, the determination of
transition temperature from numerically obtained CCF,
discussed. The last section is devoted to summary and
marks.

II. NONEQUILIBRIUM RELAXATION METHOD AND
SPIN GLASS PHASE

We study the6J Ising model mainly on the simple cubi
lattice with the interaction energy

H52(
^ i , j &

Ji j SiSj ~Si561!, ~2.1!

where the sum runs over all nearest-neighbor sites.
quenched coupling constantJi j takesJ(.0) with probability
p, or 2J with probability (12p). We study only the sym-
metric case (p51/2) in this paper. In the following, we us
J/kB as the unit of temperature. The SG transition tempe
ture is expected around 1.11<Tg<1.2.6–10
02441
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The analysis by the NER method is simple and efficie
for conventional critical phenomena in equilibrium. In th
case of FM transitions, one may simulate the relaxation p
cess from the completely ordered state, i.e., the all-up st
and measure the magnetizationm(t). In the relaxation of
m(t), the power-law asymptotic behavior

m~ t !;t2lm ~2.2!

appears only at the critical point. The magnetization dec
exponentially in time to zero in the paramagnetic~PM!
phase, and to a positive spontaneous-magnetization valu
the FM phase. One of the two ordered states is selecte
the initial nonequilibrium state. Note that it is not necessa
to select the completely ordered state as the initial state
state that contains one ordering more than the other is s
cient. As is shown later in Fig. 5, even a random init
configuration works if the CCF is observed instead of t
magnetization.

The phase is distinguished by examining the behavio
m(t). If one assumes the dynamic scaling form,30,31

m~ t,«,L !5L2b/ng~L1/n«,L2zt !, ~2.3!

whereL is the linear size and«[uT2Tcu/Tc , the power in
Eq. ~2.2! is related to conventional static and dynamic cri
cal exponents as

lm5
b

zn
. ~2.4!

To distinguish the phase accurately from the data, it is c
venient to define the local exponentl(t) by the logarithmic
derivative ofm(t)

l~ t ![2
d logm~ t !

d logt
. ~2.5!

It approaches tolm asymptotically (t→`) at the critical
temperature, while it approaches to 0 and` in FM and PM
phases, respectively. Therefore, one can determine the
cal temperature as the point wherel(t) changes its behavio
in the 1/t→0 limit. The finite-time correction forl(t) is of
the same order as the correction inm(t). For example, if one
assumes

m~ t !5t2lm@am1O~1/t !# ~2.6!

at the critical temperature

l~ t !5l1O~1/t ! ~2.7!

is satisfied. At the critical point, the correction termO(1/t)
would be of the order of 1/tvm (vm.0). In this sense, the
asymptotic behavior ofl(t) can be determined easily. In th
NER analysis, the error bar of the transition temperature
estimated directly from asymptotic behaviors indicated
of criticality; the upper bound forTc is the lowest tempera
ture indicatingl(t)→`, and the lower bound is the highe
temperature indicatingl(t)→0. Such an estimation of erro
bars is much more reliable compared with those obtained
conventional scaling-plot analysis.
6-2
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NONEQUILIBRIUM RELAXATION STUDY OF ISING . . . PHYSICAL REVIEW B64 024416
In general, the correlation lengthj(t) is growing in the
nonequilibrium process from zero at the initial state up to
equilibrium valuejeq(T). In the region far from the critical-
ity, where jeq(T),L holds, the relationj(t),L is always
satisfied and the nonequilibrium process reflects the beha
of the system in the thermodynamic limit. In the critical r
gion, wherejeq(T).L, the characteristic time defined b
j(tL);L exists. The finite-size effect is observed fort
.tL . Thus the analysis of nonequilibrium relaxation shou
be reliable only up to the time much smaller than thistL .
Since simulation steps for equilibration are not necessar
the NER method, one can treat large systems for which
equilibrium simulation is unreachable. One can simulate s
tems with large enoughtL to analyze the thermodynami
behavior sufficiently from the nonequilibrium relaxation f
t,tL .

Since equilibration takes a very long time for SG system
the equilibrium simulation suffers from many troubles. In
recent study, the simple-cubic lattice of the size 243 was
equilibrated by a standard Monte Carlo simulation.10 As
stated above, large systems can be analyzed by the
method, and the characteristic timetL is expected to be large
at the transition point even in the SG case. In the pres
paper, we analyze the equilibrium properties of the6J Ising
model with sizes up to 12723128 in three dimensions.

