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Magnetic phase diagram of an alternating Ising chain with long-range interactions
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The phase diagram of a two-sited magnetic Ising chain, with a long-range interaction in the fomh'dt 1/
is studied. In this investigation, the finite-range scaling technique is employed and a proper transfer matrix is
developed. The critical temperature of the chain, as a function of each type of interaction, i.e., the interaction
between the similar sites and different sites, in both the classical and nonclassical regions is calculated. The
results indicate that the critical temperature is strongly affected by the interaction range pararfeetboth
types of interaction, but its behavior is quite different for each of the interactions. The behavior of the system
is explained by calculating the strength of each interaction using the mean-field approximation. The study of
the critical exponent of the correlation length indicates that the exponent is, within a good approximation,
independent of the interaction constants.
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[. INTRODUCTION transfer matrix is developed to study the phase diagram and
the critical exponent of the correlation length of a spin-
The study of the critical behavior of the systems with alsing chain with two alternating magnetic sites with a long-
long-range interaction has attracted much attention for theirange interaction in the form of r]ff" in both the classical
application and their theoretical interest in the last three deand nonclassical regions. For this model with an alternating
cades. The investigation of such systems is more complimagnetic sites\ andB, the Hamiltonian is written as
cated than those performed on the system with a short-range
of interaction. One of the models that has been extensively H=—3 J:ss; 1)
. . . o o iiSiSj -
investigated is the spig-Ising chain with a long-range of 0 T
interaction proportional to Itﬂr” (rj; is the distance be-
tween spins at sites and j). The model exhibits a phase
transition in the whole region of €o<1 (Refs. 1 and 2
However, for the region of & 0=<0.5 the critical exponents
are mean-field typéand thus it is known as the classical

Heres;=*1 is a classical Ising spin at siie and J;; is
defined as

Jaalli—j|*to  if sitesi andj occupied byA andA

region, whereas for 0.50=1, the so-called nonclassical j; = Jgs/li—j[*" if sitesi andj occupied byB andB,

region, are nontrivial and known only approximatély. Jagl|li—j|t"e if sitesi andj occupied byA andB
Along with the attempt on the critical exponent determi-

nation, there has been a special interest in the study of the (2)

phase diagram and the critical temperature for such modelgyhere the distance between alternating sites is considered to
In this regard, techniques such as the series expansi®t one unit anda, Jgg, andJ,g are defined as the inter-
method; the cluster approach, the Bethe lattice action constants when the corresponding magnetic sites are
approximatiorf the finite-range scaling methd#RS,’ the  one unit apart.
renormalization group method in direct sp&de coherent As is seen, the interactions within the system be consid-
anomaly method, the cycle expansion methdfi,the On-  ered as the interaction between two different magnetic sites
sager field reaction theory, the Monte Carlo A andB with distances proportional to the nearest neighbor
simulationst>**and a cluster mean-field approach combinedby an odd number, and the interaction between similar sites
with the finite-size scalin§ have been developed. A andA or B and B with the corresponding distances by an

A method that has the ability of providing good result for even number of the nearest-neighbor distances.A-Bein-
the critical temperature of such systems in both the classicakraction can be considered as coupling between the two in-
and nonclassical regions is the finite-range scaling techniquelependent chaing andB. The main idea is to investigate the
The results evaluated by this technique are in good agreeele of each interaction, for different values of in the
ment with those calculated by the Monte Carlo simulationsphase diagram as well as the critical exponent of the corre-
in the classical region and with the conjectured valuer®6  lation length in both the classical and nonclassical regions.
at the borderline value=1 in the nonclassical regioii.The The outline of the paper is as follows: in the Sec. Il A, the
FRS method was introduced by Glumac and Uzelac irFRS and the extrapolation method is briefly explained. In
1988/ and has been applied for the study of the critical prop-Sec. 1l B the transfer matrix method for this cagechain
erties and the phase diagram of the one-dimensiSral/2  with alternating magnetic sitgss developed. In Sec. IlI, the
Ising model® g-state Potts modéf, and recently forS  behavior of the critical temperature and the critical exponent
>1/2 Ising modéf® with a long-range interaction. of the correlation length as a function df, and Jag is

