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Multiquanta breather model for PtCl
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We study the many-quanta problem of an intramolecular vibrational excitation interacting with optical
phonons, that may represent the nonlinearity from intrinsic electron-lattice interactions. In the adiabatic limit
we calculate numerically the ground-state energy and the corresponding wave functidws/ifimational
guanta. In the one-dimensional case we find strong redshifts in the overtone spectra and an increasing spatial
localization as the number of quanta increases. Through model parameter fitting we achieve very good quan-
titative agreement with experimental resonant Raman scattering measurements in the quasi-one-dimensional
charge transfer solid PtCl. Accurate analytical expressions for the redshifts are also obtained.
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Investigation of vibrational energy localization in crystals offered in Ref. 12 for an intramolecular vibrational excitation
due to anharmonic effects has considerably increased oven a trimer (PtCJ) caused by charge transfer betweefi'Pt
the last decade since Sievers and Takeno sugdettatl and P, that is localized on a single lattice site. Since such
energy localization can be induced through spatially local€excitations are delocalized in an extended lattice due to
ized nonlinear excitations that are solutions of discrete anquantum mechanical tunneling, a coupling with an external
harmonic lattices. The term “intrinsic localized modes” field is necessary for breather formation. It is known that in

(ILM’s) or discrete breathe®B’s) is presently used to dis- materials like PtCI there is a very strong interaction of the
tinguish nonlinear localization from disorder-induced local-€lectronic motion with the ionic arrangemént.* The resuit-

ized modes. Following the original work a large number ofing nonlinearity through the electron-phonon coupling can be
theoretical studies have been devoted to the existencePhenomenologically represented by an effective interaction
mobility® and thermodynamfcproperties of DB'’s in classi- ©f the intramolecular mode with a bath of another degree of
cal systems. Recently there has also been an increasing iffeedom. Here, we represent the latter effectively by a soft
terest in the quantum character of breathers. Numerical dioptical phonon with frequency, lying in the range of the

agona”zation in anharmonic lattice®r strong electron- observed redshifts. The effective coupling of the intramo-
phonon Coup|ed sys’[eﬁ’]has shown that ana|ogous spatia"y lecular mode with optical phOI’lOﬂS is easily connected with

localized modes can exist as eigenstates in quantum nonliibe calculated parameters of the underlying electron-phonon
ear lattices. Hamiltoniant* using a first-order expansion of the electron-

In spite of this theoretical activity the only microscopic induced nonlinear potential close to the anticontinuous limit.
experimental candidate for DB's has been the anomaloul) such a model an adiabatic treatment of the optical
Amide-I (C=0 stretching band with an unusual temperature phonons leads to a generalized discrete nonlinear Schrondi-
dependence in ACN, attributed to a vibrational polaronger equation(DNLS), allowing the localization of the vibra-
formation/~° Recently, however, resonant Raman scatteringional excitation.

(RRS measurements in PtCl, a quasi-one-dimensional Specifically, we consider a one-dimensional molecular
charge density wave compound, have shown a strong red?hain described by classical Einstein oscillators with n\ss
shift of the overtoned? stimulating interest in this area. The and vibrational frequenci,. Assuming that an intramolecu-
concept of multiquanta bound states in nonadiabatic antfr vibrational excitation with on-site energg, can hop
adiabatic Peierls-Hubbard models was used in order to exrom one sitd to its nearest neighbors via the transfer matrix
plain this unusual redshifted multiquanta evolution of theelement] (described in a tight-binding modednd also that
fundamental frequency. In the former case a four-site model is locally coupled with the oscillators, then the resulting
seems to fit the experimental results W8it! In the latter ~Hamiltonian is given by

adiabatic case the success of the adiabatic approach is re-

stricted to a small number of bound quanta, since at higher _ APV TR S T

energies the theoretical predictions deviate significantly from H= El [Boaiai=daraiataigai)]

the experimental observatiolsin the former case, the po-

tential disadvantages are the large number of system param- +2
eters, the small lattice size used in the numerical calcula- i
tions, and the assumption that the vibrational quanta are

almost localized at a single unit cell scale. Whereafr and «; are the creation and annihilation operators