In the SG case, unlike in the FM case, the initial state
difficult to be adjusted to the complete ordering and it
nontrivial to define the order-parameter dynamically. In t
present paper, we try to apply the method using the C
~Refs. 6,16–19! Q(t,tw). Let us consider a system relaxed
a heat bath of temperatureT for time interval tw from the
all-up state. This state is recognized as the initial state~at t
50) of the observation. Then, we generate two replica
systems (S(1) andS(2)) and simulate them in the same he
bath independently, applying independent random-num
sequences. The spin states of these replicas at thei th site
after time intervalt from the initial state, are denoted b
Si

(1)(t1tw) andSi
(2)(t1tw). The overlap of these two repli

cas

Q~ t,tw![@^Si
(1)~ t1tw! Si

(2)~ t1tw!&F#, ~2.8!

is estimated at each time step, where^•••&F and @•••# rep-
resent the dynamical average in the above process and
average for bond randomness, respectively. We call the s
at the beginning of the waiting, which is the all-up one, t
starting state, and that at the end of the waiting, the ini
state, hereafter. It is noted that the all-up state is not spe
in the SG case. The dynamics in this process is equivalen
that from a complete random state at least for thep51/2
case. Similar relations were widely proven for anyp ~the
aging relation!.32,33 Thus, one may consider thatQ(t,tw) is
the CCF with a complete random state as the starting s
This means that the starting state contains all the thermo
namic states equally even in the SG phase.

At the initial state (t50), the CCF is equal to unity, th
maximum value. During the waiting timetw between the
starting and initial states, the SG ordering develops to so
extent in the SG phase and some thermodynamic states
02441
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larger amplitudes than the others in the initial state. The
ordering is still incomplete in the initial state. Only in th
tw→` limit, the complete ordering is expected. Therefo
the behavior of the CCF depends on the waiting time in
SG phase. If the initial state is in equilibrium, which can
achieved bytw→`, the CCF approaches the SG order p
rameter asymptotically. Whentw,`, the asymptotic behav
ior of the CCF will be clarified later.

We define the local exponent ofQ(t,tw) as

l~ t,tw![2
d logQ~ t,tw!

d logt
, ~2.9!

to analyze the asymptotic behavior more precisely. Pra
cally, the local exponentl(t,tw) is estimated by the least
square fitting of logQ(t,tw) to logt in a finite interval t
2Dt,t8,t1Dt, whereDt (!t) is chosen appropriately.

The well-defined asymptotic behavior~large t behavior!
for the CCF is achieved bytw→`, in which the SG order
parameter is obtained asymptotically. Although large s
tems with largetL are simulated, it is impossible to analyz
the limit of tw→` from the CCF, since the finite-size effec
occurs fort1tw.tL . This makes the analysis complicate
and unreliable compared with the results obtained fromt
1tw,tL . Thus, we need to examine whether or not the C
gives relevant information for the SG transition even int
1tw,tL . In this case, the asymptotic~large t! behavior is
observed in the regimetL.t@tw ; the regimetL.tw@t
@1 is difficult to be simulated in general.

Before showing the numerical results, we examine ot
candidates for the order parameter, which we do not use
the following reasons. In any case, the initial state canno
chosen perfectly appropriately, since the ordered sate in
SG phase is nontrivial and is unknown before simulatio
The simplest quantity in the study of magnetism is the m
netization

m~ t ![@^Si~ t !&ne#, ~2.10!

where ^•••&ne represents the dynamical average in a no
equilibrium process, while it has several problems in the
plication to the SG case. Since the complete state~all-up!,
which gives the maximum value ofm(t), has zero overlap to
the SG states, we are not sure whether or not it is relevan
the SG ordering. It always vanishes in equilibrium states
zero field. This suggests a difficulty distinguising the pha
from the asymptotic behavior. The amplitude ofm(t) in the
SG phase is much smaller compared with the FM case. T
we discard this possibility.

The equilibrium autocorrelation function

q~ t ![@^Si~0!Si~ t !&eq#, ~2.11!

where^•••&eq represents the dynamical average in the eq
librium process, approaches the SG order parameter asy
totically. However, this quantity is not suitable for our pu
pose, since it is required to generate equilibrium states be
relaxations, which limits the system size.

