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Relaxational dynamics study of the classical Heisenberg spinXY model
in spherical coordinate representation
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The two- and three-dimensional classical Heisenberg spinXY (CHSXY) models, with the spherical coor-
dinates of spins taken as dynamic variables, are numerically investigated. We allow the polaru and azimuthal
f angles to have uniform values in@0,p) and@2p,p), respectively, and the static universality class is shown
to be identical to the classicalXY model with two-component spins, as well as the CHSXY model with a
different choice of dynamic variables, conventionally used in the literature. The relaxational dynamic simula-
tion reveals that the dynamic critical exponentz is found to have the valuez'2.0 for both two and three
dimensions, in contrast toz'd/2 (d5 spatial dimension! found previously with spin dynamics simulation of
the conventional CHSXY model. Comparisons with the usual two-component classicalXY model are also
made.
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I. INTRODUCTION

The static critical behaviors of theXY model in two and
three dimensions~2D and 3D! have been studied for mor
than 20 years and there exists well-established consensu
the nature of the phase transitions and the values of the c
cal exponents.1,2 For example, static universal propertie
have been well established where the static exponents do
depend on details of models. On the other hand, the dyna
universality class has still not been completely sorted ou2,3

The usualXY model, where the spins are two dime
sional, has been found to have dynamic critical exponenz
that seem to depend both on the dynamic model used an
the quantity measured.4 In 2D most of the existing works
have obtained the result thatz'2.0 at the Kosterlitz-
Thouless~KT! transition1 temperatureTKT and thatz in-
creases as the temperatureT is lowered belowTKT .2,3,5–9

However, the result thatz'2.0 in the whole low-temperatur
phase has also been found.10,11 In 3D, on the other hand
there is a growing consensus that the dynamic critical ex
nentz associated with voltage~or phase slip! fluctuations is
z'1.5 ~Refs. 7,12–14! although a rigorous analytic justifi
cation is still lacking. Furthermore this appears to be the c
even for relaxational dynamics in spite of the fact thaz
'2.0 has been concluded from the standard dyna
renormalization-group method~for example, in Ref. 15! in
accordance with modelA in the Hohenberg-Halperin
classification.16

The variant of theXY model, which we study here, i
given by a Hamiltonian of the same form as the usualXY
model but where the spins are three dimensional@we call this
the classical Heisenberg spinXY model (CHSXY) to avoid
confusion with the usualXY model#. This model has previ-
ously been studied subject to the so-called ‘‘sp
dynamics.’’17–19Although the CHSXY model belongs to the
0163-1829/2001/64~2!/024406~7!/$20.00 64 0244
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same static universality class as theXY model, both in 2D
~Ref. 20! and 3D~Ref. 21!, studies of spin dynamics for th
CHSXY model have givenz'1.0 in 2D,17 which differs sig-
nificantly fromz'2.0 in theXY model. In 3D, while Ref. 18
has foundz'1.5, the possibility of a breakdown of the dy
namic scaling has been suggested, i.e., thatz is not unique
but has different valueszx51.38(5) andzz51.62(5) for the
decay of correlations in the in-plane and the out-of-pla
directions, respectively.19

We here propose a variant of the CHSXY model where
the spherical coordinates of the spins are taken as the
namic variables with a uniform measure in phase space,
investigate the dynamic critical behaviors of the model
two and three dimensions subject to relaxational dynam
instead of spin dynamics. Relaxational dynamics belong
the modelA with the expected valuez'2 in the Hohenberg-
Halperin classification.16 However, this value does not a
ways seem to be guaranteed. For example, the purely re
ational form of dynamics applied to theXY model in 3D
under the fluctuating-twist boundary condition has be
found to givez'1.5 ~Ref. 12!. Even the Monte Carlo~MC!
dynamics simulations, which are generally believed to cor
spond to relaxational dynamics, for the 3DXY model with
both phase4 and vortex13 representation have also led toz
'1.5.