In this work we use a simpler many-quanta effectiveof the vibrational excitation obeying the standard bosonic
model to describe the localization of the vibrational energycommutation relationsg; and p; are the displacement from
in molecular crystals. Our motivation is the simple picturethe equilibrium position and the momentum, respectively, of
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the ith oscillator, andg is the constant of the interaction
ich - NP = 2 [Pt P
which is assumed to be only on-site. S, n; [FRRERRIN RN
The Hamiltonian of Eq(1) for a single intramolecular ! N ®)
quantum reduces to the Holstein modfeln the adiabatic
approximation its ground state always consists of a stabl@nd
I_LM solution (V|brat|qnal polaron" Extending the calpula PuD i =[pi 4 tp JB )
tions of Ref. 16, we introduce a many-body scheme in order RN h I

to find the adiabatic ground state in the cas&lafibrational  Here, the indexn; denotes the nearest-neighboring sites to
qguanta. For this purpose we consider a genéajuanta '

eigenstate of the Hamiltonian of E€L): site j;. Equation(7), including a Hubbard term, has been

obtained forN=2 in the study of the Holstein-Hubbard bi-
polaron problent’ As can be seen from E¢7) the ground-

W)= — z C. . Catat ot 0) state solutions do_not depenc_i on the parameterhe latter
N jpigre gy vz Intiale I affects the dynamical properties of the syst@ny., the nor-
(20  mal mode} since it enters the equations of motisee, for
) example, Eq(6) of Ref. 16|.
where|0) is the vacuum state ar@ ;.. are the prob- The total energy of the system, including the lattice en-
ability amplitudes for finding one quantum on sjtg one on  ergy, is given by
j2, - ..,etc., and are normalized to unity. Due to the bosonic 2
character of the vibrational quanta, the indigeg,, ... ,jn -~ * 2
are not necessarily different and EN_NGO_M;: in Pl AN T E. pi
(10)
Ciline o in=CPlisin. . in 3

The ground state of Eq7) with periodic boundary con-
where P indicates all the possible permutations of the setditions is calculated numerically using the same method as in
{i1vi2, - Nk Ref. 16. The results show that, as in the one-quantum case,
In what follows we use the dimensionless quantifies  the ground state for thi quanta is always localized for any
=wot (dimensionless time e,=E,/J (dimensionless on- nonvanishing coupling strength forming a vibrational many-
site energy, u;=\Mw2J x (dimensionless displace- duantapolaron. These ILM's are gradually more extended as
ments k=g/m (dimensionless coupling and y coupling k decreases. In the limit—0 and for an infinite

_ - - ; R lattice we obtainEy— N(ey—2), which is the ground-state
=fhwy/J (adiabaticity parametgrThe adiabatic limit corre- N Ny ;
sponds to the casg—0. energy of N noninteracting fully extendedBloch) vibra-

We minimize the total energy with respectfo} in the tional quanta. For relatively large valueslothe ILM’s are

adiabatic approximatiofi.e., assuminglu;/d7=0) and us- \(/;v(i)trr?ﬂ?t:lyerlgahzes/ ear: gnethselt(;rﬁggc?n?/nSglﬁbﬁ%gfe?(uerlgz’
ing the stationarity condition gy g y P

sion[i.e., ignoring the term\®; ; in Eq.(7)]:
_ —i(Ely)r
Cirze = Pigdn o in® EmT (4) 2
. o En=Neo— =N2. (11
where the coefﬂment@irj2 ,,,,, j, aretime independent and 2

E is the sum of the tight-binding and the interaction energy This expression has also been used by Sebdl. in the
Then the distortion of theith oscillator is given by problem of ACNS®

