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The two- and three-dimensional classical Heisenberg XpinCHSXY) models, with the spherical coor-
dinates of spins taken as dynamic variables, are numerically investigated. We allow thé pothazimuthal
¢ angles to have uniform values|[if,7) and[ — 7, ), respectively, and the static universality class is shown
to be identical to the classicdY model with two-component spins, as well as the G¥Smodel with a
different choice of dynamic variables, conventionally used in the literature. The relaxational dynamic simula-
tion reveals that the dynamic critical exponenis found to have the value~2.0 for both two and three
dimensions, in contrast to~d/2 (d= spatial dimensionfound previously with spin dynamics simulation of
the conventional CH&Y model. Comparisons with the usual two-component class{dalmodel are also
made.
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[. INTRODUCTION same static universality class as tk& model, both in 2D
(Ref. 20 and 3D(Ref. 21), studies of spin dynamics for the
The static critical behaviors of théY model in two and  CHSXY model have giverz~1.0 in 2D;" which differs sig-
three dimensiong2D and 3D have been studied for more Nificantly fromz~2.0 in theX'yY model. In 3D, while Ref. 18
than 20 years and there exists well-established consensus BaS foundz=1.5, the possibility of a breakdown of the dy-
the nature of the phase transitions and the values of the critl@Mic scaling has been suggested, i.e., igtnot unique
cal exponentd? For example, static universal properties Ut has different values,=1.38(5) andz,=1.62(5) for the

have been well established where the static exponents do ng?ca%( of correlatlfnslén the in-plane and the out-of-plane
depend on details of models. On the other hand, the dynami Ir?/\ieloaz;gesr%e%é\éea.variant of the CKI model where
universality class has still not been completely sorted?dut. '€ Propose .

The usualXY model, where the spins are two dimen- the spherical coordinates of the spins are taken as the dy-

ional. has b found to h d ic critical i namic variables with a uniform measure in phase space, and
sional, has been lound 1o have dynamic critical exponents investigate the dynamic critical behaviors of the model in

that seem to depend both on the dynamic model used and Q@ and three dimensions subject to relaxational dynamics
the quantity measuretiin 2D most of the existing works  instead of spin dynamics. Relaxational dynamics belongs to
have obtained the result that~2.0 at the Kosterlitz- he modela with the expected value~2 in the Hohenberg-
Thouless(KT) transitiort temperatureTyr and thatz in-  Halperin classificatiol® However, this value does not al-
creases as the temperatufes lowered belowTyr.>*°™  ways seem to be guaranteed. For example, the purely relax-
However, the result tha~2.0 in the whole low-temperature ational form of dynamics applied to th¢Y model in 3D
phase has also been fould! In 3D, on the other hand, under the fluctuating-twist boundary condition has been
there is a growing consensus that the dynamic critical expofound to givez~1.5 (Ref. 12. Even the Monte Carl¢MC)
nentz associated with voltagéor phase slipfluctuations is  dynamics simulations, which are generally believed to corre-
z~1.5 (Refs. 7,12—1%although a rigorous analytic justifi- spond to relaxational dynamics, for the 30¢ model with
cation is still lacking. Furthermore this appears to be the casboth phasé and vortex® representation have also led zo
even for relaxational dynamics in spite of the fact thzat ~1.5.
~2.0 has been concluded from the standard dynamic The paper is organized as follows. In Sec. I, the Hamil-
renormalization-group methodor example, in Ref. 1pin tonian of the CHSY model in the spherical-coordinate rep-
accordance with modelA in the Hohenberg-Halperin resentation and the corresponding equations of motion for
classification'® the relaxational dynamics are introduced. Although our main
The variant of theXY model, which we study here, is interests are in dynamic critical behaviors, we also perform
given by a Hamiltonian of the same form as the uskal  Monte Carlo simulations in Sec. Ill to confirm the equiva-
model but where the spins are three dimensipwal call this  lence with the conventional CH&Y model and then com-
the classical Heisenberg spiftY model (CHXY) to avoid  pare with static and dynamic results from the relaxational
confusion with the usuaXY model. This model has previ- dynamics in Sec. IV, which constitutes the main results of
ously been studied subject to the so-called *spinthe current work. Finally we devote Sec. V for summary and
dynamics.’*’~*° Although the CHX'Y model belongs to the discussions.
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Il. MODEL measure ins”* and ¢] and its variant model studied in this
work [the Hamiltonian(5) with the uniform measure i
and ¢]?? do not have the same partition function and free
energy, and accordingly some nonuniversal properties like
the critical temperature can be different. However, one ex-
pects that universal critical properties should be the same as
H[{s*,s'}]= —JZ (s'sj+ss)), (1)  will be clearly confirmed in Sec. lll below.

