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Calculations showing a correlation between electronic density and bulk modulus
in fcc and bcc metals
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The linearized augmented-plane-wave method is used to study the electronic densitynWS at the boundary of
the Wigner-Seitz cell for bcc and fcc elemental metals. The calculatednWS is generally in good agreement with
the results derived from an empirical formula that was introduced by Miedema and co-workers. A formula is
introduced to calculate the bulk modulus of materials usingnWS, and from it another formula for calculating
the relationship between the external pressure and the volume of materials is derived. As an example, the
pressure-volume compression curve for Cu is calculated. The limitations and features of the conventional
method and our method for calculating the bulk modulus of materials are discussed.
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I. INTRODUCTION

The electronic densitynWS at the boundary of the Wigner
Seitz cell was introduced by Miedema, de Boer, and
Chatel1 as a parameter to calculate the heat of formationDH
of alloys through the formula

DH5 f ~c!$2P~DF!21Q~DnWS
1/3 !2%, ~1!

wheref (c) is an unknown function of the concentration a
the proportionality constantsP andQ do not depend on the
type of metal system considered.DF is the work function
difference andDnWS is the difference in electronic density a
the boundary of the Wigner-Seitz cell between the pure
emental metals. The work function of a material can be
termined by experiments. However, measurement of
electronic densitynWS at the boundary of the Wigner-Seit
cell is difficult from experiment. Thus Miedemaet al.did not
use direct experimental information aboutnWS. An empiri-
cal relationship between the bulk modulusB and the theoret-
ical nWS from five alkali metals was extended to other e
emental metals in their calculations. The sche
successfully predicts the signs ofDH for 500 binary alloys
constructed from 53 metallic elements.

nWS is also used to predict the crystal structure,2 solid
solubility for a specific solvent, heat of mixing of liqui
alloys,3 and melting points of metals.4 Chelikowsky5 suc-
cessfully plotted the solid solubility maps of most eleme
in Mg, Pb, Be, Zn, Cd, Tl, and Hg with Miedema coord
nates. nWS is also used to describe the electronegativitie6,7

of metals, which can be compared with other methods
Pauling.8 St. John and Bloch,9 and Phillips and co-
workers.2,4,10

Miedema et al.’s empirical results have been used
many calculations.2,5,11,12 However, results fornWS calcu-
lated from first principles are absent in the literature. In t
paper, the linearized augmented-plane-wave~LAPW!
method is used to calculatenWS for all bcc and fcc pure
elemental metals except the rare-earth elements. The c
lated results are remarkably consistent with the empirical
sults of Ref. 1. Knowing either the bulk modulusB or nWS,
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one can exactly deduce the other one. Hence a formula th
used to calculate the bulk modulus is introduced.nWS un-
der different uniform hydrostatic pressure strains is also c
culated for Cu. Based on these results, a pressure-vol
compression curve is plotted. Explanation of this empiri
formula from the point of view of quantum mechanics w
be the next challenge, which will help us to have a bet
understanding of the existence of such a relationship and
physical meaning.

The outline of the paper is the following. In Sec. II w
give a brief overview of the computational approach. Then
Sec. III nWS of pure elemental metals is calculated. In Se
IV we investigate the relationship between the pressure
the volume of Cu by calculatingnWS under different uniform
hydrostatic pressure strains. A discussion and concluding
marks are given in Secs. V and VI, respectively.