The paper is organized as follows. In Sec. II, the Ham
tonian of the CHSXY model in the spherical-coordinate rep
resentation and the corresponding equations of motion
the relaxational dynamics are introduced. Although our m
interests are in dynamic critical behaviors, we also perfo
Monte Carlo simulations in Sec. III to confirm the equiv
lence with the conventional CHSXY model and then com-
pare with static and dynamic results from the relaxatio
dynamics in Sec. IV, which constitutes the main results
the current work. Finally we devote Sec. V for summary a
discussions.
©2001 The American Physical Society06-1
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II. MODEL

We begin with the Hamiltonian of the convention
CHSXY model in thed-dimensional hypercubic geometr
with sizeN5Ld (L is the linear size!,

H@$sx,sy%#52J(̂
i j &

~si
xsj

x1si
ysj

y!, ~1!

whereJ is the coupling strength, the summation is over
nearest-neighbor pairs, and the three-dimensional local
si5(si

x ,si
y ,si

z) at sitei has unit length (usi u251), or equiva-
lently the partition function should include the measu
d@(si

x)21(si
y)21(si

z)221#. The CHSXY model with the
Hamiltonian~1! can be viewed as either an extension fro
the originalXY model where spins are two dimensional,
as a special case of the HeisenbergXXZ model with cou-
plings only in thex-y plane.

The more convenient representation of the conventio
CHSXY Hamiltonian is written as

H@$sz,f%#52J(̂
i j &

A@12~si
z!2#@12~sj

z!2#cos~f i2f j !,

~2!

where (si
x)21(si

y)2512(si
z)2 has been used, andf i is the

angle between thex-y plane component of the spinsi , i.e.,
si2si

zẑ, and the positivex axis. In representation~2!, f and
sz have uniform measure since

E dsxE dsyE dszd@~sx!21~sy!31~sz!221#

5E dszE rdr E dfd@r 21~sz!221#

}E
21

1

dszE
2p

p

df, ~3!

where r 2[(sx)21(sy)2, f[arctan(sy/sx), and the identity
d(r 22a2)5d(r 2a)/2r has been used.

We introduce the polar angle variableu in the spherical
coordinate system as follows:

si
x5sinu i cosf i ,

si
y5sinu i sinf i ,

si
z5cosu i , ~4!

which then leads to the representation

H@$u,f%#52J(̂
i j &

sinu i sinu j cos~f i2f j !. ~5!

We then simplify the conventional CHSXY model and use
the uniform measure not only forf but also foru variables.
One advantage of this is that no additional constraint is
quired sinceusi u51 is satisfied automatically in the represe
tation ~5!. One should note that the conventional CHSXY
model@represented by the Hamiltonian~2! with the uniform
02440
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measure insz and f# and its variant model studied in thi
work @the Hamiltonian~5! with the uniform measure inu
and f#22 do not have the same partition function and fr
energy, and accordingly some nonuniversal properties
the critical temperature can be different. However, one
pects that universal critical properties should be the sam
will be clearly confirmed in Sec. III below.

The relaxational dynamic equations are simply given b6

u̇ i52G
]H@$u,f%#

]u i
1h i

u ,

ḟ i52G
]H@$u,f%#

]f i
1h i

f , ~6!

whereG is a constant that determines the time scale of
laxation, and the stochastic thermal noise terms sat
^h i