The nonequilibrium autocorrelation function

C~ t,tw![@^Si~ tw!Si~ t1tw!&ne# ~2.12!
6-3
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YUKIYASU OZEKI AND NOBUYASU ITO PHYSICAL REVIEW B 64 024416
does not need the equilibration. This is more suitable t
those listed above. It has been observed thatC(t,tw) depends
on the waiting timetw ~the aging phenomena!, and the cross-
over appears aroundt;tw .15 Before the crossover (t,tw), it
behaves as in equilibrium since the state at timetw ap-
proaches the equilibrium state whentw→`. In the
asymptotic regime,C(t,tw) decays to zero even in the S
phase. Practically, the stack of spin configurations ne
much memory space or it restricts the observation steps
avoid this stack problem, similar toC(t,tw) but with more
practical quantity, the CCF is proposed.

III. NUMERICAL RESULTS

In this section, we report the behavior of the CCF es
mated by Monte Carlo simulations. In the simulation
single-spin flip dynamics with two-sublattice updates ha
been used.34 Simple-cubic lattices with sizes from 292330
up to 12723128 have been simulated. The simulations w
performed for temperatures in the range 0.8<T<2.2 with
times up totw5108 and t523108. To achieve maximum
simulation performance, skew boundary conditions were
posed for two directions, and the remaining direction is
riodic. With this boundary condition, our two-sublattice ve
torization simulation requires the lattice size of (od
3(odd)3~even!. The size dependence is checked for seve
sizes and it is confirmed that these lattices are large eno
to eliminate the finite-size effects up to the present maxim
time of simulations within the present accuracy.35–40Typical
lattices are 632364 and 10123102. For simulations longe
than the order of 107 Monte Carlo steps~MCS!, smaller lat-
tices, 292330, 392340 and 492350, have been analyzed
Even these smaller lattices are much larger than those ca
lated so far in equilibrium Monte Carlo simulations. Th
number of independent bond configurationsNb is chosen
from tens to thousands for each temperatureT.

The typical behavior of the CCF is shown in Figs. 1~a!–
1~c!. In the PM phase@Fig. 1~a!#, Q(t,tw) shows an expo-
nential decay in timet.41 The decay time is called the the
malization time and denoted byt. It does not depend on th
waiting time tw but on the temperatureT for large tw . It is
observed thatQ(t,tw) showstw dependence iftw,t, while it
is independent oftw if tw.t. Whentw.t, the starting state
relaxes during the waiting time and the initial state reac
an equilibrium state, soQ(t,tw) shows equilibrium replica-
spin relaxation. On the other hand, whentw,t, the initial
state is not an equilibrium state and depends ontw . There-
fore, the CCF involves two time scales,t andtw , in the PM
phase. The values oft are estimated by the least-square
ting for T.Tg , and are plotted in Fig. 2. The figure shows
power-law divergence on (T2Tg), in which Tg51.2 is as-
sumed. The exponent is estimated aszn55.7(5).This value
is smaller than previous estimations,zn56.561.5 in Ref. 6,
zn5661 in Ref. 7, andzn57.261 in Ref. 8, but is not
very distinct from them.

At a temperature close to the critical point@Fig. 1~b!, T
51.2# or in the SG phase@Fig. 1~c!, T50.9#, Q(t,tw) shows
a power-law decay in timet and the amplitude depends o
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FIG. 1. Behavior of the CCF is shown for the simple-cub
lattice of several temperatures,~a! T51.6, ~b! T51.2, and~c! T
50.9. The solid line in~a! is shown as a guide to the eyes to giv
an idea of the relaxation time scale. Figure~a! is a semilog plot, and
~b! and ~c! are double-log plots.
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NONEQUILIBRIUM RELAXATION STUDY OF ISING . . . PHYSICAL REVIEW B64 024416
tw . The waiting time dependence is clearly observed an
gives the time scale of dynamical behavior: A crossove
found from one power law to the other at aroundt;tw . In
the regime oft!tw , Q(t,tw) will not depend ontw if tw is
large enough, while it does in the asymptotic regimet@tw .
The decay exponent fort@tw seems to be independent oftw .
Such a crossover appears in a wide range of tempera
below Tg . This is a part of aging phenomena characteris
of SG systems.13–15

