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Magnetic phase diagram of an alternating Ising chain with long-range interactions
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The phase diagram of a two-sited magnetic Ising chain, with a long-range interaction in the form of 1/r 11s,
is studied. In this investigation, the finite-range scaling technique is employed and a proper transfer matrix is
developed. The critical temperature of the chain, as a function of each type of interaction, i.e., the interaction
between the similar sites and different sites, in both the classical and nonclassical regions is calculated. The
results indicate that the critical temperature is strongly affected by the interaction range parameters for both
types of interaction, but its behavior is quite different for each of the interactions. The behavior of the system
is explained by calculating the strength of each interaction using the mean-field approximation. The study of
the critical exponent of the correlation length indicates that the exponent is, within a good approximation,
independent of the interaction constants.
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I. INTRODUCTION

The study of the critical behavior of the systems with
long-range interaction has attracted much attention for t
application and their theoretical interest in the last three
cades. The investigation of such systems is more com
cated than those performed on the system with a short-ra
of interaction. One of the models that has been extensiv
investigated is the spin-1

2 Ising chain with a long-range o
interaction proportional to 1/r i j

11s (r i j is the distance be
tween spins at sitesi and j ). The model exhibits a phas
transition in the whole region of 0,s<1 ~Refs. 1 and 2!.
However, for the region of 0,s<0.5 the critical exponents
are mean-field type~and thus it is known as the classic
region!, whereas for 0.5,s<1, the so-called nonclassica
region, are nontrivial and known only approximately.3

Along with the attempt on the critical exponent determ
nation, there has been a special interest in the study of
phase diagram and the critical temperature for such mod
In this regard, techniques such as the series expan
method,4 the cluster approach,5 the Bethe lattice
approximation,6 the finite-range scaling method~FRS!,7 the
renormalization group method in direct space,8 the coherent
anomaly method,9 the cycle expansion method,10 the On-
sager field reaction theory,11 the Monte Carlo
simulations,12,13and a cluster mean-field approach combin
with the finite-size scaling14 have been developed.

A method that has the ability of providing good result f
the critical temperature of such systems in both the class
and nonclassical regions is the finite-range scaling techni
The results evaluated by this technique are in good ag
ment with those calculated by the Monte Carlo simulatio
in the classical region and with the conjectured value ofp2/6
at the borderline values51 in the nonclassical region.15 The
FRS method was introduced by Glumac and Uzelac
1988,7 and has been applied for the study of the critical pro
erties and the phase diagram of the one-dimensionalS51/2
Ising model,16 q-state Potts model,17 and recently forS
.1/2 Ising model18 with a long-range interaction.

In this paper, the FRS method is employed and a pro
0163-1829/2001/64~2!/024407~7!/$20.00 64 0244
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transfer matrix is developed to study the phase diagram
the critical exponent of the correlation length of a spin1

2

Ising chain with two alternating magnetic sites with a lon
range interaction in the form of 1/r i j

11s in both the classical
and nonclassical regions. For this model with an alternat
magnetic sitesA andB, the Hamiltonian is written as

H52(
i , j

Ji j sisj . ~1!

Here si561 is a classical Ising spin at sitei, and Ji j is
defined as

Ji j 5H JAA /u i 2 j u11s if sites i and j occupied byA andA

JBB /u i 2 j u11s if sites i and j occupied byB andB,

JAB /u i 2 j u11s if sites i and j occupied byA andB

~2!

where the distance between alternating sites is considere
be one unit andJAA , JBB , andJAB are defined as the inter
action constants when the corresponding magnetic sites
one unit apart.