{5 The relaxational dynamic equations are simply giveh by

We begin with the Hamiltonian of the conventional
CHSXY model in thed-dimensional hypercubic geometry
with sizeN=L¢ (L is the linear sizg

whereJ is the coupling strength, the summation is over all

nearest-neighbor pairs, and the three-dimensional local spin b— T JH[{0,p}] p

s=(sl,s’,s?) at sitei has unit length |§|?=1), or equiva- ! 26; K

lently the partition function should include the measure

S (s)2+(8))?+(s9)?—1]. The CHXY model with the . JHI{6. 4]

Hamiltonian (1) can be viewed as either an extension from i~ FT+ i s (6)

the original XY model where spins are two dimensional, or
as a special case of the Heisenb&r¥Z model with cou- wherel is a constant that determines the time scale of re-

plings only in thex-y plane. laxation, and the stochastic thermal noise terms satisfy
The more convenient representation of the conventional 7/(t)) = (7’ (t))=(7/() n{(t"))=0 and (7/(t)n/(t"))
CHSXY Hamiltonian is written as =(n(t)n(t'))=2T&; 8(t—t’) with the ensemble average
(---). (From now on, we measure the temperafli@nd the
H[{s? (,5}]:_32 \/[1—(siz)z][l—(sjz)z]cos¢i—¢>j) time t in units of Jkg and 1I'J, respectively. From the
(1)

Fokker-PlanckFP) formalism, it is straightforward to show
(2)  that the stationary solution of the FP equation, corresponding
X124 (V2= 1 ()2 N to the above Langevin-type equations of moti@j is sim--
where )+ (sf)"=1-(s)" has been used, anﬂ., 'S.the ply the equilibrium Boltzmann distribution with the Hamil-
angle between thg-y plane component of the spg, i.e., : ; . .
o~ & ) ) tonian given in Eq(5). In other words, the relaxational dy-
§—Siz and the positivec axis. In representatio(2), ¢ and  namics used in this work automatically produces equilibrium

s* have uniform measure since fluctuations in time, which are compatible with the Boltz-
mann distribution of the same Hamiltonian. In this respect,

f dsXJ dsyJ ds?8[(89)2+(8Y)3+(s9)2—1] the initial configuration of the relaxational dynamics can be
chosen arbitrarily; the equilibrium fluctuations are generated

by the dynamics itself as the system evolves in time. This is
=f dszf rdrf depd[r?+(s?)?—1] in contrast to the widely used spin dynamics, where the ini-
tial configurations must be generated according to the equi-
1 m librium distribution. Otherwise the spin dynamics will not
“jfldsz - de, () reflect the properties of the equilibrium. Consequently, the
i relaxational dynamics described here is consistent with the
where r’=(s?+(s%)?, ¢=arctang’/s"), and the identity usual physical situation of a system in contact with a thermal