In this paper, the FRS method is employed and a propesnalyzed. The concluding remarks are given in Sec. IV.
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Il. THEORY AND METHODS the variation of data for the selected valueMis not very
significant and therefore the extrapolation value can be ob-

tained by fitting the data to a linear relation with\1Ji.e.,
The FRS has been constructed in analogy with the finitex=1 in Eq.(8)].

size scaling(FS9,!° where in the first method the range of
interaction is scaled.The basic idea is to truncate the range
of interaction in the system to a certain range, and then by
using scaling properties obtain a precise information about Applicability of the FRS method depends on the possibil-
the critical behavior of the true infinite system. ity of the exact determination of the results for finite range of
Let A..(t) be some physical quantity for an infinite long- interaction. For Ising chain with interaction truncated at the
range system that algebraically diverges in the vicinity of theNth neighbors, the exact calculation can be obtained by ap-
critical pointt=0, i.e., plying a proper transfer matrix. For the chain under consid-
eration, the Hamiltonian can be written as

A. Finite-range scaling and extrapolation method

B. Transfer matrix

AL(t)=Apt ", ()
L-1 N-1
wheret=(T—T.)/T,, T. is the critical temperature, is the H= KAB
™ ’ — = d S, +S .
related critical exponent, andl, is a constant. Then, analo- P i:%_, ,-:%__, i (SiSiej T Si11Si+j+1)
gous to the FSS hypothesis, it is assumed that for large finite N_2
rangeN and smallt, Ay(t) can be written as
N +_7224 (KMsisi o +KPPsi s |, (9)
AN =AL(F(N/E.), (4) e
wheref is a homogeneous function with the following prop- WhereK}=BJ,,/j**“ andL andN are the number of mag-
erties: netic sites and the range of interaction, respectively.
In order to set up a proper transfer matrix, the chain is
lim f(x)=1, lim f(x)=cons x"'*. (5) considered as a strip with columns of heightwhere each
X—00 x—0 column, regarding the two possible states of the spins, can be

imagined as a system withN2possible states that interact

By applying equation4) to the correlation Iengtig..(t) o with their nearest neighbofsThe transfer matrix for
=¢ot ™7, the standard procedure gives the condition for the o -hain can be written as

critical temperature through the fixed-point equation

N—1 N—k k
gN(t*):(N/M)gM(t*). (6) <S|T|S’>=€Xp{ E K{;\B 2 Snsn+k+2 sN+n—ksr,1
The critical exponent of the correlation length can be ob- k=13 n=1 n=t
tained by expanding and linearizing E&) aroundt*. Thus N N—k-1
for the chain with a finite range of interactidty the corre- + > KM DY sesnik
sponding critical exponenty can be written as k=24,... n=13....
—-1_ ’ ’ * k-1
= INLE(T) 6 () INNIM) =1, (7) £ s

where ¢' is the derivative of the correlation lengghwith e
respect td. According to the FSS metho#l] andN must be N N-k
two closed integer for better convergence. + > KEB > SnSn+k

The critical temperature and the critical exponent of the k=24,... n=24...
correlation length given by Eq$6) and (7) depend on the k
selected range of interactid In order to obtain the correct + 2 SN+ n—KSh ] , (10)
answer for the true Ising system, a proper method of extrapo- n=24,...

