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Nonequilibrium relaxation study of Ising spin glass models
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As an analysis of equilibrium phase transitions, the nonequilibrium relaxation method is extended to the spin
glass(SQ ) transition. ThetJ Ising SG model is analyzed for three-dimensiofuailbic) lattices up to the linear
size of L=127 and for four-dimensiondhypercubi¢ lattice up toL=41. These sizes of systems are quite
large as compared with those calculated, so far, by equilibrium simulations. As a dynamical order parameter,
we calculate the clone correlation functit@CP Q(t,t,)=[(SV(t+1,) SP(t+t,))F], which is a spin cor-
relation of two replicas produced after the waiting titgefrom a simple starting state. It is found that the CCF
shows an exponential decay in the paramagnetic phase, and a power-law decay after aginglike development
(t>t,) inthe SG phase. This provides a reliable upper bound of the transition tempéfatutés also found
that a scaling reIatiorQ(t,tW)=t\;kqa(t/tw), holds just around the transition point providing the lower bound
of T,. Together with these two bounds, we propose a new dynamical way for the estimaligfrai much
larger systems. In the SG phase, the power-law behavior of the CGB-1Qr suggests that the SG phase in
short-range Ising models has a rugged phase space.
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[. INTRODUCTION Ref. 6 is the amount of calculations that are spent to increase
the system size from £60 24° and to lower the temperature
The picture of the spin glag$0G) phase is established in range fromT=1.0 to T=0.95. As stated in Ref. 10, these
the mean-field levéf based on the replica symmetry break- problems are still unsettled, and further investigations are
ing (RSB).>° It is characterized by the multivalley structure necessary. However, because of the slow relaxation in the
of the free-energy landscape in the order-parameter spa@G system, equilibration and averaging takes much time in
with the so-called ultrametric structure. Since the upper critistandard equilibrium Monte Carlo simulations. Larger sys-
cal dimensions of the SG systems are large, such a meatems are much difficult to simulate.
field picture might be improper in some physical situations. Slow dynamics is one of the peculiar properties charac-
Studies on the short-range SG model have played an impoterizing the SG phaset?~*° A typical realization of slow
tant role to interpret and understand the experimentally obdynamics is the so-called “aging’®~" The relaxation be-
served SG phenomena. Now the lower critical dimensions ohavior depends strongly on the waiting time from which the
the SG transitions and the validity of the RSB picture inenvironment of the system is changed. Since the equilibra-
short-range SG models are the important remaining probtion time in real SG materials would be longer than the ob-
lems. Since randomness and frustration make it difficult tcservation time, the SG phenomena observed in experiments
treat short-range SG models analytically, as well as numeriare in a nonequilibrium relaxation process to the equilibrium
cally, many efforts have been devoted to overcome it in thestate. While direct analysis for the equilibrium state has been
last two decades. a main part of the SG theory to show that the phenomenon is
In the middle of 1980’s, some extensive and efficienta kind of thermodynamic phase transition, analysis for non-
Monte Carlo simulations were presented for thd Ising  equilibrium relaxation is also an important step to understand
model in three dimensiorfs8 The equilibrium quantities rel- the SG. Recent progress on the theory of SG is partly owing
evant to SG transitions were estimated to conclude the exige studies on nonequilibrium phenometiaZ’
tence of the SG phase. The estimated transition temperature, The study of the nonequilibrium relaxatioNER) process
Ty=1.175-1.2 in units of J/kg, was consistent with that is shown to be useful to analyze the equilibrium phase dia-
obtained by series expansidproviding the confirmation of gram and the critical phenomefa?° It was first applied to
the equilibrium SG transition in three dimensions. With all the study on ferromagneti@&M) transitions to estimate the
such studies, the problems have remained unsettled becausdical point and the dynamic critical exponent quite accu-
of frustration and randomness. The recent result obtained brately. One may simulate the relaxation process from the
Monte Carlo simulation in equilibrium stat@svith the same  all-up state and measure the total magnetizatigh). The
strategy as in Ref. 6 shows a slightly lower value of the SGstatistical average is taken from independent Monte Carlo
transition temperatureély=1.11(4). It also changes the runs. In the nonequilibrium process, simulation steps for
physical picture of the SG phase in three dimensions; @quilibration are not necessary, and therefore we can treat
Kosterlitz-Thouless-like marginal phdsevas suggested in large systems for which the equilibrium simulation is un-
Ref. 6, while a finite SG ordering is suggested in Ref. 10reachable.
The main advantage of the simulation in Ref. 10 to that in In the present paper, we show the applicability of the
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NER method to SG transitions. In the NER analysis of SG The analysis by the NER method is simple and efficient
systems, the difficulties that restrict possible system sizes ifor conventional critical phenomena in equilibrium. In the
equilibrium Monte Carlo studies, become milder, and onecase of FM transitions, one may simulate the relaxation pro-
may simulate much larger systems. Further, since the statigess from the completely ordered state, i.e., the all-up state,
tical averaging is taken from independent samples, it is easgnd measure the magnetization(t). In the relaxation of