8(r2—a?)=8(r—a)/2r has been used. reservoir. From this perspective we believe that the relax-
We introduce the polar angle variabfein the spherical ational dynamics can phenomenologically catch relevant fea-
coordinate system as follows: tures for a real spin system in a situation where the thermal

effects are strong.
s;=sin 6, cos¢; ,
. . Ill. MONTE CARLO SIMULATION
s!=sing; sing;,
For completeness we start by calculating the static prop-

s?=cosb; , (4)  erties from Monte CarléMC) simulations within the spheri-
. _ cal coordinate {0, ¢}) representation with both variables
which then leads to the representation uniformly distributed, which we have not found in the litera-

ture. We use the standard Metropolis algorithm applied to
__ ; ; _ the Hamiltonian(5), and the variations of; and ¢; at each
H[{68,¢}]1=—J2, sing,; siné; cog ¢, i) 5 . ! .
[{6.¢1] <.E,> ! j oS di— &) © MC try are tuned to give an acceptance ratio of about 1/2
near the critical temperature. Later we will compare the MC

We then simplify the conventional CES model and use  regyits with those from the relaxational dynamics in Sec. IV.
the uniform measure not only fog but also foré variables.

One advantage of this is that no additional constraint is re-
quired sincds|=1 is satisfied automatically in the represen-
tation (5). One should note that the conventional CH¥S In 3D, the transition is detected by the order parameter
model[represented by the Hamiltonid®) with the uniform  defined a&"

A. Three-dimensional lattice
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FIG. 1. Fourth-order Binder's cumulaht, for the 3D CHXY FIG. 2. The specific heat, versusT from the MC simulation

model in the spherical-coordinate representation from MC simulagf the 2D CHXY model in the spherical-coordinate representation
tions as a function of the temperatufefor various system sizes for various system sizes=4, 6, 8, 10, 12, 16, 24, and 32; the

L=4, 6, 8, 10, 12, and 16from top to bottom on the right-hand  gpecific-heat peak appears to saturaté @sincreased.
side of the crossing pointThe crossing point gives the estimation
of the critical temperaturd.=1.2561). Inset: Determination of log scale withT;=1.25 andT,=1.26, andv=0.67(3) is

the critical exponent through the finite-size scaling &f, . AU, obtained. The values of andU* obtained here
=U(T=1.25)- U (T=1.26)(see text for details From the least-

square fit,y=0.67(3) is obtained. v=0.673), (12)
1 1 U*=0.58641), (13
<m>E<N|S|>=<NJS§+S§+S§>, (7) » , ,
are within error bars in agreement with the known values for
where the total spin vectd® is given by the conventional CH&Y model with the uniform measure

for s> and¢: v=0.67(q7), U*~0.586 in Ref. 21(the latter
N was estimated from Fig. 1 in Ref. Rland v=0.6696),
5=i§1 S - (8)  U*=0.5859(8) in Ref. 19. This just illustrates that the
change of variables and measures in phase space introduced
The most convenient way to locate the critical temperaturén Sec. Il does not change the static universality class al-

T. is to calculate Binder’s fourth-order cumulant though the critical temperatufg, is found to be different.
(m*) o |
U(T)=1— . (9) B. Two-dimensional lattice
3(m?) In many 2D systems with continuous symmetry, the spon-

which has a unique crossing point as a functioaf plot-  taneous magnetization vanishes at any nonzero temperature
ted for various system sizes. Figure 1 shows the determina&nd the phase transition of theY model and its related
tion of T, from Binder's cumulant for the system size ~ models is of the Kosterlitz-Thouless typetigure 2 shows
=4,6,8, 10, 12, and 16 in 3D arlg.=1.256(1) is obtained. the specific heat C,, computed from C,=((H?)