A((W|H|W))/du;=0, which implies(usingu;=0) In Fig. 1 we present with solid lines numerical results
obtained from Eq.(7) for the binding energyAEy=Ey
uj=— k(\If|aiTai|\If): —kp;, (5) —N(ep—2) per quantum as a function of coupling constant
for different number of bound quantal. It is clearly seen
where the stat¢¥) is that of Eq.(2) and that the absolute value of the binding energy is an increasing

function of N, resulting in strong redshifts of the overtone
spectra. Also the wave function of the ground state becomes
more localized ad increases. For this reason, the larder
the more rapidly the total energy approaches the anticontinu-
In the derivation of the last equation we have taken intoous limit value of Eq.(11) (dashed lines in Fig.)l ask
account Eq(3). The quantityp; /N gives the probability to increases. The ILM’s stability in this adiabatic approach has
find any quantum on site been confirmed explicitly for the one-quanttfimand

The eigenvalue equation for tiequanta stationary states two-quantd’ cases. The higher quanta ILMs are not
is described by the following generalized DNLS equation: expected to lose their stability since they become even more

pi=N_ 2 PR (6)
[P

1

localized.
E<I>j1'j2 ,,,,, J-N=(Neo—AN—kZPN)d)J-l,]-2 ''''' in' (7) _ The strong nonlinearity _due_ to the C_oupling with the_ lat-
tice leads to greater localization and increased redshifts at
where higher energies. Similar features are obsel¥éd the ex-
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FIG. 3. The probability of finding any quantum on lattice site
(p; /N) versus for N=1, 2, and 3 quanta. The coupling constant is
k=1.19.

FIG. 1. The binding energy per quantuthiy /N) as a function
of the coupling constark for different numbers of bound quanta
(N=1.2,..., 5). Solid lines represent numerical calculations.
Dashed lines result from expressi@hl), valid for relatively large

values ofk our numerical results through parameter fitting, and compare

them with the experimentdl and numericdf results for
7 i : _ —
perimental RRS overtone spectra of PtCIl. Using our exacPt'Cl- The best fit is achieved fok=1.19 andey=191.

. . . H H H -1
numerical procedure we can fit the experimental data of th&Tom these dimensionless values we obténl.61 cm
overtone shifts of PtCl. According to our model theative  In order to have the first peak at 304 ¢hy as observed in

redshift of the overtones, Ref. 10. For the fitted value of coupling const&rthe prob-
ability to find any quantum on site(p;/N) is displayed in
NE;—Ey Fig. 3 for the one, two, and three vibrational quanta ILM'’s,
rn(k, €0)= (12)  respectively. We observe that the ILM corresponding to the

E ' . . .
! second overtoneN=3) is localized on almost one lattice
depends on two model parameters: the coupling constant Site in agreement with the experimental obser_vati‘@rh:how-
and the on-site energgy, of the quanta. ever, the adiabatic single-quantuid=€ 1) nonlinear renor-

In Fig. 2 we present the relative redshifts calculated frommalized vibrational polaron is extended to about 15 unit
cells. As a result, in the framework of the semiclassical equa-

12H T T T Py tions of motion, the ILM can uniformly propagate through
L — o the lattice!® Generally, the semiclassical mobility of such
ok E(_)_E iﬁll;éﬁ;i“ D al one-quantum ILM'’s is numerically test¥tfor k<1.5. For
x  Eq.(16) PE°CI the fitting parameters afe=1.15 ande,=170. The
[ | & Eq.(3) A first peak at 312 cm! for this isotopé® is obtained forJ
= S + num. (Ref. [11]) QI — =1.86 cm’l.
¥t 8 In the anticontinuous regimek$1), where ILM's are
E 61 . localized at one site, an analytical expression is available for
- i s/ ] the relative red shifts, obtained through substitution of Eq.
& y /,6 (11) in Eq. (12). Then
i & 1 1 )
2 : @ - "N(B)= 557 (N*=N), (13)
0 e | | | | where 8= €,/k?. This formula is not well suited to the case
J? 2 3 4 5 6 7 of PtCl since for small quanta numbers the ILM is not local-
N-quanta ized at a single unit cellsee Fig. 3 foN=1 and 2). Fitting