to eliminate the systematic bias, which is likely to misleadm(t), the power-law asymptotic behavior

the conclusions of simulation study. In spite of such advan- N

tages for the NER method, two problems arise to extend it to m(t)~t=tm 2.2

t'he' SG case. On'e IS how to prepare a_good initial, nOnequ'étppear:s only at the critical point. The magnetization decays
librium state, which is the all-up state in the FM case. Theexponentially in time to zero in the paramagnetRM)
other is what the good dynamical order parameter is instéag»qe “and to a positive spontaneous-magnetization value in
of th? magnetization. Thgse problems correspond to .Fh e FM phase. One of the two ordered states is selected as
questgg ththe prgper static orderhparametgr for thﬁ equ':!bfhe initial nonequilibrium state. Note that it is not necessary
rluml P C?Sﬁ' ?e answerl to_ t '? q“‘?sg‘(’:” Elé_fg 'eplICH select the completely ordered state as the initial state. A
overlap, and the clone correlation unctid ) P IS sﬁate that contains one ordering more than the other is suffi-
adopted here. It measures the spin correlation between reglent. As is shown later in Fig. 5, even a random initial

replicas produced after the relaxation for a waiting titye  onfiguration works if the CCF is observed instead of the
from the all-up state. We investigate the behavior of the CCE

X . - . magnetization.
for the = J Ising SG model in three and four dimensions. The 1,4 phase is distinguished by examining the behavior of
linear sizes simulated are up to=127 with timest,,<10°

: _ _ , m(t). If one assumes the dynamic scaling foiti:
andt<2x10® MCS in three dimensions arld=41 in four

dimensions. It has been found that the asymptotic behavior m(t,e,L)=L"A"g(LYe,L™%), (2.3

of the CCF and the scaling behavior arounel,, provide a ] ) ] )

new dynamical way for the estimation of the SG transitionwhereL is the linear size and=|T—T|/T;, the power in

temperature, which is more reliable with much larger sizes. IEd. (2.2 is related to conventional static and dynamic criti-

is shown that the asymptotic behavior of the CCF in the SGal exponents as

phase is quite different from that in the FM phase. This in-

dicates a complex phase space like in the mean-field model. A= B ) (2.4)
The organization of this paper is as follows. In the next mozv

section, the basic idea of the NER method is described foji‘o distinguish the phase accurately from the data, it is con-

the FM case, and the CCF is introduced for the SG case, _ . : L

Several candidates for the NER function are examined. |rYe”.'e”F to define the local exponextt) by the logarithmic

. : ; . fm(t)

Sec. lll, the basic properties of the CCF are mvestlgateéj erivative o

numerically for thexJ Ising model in three dimensions. dlogm(t)

Two time regimest>t,, andt<t,,, and three temperature ANO)=—

regimesT>Ty T~T,, and T<Ty are distinguished. The

asymptotic behavior of the CCF is investigated for severalt approaches to\,, asymptotically {—=) at the critical

SyStemS in Sec. IV to Clal’ify the usefulneSS Of the NERtemperature, Wh||e |t approaches to0 aﬂdn FM and PM

analysis to the SG case. It reveals the structure of the freghases, respectively. Therefore, one can determine the criti-

energy in the SG phase. In Sec. V, the determination of thga| temperature as the point wherét) changes its behavior

transition temperature from numerically obtained CCF, isin the 14— 0 limit. The finite-time correction foi(t) is of

discussed. The last section is devoted to summary and rene same order as the correctiomigt). For example, if one

marks. assumes

“dlogt 2.9

_+—A\
II. NONEQUILIBRIUM RELAXATION METHOD AND m(t)=t""ma,+O(1/)] (2.6)
SPIN GLASS PHASE at the critical temperature

