
RAPID COMMUNICATIONS

PHYSICAL REVIEW B, VOLUME 64, 020301~R!
Multiquanta breather model for PtCl
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We study the many-quanta problem of an intramolecular vibrational excitation interacting with optical
phonons, that may represent the nonlinearity from intrinsic electron-lattice interactions. In the adiabatic limit
we calculate numerically the ground-state energy and the corresponding wave functions forN vibrational
quanta. In the one-dimensional case we find strong redshifts in the overtone spectra and an increasing spatial
localization as the number of quanta increases. Through model parameter fitting we achieve very good quan-
titative agreement with experimental resonant Raman scattering measurements in the quasi-one-dimensional
charge transfer solid PtCl. Accurate analytical expressions for the redshifts are also obtained.
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Investigation of vibrational energy localization in crysta
due to anharmonic effects has considerably increased
the last decade since Sievers and Takeno suggested1 that
energy localization can be induced through spatially loc
ized nonlinear excitations that are solutions of discrete
harmonic lattices. The term ‘‘intrinsic localized modes
~ILM’s ! or discrete breathers~DB’s! is presently used to dis
tinguish nonlinear localization from disorder-induced loc
ized modes. Following the original work a large number
theoretical studies have been devoted to the existen2

mobility3 and thermodynamic4 properties of DB’s in classi-
cal systems. Recently there has also been an increasin
terest in the quantum character of breathers. Numerica
agonalization in anharmonic lattices5 or strong electron-
phonon coupled systems6 has shown that analogous spatia
localized modes can exist as eigenstates in quantum no
ear lattices.

In spite of this theoretical activity the only microscop
experimental candidate for DB’s has been the anoma
Amide-I ~C5O stretching! band with an unusual temperatu
dependence in ACN, attributed to a vibrational polar
formation.7–9 Recently, however, resonant Raman scatter
~RRS! measurements in PtCl, a quasi-one-dimensio
charge density wave compound, have shown a strong
shift of the overtones,10 stimulating interest in this area. Th
concept of multiquanta bound states in nonadiabatic
adiabatic Peierls-Hubbard models was used in order to
plain this unusual redshifted multiquanta evolution of t
fundamental frequency. In the former case a four-site mo
seems to fit the experimental results well.10,11 In the latter
adiabatic case the success of the adiabatic approach i
stricted to a small number of bound quanta, since at hig
energies the theoretical predictions deviate significantly fr
the experimental observations.12 In the former case, the po
tential disadvantages are the large number of system pa
eters, the small lattice size used in the numerical calc
tions, and the assumption that the vibrational quanta
almost localized at a single unit cell scale.

In this work we use a simpler many-quanta effecti
model to describe the localization of the vibrational ene
in molecular crystals. Our motivation is the simple pictu
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offered in Ref. 12 for an intramolecular vibrational excitatio
on a trimer (PtCl2) caused by charge transfer between Pt41

and Pt21, that is localized on a single lattice site. Since su
excitations are delocalized in an extended lattice due
quantum mechanical tunneling, a coupling with an exter
field is necessary for breather formation. It is known that
materials like PtCl there is a very strong interaction of t
electronic motion with the ionic arrangement.13,14The result-
ing nonlinearity through the electron-phonon coupling can
phenomenologically represented by an effective interac
of the intramolecular mode with a bath of another degree
freedom. Here, we represent the latter effectively by a s
optical phonon with frequencyv0 lying in the range of the
observed redshifts. The effective coupling of the intram
lecular mode with optical phonons is easily connected w
the calculated parameters of the underlying electron-pho
Hamiltonian,14 using a first-order expansion of the electro
induced nonlinear potential close to the anticontinuous lim
In such a model an adiabatic treatment of the opti
phonons leads to a generalized discrete nonlinear Schro
ger equation~DNLS!, allowing the localization of the vibra-
tional excitation.

