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Calculations showing a correlation between electronic density and bulk modulus
in fcc and bcc metals
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The linearized augmented-plane-wave method is used to study the electronic dgrsitythe boundary of
the Wigner-Seitz cell for bcc and fcc elemental metals. The calcufgigds generally in good agreement with
the results derived from an empirical formula that was introduced by Miedema and co-workers. A formula is
introduced to calculate the bulk modulus of materials usig, and from it another formula for calculating
the relationship between the external pressure and the volume of materials is derived. As an example, the
pressure-volume compression curve for Cu is calculated. The limitations and features of the conventional
method and our method for calculating the bulk modulus of materials are discussed.
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I. INTRODUCTION one can exactly deduce the other one. Hence a formula that is
used to calculate the bulk modulus is introducedyys un-
The electronic densityiys at the boundary of the Wigner- der different uniform hydrostatic pressure strains is also cal-
Seitz cell was introduced by Miedema, de Boer, and deulated for Cu. Based on these results, a pressure-volume
Chatet as a parameter to calculate the heat of formatiéh ~ compression curve is plotted. Explanation of this empirical

of alloys through the formula formula from the point of view of quantum mechanics will
5 3 be the next challenge, which will help us to have a better
AH=f(c){—P(AP)*+Q(Anyg)}, (1) understanding of the existence of such a relationship and its

physical meaning.
4" The outline of the paper is the following. In Sec. Il we
give a brief overview of the computational approach. Then in
Sec. Il nys of pure elemental metals is calculated. In Sec.
IV we investigate the relationship between the pressure and
the volume of Cu by calculating,ys under different uniform
hydrostatic pressure strains. A discussion and concluding re-

arks are given in Secs. V and VI, respectively.

wheref(c) is an unknown function of the concentration an
the proportionality constant® and Q do not depend on the
type of metal system consideredA® is the work function
difference and\n,yg is the difference in electronic density at
the boundary of the Wigner-Seitz cell between the pure el
emental metals. The work function of a material can be de
termined by experiments. However, measurement of th
electronic densityny,g at the boundary of the Wigner-Seitz
cell is difficult from experiment. Thus Mieden al. did not
use direct experimental information ab . An empiri-
cal relationshliap between the bulk modu%ysﬁ?]d the theF())ret- Il. COMPUTATIONAL DETAILS

ical nys from five alkali metals was extended to other el-  The LAPW metho#®*° is based on local-density-

emental metals in their calculations. The schemeunctional theory:®!” The essential idea of the method is to
successfully predicts the signs AH for 500 binary alloys  divide real space into different regions, namely, spheres
constructed from 53 metallic elements. around the nuclei and the remaining interstitial region. In

Nws is also used to predict the crystal structéireolid  each of these regions the natural form of the variational basis
solubility for a specific solvent, heat of mixing of liquid functions is adopted, that is, plane waves in the interstitial
alloys? and melting points of metafsChelikowsky suc-  region, and a product of radial functions and spherical har-
cessfully plotted the solid solubility maps of most elementsmonics inside the spheres. In this method there are no em-
in Mg, Pb, Be, Zn, Cd, Tl, and Hg with Miedema coordi- pirical parameters. This theory involves only one approxima-
nates. nysis also used to describe the electronegativities tion, namely, the assumed form of the density functional for
of metals, which can be compared with other methods byhe exchange and correlation energy treated within the local-
Pauling? St. John and Bloch, and Phillips and co- density approximation. The Hedin-Lundqvist exchange-
workers?* 10 correlation potentiaf is adopted. The experimental lattice