We study thet J Ising model mainly on the simple cubic _
lattice with the interaction energy MU=A+O(1h) 27
is satisfied. At the critical point, the correction te@{14)
would be of the order of 1m (w,,>0). In this sense, the
H= _GZD 5SS (S§=*1), 2D asymptotic behavior of (t) can be determined easily. In the
NER analysis, the error bar of the transition temperature is
where the sum runs over all nearest-neighbor sites. Thestimated directly from asymptotic behaviors indicated out
quenched coupling constadj takesJ(>0) with probability  of criticality; the upper bound fol . is the lowest tempera-
p, or —J with probability (1—p). We study only the sym- ture indicating\ (t)—c<c, and the lower bound is the highest
metric case f=1/2) in this paper. In the following, we use temperature indicating(t)—0. Such an estimation of error
J/kg as the unit of temperature. The SG transition temperabars is much more reliable compared with those obtained by
ture is expected around 14T <1.2%71° conventional scaling-plot analysis.
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In general, the correlation lengi#(t) is growing in the larger amplitudes than the others in the initial state. The SG
nonequilibrium process from zero at the initial state up to theordering is still incomplete in the initial state. Only in the
equilibrium valueé.(T). In the region far from the critical- t,,— limit, the complete ordering is expected. Therefore,
ity, where &.(T)<L holds, the relatior¢(t)<L is always the behavior of the CCF depends on the waiting time in the
satisfied and the nonequilibrium process reflects the behavi®G phase. If the initial state is in equilibrium, which can be
of the system in the thermodynamic limit. In the critical re- achieved byt,,—», the CCF approaches the SG order pa-
gion, whereé.(T)>L, the characteristic time defined by rameter asymptotically. Whet, <, the asymptotic behav-
&(7)~L exists. The finite-size effect is observed for ior of the CCF will be clarified later.
> 7. Thus the analysis of nonequilibrium relaxation should We define the local exponent i(t,t,,) as
be reliable only up to the time much smaller than this
Since simulation steps for equilibration are not necessary in A(tt,)=— dlogQ(t,ty) 2.9
the NER method, one can treat large systems for which the W dlogt ’ '
feqmug'twiltj? Izlrgglité?)zéshlintfa;:;glz% %r;e t%aer:rﬁggl;lr?;?msgsto analyze the asymptotic behavior more precisely. Practi-

behavior sufficiently from the nonequilibrium relaxation for cally, the_ I_ocal exponeri (t,t) is e?’“mat.e‘?' by_ the least-
t<r square fitting of lodgd(t.t,) to logt in a finite intervalt
L .

L S : —At<t'<t+At, whereAt (<t) is chosen appropriately.
Since equilibration takes a very long time for SG systems, The well-defined asymptotic behavidarge t behavioy

the equilibrium S|mglat|on suffers fr.om many trqubles. In tor the CCE is achieved b, c, in which the SG order

recent study, the simple-cubic lattice of the size 2fas . . .

equilibrated by a standard Monte Carlo simulattBnAs parameter I obtalned_asymptot_mally. Althc_)ugh large sys-

stated above, large systems can be analyzed by the N ms W'th larger, are simulated, |t.|s |mpos§|t_)le t(.) analyze

method, and the characteristic timgis expected to be large he limit of t,,— from the CCF, since the f|r_1|te-5|ze gffect
feeurs fort+t,>7_ . This makes the analysis complicated

at the transition point even in the SG case. In the prese and unreliable compared with the results obtained friom

paper, we analyze the equilibrium properties of thé Ising +t,< Thus, we r?eed to examine whether or not the CCF

model with sizes up to 12% 128 in three dimensions. WS TL " . - :
Sglves relevant information for the SG transition eventin

In the SG case, unlike in the FM case, the initial state i b In thi h totiearge t) behavior i
difficult to be adjusted to the complete ordering and it is” W~ L n this case, the asymplottarge 1) behavior 1S
observed in the regime >t>t,,; the regimer >t,>t

nontrivial to define the order-parameter dynamically. In the 1 is difficult to be simulated i |
present paper, we try to apply the method using the ccg L Is difficult to be simulated in general.

(Refs. 6,16—1Q(t,t,,). Let us consider a system relaxed in Before showing the numerical results, we examine other
a heat E)ath of terﬁpvératuféfor time intervalt.. from the candidates for the order parameter, which we do not use for
w

all-up state. This state is recognized as the initial staté ﬂ;,%;%l:?w'er;?e:ﬁasgnsfolnr;r;éCazmct:?r:glt:)%:gde Sc;r;ni?]t 5168
=0) of the observation. Then, we generate two replicate P y approp Y,

systems 81 andS?) and simulate them in the same heat G phase is nontrivial and is unknown before simulation.

bath independently, applying independent random—numbe-Fhe simplest quantity in the study of magnetism is the mag-

sequences. The spin states of these replicas attlhsite netization
after time intervalt from the initial state, are denoted by m(t)=[(S(t))™], (2.10
sM(t+t,) andS?(t+t,). The overlap of these two repli- . .
cas where (- - -)"® represents the dynamical average in a non-
equilibrium process, while it has several problems in the ap-
Q(t,tW)ERS.(l)(HtW) S.(z)(tﬂw))F], 2.8 plication to the SG case. Since the complete statieup),

which gives the maximum value af(t), has zero overlap to
is estimated at each time step, whére-)F and[---] rep-  the SG states, we are not sure whether or not it is relevant to

resent the dynamical average in the above process and tHee SG ordering. It always vanishes in equilibrium states in
average for bond randomness, respectively. We call the sta#ero field. This suggests a difficulty distinguising the phase
at the beginning of the waiting, which is the all-up one, thefrom the asymptotic behavior. The amplituderoft) in the
starting state, and that at the end of the waiting, the initiaSG phase is much smaller compared with the FM case. Thus,
state, hereafter. It is noted that the all-up state is not speciaye discard this possibility.