lation should be employed. On the basis of FSS anaf{sis, . .
power-law convergence fdr, andv in the large limit ofNis ~ Wheresn=1,~1 is a member of the state vects) with N
expected. Thus, in order to obtain the true critical temperagzomponents, €.,

ture and the critical exponent of the correlation length, the _

results fork, y(=1/T y) and vy are fitted to the form [9=[s1,52, - - ) (1D

Y= Yot AIN® ®) Equation(10) can also pe written as a productl‘dfmgtrices
T,, where each matrix would add one more site to the

in the least-squares approximatidnSA). Y, andx denote  column?! Considering the shape of the chain, we have
the extrapolated quantity and the exponent of the fitting, re-
spectively. The calculations are performed by considering T=T’fT§~ . 'Tﬁ—lTﬁa (12
three largest values &f (=14, 16, 18, and the extrapolation
of K. is done for the whole range of<Ooc<1. Since the whereT, andT, would addnth site of A andmth site ofB
behavior of the data foo=1 is nhonmonotonic, the simple to the columns, respectively. There exists also a simple rela-
convergence expression is not applicable anymore. Howevetion between these one-site matrices, i.e.,
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(UT)2TAB)Y2=TA®) (13)  in the classical (620=<0.5) and nonclassical (050<1)
regions. The translational symmetry requires that the scaling
where TR, ,=T5, TN.1=T17, andU is the translation op- range of the interactionsl, in Eq. (6) to be chosen a8l
erator in a direction perpendicular to the strip as given by _2 The eigenvalues of the transfer matrix are calculated
, , , , , with ten digits and the values df. \ are determined with an
(8U[s) = 8(51,50) (57,51 8(85,8) . - - BlSn-1.5n-2) accuracy of 107J/k. The extrapolation of the critical tem-
X 8(SN,S—1)» (14) perature is performed fdl= 14, 16, 18. The results of the
critical temperature forJaa=Jgg=Jag=4J are in good
where UN=1 and U""*=UT=U"". ThereforeT can be agreement with the reported results by Luijten and Blote in
written as the classical regioft and by Glumac and Uzelac in both the
To[UTA_ TBIN2 classical and nonclassical regioffs.
N=1"N The accuracy of the critical temperature and the critical
—[U(UTA_ UT)UTBN2=[TATBIN2_FN2 (15 exponent of the _correlation_length in the extrapolation pro-
cedure depends in a complicated way on the value ahd
where the interaction constants. In the FRS method the convergence
~ rate of the fixed points, as well as the accuracy of the ex-
(I TB|s')=(sJUTRIS) = 8(s,51) (S3,59) - - - S(Sn,S\—1) trapolated quantities, decreasessais reduced. As the value
N—1 of the interaction constants, specifically the valuel gf de-
xex;{ > KEB  sush creases and approaches zero, the range of the interaction re-
m=13,... duces fromN to N/2 and so the accuracy of the results de-
N creases. Because of the mentioned difficulties the significant
+ > KQElmSmsl,\l:|l (16) digits of the data presented in this report are determined from
a comparison between the results of the extrapolation proce-
dure for the maximal range of the interactibin-2 andN.%’
(TA|sy=(JU(UTR_,UN)|s") The behavior of the critical temperature with respect to
, . the interaction constants has been presented in Figs. 1 and 2
= 5(52,51) 8(83,S;) - - (SN SN -1) for the first and second cases, respectively. The Figm. 1
N-1 and Za) are the results for the classical and Figé&)land
Xexr{ > KRA 1- mSmSn 2(b) are for the nonclassical region.
m=13,... As is seen from the figures, for a fixed value of the inter-
action constants the slope of the curves decreases by increas-
) (17)  ing o that is similar to the behavior of the critical tempera-
ture with respect tar. For the first case wherd,,=Jgg
- - =J, the slope of the figures is very largekhtz=0 for large
It is interesting to note that the” and T® matrices have  yajue of o~ It decreases with increasing the interaction con-
only two nonzero elements in each row that reduces the resiantj, , and approaches rapidly some fixed value. The fast
quired computer memory tremendously. Applying the stanyariation of the slope for small value dfg is obscured as
dard derivation, the correlation length is obtained as decreases, such that fer=0.1 it remains almost constant for
N 2 the whole range ofl,g. For the second case whedgg
= = , (18 =Jgg=J, the slope of the curvefas seen in Fig. 2in-
i IN(A1/h2) - In(ua/ne) creases slowly with increasing the interaction constant
where\; and\, are the largest and second-largest eigenvalfor the whole range €J,,=<2J. The variation of the slope
ues ofT, and similarlyu; andu, are the largest and second- is much pronounced for small value @fand disappears as

largest eigenvalues &, respectively. approaches one.
A power method can be used for calculatjag Then, by It seems as though the critical temperature behavior with
factorizing u,, a similar technique is employed to calculate respect to the interaction constants has originated from the