u(t)&5^h i
f(t)&5^h i

u(t)h j
f(t8)&50 and ^h i

u(t)h j
u(t8)&

5^h i
f(t)h j

f(t8)&52Td i j d(t2t8) with the ensemble averag
^•••&. ~From now on, we measure the temperatureT and the
time t in units of J/kB and 1/GJ, respectively.! From the
Fokker-Planck~FP! formalism, it is straightforward to show
that the stationary solution of the FP equation, correspond
to the above Langevin-type equations of motion~6!, is sim-
ply the equilibrium Boltzmann distribution with the Hami
tonian given in Eq.~5!. In other words, the relaxational dy
namics used in this work automatically produces equilibriu
fluctuations in time, which are compatible with the Bolt
mann distribution of the same Hamiltonian. In this respe
the initial configuration of the relaxational dynamics can
chosen arbitrarily; the equilibrium fluctuations are genera
by the dynamics itself as the system evolves in time. Thi
in contrast to the widely used spin dynamics, where the
tial configurations must be generated according to the e
librium distribution. Otherwise the spin dynamics will no
reflect the properties of the equilibrium. Consequently,
relaxational dynamics described here is consistent with
usual physical situation of a system in contact with a therm
reservoir. From this perspective we believe that the rel
ational dynamics can phenomenologically catch relevant
tures for a real spin system in a situation where the ther
effects are strong.

III. MONTE CARLO SIMULATION

For completeness we start by calculating the static pr
erties from Monte Carlo~MC! simulations within the spheri-
cal coordinate ($u,f%) representation with both variable
uniformly distributed, which we have not found in the liter
ture. We use the standard Metropolis algorithm applied
the Hamiltonian~5!, and the variations ofu i andf i at each
MC try are tuned to give an acceptance ratio of about
near the critical temperature. Later we will compare the M
results with those from the relaxational dynamics in Sec.

A. Three-dimensional lattice

In 3D, the transition is detected by the order parame
defined as21
6-2
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^m&[ K 1

N
uSu L 5 K 1

N
ASx

21Sy
21Sz

2L , ~7!

where the total spin vectorS is given by

S5(
i 51

N

si . ~8!

The most convenient way to locate the critical temperat
Tc is to calculate Binder’s fourth-order cumulant

UL~T!512
^m4&

3^m2&2
, ~9!

which has a unique crossing point as a function ofT if plot-
ted for various system sizes. Figure 1 shows the determ
tion of Tc from Binder’s cumulant for the system sizeL
54, 6, 8, 10, 12, and 16 in 3D andTc51.256(1) is obtained
As expected, this value ofTc is found to be different than
Tc51.552(1) obtained from the other choice of variables
Hamiltonian~2! with uniform measures forsz andf.18,19,21

However, one expects that such a change cannot alter
universality class of the system. As an example we comp
the static critical exponentn, which is defined byj;(T
2Tc)

2n and can be calculated from

UL~T!'U* 1U1L1/nS 12
T

Tc
D , ~10!

where U* is also a universal value and found to beU*
50.586(1) from Fig. 1. Equation~10! is written in a more
convenient form,

DUL5UL~T1!2UL~T2!}L1/n, ~11!

whereT1 andT2(.T1) are picked nearTc . In the inset of
Fig. 1, DUL is plotted as a function of system sizeL in the

FIG. 1. Fourth-order Binder’s cumulantUL for the 3D CHSXY
model in the spherical-coordinate representation from MC sim
tions as a function of the temperatureT for various system sizes
L54, 6, 8, 10, 12, and 16~from top to bottom on the right-hand
side of the crossing point!. The crossing point gives the estimatio
of the critical temperatureTc51.256(1). Inset: Determination of
the critical exponentn through the finite-size scaling ofUL . DUL

[UL(T51.25)2UL(T51.26) ~see text for details!. From the least-
square fit,n50.67(3) is obtained.
02440
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log scale withT151.25 andT251.26, andn50.67(3) is
obtained. The values ofn andU* obtained here

n50.67~3!, ~12!

U* 50.586~1!, ~13!

are within error bars in agreement with the known values
the conventional CHSXY model with the uniform measure
for sz andf: n50.670(7), U* '0.586 in Ref. 21~the latter
was estimated from Fig. 1 in Ref. 21!, and n50.669(6),
U* 50.5859(8) in Ref. 19. This just illustrates that th
change of variables and measures in phase space introd
in Sec. II does not change the static universality class
though the critical temperatureTc is found to be different.