Specifically, we consider a one-dimensional molecu
chain described by classical Einstein oscillators with masM
and vibrational frequencyv0. Assuming that an intramolecu
lar vibrational excitation with on-site energyE0 can hop
from one sitei to its nearest neighbors via the transfer mat
elementJ ~described in a tight-binding model! and also that
it is locally coupled with the oscillators, then the resultin
Hamiltonian is given by

H5(
i

@E0a i
†a i2J~a i

†a i 111a i 11
† a i !#

1(
i

F 1

2M
pi

21
Mv0

2

2
xi

2G1g(
i

xia i
†a i , ~1!

wherea i
† anda i are the creation and annihilation operato

of the vibrational excitation obeying the standard boso
commutation relations,xi and pi are the displacement from
the equilibrium position and the momentum, respectively,
©2001 The American Physical Society01-1
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the i th oscillator, andg is the constant of the interactio
which is assumed to be only on-site.

The Hamiltonian of Eq.~1! for a single intramolecular
quantum reduces to the Holstein model.15 In the adiabatic
approximation its ground state always consists of a sta
ILM solution ~vibrational polaron!.16 Extending the calcula-
tions of Ref. 16, we introduce a many-body scheme in or
to find the adiabatic ground state in the case ofN vibrational
quanta. For this purpose we consider a generalN-quanta
eigenstate of the Hamiltonian of Eq.~1!:

uC&5
1

AN!
(

j 1 , j 2 , . . . ,j N

Cj 1 , j 2 , . . . ,j N
a j 1

† a j 2

† . . . a j N

† u0&,

~2!

whereu0& is the vacuum state andCj 1 , j 2 , . . . ,j N
are the prob-

ability amplitudes for finding one quantum on sitej 1, one on
j 2 , . . . , etc., and are normalized to unity. Due to the boso
character of the vibrational quanta, the indicesj 1 , j 2 , . . . ,j N
are not necessarily different and

Cj 1 , j 2 , . . . ,j N
5CP$ j 1 , j 2 , . . . ,j N% , ~3!

where P indicates all the possible permutations of the
$ j 1 , j 2 , . . . ,j N%.

In what follows we use the dimensionless quantities16 t
5v0t ~dimensionless time!, e05E0 /J ~dimensionless on-
site energy!, ui5AMv0

2/J xi ~dimensionless displace
ments!, k5g/AJMv0

2 ~dimensionless coupling!, and g
5\v0 /J ~adiabaticity parameter!. The adiabatic limit corre-
sponds to the caseg→0.

We minimize the total energy with respect to$ui% in the
adiabatic approximation~i.e., assumingdui /dt50) and us-
ing the stationarity condition

Cj 1 , j 2 , . . . ,j N
5F j 1 , j 2 , . . . ,j N

e2 i (E/g)t, ~4!

where the coefficientsF j 1 , j 2 , . . . ,j N
are time independent an

E is the sum of the tight-binding and the interaction ener
Then the distortion of thei th oscillator is given by
](^CuHuC&)/]ui50, which implies~using u̇i50)

ui52k^Cua i
†ai uC&52kr i , ~5!

where the stateuC& is that of Eq.~2! and

r i5N (
i 1 , . . . ,i N21

uF i ,i 1 , . . . ,i N21
u2. ~6!

In the derivation of the last equation we have taken i
account Eq.~3!. The quantityr i /N gives the probability to
find any quantum on sitei.

The eigenvalue equation for theN-quanta stationary state
is described by the following generalized DNLS equation

EF j 1 , j 2 , . . . ,j N
5~Ne02DN2k2PN!F j 1 , j 2 , . . . ,j N

, ~7!

where
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DNF j 1 , . . . ,j N
5 (

nj 1
, . . . ,nj N

@Fnj 1
, . . . ,j N

1•••1F j 1 , . . . ,nj N
#

~8!

and

PNF j 1 , . . . ,j N
5@r j 1

1•••1r j N
#F j 1 , . . . ,j N

. ~9!