in the SG case. The dynamics in this process is equivalent to The equilibrium autocorrelation function

that from a complete random state at least for fphel/2 _

case. Similar relations were widely proven for apythe AO=[(S(0)S ()™, (219
aging relation.®>*3 Thus, one may consider thaX(t,t,) is  where(- - - }*9 represents the dynamical average in the equi-
the CCF with a complete random state as the starting statéibrium process, approaches the SG order parameter asymp-
This means that the starting state contains all the thermodyetically. However, this quantity is not suitable for our pur-

namic states equally even in the SG phase. pose, since it is required to generate equilibrium states before
At the initial state {=0), the CCF is equal to unity, the relaxations, which limits the system size.

maximum value. During the waiting timg, between the The nonequilibrium autocorrelation function

starting and initial states, the SG ordering develops to some

extent in the SG phase and some thermodynamic states have C(t,t)=[(Si(tw) Si(t+1y))"™] (2.12
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does not need the equilibration. This is more suitable than
those listed above. It has been observed @aft,,) depends

on the waiting time,, (the aging phenomeieaand the cross-
over appears arourtd-t,, . 1> Before the crossovet{t,), it
behaves as in equilibrium since the state at tityeap-
proaches the equilibrium state whety,—~. In the
asymptotic regime((t,t,,) decays to zero even in the SG
phase. Practically, the stack of spin configurations needs
much memory space or it restricts the observation steps. To
avoid this stack problem, similar t6(t,t,,) but with more
practical quantity, the CCF is proposed.

Ill. NUMERICAL RESULTS

In this section, we report the behavior of the CCF esti-
mated by Monte Carlo simulations. In the simulations,
single-spin flip dynamics with two-sublattice updates have
been used? Simple-cubic lattices with sizes from 2230
up to 127X 128 have been simulated. The simulations were
performed for temperatures in the range 91B<2.2 with
times up tot,,=10% andt=2x10%. To achieve maximum
simulation performance, skew boundary conditions were im-
posed for two directions, and the remaining direction is pe-
riodic. With this boundary condition, our two-sublattice vec-
torization simulation requires the lattice size of (odd)

X (odd)x (evern. The size dependence is checked for several
sizes and it is confirmed that these lattices are large enough
to eliminate the finite-size effects up to the present maximum
time of simulations within the present accuracy*° Typical
lattices are 63< 64 and 101x 102. For simulations longer
than the order of 70Monte Carlo step$MCS), smaller lat-
tices, 28X 30, 3Fx40 and 49x 50, have been analyzed.
Even these smaller lattices are much larger than those calcu-
lated so far in equilibrium Monte Carlo simulations. The
number of independent bond configuratioNg is chosen
from tens to thousands for each temperaflire

The typical behavior of the CCF is shown in Figga)t
1(c). In the PM phaséFig. 1(a)], Q(t,t,) shows an expo-
nential decay in time.*! The decay time is called the ther-
malization time and denoted by It does not depend on the
waiting timet,, but on the temperatur€ for larget,,. It is
observed tha®(t,t,,) showst,, dependence if, <7, while it
is independent of,, if t,>7. Whent,> 7, the starting state
relaxes during the waiting time and the initial state reaches
an equilibrium state, sQ(t,t,) shows equilibrium replica-
spin relaxation. On the other hand, whgp< 7, the initial
state is not an equilibrium state and dependg,pnThere-
fore, the CCF involves two time scalesandt,,, in the PM
phase. The values af are estimated by the least-square fit-
ting for T>Tg, and are plotted in Fig. 2. The figure shows a
power-law divergence onT(—=Tg), in which Tg=1.2 is as-
sumed. The exponent is estimatedzas=5.7(5). This value
is smaller than previous estimatiorzs;= 6.5+ 1.5 in Ref. 6,
zv=6=%1 in Ref. 7, andzv=7.2+1 in Ref. 8, but is not
very distinct from them.

At a temperature close to the critical poiffig. 1(b), T
=1.2] or in the SG phasfFig. 1(c), T=0.9], Q(t,t,) shows

Q(t, ty)

Q(t, ty)

Q(t, ty)

(©

0.5

PHYSICAL REVIEW B 64 024416

045

03§

tw=102O 1
103 +
1040
105 %
0.1 e t/1600___

0.01 . . L
0 500 1000 1500 2000
t
1 L L L T L L
¥

tw=102 &

V103 ¥

0.7 1040

104 x

1052

FIG. 1. Behavior of the CCF is shown for the simple-cubic
lattice of several temperature@) T=1.6, (b) T=1.2, and(c) T
=0.9. The solid line in@) is shown as a guide to the eyes to give
an idea of the relaxation time scale. Figagis a semilog plot, and