As expected, this value oF, is found to be different than —(H)?)/T*N, for the 2D CHXY model in the spherical
T.=1.552(1) obtained from the other choice of variables incoordinate representation verstifor various system sizes
Hamiltonian (2) with uniform measures fos? and 181921 L=4, 6, 8, 10, 12, 16, 24, and 32. Tk peak for the KT
However, one expects that such a change cannot alter tHgansition is characterized by a finite peak height in the limit
universality class of the system. As an example we computéf infinite size, which is consistent with Fig. 2. We then
the static critical exponent, which is defined byé~(T ~ compute the in-plane susceptibilify defined a® (see Fig.
—T,)~” and can be calculated from 3

X=(xxtxy)/2, (14

where the susceptibility in the direction (@=Xx,y) is writ-
ten as

Ul(T)=U*+U, LM

T
1- T—C) , (10

where U* is also a universal value and found to be
=0.586(1) from Fig. 1. Equatiofl0) is written in a more 1 2
convenient form, XQ:N<(Z s'a) > (15
I
_ v

AUL=ULT) = Ui (T LT, D e in-plane susceptibility can be used to determine the
where T, and T,(>T,) are picked neafl . In the inset of critical temperatureT,: We use the relatiory~L2" 7 and
Fig. 1, AU, is plotted as a function of system sikein the  the condition that the exponent has value 1/4 af., and
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FIG. 3. In-plane susceptibilityy from MC simulation in 2D FIG. 4. Binder’'s fourth-order cumulakt, from the relaxational

versus temperatufg at system sizes=4, 6, 8, 10, 12, 16, 24, and dynamics simulation in 3D as a functionofor L=4, 6, 8, 10, and

32 (from bottom to top. Inset: The exponeny, obtained from 12 (from top to bottom on the right-hand side of the crossing point

x(T.L)~L%2~ 7™M is shown as a function of. From the condition  The crossing point gives the estimatidp=1.2452). Inset: Deter-

7(To)=1/4, T,=0.621(3) is found. mination of » from the least-square fit;=0.66(6) is obtainedto
be compared with Fig. 1 for MC

obtainT.=0.621(3)(see the inset of Fig.)3lt is again to be o _ _

noted thatT,=0.621(3) obtained here for the 2D CN$ than 1%. Within numerical accuracy we find that com-

model in the spherical coordinate representation is differenputed from relaxational dynamidsee Fig. 4 agrees with

from T,=0.699(3) obtained in Ref. 20 for the conventional that from MC in Sec. lll A, and thus also with values in
CHSXY model. Refs. 21 and 19. We display the determination of the critical

exponentv for the relaxational dynamics in the inset of Fig.
4, wherev=0.66(6) is obtainedcompare with Fig. 1 for
MC in 3D). The values ofv andU* found from the relax-

In the relaxational dynamics simulations in both 3D andational dynamics of the 3D CHSY model in the spherical
2D, we use the second-order Runge-Kutta-Helfandcoordinate representation again confirm that the static uni-
Greensidg RKHG) algorithn?® and the equations of motion versality class of the model is identical to the usual 3%
in Eg. (6) are integrated numerically with the discrete time universality class.
stepAt=0.05. The relaxational dynamics with the represen- We next investigate the dynamic critical behaviors. One
tation{ 6, ¢} used herdsee Sec. )lis more convenient than convenient way of characterizing the dynamic universality
the representatiofs?, ¢} since no constraint ofi, and¢; is  class is to compute the total spin-time correlation function
required while the constraifs?| <1 should be explicitly ful- ~ G(t) defined a¥’
filled in the latter representation. After neglecting initial tran-
sient behaviors, ensemble averages of static physical quanti- G(t)= (Sx(1)$4(0) +5,(1)S,(0)) (16)
ties can be computed from the time averages of those <5)2((0)+5§(0)> '
guantities due to the ergodicity of the system. In contrast to
the spin-dynamics methdd;'® where initial configuration Where the total spin vect®=(S,,S,,S,) is given in Eq.(8)
for dynamic calculation should be generated from the Mcand the(- - -) is substituted by the time average in the relax-
simulation, one can in relaxational dynamics take any initialational dynamics study. Sind®(t=0)=1 at anyT andL,
configuration to start with; as time proceeds, the dynamicghe finite-size scaling of5(t) is written in a very simple
intrinsically generates equilibrium fluctuations. form,

IV. RELAXATIONAL DYNAMICS SIMULATION

— -z _ 1/v
A. Three-dimensional lattice GLLT=g(tL S[T=TcJL™), (17

Where the first scaling variable is the ratio between the time
t and the characteristic time scate-L* with the dynamic
critical exponentz, and the second scaling variable comes
from the ratio between the system sizeand the coherence
lengthé~(T—T.) ¥ with the static critical exponeni.