B. Two-dimensional lattice

In many 2D systems with continuous symmetry, the sp
taneous magnetization vanishes at any nonzero temper
and the phase transition of theXY model and its related
models is of the Kosterlitz-Thouless type.1 Figure 2 shows
the specific heat Cv , computed from Cv5(^H2&
2^H&2)/T2N, for the 2D CHSXY model in the spherica
coordinate representation versusT for various system sizes
L54, 6, 8, 10, 12, 16, 24, and 32. TheCv peak for the KT
transition is characterized by a finite peak height in the lim
of infinite size, which is consistent with Fig. 2. We the
compute the in-plane susceptibilityx defined as20 ~see Fig.
3!

x[~xx1xy!/2, ~14!

where the susceptibility in thea direction (a5x,y) is writ-
ten as

xa5
1

N K S (
i

sa
i D 2L . ~15!

The in-plane susceptibilityx can be used to determine th
critical temperatureTc : We use the relationx;L22h and
the condition that the exponenth has value 1/4 atTc , and

-
FIG. 2. The specific heatCv versusT from the MC simulation

of the 2D CHSXY model in the spherical-coordinate representat
for various system sizesL54, 6, 8, 10, 12, 16, 24, and 32; th
specific-heat peak appears to saturate asL is increased.
6-3
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KIM, MINNHAGEN, OH, AND CHUNG PHYSICAL REVIEW B 64 024406
obtainTc50.621(3)~see the inset of Fig. 3!. It is again to be
noted thatTc50.621(3) obtained here for the 2D CHSXY
model in the spherical coordinate representation is differ
from Tc50.699(3) obtained in Ref. 20 for the convention
CHSXY model.

IV. RELAXATIONAL DYNAMICS SIMULATION

In the relaxational dynamics simulations in both 3D a
2D, we use the second-order Runge-Kutta-Helfa
Greenside~RKHG! algorithm23 and the equations of motio
in Eq. ~6! are integrated numerically with the discrete tim
stepDt50.05. The relaxational dynamics with the represe
tation $u,f% used here~see Sec. II! is more convenient than
the representation$sz,f% since no constraint onu i andf i is
required while the constraintusi

zu<1 should be explicitly ful-
filled in the latter representation. After neglecting initial tra
sient behaviors, ensemble averages of static physical qu
ties can be computed from the time averages of th
quantities due to the ergodicity of the system. In contras
the spin-dynamics method,17–19 where initial configuration
for dynamic calculation should be generated from the M
simulation, one can in relaxational dynamics take any ini
configuration to start with; as time proceeds, the dynam
intrinsically generates equilibrium fluctuations.

A. Three-dimensional lattice

We first present the static results in 3D. Figure 4 sho
the determination ofTc from Binder’s cumulant@see Eqs.~9!
and ~10!#: the crossing point givesTc51.245(2) andU*
50.585(3). In dynamic simulations the inevitable finite tim
stepDt causes an effective shift of the temperature~see Ref.
6 for discussions!. Of course in the limit ofDt→0 this tem-
perature shift vanishes6 and the critical temperatures dete
mined from dynamic simulation and MC simulation becom
identical. The effective temperature shift in the RKHG alg
rithm used here is much smaller than the simple Euler a
rithm, and the deviation inTc in the current 3D case is les

FIG. 3. In-plane susceptibilityx from MC simulation in 2D
versus temperatureT at system sizesL54, 6, 8, 10, 12, 16, 24, and
32 ~from bottom to top!. Inset: The exponenth, obtained from
x(T,L);L22h(T) is shown as a function ofT. From the condition
h(Tc)51/4, Tc50.621(3) is found.
02440
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than 1%. Within numerical accuracy we find thatU* com-
puted from relaxational dynamics~see Fig. 4! agrees with
that from MC in Sec. III A, and thus also with values
Refs. 21 and 19. We display the determination of the criti
exponentn for the relaxational dynamics in the inset of Fi
4, wheren50.66(6) is obtained~compare with Fig. 1 for
MC in 3D!. The values ofn andU* found from the relax-
ational dynamics of the 3D CHSXY model in the spherica
coordinate representation again confirm that the static
versality class of the model is identical to the usual 3DXY
universality class.