As is seen, the interactions within the system be cons
ered as the interaction between two different magnetic s
A andB with distances proportional to the nearest neighb
by an odd number, and the interaction between similar s
A andA or B andB with the corresponding distances by a
even number of the nearest-neighbor distances. TheA-B in-
teraction can be considered as coupling between the two
dependent chainsA andB. The main idea is to investigate th
role of each interaction, for different values ofs, in the
phase diagram as well as the critical exponent of the co
lation length in both the classical and nonclassical region

The outline of the paper is as follows: in the Sec. II A, t
FRS and the extrapolation method is briefly explained.
Sec. II B the transfer matrix method for this case~a chain
with alternating magnetic sites! is developed. In Sec. III, the
behavior of the critical temperature and the critical expon
of the correlation length as a function ofJAA and JAB is
analyzed. The concluding remarks are given in Sec. IV.
©2001 The American Physical Society07-1
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II. THEORY AND METHODS

A. Finite-range scaling and extrapolation method

The FRS has been constructed in analogy with the fin
size scaling~FSS!,19 where in the first method the range
interaction is scaled.7 The basic idea is to truncate the ran
of interaction in the system to a certain range, and then
using scaling properties obtain a precise information ab
the critical behavior of the true infinite system.

Let A`(t) be some physical quantity for an infinite long
range system that algebraically diverges in the vicinity of
critical point t50, i.e.,

A`~ t !.A0t2r, ~3!

wheret5(T2Tc)/Tc , Tc is the critical temperature,r is the
related critical exponent, andA0 is a constant. Then, analo
gous to the FSS hypothesis, it is assumed that for large fi
rangeN and smallt, AN(t) can be written as

AN~ t !5A`~ t ! f ~N/j`!, ~4!

wheref is a homogeneous function with the following pro
erties:

lim
x→`

f ~x!51, lim
x→0

f ~x!5const3xr/n. ~5!

By applying equation~4! to the correlation lengthj`(t)
5j0t2n, the standard procedure gives the condition for
critical temperature through the fixed-point equation

jN~ t* !5~N/M !jM~ t* !. ~6!

The critical exponent of the correlation length can be o
tained by expanding and linearizing Eq.~6! aroundt* . Thus
for the chain with a finite range of interactionN, the corre-
sponding critical exponentnN can be written as

nN
215 ln@jN8 ~ t* !/jM8 ~ t* !#/ ln~N/M !21, ~7!

wherej8 is the derivative of the correlation lengthj with
respect tot. According to the FSS method,M andN must be
two closed integer for better convergence.

The critical temperature and the critical exponent of
correlation length given by Eqs.~6! and ~7! depend on the
selected range of interactionN. In order to obtain the correc
answer for the true Ising system, a proper method of extra
lation should be employed. On the basis of FSS analysis20 a
power-law convergence forTc andn in the large limit ofN is
expected. Thus, in order to obtain the true critical tempe
ture and the critical exponent of the correlation length,
results forKc,N([1/Tc,N) andnN

21 are fitted to the form

YN5Ye1A/Nx ~8!

in the least-squares approximation~LSA!. Ye and x denote
the extrapolated quantity and the exponent of the fitting,
spectively. The calculations are performed by consider
three largest values ofN ~514, 16, 18!, and the extrapolation
of Kc is done for the whole range of 0,s,1. Since the
behavior of the data fors51 is nonmonotonic, the simple
convergence expression is not applicable anymore. Howe
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the variation of data for the selected value ofN is not very
significant and therefore the extrapolation value can be
tained by fitting the data to a linear relation with 1/N @i.e.,
x51 in Eq. ~8!#.

B. Transfer matrix

Applicability of the FRS method depends on the possib
ity of the exact determination of the results for finite range
interaction. For Ising chain with interaction truncated at t
Nth neighbors, the exact calculation can be obtained by
plying a proper transfer matrix. For the chain under cons
eration, the Hamiltonian can be written as

2bH5 (
i 51,3, . . .

L21 F (
j 51,3, . . .

N21

K j
AB~sisi 1 j1si 11si 1 j 11!

1 (
j 52,4, . . .

N22

~K j
AAsisi 1 j1K j

BBsi 11si 1 j 11!G , ~9!

whereK j
xy5bJxy / j 11s andL andN are the number of mag

netic sites and the range of interaction, respectively.
In order to set up a proper transfer matrix, the chain

considered as a strip with columns of heightN where each
column, regarding the two possible states of the spins, ca
imagined as a system with 2N possible states that interac
only with their nearest neighbors.7 The transfer matrix for
the chain can be written as

^suTus8&5expH (
k51,3, . . .