. Details of the methods have been discussed extensiveRresence of different interactions within the chain. In order to
in numerical literaturé? estimate the strength of each interaction, the corresponding

contribution of that interaction in the critical temperature is
calculated through mean-field approximatiériThis can be
divided into two parts, the interaction between different mag-
Our calculations are mainly concentrated on two distinctnetic sitesA andB with distances proportional to the nearest-
cases. In the first case, the interaction constdgtsandJgg  neighbor distance by an odd number, and the one between
are kept fixed tol and let the other constadtyg vary be-  similar sitesA and A or B and B with the corresponding
tween zero and 2 In the second cas&g=Jgg=J, Where distances by an even number of the nearest-neighbor dis-
the other constani, varies between zero and 2 tance. Therefore, the critical temperature calculated through
The calculations of the critical temperature are performedhe mean-field approximatiofiy'™ can be written &g

N
AB '
+ 24 KNF 1-mSmSN

Ill. RESULTS AND DISCUSSION
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FIG. 1. The critical temperature as a function of the interaction FIG. 2. The critical temperature as a function of the interaction
constant) g whereJ a=Jgg=J (8 for the classical region € o constantda, whereJ,g=Jgg=1J (a) for the classical region € o

=<0.5 and(b) for the nonclassical region O5o=<1. =<0.5 and(b) for the nonclassical region O5or=<1.
J J
TVFAB)=2 > 2 =23,51-2" (") (1+0), VAN =2 X 23,2771+ 0), (20
n=odd na n- "¢ n=even na N-' ¢
(19 for A-A interaction and similarly foB-B. ¢ is the Riemann
for A-B interaction and zeta function. Therefore we have
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FIG. 4. The slope of the critical temperatuteT./AJaa, as a

function of the interaction constadifz . The points present the case function of the interaction constadf ,. The points present the case

whereJ,a=Jgg=J and the lines indicate the condition whig 5
:JBBZO.

TMF(AB) J
=22l -), (2D
TYFAA)  Jana

For Jaa=Jag, this ratio is larger than 1 for all values of
>0. (It is equal to 1 forc=0 and 3 foroc=1). As Jag

whereJ,g=Jgg=4J and the lines indicate the condition whilgg
:‘]BBZO'

It is interesting to note that the slope of the critical tem-
perature as a function of the interaction constant in both
cases approaches a limiting value that is the same as the case
where the other two interaction constants are zero. In order
to observe this behavior more precisely, the slope of the
critical temperature with respect thg for both Jya=Jgg

approaches zero, the system become equivalent to two idef=J andJaa=Jgs=0 (where the slope is constarfor three
tical chains and behaves exactly the same as the case whéliéferent values ofo in both the classical and nonclassical
Jap=Jaa=Jgs=J and the nearest-neighbor distances arg€gions are plotted in Fig. @he slopeAT;/AJag is calcu-

doubled. Therefore, we have

Tc(Jag=Jdar=Jge=1J)

Te(Iaa=Jpg=J,Jap=0)= Slte

(22

The calculated results for the critical temperaturd g=0

lated forAJ,g=0.01] at each point As is seen in the fig-
ure, the slope of the curves approaches rapidly its final limit
asJ,g increases. The rapid change of the slope is more pro-
nounced for large values of that indicates how fast th&-B
interaction for larges exceeds the other two interactions.
The calculation shows that the difference between the slope
at Jog=J and the corresponding limiting value is less than
3% for all three different values af.