We next investigate the dynamic critical behaviors. O
convenient way of characterizing the dynamic universa
class is to compute the total spin-time correlation funct
G(t) defined as18

G~ t ![
^Sx~ t !Sx~0!1Sy~ t !Sy~0!&

^Sx
2~0!1Sy

2~0!&
, ~16!

where the total spin vectorS5(Sx ,Sy ,Sz) is given in Eq.~8!
and thê •••& is substituted by the time average in the rela
ational dynamics study. SinceG(t50)51 at anyT and L,
the finite-size scaling ofG(t) is written in a very simple
form,

G~ t,L,T!5g~ tL2z,@T2Tc#L
1/n!, ~17!

where the first scaling variable is the ratio between the ti
t and the characteristic time scalet;Lz with the dynamic
critical exponentz, and the second scaling variable com
from the ratio between the system sizeL and the coherence
lengthj;(T2Tc)

2n with the static critical exponentn.
At T5Tc , the above scaling form reduces to a simp

form with a single scaling variable

G~ t,L,Tc!5g~ tL2z,0!, ~18!

and all G’s at different system sizes should collapse to
single curve once the correct value ofz is chosen. In Fig. 5

FIG. 4. Binder’s fourth-order cumulantUL from the relaxational
dynamics simulation in 3D as a function ofT for L54, 6, 8, 10, and
12 ~from top to bottom on the right-hand side of the crossing poin!.
The crossing point gives the estimationTc51.245(2). Inset: Deter-
mination ofn from the least-square fit;n50.66(6) is obtained~to
be compared with Fig. 1 for MC!.
6-4
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~see also Figs. 6 and 7!, G at T51.25 is shown~a! as a
function of the timet and ~b! as a function of the scaling
variable tL2z with z52.0. All curves at different sizesL
54, 6, 8, 10, and 12 are shown to collapse relatively wel
a single curve with the dynamic critical exponentz52.0,
although the quality of the collapse is not perfect: This
becauseT51.25 andz52.0 chosen in Fig. 5 can be slightl
different from the trueTc andz ~see below for a more precis
determination!.

The other implication of the above finite-size scaling fo
with two scaling variables in Eq.~17! is that if the first scal-
ing variable is fixed to a certain constant valuea[tL2z

5const, it again reduces to a simple form,

G~ t,L,T!5g~a,@T2Tc#L
1/n!. ~19!

FIG. 5. Total spin correlation functionG from relaxational dy-
namics in 3D atT51.25 is shown forL54, 6, 8, 10, and 12, as a
function of ~a! the timet and ~b! the scaling variabletL2z with z
52.0. The curve collapse in~b! implies thatTc'1.25 andz'2.0.
See Figs. 6 and 7 for more precise determination ofTc andz.

FIG. 6. The total spin correlation functionG in 3D with a
[tL2z50.53 (z52.05) is shown as a function of temperatureT for
various system sizesL54, 6, 8, 10, and 12. All curves cross atT
'1.245, which is in a very good agreement withTc51.245(2)
found in static calculation with relaxational dynamics~see Fig. 4!.
The value ofa50.53 is chosen only for convenience (a50.53
makes the intersection occur atG'0.5); in a broad range ofa, the
quality of this intersection plot is very good ifz52.05 is chosen.
The other values ofz and a are tried andz52.05(5) andTc

51.245(3) are concluded.
02440
o

It then suggests that whenG’s with fixed a at different sys-
tem sizes are plotted as functions ofT, all curves should
cross at a single point atT5Tc if the correct value ofz is
chosen; this provides an independent method to determinTc
~andz at the same time!. Figure 6 displays this intersectio
plot with z52.05 anda50.53 ~this value ofa, with which
the intersection occurs atG'0.5, is taken only as an ex
ample; in a broad range ofa the similar intersection plot is
achieved!. We try different values ofz anda, and it is con-
cluded thatz52.05(5) andTc51.245(3), thelatter of which
is in an agreement with the previously determined va
from Binder’s cumulant in Fig. 4.