a power-law decay in timé and the amplitude depends on (b) and(c) are double-log plots.
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FIG. 2. Behavior of the thermalization time in the PM phase is ‘“:}%fi
shown for the simple-cubic latticd.;=1.2 is assumed. logEl
0.2 F 105x
t,. The waiting time dependence is clearly observed and it
gives the time scale of dynamical behavior: A crossover is s
found from one power law to the other at aroundt,,. In z
the regime oft<t,,, Q(t,t,) will not depend ort,, if t,, is
large enough, while it does in the asymptotic regiree,, . 0.1 1
The decay exponent foe-t,, seems to be independenttgf. 0.09 1
Such a crossover appears in a wide range of temperature 0.08 %x 7]
below T,. This is a part of aging phenomena characteristic 0.07 1
of SG system&3~1° 0.06 ;
To see the dynamical behavior more clearly, we estimate L
. : 0.05
the local exponenix(t,t,) and plot it as a function of 10- 104 106
logarithmic-scaled,, /t in Figs. 3a)—3(c), in which the be- ()
havior in whole time regime, especially around the crossover o1
regime, can be seen. First, we examine the asymptotic be- 0.(;9 i
havior in the regimé>t,,. In this regime, the CCF describes 0.08 i
a nonequilibrium relaxation, essentially. Let us see Fig) 3
for the high-temperature regionT&Ty). The local expo- 007 1
nents for all waiting times are rapidly increasing wittat 0.06 o
around 1¥=0. From the standard NER analy$is?° this 2 ]
indicates the divergence of(t,t,) ast—« and the relax- z 03
ation faster than a power law, possibly an exponential law in 0.0 |
the PM phase as it is also observed directly in Figy.1For ) o
T<T,, the local exponent approaches a definite value inde-
pendent of the waiting time. This is observed as the satura- 0.03 % 1
tion in smallt,/t in Figs. 3b)—3(c). The power becomes
smaller when the temperature is lovlérFurther consider- x%%o(%
ation for the regime>t,, is given in the following sections. 0.02 . . , , , .
In the regime ot<t,,, the CCF is considered to converge T 101 101 103
to the equilibrium value of replica spin overlap whép ) tw/t

—0, since the initial state approaches the equilibrium state. FIG. 3. Local exponents of the CCF in three dimensions are
It is observed that the waiting-time dependence of the |Ocaﬁnlptted as functions of,, /t. The horizontal axis is in the logarith-
exponent with fixedt,,/t>1 changes around the transition MiC Scale. The temperatures &g T=1.4, (b) T=1.2, and(c) T
temperature in this regime. It is increasing with for T =08.

>Tq [see Fig. 8)] while decreasing foiT<T, [see Fig. for the Griffiths phase in equilibrium relaxatiGi?? If
3(¢)]* In the limit of t,—oo, if \(t,t,) diverges forT  \(t,t,) vanishes folf<T,, there exists a finite SG ordering
>Ty, itis consistent with the exponential decay for the PMin the equilibrium state. Around the critical point, the local
phase or nonexponential but faster than a power-law decagxponenti (t,t,,) is waiting-time independent as a function
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TABLE I. The behavior of the CCF for each temperature region. 1 r r r r T T
Two time regimes,t<t, and t>t,, are distinguished. The
asymptotic form of the CCF and the waiting-time dependence of 0.9
\(t,ty,) with t,, /t fixed are listed.
Temperature T<T4 T=T, T>Ty 0.8
<<ty <
Asymptotic form Finite order Power Exponential =07
t,, dep. of A (t,t,) decreasing constant increasing ©
t>t,
Asymptotic form Power Power Exponential 0.6
ty, dep. of\(t,t,) constant constant increasing

o o . . 0.5 . . . . . .

of t,/t, indicating the equilibrium critical relaxation. The 100 10! 102 108 10¢ 105 10 107
behavior of the CCF for each temperature regions is summa- t
rized in Table I. FIG. 4. CCF in the SG phasd € 1.2) in four dimensions. The

In the_ present simulation, the vy{:liting-time qependenCQransition temperature is estimated arodig-2.0, (Refs. 6 and 9
still remains even for the largest waiting t"fﬁ_ﬁl’f Fig. _lﬁ_i)]- and finite SG ordering is expected & 1.2. The waiting time,, is
That means the largest waiting time 21ACS, is insufficient  varied from 16 to 10 The waiting-time dependence and the cross-

for equilibration in the SG phase. over behavior arount~t,, are observed.
IV. ASYMPTOTIC BEHAVIOR IN THE SPIN GLASS from a random starting state a8t<T.. Calculations have
PHASE been performed for the three-dimensional pure FM Ising

model. The result is shown in Fig. 5. The system is on the
In this section, we discuss the asymptotic behavibr ( simple-cubic lattice with the size of 19%102, and CCF
>t,,) of the CCF in the SG phase from the present data tealues from typically 1280 independent simulations have
examine the applicability of the NER analysis to SG transi-heen averaged over. We observe that the CCF initially de-
tions. In three dimensions, the CCF in the SG phase decaysys, then grows and finally approaches a finite value, which
algebraically with a power independent of the waiting timeil| be the square of the spontaneous magnetiz&fidfiThe
[see Figs. (c) and 3c)]. Two possibilities can be considered minimum occurs at around the same time scate300) for
to interpret it. One is that the SG phase in three dimensions |§|| tw, and the minimum value is smaller for Sma”e\r_
of the Kosterlitz-Thouless tyge;" in which no finite order  This is quite different from the SG case. It is noted that the