To see the dynamical behavior more clearly, we estim
the local exponentl(t,tw) and plot it as a function of
logarithmic-scaledtw /t in Figs. 3~a!–3~c!, in which the be-
havior in whole time regime, especially around the crosso
regime, can be seen. First, we examine the asymptotic
havior in the regimet@tw . In this regime, the CCF describe
a nonequilibrium relaxation, essentially. Let us see Fig. 3~a!
for the high-temperature region (T.Tg). The local expo-
nents for all waiting times are rapidly increasing witht at
around 1/t50. From the standard NER analysis,23–29 this
indicates the divergence ofl(t,tw) as t→` and the relax-
ation faster than a power law, possibly an exponential law
the PM phase as it is also observed directly in Fig. 1~a!. For
T<Tg , the local exponent approaches a definite value in
pendent of the waiting time. This is observed as the sat
tion in small tw /t in Figs. 3~b!–3~c!. The power becomes
smaller when the temperature is lower.43 Further consider-
ation for the regimet@tw is given in the following sections

In the regime oft!tw , the CCF is considered to converg
to the equilibrium value of replica spin overlap whentw
→`, since the initial state approaches the equilibrium st
It is observed that the waiting-time dependence of the lo
exponent with fixedtw /t@1 changes around the transitio
temperature in this regime. It is increasing withtw for T
.Tg @see Fig. 3~a!# while decreasing forT,Tg @see Fig.
3~c!#.44 In the limit of tw→`, if l(t,tw) diverges forT
.Tg , it is consistent with the exponential decay for the P
phase or nonexponential but faster than a power-law de

FIG. 2. Behavior of the thermalization time in the PM phase
shown for the simple-cubic lattice.Tg51.2 is assumed.
02441
it
s

re
c

te

r
e-

n

e-
a-

e.
al

ay

for the Griffiths phase in equilibrium relaxation.8,12,42 If
l(t,tw) vanishes forT,Tg , there exists a finite SG orderin
in the equilibrium state. Around the critical point, the loc
exponentl(t,tw) is waiting-time independent as a functio

FIG. 3. Local exponents of the CCF in three dimensions
plotted as functions oftw /t. The horizontal axis is in the logarith
mic scale. The temperatures are~a! T51.4, ~b! T51.2, and~c! T
50.8.
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YUKIYASU OZEKI AND NOBUYASU ITO PHYSICAL REVIEW B 64 024416
of tw /t, indicating the equilibrium critical relaxation. Th
behavior of the CCF for each temperature regions is sum
rized in Table I.

In the present simulation, the waiting-time dependen
still remains even for the largest waiting time@see Fig. 1~c!#.
That means the largest waiting time, 108 MCS, is insufficient
for equilibration in the SG phase.

IV. ASYMPTOTIC BEHAVIOR IN THE SPIN GLASS
PHASE

In this section, we discuss the asymptotic behaviort
@tw) of the CCF in the SG phase from the present data
examine the applicability of the NER analysis to SG tran
tions. In three dimensions, the CCF in the SG phase de
algebraically with a power independent of the waiting tim
@see Figs. 1~c! and 3~c!#. Two possibilities can be considere
to interpret it. One is that the SG phase in three dimension
of the Kosterlitz-Thouless type,6,11 in which no finite order
parameter appears while the spatial correlation length alw
diverges. The other possibility is that the CCF has a cha
ter that asymptotically approaches zero in the SG phase
when there exists a finite SG ordering.

To show that the latter is the case, we calculate the C
for the 6J Ising model in four dimensions~see Fig. 4!, in
which a finite SG ordering is widely expected6,9 below
Tg(4D);2.0. Calculations are performed atT51.2 on the
four-dimensional hypercubic lattice with sizes up to 43

342. The number of independent bond configurationsNb is
taken to be 32. We observe a crossover behavior from
power-law decay to another at aroundt;tw . In the t,tw
regime, the power depends ontw , while it seems indepen
dent of tw in the asymptotic regimet@tw . These behaviors
are the same as in the observation in three dimensions. S
the SG phase in four dimensions has a finite SG ordering
conclude that the CCF has the character of a power-law
cay in the SG phase in any dimensions and does not
verge to any finite values. Even though the CCF does
approach the equilibrium order parameter, the relaxation
havior is useful to analyze the equilibrium properties, wh
will discuss later.