Miedema et al’s empirical results have been used in constants are used in our calculations. The representative
many calculationé>'%1? However, results fom,ys calcu-  points in the Brillouin zone are chosen according to the spe-
lated from first principles are absent in the literature. In thiscial points schemé& Self-consistent convergence calcula-
paper, the linearized augmented-plane-wayeAPW) tions were performed for a 216point mesh in the irreduc-
method is used to calculateyg for all bcc and fcc pure ible portion (1/48) of the Brillouin zone. Convergence is
elemental metals except the rare-earth elements. The calcassumed when the average root-mean-square differences be-
lated results are remarkably consistent with the empirical retween the input and output charge are less than 1
sults of Ref. 1. Knowing either the bulk modulBsor nys, X 10 °e/(a.u.y.
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TABLE I. The calculated and empirical values mfs. 08
Calculatedny,s Empirical nyyg Vid B? 07 i
Metal [1072e/(a.u)®] [10 %e/(a.u)®] (cm’lg-at) (10°kg/cnt) |
Li 0.76 0.77 13.1 0.118 s 06F
Na 0.43 0.44 238 0.069 3 osl
K 0.24 0.22 45.6 0.033 NE L
Rb 0.19 0.19 56.1 0.032 52 04|
Cs 0.15 0.14 69.2 0.021 e T
Ca 0.73 0.6 26.2 0.155 = 03
Sr 0.57 0.5 33.9 0.118 o2l
Ba 0.56 0.4 38.1 0.105 |
L 1 2 1 " 1 L 1 " 1 " i L 1
";‘/C g'zg 3.68 8.36 1651 01 0.01 002 003 004 005 006 007 008
Nb 3.45 3.21 10.8 1.736 1V, (g atom/cm®)
Ta 3.67 3.56 10.8 2.04
Cr 4.29 4.25 793 1.94 FIG. 1. Relation between the electronic density at the boundary
Mo 4.99 4.46 939 2779 of the Wigner-Seitz cell and the atomic volume for five alkali met-
W 4.65 481 9.55 3206 2
;ﬁ jgé 3:33 ;gg ;;ég spatial distribu;ions of the electr_ons of Fe, Qu, and Al were
Ir 4.88 534 852 362 given by expenments.qr calculations at that t|m.e. From these
Ni 3.89 44 6.50 1.90 eight values an empirical formula for calculatimg,s was
Pd 3.36 3.7 8.88 1.844 developed:
Pt 4.06 4.6 9.09 2.838
cu 3.22 3.55 7.11 1.335 Nws=0.82<10"*(B/V;) ™, )
Ag 2.41 253 10.3 0.981
Au 3.05 3.4 10.2 1.766 where B is the bulk modulus in kg/cﬁn V., is the atomic
Pb 1.46 1.3 18.3 0.438 volume in cni/g-at., andnys is the electronic density in
Al 253 292 10.0 0.736 e/(a.u.y at the boundary of the Wigner-Seitz cell.
The electronic densitynyg calculated by the LAPW
aReference 20. method, the experimental bulk modulBs the atomic vol-

umeV,,, and the empiricahyyg are listed in Table I. It is
seen that the deviations between thg calculated from first
é)_rinciples and the empiricaly,s calculated from Eq(2) are
mostly less than 5%. For some transition metals the errors

The calculations ohy,s were performed after the above
self-consistent convergence calculations were finished. B
cause of the symmetry, the electronic density in the irreduc - o
ible portion(1/48 of the surface of the Wigner-Seitz cell is beclzr?n;% Ialr%ﬁ;’ c?:ltc:s:;gq;herinse;)rl(;tizovvevrltsr::rs] ;tso{; .ic vol-
calculated. The irreducible portion is divided into thousandsume for i‘ive alkali metals ivr\1lsthe 1A group. From the figure
of regions Wit.h qual areas in Ordef to ensure thfit they havl? is seen thahys in the 1A group is inveréely proportional ,
the same weight r']n theWg calﬁulam”ns. One point repre- 4 a1omic volume, which indicates that the assumption of
sents a region. The number of small regions was increaseg;eemaet al. is reasonable. For other elemental groups, the
until the vaggtlon of the calculated,s was converged gmgajier differences between their ionic and atomic radii and
within 110" °e. In all calculations we used 2583 points in the |arger number of valence electrons result in nonuniform
the irreducible portion. The mathematical mean value oflectron density throughout the atomic cell, and sometimes

2583 points was calculated to represent the electronic densify the same group the configurations of the valence electrons

Nws at the boundary of the Wigner-Seitz cell. are also different. These factors make the variations,@f
complex, not simply inversely proportional to the atomic
volume.

lIl. CALCULATED AND EMPIRICAL  n,s FOR PURE By a simple transform from Eq2) we have