parameter appears while the spatial correlation length alwaygaiting-time dependence remains at the larggsh Fig. 5,
diverges. The other possibility is that the CCF has a charac-

ter that asymptotically approaches zero in the SG phase even 1 , ,

when there exists a finite SG ordering. i ty= 50 O
To show that the latter is the case, we calculate the CCF oo

for the = J Ising model in four dimensiongsee Fig. 4, in 500 X

which a finite SG ordering is widely expecfetibelow ® ;333 i

T4(4D)~2.0. Calculations are performed &t=1.2 on the 0.1 ﬁ

four-dimensional hypercubic lattice with sizes up to®41 <

X 42. The number of independent bond configuratibigss
taken to be 32. We observe a crossover behavior from one
power-law decay to another at arouhét,,. In the t<t,,
regime, the power depends op, while it seems indepen-
dent oft,, in the asymptotic regimé&>t,,. These behaviors

are the same as in the observation in three dimensions. Since
the SG phase in four dimensions has a finite SG ordering, we
conclude that the CCF has the character of a power-law de- 0.001
cay in the SG phase in any dimensions and does not con- 1 10 100 1000
verge to any finite values. Even though the CCF does not t

approach the equilibrium order parameter, the relaxation be- gz 5. CCF in the FM phase (L 0.222 orT=4.505) for the
havior is useful to analyze the equilibrium properties, whichtnree-dimensional pure FM Ising model. The transition temperature
will discuss later. is 1/T;=0.22166 orT,=0.4511. The starting state was set to a

What is the physical origin of this nonequilibrium relax- randomly oriented configuration. The waiting timgis varied from
ation? To clarify it, we compare the behavior in the SG50 to 2000. The horizontal line shows the value of the squared
phase with a simpler case, the CCF in the pure FM mode$pontaneous magnetization aT %0.222.

Q(t’ t w)

0.01
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which means that the initial state is still in nonequilibrium 1 T T T T T T
for all t,,. Thus, the observed asymptotic behavior is a non- N T=‘1’~gg
equilibrium relaxation, which is the same situation as in the 1.20
present SG calculations. 0.8 1.30
The minimum of the CCF observed in the FM phase is 140
explained as follows. From the starting random configura-
tion, FM clusters start to grow but the ordering directions are
random among clusters. After a while, a few clusters become
dominant in the system and they have longer lifetime than
other small clusters. The time when the system is occupied
by dominant clusters is named the percolating time. The per- S NEESUNEN
colated cluster slowly absorbs other nonpercolating clusters
(we are assuming the rough FM phase above roughening v
temperature Whent,, is larger than the thermalization time O
7, the initial state is almost at equilibrium and is dominated PO W$ 3 3
3

B>
>XE4+ o

orHx b

by a single percolated cluster. Then, the CCF decays mono-
tonically from unity to the equilibrium squared magnetiza-
tion. On the other hand, whet, is small enough, the initial (@)
state is nonequilibrium and consists only of nonpercolated
clusters. Even then, in the initial state, the ordering process
has progressed from the starting state and the orientation of
the dominant percolated cluster, which will appear in later
time, is the same in each replica. Clusters antiparallel to this
percolated orientation relax to the opposite direction in time.
Since the process to flip such clusters from the initial state is
almost independent in two replicas, contributions of them to
the CCF are almost negative in early times, and the resulting
overlap would decrease to a much smaller value. After a
while, flipped clusters begin to correlate with each other in
space and time. Then the contributions to the CCF approach
those in the equilibrium state.

We examine the difference of asymptotic behaviors of the 0.05
CCF in FM and SG phases. In general, the ordered phase has
more than one pure state. The starting state contains equal
dynamical amplitude for each pure state in both FM and SG 0 ; : )

; g . L 0 0.5 1 L5 2

cases, since it is random. The process in the waiting time (b) 11 104
provides a domain structure of pure states. In the FM case,
even if the process it>0 is independent, the final equilib- FIG. 6. Local exponentaq(t,t,) as functions of ¥/ with t,,
rium state is equivalent in two replicas. This means that the=10" fixed. The curves bend upwards &s: for T=1.25, as
dynamical amplitudes of pure states are not equal in the iniexpected for the PM phase.
tial state, and only one pure state has a dominant dynamical
amplitude relatively. This explains the finite limit of the CCF with fixedt,,. For smallert,,, one can save simulation
CCF. In the SG case, the power-law decay of the CCF indisteps for the waiting time. For larggy, the amplitude of the
cates that the final state is not unique and depends on replic@CF becomes larger, and the statistical deviation is sup-
otherwise the contribution to the CCF must be nonvanishingpressed relatively. An appropriatg should be chosen for
This means that the initial state contains more than one purefficient calculations.
state with dominant dynamical amplitude, which is different In Fig. 6, we plot the local exponent @(t,t,) for the
from the FM case. This indicates the complicated structurghree-dimensional case with,=10* (MCS) fixed. It is
of the phase space in the short-range Ising SG models, whicflearly observed that the curves fB& 1.25 turn up when 1/
could be a ultrametric structure like in the Sherrington-goes to zero—indicating the PM phase in this temperature