FIG. 2. Relative redshifts (%) of the BEI overtone spectra as Of €xpressior(13) with the PE'Cl data is presented in Fig. 2
a function of the numbeN of quanta. Circles and crosses are ex- ({riangles for comparison of the one-site localized adiabatic
perimental(Ref. 10 and nonadiabatic numericéRef. 1 results, ~ redshifts, Eq.(13), with the corresponding nonadiabatic
respectively. Squares connected with the dashed line are obtainé@sults* We see that the analytical, one-parameter adiabatic
from numerical exact two-parameter fitting. Triangles result fromfitting is slightly worse than the numerical, multiple-
the analytical one-parameter fitted expression in the anticontinuougarameter nonadiabatic one. However, a more convenient
limit. Data represented by result from a more accurate analytical analytical description of the PtCl redshifts can be found; as is
two-parameter fitted expressiofee text for details. clearly seen from Fig. 3, the one-quantum ILM is far from
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being single-site localized, and therefore its enegyde- In summary, inspired by experimentally observed intrin-
parts considerably from the anticontinuous limit value. How-sic localization of vibrational energy in PtCl, we have stud-
ever, accurate analytical relations for the enefgyat any ied a Holstein-type model describing intramolecutaany
value of couplingk are availablé® In the PtCl case the one- quanta excitations coupled with optical phonons. The
quantum ILM is closer to the large vibrational polaron andadiabatic treatment of the lattice allows the numerical calcu-
thus a continuous approximation can be used, resultily in |ation of theN-quanta ground state, which always forms an
K4 ILM. The inherent nonlinearity of the system results in stron-
24+ —|. (14)  ger localization and correspondingly increased overtone red-
48 shifts at higher energies. Fitting the two parameters of our
The last formula provides a better description of the vibra{Pheénomenological model, we achieve very good agreement
tional polaron energy fok=<1.716 Moreover corrections of with experimental data in PtCl by a nonhnear_renormallzed
the anticontinuous expressiofikl) for the energie€, can ~ Oneé-quantum ILM extending over about 15 unit cells. In the

be found using a variational method—as in the single quan@diabatic approximation we are able to deal with ILM’s that
tum cas&_in the framework of the Hartree €Xtendto many lattice sites and are not restricted to a single

approximation? which results in site, as usually assumed in nonadiabatic stutliétsing the
continuous approximation for the single-quantum energy and
K2 2 the anticontinuous limit for the many-quanta energy, an ac-
En=Neg— ( ?N2+ -+ ﬂ) . (15  curate analytical expression is obtained for the PtCl redshifts.
k® KN The physical mechanism underlying our model to explain the

The detailed calculations and the comparison of the variaPtCl ILM’s is the formation of vibrational polaronsvhich

tional results with the exact numerical will be presentedshould not be confused with electronic polarpri2ossible

elsewheré® Using Eq.(12), whereE; is given by Eq.(14) appllcatlon' of the 'results presented in this work to other

andEy, for N=2 is given from Eq.15), we obtain for the halogen-bridged mixed valence transition metal compounds

relative red shifts or quasi-one-dimensional molecular materials remains to be
tested. A limitation of the proposed model is that it does not

k2 2 1 k4 take explicitly into account the electronic degrees of
KON2 _(2 )N

E1=€p—

ENZJFEJF_ freedom—that are actually responsible for the resulting
(16) strong nonlinearity—and consequently cannot predict elec-
tronic properties of the ILM’s. These can be approximately
provided through the electronic rearrangement involved in
molecular vibrations and will be discussed elsewhere.

rn(K, €0)= K2
2+ 8
Fitting this expression with the P€I data we findk=1.2
and ey=195. In Fig. 2 (X's) we plot Eq.(16) for the fitted
values of parameters. This analytical relation approaches the We would like to thank A. P. Shreve for useful discus-
experimental and the exact numerical data very well. A morssions and for providing the experimental data of Ref. 10.
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