and Jag=J both in the classical and nonclassical regions The same calculation is also performed for the second

(see Fig. 1 are in good agreement with E(R2).

case where the slope of the critical temperature as a function

For a large value otr, where the coupling between the of J,, for Jag=Jgg=J andJ,g=Jgg=0 is investigated. In
chains is stronger than the interaction within the chains, thehis case, the variation of the slope is much slower than the
critical temperature aroundl,g=0 rapidly increases and ap- first one. Therefore in order to see the behavior more clearly,

proaches a linear behavior for large value Jfz. As o

the range of investigation is expandedlig,=10J as shown

decreases, the interaction between the chains and within the Fig. 4. It is seen that for small value of, where theA-A
chains approach the same order and therefore the slope rigteraction is close to the other two interactions, the variation

mains almost the same in the whole rangelgf. For o

of the slope is relatively large so that the difference between

=0.1, where the interactions are almost in the same ordethe slope atiy,,=10J and the limiting value is 3.5% fosr

the linear dependence of the critical temperaturelgg is
clearly observed.

=0.3, which is smaller than 5.3% and 9.5% fo+=0.6 and
0.9, respectively.
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FIG. 5. The critical exponent of the correlation length as a func- N .
tion of the interaction constarfg WhereJ,,=Jgg=J for different _ FIG. 6. _The crlFlcaI exponent of the correlation Iength as a func-
values ofc in the classical and the nonclassical regions. tion of the interaction constadj s whereJg= Jgg=J for different

values ofo in the classical and the nonclassical regions.

The behavior .Of the .C”t'cal exponent of the corre!atlon merical analysis was performed using the FRS technique and
Iengf[h as a funct|on.of interaction constadjs, and Ja s developing a suitable transfer matrix. Regarding the two dif-
studied in the clas§|cal and the nonclassical regions. Slncleerent kinds of interaction involved in the chain, the behavior
the vys are determlne_d _by Eq7), where the derivative of of the critical temperature of the system as a function of each
the correlation length is involved, the accuracy of the resu“?nteraction constantsly ,Jx) Was investigated. In order to
reduces to six or five significant digits. The extrapolatgd re{nderstand the behavﬁ),r of the system more precisely, the
sults are obtained by using E@) in the nonclassical region slope of the critical temperature as a function of each inter-

. _1_ . .
and by the relationy"=B+A(M/N)* in the classgal e~ action constants was also studied. The results indicate that
gion as suggested by the pioneers of the FRS methidie ¢, the case wherg,=Jgg=1J, the interactions between
results as a function of the interaction constahsandJaa gifferent sites become rapidly dominant over the other inter-

are presented in Figs. 5 and 6, respectively. The calcylatiorgctions with a rate that depends on the value-oFHowever,
are performed for three different values®fin the classical for the other case wherd,s=Jgs=1J, the process is quite

(0=0.4) and the nonclassicabr{=0.6) regions and at the gjq with a rate that still depends on the valueoofThere-

bordero=0.5. As is seen from Figs. 5 and 6, the critical f5re ysing the mean-field approximation, the contribution of
exponentv is independent of the interaction constadfs  each interaction in the critical temperature as a function of
and Jaa with @ good approximation and also is in good \y5 glso estimated. The results of the calculation show that

agreement with tf}g lrzesults given for homogeneous chains Qe yariation of the critical temperature with respecitds
the other authors>®*?It should be mentioned that the small mainly caused by different types of interactions within the

variation of v (less than 6%with respect to the interaction chain.
constants is mainly caused by the uncertainty in the method 1he stydy of the critical exponent of the correlation length

of calculation. As mentioned before, the uncertainty dependg,gicates that the exponent is independent of the interaction

on the interaction constants and it is more pronounced for thgonstants in both the classical and nonclassical regions with
case where the effect &-B interaction is considered. a good approximation.
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