Here, the indexnj i
denotes the nearest-neighboring sites

site j i . Equation~7!, including a Hubbard term, has bee
obtained forN52 in the study of the Holstein-Hubbard b
polaron problem.17 As can be seen from Eq.~7! the ground-
state solutions do not depend on the parameterg. The latter
affects the dynamical properties of the system~e.g., the nor-
mal modes!, since it enters the equations of motion@see, for
example, Eq.~6! of Ref. 16#.

The total energy of the system, including the lattice e
ergy, is given by

EN5Ne02 (
j 1 , . . . ,j N

F j 1 , . . . ,j N
* DNF j 1 , . . . ,j N

2
k2

2 (
i

r i
2 .

~10!

The ground state of Eq.~7! with periodic boundary con-
ditions is calculated numerically using the same method a
Ref. 16. The results show that, as in the one-quantum c
the ground state for theN quanta is always localized for an
nonvanishing coupling strength forming a vibrational man
quanta polaron. These ILM’s are gradually more extended
coupling k decreases. In the limitk→0 and for an infinite
lattice we obtainEN→N(e022), which is the ground-state
energy of N noninteracting fully extended~Bloch! vibra-
tional quanta. For relatively large values ofk the ILM’s are
completely localized at one site for any number of quan
with total energy given by the anticontinuous limit expre
sion @i.e., ignoring the termDNF j 1 , . . . ,j N

in Eq. ~7!#:

EN5Ne02
k2

2
N2. ~11!

This expression has also been used by Scottet al. in the
problem of ACN.8

In Fig. 1 we present with solid lines numerical resu
obtained from Eq.~7! for the binding energyDEN5EN
2N(e022) per quantum as a function of coupling consta
for different number of bound quanta,N. It is clearly seen
that the absolute value of the binding energy is an increas
function of N, resulting in strong redshifts of the overton
spectra. Also the wave function of the ground state becom
more localized asN increases. For this reason, the largerN,
the more rapidly the total energy approaches the anticont
ous limit value of Eq.~11! ~dashed lines in Fig. 1!, as k
increases. The ILM’s stability in this adiabatic approach h
been confirmed explicitly for the one-quantum16 and
two-quanta17 cases. The higher quanta ILMs are n
expected to lose their stability since they become even m
localized.

The strong nonlinearity due to the coupling with the la
tice leads to greater localization and increased redshift
higher energies. Similar features are observed10 in the ex-
1-2
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perimental RRS overtone spectra of PtCl. Using our ex
numerical procedure we can fit the experimental data of
overtone shifts of PtCl. According to our model therelative
redshift of the overtones,

r N~k,e0!5
NE12EN

E1
, ~12!

depends on two model parameters: the coupling constak
and the on-site energye0 of the quanta.

In Fig. 2 we present the relative redshifts calculated fr

FIG. 2. Relative redshifts (%) of the Pt37Cl overtone spectra a
a function of the numberN of quanta. Circles and crosses are e
perimental~Ref. 10! and nonadiabatic numerical~Ref. 11! results,
respectively. Squares connected with the dashed line are obta
from numerical exact two-parameter fitting. Triangles result fro
the analytical one-parameter fitted expression in the anticontinu
limit. Data represented by3 result from a more accurate analytic
two-parameter fitted expression.~See text for details.!

FIG. 1. The binding energy per quantum (DEN /N) as a function
of the coupling constantk for different numbers of bound quant
(N51,2, . . . ,5). Solid lines represent numerical calculation
Dashed lines result from expression~11!, valid for relatively large
values ofk.
02030
ct
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our numerical results through parameter fitting, and comp
them with the experimental10 and numerical11 results for
Pt37Cl. The best fit is achieved fork51.19 ande05191.
From these dimensionless values we obtainJ51.61 cm21