In summary of this section, the relaxational dynam
study applied for the 3D CHSXY model in the spherica
coordinate representation has revealed that this model
longs to the 3DXY static universality class characterized b
n'0.67 andU* '0.586, while the dynamic critical exponen
has the valuez'2.0. We note that this valuez'2 is in
accord with the modelA in the Hohenberg-Halperin
classification16 as well as withz'2.015 found from the dy-
namic renormalization-group calculation in Ref. 15. On t
other hand, many studies on the 3DXY model with the re-
sistively shunted junction dynamics,7,12,14 the relaxational
dynamics7,12 under the fluctuating-twist boundary condition6

and the MC dynamics for both phase4 and vortex13 represen-
tations have observedz'1.5. Also, the spin dynamics for th
conventional 3D CHSXY model also has yieldedz’s that are
significantly different from the value 2:z'1.5 in Ref. 18,
andzx'1.38(5) andzz51.62(5) in Ref. 19

B. Two-dimensional lattice

The static results obtained from the time averages du
the numerical integrations of the relaxational dynamic eq
tions of motion~6! in 2D are first presented. The specifi
heatCv5(^H2&2^H&2)/T2N with N5L2, and the in-plane
susceptibilityx in Eqs.~14! and ~15! are exhibited as func-
tions of the temperatureT in Figs. 8 and 9, respectively. A
expected, the static calculations from the relaxational

FIG. 7. Scaling plot for the total spin correlation functionG in
3D with a[tL2z50.53 andz52.05. All data points in Fig. 6 col-
lapse to a smooth curve withTc51.245 andn50.67. The quality of
the curve collapse at differenta values are similar to this one in
broad range ofa.
6-5
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namics simulations result in basically the same results
from the MC simulations in Figs. 2 and 3 in Sec. III B. Fro
x in Fig. 9, we locateTc in the inset of Fig. 9 in the sam
way as in Fig. 3 in Sec. III B, through the use ofx;L22h

with h51/4 at Tc . In 2D, we findTc50.621(3), which is
identical toTc found from MC simulation in Fig. 3 within
numerical errors.

We next turn to the investigation of the dynamic unive
sality class of the 2D CHSXY model in the spherical-
coordinate representation under the relaxational dynamic
general, the 2D systems with the KT transition are quasic
cal in the whole low-temperature phase. This means
whenT<Tc we cannot use the finite-size scaling form in E
~17! since the coherence lengthj is infinite. In 2D, we then
write the scaling form forT<Tc as follows:

G~ t,T,L !5g~ tL2z(T)!, ~20!

where the dynamic critical exponentz(T) is allowed to vary
with temperature.~More precisely, the scaling functiong
should also depend onT.! Figure 10~a! displays the total

FIG. 8. The specific heatCv versusT from relaxational dynam-
ics simulation in 2D for various system sizesL54, 6, 8, 10, 12, and
16 ~from bottom to top!. ~Compare with Fig. 2 that has been o
tained from independent MC simulations.!

FIG. 9. In-plane susceptibilityx from relaxational dynamic
simulation in 2D versus temperatureT for various system sizesL
54, 6, 8, 10, 12, and 16. As expected, the relaxational dynam
simulations give quantitatively similar curves~compare with Fig.
3!. Inset: The exponenth as a function ofT is displayed andTc

50.621(3) is found.~Compare with Fig. 3 for MC.!
02440
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spin-time correlation functionG in Eq. ~16! at T50.62 as a
function of the timet for various system sizesL54, 6, 8, 10,
and 12. If we putz52.0 in Eq.~20! all curves in Fig. 10~a!
collapse to a single curve as shown in Fig. 10~b!. Conse-
quently, we conclude that the 2D CHSXY model in the
spherical-coordinate representation under relaxational
namics has the dynamic critical exponentz'2.0 atTc . We
show in Fig. 10~c! and ~d! the similar scaling plot atT
50.50, which is significantly lower thanTc . Interestingly,
we again findz'2.0 at T50.50, which suggests that thi
model hasz'2.0 in the whole low-temperature phase.