N21

Kk
ABF (

n51

N2k

snsn1k1 (
n51

k

sN1n2ksn8G
1 (

k52,4, . . .

N

Kk
AAF (

n51,3, . . .

N2k21

snsn1k

1 (
n51,3, . . .

k21

sN1n2ksn8G
1 (

k52,4, . . .

N

Kk
BBF (

n52,4, . . .

N2k

snsn1k

1 (
n52,4, . . .

k

sN1n2ksn8G J , ~10!

wheresn51,21 is a member of the state vectorus& with N
components, i.e.,

us&[us1 ,s2 , . . . ,sN&. ~11!

Equation~10! can also be written as a product ofN matrices
Tn , where each matrix would add one more site to t
column.21 Considering the shape of the chain, we have

T5T1
AT2

B
•••TN21

A TN
B , ~12!

whereTn
A andTm

B would addnth site ofA andmth site ofB
to the columns, respectively. There exists also a simple r
tion between these one-site matrices, i.e.,
7-2
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MAGNETIC PHASE DIAGRAM OF AN ALTERNATING . . . PHYSICAL REVIEW B64 024407
~UT!2Tn12
A(B)U25Tn

A(B) , ~13!

whereTN12
B 5T2

B , TN11
A 5T1

A , andU is the translation op-
erator in a direction perpendicular to the strip as given b

^suUus8&5d~s1 ,sN8 !d~s2 ,s18!d~s3 ,s28! . . . d~sN21 ,sN228 !

3d~sN ,sN218 !, ~14!

where UN51 and UN215UT5U21. ThereforeT can be
written as

T5@U2TN21
A TN

B#N/2

5@U~UTN21
A UT!UTN

B#N/25@ T̃AT̃B#N/25T̃N/2, ~15!

where

^suT̃Bus8&5^suUTN
Bus8&5d~s2 ,s18!d~s3 ,s28!•••d~sN ,sN218 !

3expF (
m51,3, . . .

N21

KN112m
BB smsN8

1 (
m52,4, . . .

N

KN112m
AB smsN8 G , ~16!

^suT̃Aus8&5^suU~UTN21
A UT!us8&

5d~s2 ,s18!d~s3 ,s28!•••d~sN ,sN218 !

3expF (
m51,3, . . .

N21

KN112m
AA smsN8

1 (
m52,4, . . .

N

KN112m
AB smsN8 G . ~17!

It is interesting to note that theT̃A and T̃B matrices have
only two nonzero elements in each row that reduces the
quired computer memory tremendously. Applying the st
dard derivation, the correlation length is obtained as

jN5
N

ln~l1 /l2!
5

2

ln~m1 /m2!
, ~18!

wherel1 andl2 are the largest and second-largest eigenv
ues ofT, and similarlym1 andm2 are the largest and secon
largest eigenvalues ofT̃, respectively.

A power method can be used for calculatingm1. Then, by
factorizingm1, a similar technique is employed to calcula
m2. Details of the methods have been discussed extensi
in numerical literature.22

III. RESULTS AND DISCUSSION

Our calculations are mainly concentrated on two disti
cases. In the first case, the interaction constantsJAA andJBB
are kept fixed toJ and let the other constantJAB vary be-
tween zero and 2J. In the second caseJAB5JBB5J, where
the other constantJAA varies between zero and 2J.

The calculations of the critical temperature are perform
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in the classical (0,s<0.5) and nonclassical (0.5,s<1)
regions. The translational symmetry requires that the sca
range of the interactions,M, in Eq. ~6! to be chosen asN
22. The eigenvalues of the transfer matrix are calcula
with ten digits and the values ofTc,N are determined with an
accuracy of 1027J/k. The extrapolation of the critical tem
perature is performed forN514, 16, 18. The results of the
critical temperature forJAA5JBB5JAB5J are in good
agreement with the reported results by Luijten and Blote
the classical region12 and by Glumac and Uzelac in both th
classical and nonclassical regions.17

The accuracy of the critical temperature and the criti
exponent of the correlation length in the extrapolation p
cedure depends in a complicated way on the value ofs and
the interaction constants. In the FRS method the converge
rate of the fixed points, as well as the accuracy of the
trapolated quantities, decreases ass is reduced. As the value
of the interaction constants, specifically the value ofJAB de-
creases and approaches zero, the range of the interactio
duces fromN to N/2 and so the accuracy of the results d
creases. Because of the mentioned difficulties the signific
digits of the data presented in this report are determined f
a comparison between the results of the extrapolation pro
dure for the maximal range of the interactionN22 andN.17

The behavior of the critical temperature with respect
the interaction constants has been presented in Figs. 1 a
for the first and second cases, respectively. The Figs.~a!
and 2~a! are the results for the classical and Figs. 1~b! and
2~b! are for the nonclassical region.