ELEMENTAL METALS

Miedemaet al! assumed that the valence electrons could _ 1
be considered to have an approximately uniform density (0.82x10~
throughout the atomic cell for five alkali metals. In that
simple case the electron density at the Wigner-Seitz cellt is known that the physical meaning of the atomic volume
boundary was given by the ratio of the number of valenceV,, is the volume per mole of elements, so the atomic vol-
electrons per atomN,) and the atomic volume\,). The  umeV, can be calculated in a cubic cell through the formula

a2 Vo= (1.487X 10°)Vynds.  (3)
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3
Vm=M(axlo‘8)3=@a3 (cmmol), (4) 200
n n m Expt.
v 1095
where 6.0X 10° is Avogadro’s numbem is the number of 150 +- A 0895
atoms in a cel(2 and 4 for bcc and fcc metals in the present
study, respectively and a is the lattice constant in ang- & 100l
stroms. From Eqg3) and (4) we get ©
e
a2 50}
0.895x 10° 8
B=———a°ns (5) L
0
The units for the bulk moduludB, the lattice constant 002 o,'oo o,bz o,'o4 Y 0.08
a, and the electronic density,s are kg/icmi, A, and AV

e/(a.u.y, respectively.
The magnitude of the bulk modulus reflects whether or FIG. 2. The calculated and experimental relation between the
not the compression of a material is easy. From Bgit is ~ €xternal pressure and the volume for Cu.
clearly seen that the bulk modul@sis proportional tons.
This indicates that the compression or tension of a crystal
will closely correlate with the electronic densityys at the V. DISCUSSION

boundary of the Wigner-Seitz cell, or the parameigs may The bulk modulus of a material is obtained from the cur-
be as an excellent index to measure the degree of difficultyyrre of the total-energy—strain curve in the conventional
of deformation of a material. It is thought that the boundaryethod. The physical meaning of this is clear. However,
of the Wigner-Seitz cell is the interface between two atomSinere exist some limitations in the conventional method. For
the electrons in the interface are supplied by both atoms. Sgyample, a very accurate total-energy calculation is required,
it is understandable thatys might reflect the strength of the 51 the calculated results are sensitive to the number of basis
bond between two atoms and some of the mechanical progynctions; in general six or more self-consistent convergence
erties of the metal. calculations for different uniform hydrostatic pressure strains
are required for calculating a bulk modulus. Our method
IV. PRESSURE-VOLUME COMPRESSION CURVES does not have these limitations because the bulk modulus is
AND nys obtained fromnys, and only one self-consistent conver-

gence calculation is required. Its deficiency is that its physi-
The bulk modulus is the reciprocal of the compressioncal meaning is unclear.

coefficient, so one has

VI. CONCLUSIONS

dpP
B=-V-— (6) In this paper, the LAPW method has been used to study

dv the electronic densityys at the boundary of the Wigner-
Seitz cell for bcc and fcc elemental metals. We found that
From Eqgs.(5) and(6), one gets nws calculated from first principles is remarkably consistent
with the results derived from the empirical formula of Ref. 1.
Most differences between the calculategs and empirical
@) nys derived from the Miedemat al. empirical formula are
less than 5%. A formula has been introduced for calculating
the bulk modulus of materials from,g and the lattice con-
stant. According to this formula and the definition of bulk
modulus, we propose a formula to calculate the relationship
etween the external pressure and the volume of materials.
he pressure-volume compression curve for Cu was obtained
from the calculatedhyys.

dP  0.895<10° ,
av - n Nws:

By calculatingnys at different volume, the pressure-volume
compression curve can be obtained from &g. As a typical
example, Fig. 2 plots the pressure-volume compressio
curves for Cu. From Table I it is known that the calculated
Nws IS lower by about 10% than the empirical result for Cu,
so the calculated bulk modulus obtained by Es). will be
lower than the experimental result. If the empirical parameter
0.895 is adjusted to 1.095 in E(p) according to the experi-
mental bulk modulus of Cu, and then the pressure-volume We acknowledge financial support of this work by the
curve is plotted again for Cu, it is found that the calculatedSpecial Funds for the Major State Basic Research Projects of
compression curve is in good agreement with the experimenchina under Grant No. G2000067104 and by the National
tal curve?! Pandeng Research Program of ChiGaant No. 95-Yu-41
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