II. COMPUTATIONAL DETAILS

The LAPW method13–15 is based on local-density
functional theory.16,17 The essential idea of the method is
divide real space into different regions, namely, sphe
around the nuclei and the remaining interstitial region.
each of these regions the natural form of the variational b
functions is adopted, that is, plane waves in the intersti
region, and a product of radial functions and spherical h
monics inside the spheres. In this method there are no
pirical parameters. This theory involves only one approxim
tion, namely, the assumed form of the density functional
the exchange and correlation energy treated within the lo
density approximation. The Hedin-Lundqvist exchang
correlation potential18 is adopted. The experimental lattic
constants are used in our calculations. The representa
points in the Brillouin zone are chosen according to the s
cial points scheme.19 Self-consistent convergence calcul
tions were performed for a 216-k-point mesh in the irreduc-
ible portion ~1/48! of the Brillouin zone. Convergence i
assumed when the average root-mean-square difference
tween the input and output charge are less than
31025 e/(a.u.)3.
©2001 The American Physical Society07-1
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The calculations ofnWS were performed after the abov
self-consistent convergence calculations were finished.
cause of the symmetry, the electronic density in the irred
ible portion ~1/48! of the surface of the Wigner-Seitz cell
calculated. The irreducible portion is divided into thousan
of regions with equal areas in order to ensure that they h
the same weight in thenWS calculations. One point repre
sents a region. The number of small regions was increa
until the variation of the calculatednWS was converged
within 131025e. In all calculations we used 2583 points
the irreducible portion. The mathematical mean value
2583 points was calculated to represent the electronic den
nWS at the boundary of the Wigner-Seitz cell.

III. CALCULATED AND EMPIRICAL nWS FOR PURE
ELEMENTAL METALS

Miedemaet al.1 assumed that the valence electrons co
be considered to have an approximately uniform den
throughout the atomic cell for five alkali metals. In th
simple case the electron density at the Wigner-Seitz
boundary was given by the ratio of the number of valen
electrons per atom (N0) and the atomic volume (Vm). The

TABLE I. The calculated and empirical values ofnWS.

Metal
CalculatednWS

@1022e/(a.u.!3#
Empirical nWS

@1022e/(a.u.!3#
Vm

a

~cm3/g-at.!
Ba

(106 kg/cm2)

Li 0.76 0.77 13.1 0.118
Na 0.43 0.44 23.8 0.069
K 0.24 0.22 45.6 0.033
Rb 0.19 0.19 56.1 0.032
Cs 0.15 0.14 69.2 0.021
Ca 0.73 0.6 26.2 0.155
Sr 0.57 0.5 33.9 0.118
Ba 0.56 0.4 38.1 0.105
Ac 0.94
V 3.63 3.68 8.36 1.651
Nb 3.45 3.21 10.8 1.736
Ta 3.67 3.56 10.8 2.04
Cr 4.29 4.25 7.23 1.94
Mo 4.22 4.46 9.39 2.779
W 4.65 4.81 9.55 3.296
Fe 3.82 4.0 7.09 1.716
Rh 4.20 4.73 8.29 2.758
Ir 4.88 5.34 8.52 3.62
Ni 3.89 4.4 6.59 1.90
Pd 3.36 3.7 8.88 1.844
Pt 4.06 4.6 9.09 2.838
Cu 3.22 3.55 7.11 1.335
Ag 2.41 2.53 10.3 0.981
Au 3.05 3.4 10.2 1.766
Pb 1.46 1.3 18.3 0.438
Al 2.53 2.2 10.0 0.736

aReference 20.
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spatial distributions of the electrons of Fe, Cu, and Al we
given by experiments or calculations at that time. From th
eight values an empirical formula for calculatingnWS was
developed:

nWS50.8231024~B/Vm!1/2, ~2!

where B is the bulk modulus in kg/cm2, Vm is the atomic
volume in cm3/g-at., andnWS is the electronic density in
e/(a.u.)3 at the boundary of the Wigner-Seitz cell.

The electronic densitynWS calculated by the LAPW
method, the experimental bulk modulusB, the atomic vol-
ume Vm , and the empiricalnWS are listed in Table I. It is
seen that the deviations between thenWS calculated from first
principles and the empiricalnWS calculated from Eq.~2! are
mostly less than 5%. For some transition metals the er
become larger, but all of them are also within 15%.

In Fig. 1 the calculatednWS is plotted versus atomic vol
ume for five alkali metals in the 1A group. From the figur
it is seen thatnWS in the 1A group is inversely proportiona
to atomic volume, which indicates that the assumption
Miedemaet al. is reasonable. For other elemental groups,
smaller differences between their ionic and atomic radii a
the larger number of valence electrons result in nonunifo
electron density throughout the atomic cell, and sometim
in the same group the configurations of the valence electr
are also different. These factors make the variations ofnWS
complex, not simply inversely proportional to the atom
volume.