...
&=
-
-
<
s a

_
=
o OXDPXO+ o

Ane(t: tw)

S O X X ©
X KO
S O X X0

o+ O kX

Kirkpatrick model>* region. This is consistent with the expected transition
temperatur&™® 1.11<T <1.2. Note that the curves foF
V. SPIN GLASS TRANSITION AND SCALING RELATION =<1.2 approach nonzero finite values—indicating a power-

law decay ofQ(t,t,). This means that the SG transition
In the previous sections, we showed the asymptotic betemperature is located arourid=1.2. The temperaturd@

havior of the CCF: it decays exponentially for>Tgy, while ~ =1.25 is the upper bound of in this analysis, i.e.[Tq
it shows a power-law decay foF<Tg, and this decay ex- <1.25.
ponent does not depend gpbut onT. Thus, we can distin- The above analysis does not give an estimation for the

guish the phase by analyzing the asymptotic behavior of theower bound of Ty, since the downward behavior, which
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2

satisfied in the whole/t,, regime. A similar feature is ob-
served also aT=1.0 and 0.9. Therefore, we conclude that
the scaling relation(5.1) is valid only in the critical region
near the critical point. The result at=1.1 also shows the
scaling form(5.1) both fort/t,>1 andt/t,<1. The region
1.1=<sT=<1.2 is regarded as the critical region within the
present simulation. If one estimates the CCF more accurately
or for a longer-time interval, higher resolution would be
available. It is concluded that,>1.0.

At the critical point, the CCF decays algebraically in both
limits t>t,, andt<t,,, with powers independent ¢f,. Fur-
thermore, the amplitude is also independent pfor t<t,,
because of the convergence to the equilibrium relaxation.

That means
0.1 T _
104 103 102 101 100 10! 102 103 104 _ CX Mo (x<1)
@ Uy qx)—1 ¢ (5.2
. CpeX Mre (x>1),
1} . wherec, andc, are constants, and,# \ .. Then, the CCF
behaves as
09 | -
I ] ct M (t<t
_ 08 Qtty) -1 & 7(A w) 53
g Creltw)t e (t>ty),
<E0TF -
% where
= 06} . _
© Cneltw) = Cndly (5.9
05 | 1 With w=Npe—Xq.*" The scaling analysis of the present
simulation result provides ;=0.070(5) and\,e=0.175(5)
[#=0.100(5)] at T=1.2 and Ay=0.045(5) and A\,
04 ; ; =0.150(5)[ ©#=0.105(5)] at T=1.1. The deviation due to
“105 104 102 10° 102 104 the uncertainty ofl is more significant than the statistical
®) Yty error. Assuming thal , is located between 1.1 and 1.2, they

are estimated to be\q=0.06(2) and\,.=0.16(2) [u

FIG. 7. Scaling plot of(t,t,) at(a) T=1.20 andb) T=0.8 in - . = . .
three dimensions. The values of scaling exponent are selected 500-103(8)- The estimated valuk,=0.06(2) is consistent

. ; S : . 815,48
that the points fall onto the scaling curve folt,>1. (@) At T With those obtained so far by equilibrium simulatiéhis:

=1.20, which is close to the transition temperature, not only thel N€ exponentk,. characterizes the nonequilibrium relax-

. 9 .
region fort/t,>1, but also that fot/t,,<1, are scaled by the single ation. Husé observed a power-law decay of the magnetiza-
exponent. The solid lines showa(t/t,) %% and b(t/t,) "5  tion at the critical point in three dimensions, which would be

These exponents are also observed in Fifp).3b) At T=0.80, @ nonequilibrium relaxation. The estimated power 0.37 of
only the region t/t,>1 is scaled. The solid line shows magnetization is much larger than the present estimation of
c(t/t,) %% This exponent is also observed in Figc)3 A e for the CCF.