What is the physical origin of this nonequilibrium rela
ation? To clarify it, we compare the behavior in the S
phase with a simpler case, the CCF in the pure FM mo

TABLE I. The behavior of the CCF for each temperature regi
Two time regimes, t,tw and t.tw , are distinguished. The
asymptotic form of the CCF and the waiting-time dependence
l(t,tw) with tw /t fixed are listed.

Temperature T,Tg T5Tg T.Tg

t,tw

Asymptotic form Finite order Power Exponential
tw dep. ofl(t,tw) decreasing constant increasing

t.tw

Asymptotic form Power Power Exponential
tw dep. ofl(t,tw) constant constant increasing
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from a random starting state atT,Tc . Calculations have
been performed for the three-dimensional pure FM Is
model. The result is shown in Fig. 5. The system is on
simple-cubic lattice with the size of 10123102, and CCF
values from typically 1280 independent simulations ha
been averaged over. We observe that the CCF initially
cays, then grows and finally approaches a finite value, wh
will be the square of the spontaneous magnetization.45,46The
minimum occurs at around the same time scale (t;300) for
all tw , and the minimum value is smaller for smallertw .
This is quite different from the SG case. It is noted that t
waiting-time dependence remains at the largesttw in Fig. 5,

.

f

FIG. 4. CCF in the SG phase (T51.2) in four dimensions. The
transition temperature is estimated aroundTg;2.0, ~Refs. 6 and 9!
and finite SG ordering is expected atT51.2. The waiting timetw is
varied from 102 to 107. The waiting-time dependence and the cros
over behavior aroundt;tw are observed.

FIG. 5. CCF in the FM phase (1/T50.222 orT54.505) for the
three-dimensional pure FM Ising model. The transition tempera
is 1/Tc50.221 66 orTc50.4511. The starting state was set to
randomly oriented configuration. The waiting timetw is varied from
50 to 2000. The horizontal line shows the value of the squa
spontaneous magnetization at 1/T50.222.
6-6
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which means that the initial state is still in nonequilibriu
for all tw . Thus, the observed asymptotic behavior is a n
equilibrium relaxation, which is the same situation as in
present SG calculations.

The minimum of the CCF observed in the FM phase
explained as follows. From the starting random configu
tion, FM clusters start to grow but the ordering directions
random among clusters. After a while, a few clusters beco
dominant in the system and they have longer lifetime th
other small clusters. The time when the system is occup
by dominant clusters is named the percolating time. The p
colated cluster slowly absorbs other nonpercolating clus
~we are assuming the rough FM phase above roughe
temperature!. Whentw is larger than the thermalization tim
t, the initial state is almost at equilibrium and is dominat
by a single percolated cluster. Then, the CCF decays mo
tonically from unity to the equilibrium squared magnetiz
tion. On the other hand, whentw is small enough, the initia
state is nonequilibrium and consists only of nonpercola
clusters. Even then, in the initial state, the ordering proc
has progressed from the starting state and the orientatio
the dominant percolated cluster, which will appear in la
time, is the same in each replica. Clusters antiparallel to
percolated orientation relax to the opposite direction in tim
Since the process to flip such clusters from the initial stat
almost independent in two replicas, contributions of them
the CCF are almost negative in early times, and the resul
overlap would decrease to a much smaller value. Afte
while, flipped clusters begin to correlate with each other
space and time. Then the contributions to the CCF appro
those in the equilibrium state.

We examine the difference of asymptotic behaviors of
CCF in FM and SG phases. In general, the ordered phase
more than one pure state. The starting state contains e
dynamical amplitude for each pure state in both FM and
cases, since it is random. The process in the waiting t
provides a domain structure of pure states. In the FM c
even if the process int.0 is independent, the final equilib
rium state is equivalent in two replicas. This means that
dynamical amplitudes of pure states are not equal in the
tial state, and only one pure state has a dominant dynam
amplitude relatively. This explains the finite limit of th
CCF. In the SG case, the power-law decay of the CCF in
cates that the final state is not unique and depends on rep
otherwise the contribution to the CCF must be nonvanish
This means that the initial state contains more than one p
state with dominant dynamical amplitude, which is differe
from the FM case. This indicates the complicated struct
of the phase space in the short-range Ising SG models, w
could be a ultrametric structure like in the Sherringto
Kirkpatrick model.2,4

V. SPIN GLASS TRANSITION AND SCALING RELATION

In the previous sections, we showed the asymptotic
havior of the CCF: it decays exponentially forT.Tg , while
it shows a power-law decay forT<Tg , and this decay ex-
ponent does not depend ontw but onT. Thus, we can distin-
guish the phase by analyzing the asymptotic behavior of
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CCF with fixedtw . For smallertw , one can save simulation
steps for the waiting time. For largertw , the amplitude of the
CCF becomes larger, and the statistical deviation is s
pressed relatively. An appropriatetw should be chosen fo
efficient calculations.