At T=T,, the above scaling form reduces to a simpler
form with a single scaling variable

We first present the static results in 3D. Figure 4 show
the determination of ;. from Binder’s cumulanfsee Eqs(9)
and (10)]: the crossing point give3.=1.245(2) andU*
=0.5853). Indynamic simulations the inevitable finite time
stepAt causes an effective shift of the temperat(see Ref.

6 for discussions Of course in the limit ofAt— 0 this tem-
perature shift vanishsand the critical temperatures deter-
mined from dynamic simulation and MC simulation become - -z

identical. The effective temperature shift in the RKHG algo- G(LL.To)=g(tL"%0), (18
rithm used here is much smaller than the simple Euler algoand all G’s at different system sizes should collapse to a
rithm, and the deviation i in the current 3D case is less single curve once the correct value ofs chosen. In Fig. 5
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F_IG. '5. Total spin co_rrelation functio® from relaxational dy- FIG. 7. Scaling plot for the total spin correlation functi@nin
namics in 3D aff =1.25 is shown folL.=4, 6, 8, 10, and 12, as a  3p wijth a=tL ~?=0.53 andz=2.05. All data points in Fig. 6 col-
function of (a) the timet and (b) the scaling variableL™* with z = |5p5e t0 a smooth curve with,= 1.245 andv=0.67. The quality of

=2.0. The curve collapse itb) implies thatT,~1.25 andz=~2.0.  the curve collapse at differeatvalues are similar to this one in a
See Figs. 6 and 7 for more precise determinatioif oand z broad range of.

(see also Figs. 6 and),7G at T=1.25 is shown(g} as a It then suggests that whe®’'s with fixed a at different sys-

function of the timet and (b) as a function of the scaling tem sizes are plotted as functions ©f all curves should

. g - X X
variabletL ™% with z=2.0. All curves at different sizek cross at a single point & =T, if the correct value of is

=4, 6, 8, 10, and 12 are shown to collapse relatively well to s . . :
a single curve with the dynamic critical exponent 2.0, chosen; this provides an independent method to deterimine

although the quality of the collapse is not perfect: This is(andz at the same time Figure 6 displays this intersection

becausdl = 1.25 andz— 2.0 chosen in Fig. 5 can be slightly plot with z=2.05 anda=0.53 (this value ofa, with which

different from the truél' . andz (see below for a more precise the intersection occurs @~0.5, is taken only as an ex-
determination ¢ P ample; in a broad range @f the similar intersection plot is

achieved. We try different values oz anda, and it is con-

The other implication of the above finite-size scaling form .

: . ) : ; . : cluded thaz=2.05(5) andl .= 1.2453), thelatter of which
with two scaling variables in Eq17) is that if the first scal- is in an agreeme(nt)with 'fhe pref/(iozjsly determined value
ing variable is fixed to a certain constant valaetL * from Binder's cumulant in Fig. 4

=const, it again reduces to a simple form, In summary of this section, the relaxational dynamics
study applied for the 3D CHSY model in the spherical
coordinate representation has revealed that this model be-
longs to the 3DXY static universality class characterized by
v~0.67 andJ* ~0.586, while the dynamic critical exponent
has the valuez~2.0. We note that this value~2 is in