The exponenh . can be defined even far<T,. In the
usually means the finite ordering, is not observed for théSG phase, the CCF fde-t,, behaves as
CCF in the SG phase. The following scaling analysis supple-
ments this problem. At the critical temperature, time scales Q(t,ty) = Cndltyy, Tt D, (5.9
included inQ(t,t,,) are justt andt,,. Thus, one can expect

the scaling form where

. w(T)
Q(t,tw)=t\,—vxqq(t/tw), (5.1) Cne(thT) Cne(T)tw (5-6)
with w(T)=N,T) —Ng(T). Estimated values af4(T) and
which is numerically confirmed fof =1.2 in Fig. 1@ with X\ ,(T), from the scaling-plot analysis, are given in Fig. 8.
Aq=0.070. This scaling relation is not observed o< Ty.  The values ofz . are also estimated by extrapolation to 1/
As an example, in Fig. (B), we plott}Q(t,t,) for T=0.8 =0 in Fig. 6, which of course give consistent values from
with \ chosen to fit curves in the regimét,>1; the the scaling analysis. Ogielékgives a figure of\o(T) from
asymptotic power i$,, independent in this regime. Clearly, the analysis of the equilibrium autocorrelation function. Our

curves are spread irfit,,<<1 and the scaling forn6.1) is not  result is consistent with that.
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0.08 — T observations indicate a nontrivial structure of the phase
space instead of the double-well type one observed in Fig. 5
0.07 o 1 for the pure FM model. The behavior of the CCF in the
regiont<t,, in the SG phase, shows the tendency to con-
0.06 1 1 verge to nonzero positive values, which suggests that the
CCF converges to a SG order parameter whdiecomes
g s F 1 large after taking the limit,,—co (i.e., equilibrium relax-
=z 004 | © | ation). However ever,,= 10 is not sufficient to estimate the
) value of this order parameter at=0.9.
0.03 b i Although the CCF in the SG phase approaches zero in the
asymptotic regimeté-t,), it can be useful to analyze equi-
0.02 b @ _ librium properties of SG transitions. From the present obser-
& vation of the CCF, the determination of the transition tem-
00l F o . peratureT g is possible. In three dimensions, the asymptotic
behavior of the local exponent giveg;<1.25 and the
0.00 L ——— scaling-plot analysis using the form of E(p.1) gives T,
@) 0.8 0.9 ITO L1 12 >1.0. At a glance, this result, 10T ;< 1.25, is not a precise
estimation. However, the studied system sizes’ %2128 are
0.20 ——— much larger than those by equilibrium simulations. Further-
more, this error bar is estimated directly by asymptotic be-
0.18 | - haviors which indicates out of criticality. Therefore the ob-
© tained results have reliability and importance. While the
0.16 © - recent estimatiot? of Ty was made carefully, the Binder's
o cumulant with the finite-size scaling analysis for sizes up to
E 014} - 243, could be modified in the future because of the correction
E to scaling and the finite-size effect, which was pointed out by
012 b o ] the authors of that papé?.The present investigation pro-
vides another way to estimate f@g with much larger sys-
0.10 b & . tems, in which the size effect is not serious.
In three dimensions, the thermalization-time exponent in
008 F ¢ - the PM phase is estimated a8=5.7(5). Theexponents at
the critical temperature ar&q(Ty)=0.06(2) and\ (Tg)
0.06 F i =0.162). Thetemperature dependence of asymptotic expo-
A S S S S S nents in the SG phase are shown in Fig. 8. The expofgnt
b) 0.8 0.9 ITO 11 1.2 of SG order parametay is estimated to be 0.34(11) assum-

ing the dynamic finite-size scaling relation
FIG. 8. Temperature dependence of the powers of CCF ob-
served in nonequilibrium relaxation in the SG phaggi(T) and B

(b) Aol T). N(Tg =, (6.1

Zv
VI. SUMMARY AND REMARKS with the present estimates fag(Ty) andzv.

The nonequilibrium relaxation method has been extended The analysis of SG by the CCF is an extension to arbi-
to analyze SG transitions. The initial state and the dynamicdrary phase transitions especially to those for which the order
order parameter are nontrivial unlike the FM case. We introfarameter is not simple. Even with the NER method, such
duce the CCF, in which the initial state is provided by antransitions are not easy to treat compared to transitions with
appropriate waiting time and the order parameter is esti@ clear order parameter, but the advantage in the system size
mated by the replica overlap. The behavior of the CCF igwill still be useful. The present SG analysis will encourage
investigated for the+J Ising model in three-dimensions. the NER analysis for other complicated systems.

The number of totally updated spins for three-dimensional
SG simulation is 9.810 and it took about 5800 single-
processor hours of VPP500. For four-dimensional SG simu-
lation, 1.6< 10" spins are updated using about 120 single- The simulation have been made using the vector-parallel
processor hours. processor Fujitsu VPP500/40 of IS8Pniversity of Tokyo.

It is remarkable that, in the SG phase, the CCF in theThe authors thank H. Takayama, | Campbell, S. Miyashita,
regiont>t,, decays algebraically with a power independentH. Kawamura, K. Nemoto, K. Hukushima, and H. Yoshino,
of the waiting time. The CCF in the SG phase is also studiedor fruitful and stimulating discussions. This work is partially
for the four-dimensional=J Ising model, which shows supported by the Japan Society for the Promotion of Science
qualitatively the same behavior as in three dimensions. Thedgo. (10740186.
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