As is seen from the figures, for a fixed value of the inte
action constants the slope of the curves decreases by inc
ing s that is similar to the behavior of the critical temper
ture with respect tos. For the first case whereJAA5JBB

5J, the slope of the figures is very large atJAB.0 for large
value ofs. It decreases with increasing the interaction co
stantJAB and approaches rapidly some fixed value. The f
variation of the slope for small value ofJAB is obscured ass
decreases, such that fors50.1 it remains almost constant fo
the whole range ofJAB . For the second case whereJAB

5JBB5J, the slope of the curves~as seen in Fig. 2! in-
creases slowly with increasing the interaction constantJAA

for the whole range 0<JAA<2J. The variation of the slope
is much pronounced for small value ofs and disappears ass
approaches one.

It seems as though the critical temperature behavior w
respect to the interaction constants has originated from
presence of different interactions within the chain. In order
estimate the strength of each interaction, the correspon
contribution of that interaction in the critical temperature
calculated through mean-field approximation.12 This can be
divided into two parts, the interaction between different ma
netic sitesA andB with distances proportional to the neares
neighbor distance by an odd number, and the one betw
similar sitesA and A or B and B with the corresponding
distances by an even number of the nearest-neighbor
tance. Therefore, the critical temperature calculated thro
the mean-field approximationTc

MF can be written as12
7-3
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Tc
MF~AB!52 (

n5odd no.

JAB

n11s
52JAB~1222(11s)!z~11s!,

~19!

for A-B interaction and

FIG. 1. The critical temperature as a function of the interact
constantJAB whereJAA5JBB5J ~a! for the classical region 0,s
<0.5 and~b! for the nonclassical region 0.5,s<1.
02440
Tc
MF~AA!52 (

n5even no.

JAA

n11s
5JAA22sz~11s!, ~20!

for A-A interaction and similarly forB-B. z is the Riemann
zeta function. Therefore we have

n FIG. 2. The critical temperature as a function of the interact
constantJAA whereJAB5JBB5J ~a! for the classical region 0,s
<0.5 and~b! for the nonclassical region 0.5,s<1.
7-4
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Tc
MF~AB!

Tc
MF~AA!

5
JAB

JAA
~211s21!. ~21!

For JAA5JAB , this ratio is larger than 1 for all values ofs
.0. ~It is equal to 1 fors50 and 3 fors51). As JAB
approaches zero, the system become equivalent to two i
tical chains and behaves exactly the same as the case w
JAB5JAA5JBB5J and the nearest-neighbor distances
doubled. Therefore, we have

Tc~JAA5JBB5J,JAB50!5
Tc~JAB5JAA5JBB5J!

211s
.

~22!

The calculated results for the critical temperature atJAB50
and JAB5J both in the classical and nonclassical regio
~see Fig. 1! are in good agreement with Eq.~22!.

For a large value ofs, where the coupling between th
chains is stronger than the interaction within the chains,
critical temperature aroundJAB.0 rapidly increases and ap
proaches a linear behavior for large value ofJAB . As s
decreases, the interaction between the chains and within
chains approach the same order and therefore the slop
mains almost the same in the whole range ofJAB . For s
50.1, where the interactions are almost in the same or
the linear dependence of the critical temperature onJAB is
clearly observed.