In Fig. 6, we plot the local exponent ofQ(t,tw) for the
three-dimensional case withtw5104 ~MCS! fixed. It is
clearly observed that the curves forT>1.25 turn up when 1/t
goes to zero—indicating the PM phase in this temperat
region. This is consistent with the expected transiti
temperature6–10 1.11<Tg<1.2. Note that the curves forT
<1.2 approach nonzero finite values—indicating a pow
law decay ofQ(t,tw). This means that the SG transitio
temperature is located aroundT51.2. The temperatureT
51.25 is the upper bound ofTg in this analysis, i.e.,Tg
,1.25.

The above analysis does not give an estimation for
lower bound ofTg , since the downward behavior, whic

FIG. 6. Local exponentslq(t,tw) as functions of 1/t with tw

5104 fixed. The curves bend upwards ast→` for T>1.25, as
expected for the PM phase.
6-7
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usually means the finite ordering, is not observed for
CCF in the SG phase. The following scaling analysis supp
ments this problem. At the critical temperature, time sca
included inQ(t,tw) are justt and tw . Thus, one can expec
the scaling form

Q~ t,tw!5tw
2lq q̄~ t/tw!, ~5.1!

which is numerically confirmed forT51.2 in Fig. 7~a! with
lq50.070. This scaling relation is not observed forT,Tg .
As an example, in Fig. 7~b!, we plot tw

lQ(t,tw) for T50.8
with l chosen to fit curves in the regimet/tw.1; the
asymptotic power istw independent in this regime. Clearly
curves are spread int/tw,1 and the scaling form~5.1! is not

FIG. 7. Scaling plot ofQ(t,tw) at ~a! T51.20 and~b! T50.8 in
three dimensions. The values of scaling exponent are selecte
that the points fall onto the scaling curve fort/tw@1. ~a! At T
51.20, which is close to the transition temperature, not only
region fort/tw@1, but also that fort/tw!1, are scaled by the singl
exponent. The solid lines showa(t/tw)20.070 and b(t/tw)20.175.
These exponents are also observed in Fig. 3~b!. ~b! At T50.80,
only the region t/tw@1 is scaled. The solid line show
c(t/tw)20.080. This exponent is also observed in Fig. 3~c!.
02441
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satisfied in the wholet/tw regime. A similar feature is ob-
served also atT51.0 and 0.9. Therefore, we conclude th
the scaling relation~5.1! is valid only in the critical region
near the critical point. The result atT51.1 also shows the
scaling form~5.1! both for t/tw.1 andt/tw,1. The region
1.1<T<1.2 is regarded as the critical region within th
present simulation. If one estimates the CCF more accura
or for a longer-time interval, higher resolution would b
available. It is concluded thatTg.1.0.

At the critical point, the CCF decays algebraically in bo
limits t@tw andt!tw , with powers independent oftw . Fur-
thermore, the amplitude is also independent oftw for t!tw
because of the convergence to the equilibrium relaxat
That means

q̄~x!→H c̄ex
2lq ~x!1!

c̄nex
2lne ~x@1!,

~5.2!

wherec̄e andc̄ne are constants, andlqÞlne. Then, the CCF
behaves as

Q~ t,tw!→H c̄et
2lq ~ t!tw!

cne~ tw!t2lne ~ t@tw!,
~5.3!

where

cne~ tw!5 c̄netw
m ~5.4!

with m5lne2lq .47 The scaling analysis of the prese
simulation result provideslq50.070(5) andlne50.175(5)
@m50.100(5)# at T51.2 and lq50.045(5) and lne
50.150(5) @m50.105(5)# at T51.1. The deviation due to
the uncertainty ofTg is more significant than the statistica
error. Assuming thatTg is located between 1.1 and 1.2, the
are estimated to belq50.06(2) and lne50.16(2) @m
50.103(8)#. The estimated valuelq50.06(2) is consistent
with those obtained so far by equilibrium simulations.8,15,48

The exponentlne characterizes the nonequilibrium rela
ation. Huse49 observed a power-law decay of the magnetiz
tion at the critical point in three dimensions, which would
a nonequilibrium relaxation. The estimated power 0.37
magnetization is much larger than the present estimation
lne for the CCF.