A accord with the modelA in the Hohenberg-Halperin

“““ L classification® as well as withz~2.015 found from the dy-

- namic renormalization-group calculation in Ref. 15. On the
other hand, many studies on the 30Y model with the re-
sistively shunted junction dynamié$?!4 the relaxational
dynamic$*2under the fluctuating-twist boundary conditibn,
and the MC dynamics for both ph4send vorteX® represen-
tations have observeri=1.5. Also, the spin dynamics for the

- conventional 3D CHR&Y model also has yieldezls that are
125 1.26 significantly different from the value 2~1.5 in Ref. 18,
T andz,~1.38(5) andz,=1.62(5) in Ref. 19

FIG. 6. The total spin correlation functio® in 3D with a
=tL"?=0.53 (z=2.05) is shown as a function of temperatiréor
various system sizels=4, 6, 8, 10, and 12. All curves cross Bt
~1.245, which is in a very good agreement with=1.245(2)
found in static calculation with relaxational dynamisee Fig. 4.
The value ofa=0.53 is chosen only for convenienca=0.53
makes the intersection occur @e=0.5); in a broad range d, the
quality of this intersection plot is very good #=2.05 is chosen.
The other values oz and a are tried andz=2.05(5) andT,
=1.245(3) are concluded.

G(t,L,T)=g(a,[T-TJLY"). (19

0.7 +

0.6

0.53,T,L)

-Z_

Gla=tL
o
N

T,=1.245(3)

1.28 1.24

B. Two-dimensional lattice

The static results obtained from the time averages during
the numerical integrations of the relaxational dynamic equa-
tions of motion(6) in 2D are first presented. The specific
heatC,=((H?)—(H)?)/T?N with N=L?, and the in-plane
susceptibilityy in Egs.(14) and(15) are exhibited as func-
tions of the temperatur€ in Figs. 8 and 9, respectively. As
expected, the static calculations from the relaxational dy-
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4 .
(b) T=0.62, z=2.0
3
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» :
(d) T=0.50, 2=2.0
]
0.2 0.4 0.6 0.8 1 1.2 0 5 10
T t t?
FIG. 8. The specific hedl, versusT from relaxational dynam- FIG. 10. Total spin correlation functio® from relaxational

ics simulation in 2D for various system sizes-4, 6, 8, 10, 12,and  dgynamic simulation in 2D ata) T=0.62~T. and(c) T=0.50 as a
16 (from bottom to top. (Compare with Fig. 2 that has been ob- fynction of the timet for L=4, 6, 8, 10, and 12from left to right);
tained from independent MC simulatiops. (b) and(d) display the corresponding scaling plots with the scaling

] ) ] ] ) variabletL "* andz~2.0 is found at botfT =0.62 and 0.50, imply-
namics simulations result in basically the same results agg thatz(T)~2.0 in the whole low-temperature phase.

from the MC simulations in Figs. 2 and 3 in Sec. Il B. From
x in Fig. 9, we locateT .. in the inset of Fig. 9 in the same spin-time correlation functio® in Eq. (16) at T=0.62 as a
way as in Fig. 3 in Sec. Ill B, through the use pfL?"”7  function of the timet for various system sizds=4, 6, 8, 10,
with »=1/4 atT.. In 2D, we findT,=0.6213), which is  and 12. If we puz=2.0 in Eq.(20) all curves in Fig. 1(g)
identical to T, found from MC simulation in Fig. 3 within collapse to a single curve as shown in Fig(l0 Conse-
numerical errors. quently, we conclude that the 2D CKS model in the
We next turn to the investigation of the dynamic univer- spherical-coordinate representation under relaxational dy-
sality class of the 2D CH®Y model in the spherical- namics has the dynamic critical exponert2.0 atT,.. We
coordinate representation under the relaxational dynamics. Ishow in Fig. 10c) and (d) the similar scaling plot afl
general, the 2D systems with the KT transition are quasicriti=0.50, which is significantly lower thaif,. Interestingly,
cal in the whole low-temperature phase. This means thalve again findz=~2.0 at T=0.50, which suggests that this
whenT=T, we cannot use the finite-size scaling form in Eq. model hasz=~2.0 in the whole low-temperature phase.