FIG. 3. The slope of the critical temperature,DTc /DJAB , as a
function of the interaction constantJAB . The points present the cas
whereJAA5JBB5J and the lines indicate the condition whileJAA

5JBB50.
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It is interesting to note that the slope of the critical tem
perature as a function of the interaction constant in b
cases approaches a limiting value that is the same as the
where the other two interaction constants are zero. In or
to observe this behavior more precisely, the slope of
critical temperature with respect toJAB for both JAA5JBB
5J andJAA5JBB50 ~where the slope is constant! for three
different values ofs in both the classical and nonclassic
regions are plotted in Fig. 3~the slopeDTc /DJAB is calcu-
lated forDJAB50.01J at each point!. As is seen in the fig-
ure, the slope of the curves approaches rapidly its final li
asJAB increases. The rapid change of the slope is more p
nounced for large values ofs that indicates how fast theA-B
interaction for larges exceeds the other two interaction
The calculation shows that the difference between the sl
at JAB5J and the corresponding limiting value is less th
3% for all three different values ofs.

The same calculation is also performed for the seco
case where the slope of the critical temperature as a func
of JAA for JAB5JBB5J andJAB5JBB50 is investigated. In
this case, the variation of the slope is much slower than
first one. Therefore in order to see the behavior more clea
the range of investigation is expanded toJAA510J as shown
in Fig. 4. It is seen that for small value ofs, where theA-A
interaction is close to the other two interactions, the variat
of the slope is relatively large so that the difference betwe
the slope atJAA510J and the limiting value is 3.5% fors
50.3, which is smaller than 5.3% and 9.5% fors50.6 and
0.9, respectively.

FIG. 4. The slope of the critical temperature,DTc /DJAA , as a
function of the interaction constantJAA . The points present the cas
whereJAB5JBB5J and the lines indicate the condition whileJAB

5JBB50.
7-5
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The behavior of the critical exponent of the correlatio
length as a function of interaction constantsJAA andJAB is
studied in the classical and the nonclassical regions. Si
the nNs are determined by Eq.~7!, where the derivative of
the correlation length is involved, the accuracy of the resu
reduces to six or five significant digits. The extrapolated r
sults are obtained by using Eq.~8! in the nonclassical region
and by the relationnN

215B1A(M /N)x in the classical re-
gion as suggested by the pioneers of the FRS method.7 The
results as a function of the interaction constantsJAB andJAA
are presented in Figs. 5 and 6, respectively. The calculati
are performed for three different values ofs in the classical
(s50.4) and the nonclassical (s50.6) regions and at the
border s50.5. As is seen from Figs. 5 and 6, the critica
exponentn is independent of the interaction constantsJAB
and JAA with a good approximation and also is in goo
agreement with the results given for homogeneous chains
the other authors.3,16,12It should be mentioned that the sma
variation ofn ~less than 6%! with respect to the interaction
constants is mainly caused by the uncertainty in the meth
of calculation. As mentioned before, the uncertainty depen
on the interaction constants and it is more pronounced for
case where the effect ofA-B interaction is considered.

IV. CONCLUSION

The phase diagram of a magnetic Ising chain consisting
two different sites at alternating locations, with a long-ran
interaction in the form of 1/r 11s was investigated. The nu-

FIG. 5. The critical exponent of the correlation length as a fun
tion of the interaction constantJAB whereJAA5JBB5J for different
values ofs in the classical and the nonclassical regions.
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merical analysis was performed using the FRS technique
developing a suitable transfer matrix. Regarding the two
ferent kinds of interaction involved in the chain, the behav
of the critical temperature of the system as a function of e
interaction constants (JAA ,JAB) was investigated. In order to
understand the behavior of the system more precisely,
slope of the critical temperature as a function of each in
action constants was also studied. The results indicate
for the case whereJAA5JBB5J, the interactions betwee
different sites become rapidly dominant over the other in
actions with a rate that depends on the value ofs. However,
for the other case whereJAB5JBB5J, the process is quite
slow with a rate that still depends on the value ofs. There-
fore, using the mean-field approximation, the contribution
each interaction in the critical temperature as a function os
was also estimated. The results of the calculation show
the variation of the critical temperature with respect tos is
mainly caused by different types of interactions within t
chain.

The study of the critical exponent of the correlation leng
indicates that the exponent is independent of the interac
constants in both the classical and nonclassical regions
a good approximation.
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