In many existing analytical and simulational studies of t
2D XY model in its original form,z(T) has been found to
have value 2 atTc , and to increase asT is decreased.2,3,5–9

Sincez(T) can also be related with the nonlinearIV expo-
nenta by a(T)5z(T)11, which is usually measured in ex
periments, there are also experimental papers with the s
conclusion.24 In contrast, there exist studies with other co
clusions: For example, in Ref. 10 the decay from noneq
librium to equilibrium~this technique is often called ‘‘short
time relaxation method’’! in the MC dynamics has bee
found to result inz(T)'2 at anyT below Tc , and the same
has been concluded in Ref. 7 from the similar short-tim
relaxation method but applied for the relaxational dynam
of theXY model. Also in Ref. 11, the scaling of the total sp
correlation function has been investigated in the same wa
in the present paper, andz'2 in the whole low-temperature
phase has been concluded for the relaxational dynamic
the 2DXY model.

The spin dynamics study of the conventional 2D CHSXY
model in Ref. 17 has obtainedz'1.0, which is close toz
5d/2 (d52 in 2D! for the modelE value in Hohenberg-
Halperin classification.16 While the models in Ref. 17 and in
the present work belong to the same static universality cl
they do not need to belong to the same dynamic universa
class: In spin dynamics, thez componentSz of the total spin
is a constant of motion since the HamiltonianH commutes
with the spin operator in thez direction. On the other hand

s

FIG. 10. Total spin correlation functionG from relaxational
dynamic simulation in 2D at~a! T50.62'Tc and~c! T50.50 as a
function of the timet for L54, 6, 8, 10, and 12~from left to right!;
~b! and~d! display the corresponding scaling plots with the scali
variabletL2z andz'2.0 is found at bothT50.62 and 0.50, imply-
ing thatz(T)'2.0 in the whole low-temperature phase.
6-6
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the relaxational dynamics is not based on this commuta
relation andSz is not a conserved quantity.

Although 2D and 3D CHSXY model have the samez, it
should be kept in mind that their critical behavior is com
pletely different: In 2D, the whole low-temperature phase
quasicritical and one can associatez(T) at each temperatur
to makeG at different sizes collapse to a single curve
displayed in Fig. 10. In 3D, on the other hand, the system
critical only at Tc and the curve collapse with the sing
scaling variabletL2z as shown in Fig. 5 is not found at an
other temperatures.

V. SUMMARY

We have investigated the static and the dynamic univ
sality class of the two- and three-dimensional CHSXY model
where three-dimensional classical spins interact with e
other through the Hamiltonian with only in-plane comp
nents coupled.

The spherical polaru and azimuthalf angles of the spin
direction, both with uniform measures in phase space,
taken as dynamic variables, which leads to the simple re
ational dynamic equations of motion since the constra
usi u51 is fulfilled automatically. It is to be noted that th
relaxational dynamics method makes it possible to st
both the dynamic and the static properties on the same f
ing, in contrast to the spin dynamics method. In other wor
ys

ica

02440
n

s

s
is

r-

h

re
x-
t

y
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in the spin dynamics method initial configurations for d
namic calculation should be generated from the MC simu
tion, while one can in relaxational dynamics take any init
configuration to start with; the relaxational dynamics intri
sically generates equilibrium fluctuations as the syst
evolves in time.

From the static calculations based on the relaxational
namics method, it was explicitly verified that both the 2
and 3D CHSXY models in the spherical-coordinate represe
tations belong to the expected 2D and 3DXY static univer-
sality classes, respectively. The dynamic critical exponenz
has been found to be different from values obtained fr
various other existing studies of theXY model including
relaxational dynamics. The valuez'2.0 found here for both
2D and 3D implies that the relaxational dynamics of t
CHSXY model is governed by the modelA description in the
Hohenberg-Halperin classification.16
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