By a simple transform from Eq.~2! we have

B5
1

~0.8231024!2 VmnWS
2 5~1.4873108!VmnWS

2 . ~3!

It is known that the physical meaning of the atomic volum
Vm is the volume per mole of elements, so the atomic v
umeVm can be calculated in a cubic cell through the formu

FIG. 1. Relation between the electronic density at the bound
of the Wigner-Seitz cell and the atomic volume for five alkali me
als.
7-2
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Vm5
6.0231023

n
~a31028!35

0.602

n
a3 ~cm3/mol!, ~4!

where 6.023103 is Avogadro’s number,n is the number of
atoms in a cell~2 and 4 for bcc and fcc metals in the prese
study, respectively!, and a is the lattice constant in ang
stroms. From Eqs.~3! and ~4! we get

B5
0.8953108

n
a3nWS

2 . ~5!

The units for the bulk modulusB, the lattice constan
a, and the electronic densitynWS are kg/cm2, Å, and
e/(a.u.)3, respectively.

The magnitude of the bulk modulus reflects whether
not the compression of a material is easy. From Eq.~5! it is
clearly seen that the bulk modulusB is proportional tonWS

2 .
This indicates that the compression or tension of a cry
will closely correlate with the electronic densitynWS at the
boundary of the Wigner-Seitz cell, or the parameternWS may
be as an excellent index to measure the degree of diffic
of deformation of a material. It is thought that the bounda
of the Wigner-Seitz cell is the interface between two atom
the electrons in the interface are supplied by both atoms
it is understandable thatnWS might reflect the strength of th
bond between two atoms and some of the mechanical p
erties of the metal.

IV. PRESSURE-VOLUME COMPRESSION CURVES
AND nWS

The bulk modulus is the reciprocal of the compress
coefficient, so one has

B52V
dP

dV
. ~6!

From Eqs.~5! and ~6!, one gets

dP

dV
52

0.8953108

n
nWS

2 . ~7!

By calculatingnWS at different volume, the pressure-volum
compression curve can be obtained from Eq.~7!. As a typical
example, Fig. 2 plots the pressure-volume compress
curves for Cu. From Table I it is known that the calculat
nWS is lower by about 10% than the empirical result for C
so the calculated bulk modulus obtained by Eq.~5! will be
lower than the experimental result. If the empirical parame
0.895 is adjusted to 1.095 in Eq.~5! according to the experi
mental bulk modulus of Cu, and then the pressure-volu
curve is plotted again for Cu, it is found that the calculat
compression curve is in good agreement with the experim
tal curve.21
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V. DISCUSSION

The bulk modulus of a material is obtained from the cu
vature of the total-energy–strain curve in the conventio
method. The physical meaning of this is clear. Howev
there exist some limitations in the conventional method. F
example, a very accurate total-energy calculation is requi
and the calculated results are sensitive to the number of b
functions; in general six or more self-consistent converge
calculations for different uniform hydrostatic pressure stra
are required for calculating a bulk modulus. Our meth
does not have these limitations because the bulk modulu
obtained fromnWS, and only one self-consistent conve
gence calculation is required. Its deficiency is that its phy
cal meaning is unclear.

VI. CONCLUSIONS

In this paper, the LAPW method has been used to st
the electronic densitynWS at the boundary of the Wigner
Seitz cell for bcc and fcc elemental metals. We found t
nWS calculated from first principles is remarkably consiste
with the results derived from the empirical formula of Ref.
Most differences between the calculatednWS and empirical
nWS derived from the Miedemaet al. empirical formula are
less than 5%. A formula has been introduced for calculat
the bulk modulus of materials fromnWS and the lattice con-
stant. According to this formula and the definition of bu
modulus, we propose a formula to calculate the relations
between the external pressure and the volume of mater
The pressure-volume compression curve for Cu was obta
from the calculatednWS.
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FIG. 2. The calculated and experimental relation between
external pressure and the volume for Cu.
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