(17) since the coherence lengghis infinite. In 2D, we then In many existing analytical and simulational studies of the
write the scaling form folT<T,, as follows: 2D XY model in its original form,z(T) has been found to
have value 2 af., and to increase &b is decrease>>~°
G(t,T,L)=g(tL =), (200 sincez(T) can also be related with the nonlindaf expo-

nenta by a(T)=2z(T)+ 1, which is usually measured in ex-
periments, there are also experimental papers with the same
conclusior?? In contrast, there exist studies with other con-
clusions: For example, in Ref. 10 the decay from nonequi-
librium to equilibrium (this technique is often called “short-
time relaxation method)’ in the MC dynamics has been

where the dynamic critical exponen({T) is allowed to vary
with temperature(More precisely, the scaling functiog
should also depend om.) Figure 1@a) displays the total

10 - ° 7.=0.621(3) found to result inz(T)~2 at anyT below T, and the same
. / has been concluded in Ref. 7 from the similar short-time
e relaxation method but applied for the relaxational dynamics
< R -%“‘&3:@ 06 062 064 06 of theXY model. Also in Ref. 11, the scaling of the total spin
10F R 53 1 correlation function has been investigated in the same way as

in the present paper, arm=2 in the whole low-temperature
phase has been concluded for the relaxational dynamics of
the 2D XY model.

The spin dynamics study of the conventional 2D CHS
model in Ref. 17 has obtainert~1.0, which is close t@
=d/2 (d=2 in 2D) for the modelE value in Hohenberg-

FIG. 9. In-plane susceptibilityy from relaxational dynamic Halperin classificatiod® While the models in Ref. 17 and in
simulation in 2D versus temperatufefor various system sizes  the present work belong to the same static universality class,
=4, 6, 8, 10, 12, and 16. As expected, the relaxational dynamicéey do not need to belong to the same dynamic universality
simulations give quantitatively similar curvésompare with Fig. ~ class: In spin dynamics, thecomponentS, of the total spin
3). Inset: The exponeny as a function ofT is displayed andr, IS a constant of motion since the Hamiltoniencommutes
=0.621(3) is found(Compare with Fig. 3 for MQ. with the spin operator in the direction. On the other hand,
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the relaxational dynamics is not based on this commutatiom the spin dynamics method initial configurations for dy-
relation andS, is not a conserved quantity. namic calculation should be generated from the MC simula-
Although 2D and 3D CHRY model have the samg it  tion, while one can in relaxational dynamics take any initial
should be kept in mind that their critical behavior is com- configuration to start with; the relaxational dynamics intrin-
pletely different: In 2D, the whole low-temperature phase issically generates equilibrium fluctuations as the system
quasicritical and one can associafd) at each temperature evolves in time.
to makeG at different sizes collapse to a single curve as From the static calculations based on the relaxational dy-
displayed in Fig. 10. In 3D, on the other hand, the system isiamics method, it was explicitly verified that both the 2D
critical only at T, and the curve collapse with the single and 3D CHXY models in the spherical-coordinate represen-
scaling variablgL =% as shown in Fig. 5 is not found at any tations belong to the expected 2D and 3[¥ static univer-
other temperatures. sality classes, respectively. The dynamic critical exporzent
has been found to be different from values obtained from
V. SUMMARY various other existing studies of theY model including
. ) ) ) . relaxational dynamics. The valze=2.0 found here for both
We have investigated the static and the dynamic univerasp and 3D implies that the relaxational dynamics of the

sality class of the two- and three-dimensional Gt¥Smodel  cHsXY model is governed by the modaldescription in the
where three-dimensional classical spins interact with eacyohenberg-Halperin classificatidh.

other through the Hamiltonian with only in-plane compo-
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