The exponentlne can be defined even forT,Tg . In the
SG phase, the CCF fort@tw behaves as

Q~ t,tw!→cne~ tw ,T!t2lne(T), ~5.5!

where

cne~ tw ,T!5 c̄ne~T!tw
m(T) ~5.6!

with m(T)5lne(T)2lq(T). Estimated values oflq(T) and
lne(T), from the scaling-plot analysis, are given in Fig.
The values oflne are also estimated by extrapolation to 1t
50 in Fig. 6, which of course give consistent values fro
the scaling analysis. Ogielski8 gives a figure oflq(T) from
the analysis of the equilibrium autocorrelation function. O
result is consistent with that.

so
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VI. SUMMARY AND REMARKS

The nonequilibrium relaxation method has been exten
to analyze SG transitions. The initial state and the dynam
order parameter are nontrivial unlike the FM case. We int
duce the CCF, in which the initial state is provided by
appropriate waiting time and the order parameter is e
mated by the replica overlap. The behavior of the CCF
investigated for the6J Ising model in three-dimensions
The number of totally updated spins for three-dimensio
SG simulation is 9.931015 and it took about 5800 single
processor hours of VPP500. For four-dimensional SG sim
lation, 1.631014 spins are updated using about 120 sing
processor hours.

It is remarkable that, in the SG phase, the CCF in
region t@tw decays algebraically with a power independe
of the waiting time. The CCF in the SG phase is also stud
for the four-dimensional6J Ising model, which shows
qualitatively the same behavior as in three dimensions. Th

FIG. 8. Temperature dependence of the powers of CCF
served in nonequilibrium relaxation in the SG phase:~a! lq(T) and
~b! lne(T).
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observations indicate a nontrivial structure of the pha
space instead of the double-well type one observed in Fi
for the pure FM model. The behavior of the CCF in th
region t!tw in the SG phase, shows the tendency to co
verge to nonzero positive values, which suggests that
CCF converges to a SG order parameter whent becomes
large after taking the limittw→` ~i.e., equilibrium relax-
ation!. However eventw5108 is not sufficient to estimate the
value of this order parameter atT50.9.

Although the CCF in the SG phase approaches zero in
asymptotic regime (t@tw), it can be useful to analyze equ
librium properties of SG transitions. From the present obs
vation of the CCF, the determination of the transition te
peratureTg is possible. In three dimensions, the asympto
behavior of the local exponent givesTg,1.25 and the
scaling-plot analysis using the form of Eq.~5.1! gives Tg
.1.0. At a glance, this result, 1.0,Tg,1.25, is not a precise
estimation. However, the studied system sizes 12723128 are
much larger than those by equilibrium simulations. Furth
more, this error bar is estimated directly by asymptotic b
haviors which indicates out of criticality. Therefore the o
tained results have reliability and importance. While t
recent estimation10 of Tg was made carefully, the Binder’
cumulant with the finite-size scaling analysis for sizes up
243, could be modified in the future because of the correct
to scaling and the finite-size effect, which was pointed out
the authors of that paper.10 The present investigation pro
vides another way to estimate forTg with much larger sys-
tems, in which the size effect is not serious.

In three dimensions, the thermalization-time exponen
the PM phase is estimated aszn55.7(5). Theexponents at
the critical temperature arelq(Tg)50.06(2) andlne(Tg)
50.16(2). Thetemperature dependence of asymptotic ex
nents in the SG phase are shown in Fig. 8. The exponenbq
of SG order parameterq is estimated to be 0.34(11) assum
ing the dynamic finite-size scaling relation

lq~Tg!5
bq

zn
, ~6.1!

with the present estimates forlq(Tg) andzn.
The analysis of SG by the CCF is an extension to ar

trary phase transitions especially to those for which the or
parameter is not simple. Even with the NER method, su
transitions are not easy to treat compared to transitions w
a clear order parameter, but the advantage in the system
will still be useful. The present SG analysis will encoura
the NER analysis for other complicated systems.
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