in order to have the first peak at 304 cm21, as observed in
Ref. 10. For the fitted value of coupling constantk the prob-
ability to find any quantum on sitei (r i /N) is displayed in
Fig. 3 for the one, two, and three vibrational quanta ILM
respectively. We observe that the ILM corresponding to
second overtone (N53) is localized on almost one lattic
site in agreement with the experimental observations.10 How-
ever, the adiabatic single-quantum (N51) nonlinear renor-
malized vibrational polaron is extended to about 15 u
cells. As a result, in the framework of the semiclassical eq
tions of motion, the ILM can uniformly propagate throug
the lattice.18 Generally, the semiclassical mobility of suc
one-quantum ILM’s is numerically tested18 for k,1.5. For
Pt35Cl the fitting parameters arek51.15 ande05170. The
first peak at 312 cm21 for this isotope10 is obtained forJ
51.86 cm21.

In the anticontinuous regime (k@1), where ILM’s are
localized at one site, an analytical expression is available
the relative red shifts, obtained through substitution of E
~11! in Eq. ~12!. Then

r N~b!5
1

2b21
~N22N!, ~13!

whereb5e0 /k2. This formula is not well suited to the cas
of PtCl since for small quanta numbers the ILM is not loc
ized at a single unit cell~see Fig. 3 forN51 and 2). Fitting
of expression~13! with the Pt37Cl data is presented in Fig. 2
~triangles! for comparison of the one-site localized adiaba
redshifts, Eq. ~13!, with the corresponding nonadiabat
results.11 We see that the analytical, one-parameter adiab
fitting is slightly worse than the numerical, multiple
parameter nonadiabatic one. However, a more conven
analytical description of the PtCl redshifts can be found; a
clearly seen from Fig. 3, the one-quantum ILM is far fro

ed

us

FIG. 3. The probability of finding any quantum on lattice sitei
(r i /N) versusi for N51, 2, and 3 quanta. The coupling constant
k51.19.
1-3
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being single-site localized, and therefore its energyE1 de-
parts considerably from the anticontinuous limit value. Ho
ever, accurate analytical relations for the energyE1 at any
value of couplingk are available.16 In the PtCl case the one
quantum ILM is closer to the large vibrational polaron a
thus a continuous approximation can be used, resulting15

E15e02S 21
k4

48D . ~14!

The last formula provides a better description of the vib
tional polaron energy fork&1.7.16 Moreover corrections of
the anticontinuous expressions~11! for the energiesEN can
be found using a variational method—as in the single qu
tum case16—in the framework of the Hartree
approximation,19 which results in

EN5Ne02S k2

2
N21

2

k2
1

1

k6N2D . ~15!

The detailed calculations and the comparison of the va
tional results with the exact numerical will be present
elsewhere.20 Using Eq.~12!, whereE1 is given by Eq.~14!
and EN for N>2 is given from Eq.~15!, we obtain for the
relative red shifts

r N~k,e0!5

S k2

2
N21

2

k2
1

1

k6N2D 2S 21
k4

48DN

e02S 21
k4

48D
. ~16!

Fitting this expression with the Pt37Cl data we findk51.2
ande05195. In Fig. 2 (3 ’s) we plot Eq.~16! for the fitted
values of parameters. This analytical relation approaches
experimental and the exact numerical data very well. A m
accurate variational bridging of the continuous with the a
ticontinuous limit results is also possible.20
.
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In summary, inspired by experimentally observed intr
sic localization of vibrational energy in PtCl, we have stu
ied a Holstein-type model describing intramolecularmany-
quanta excitations coupled with optical phonons. T
adiabatic treatment of the lattice allows the numerical cal
lation of theN-quanta ground state, which always forms
ILM. The inherent nonlinearity of the system results in stro
ger localization and correspondingly increased overtone
shifts at higher energies. Fitting the two parameters of
phenomenological model, we achieve very good agreem
with experimental data in PtCl by a nonlinear renormaliz
one-quantum ILM extending over about 15 unit cells. In t
adiabatic approximation we are able to deal with ILM’s th
extend to many lattice sites and are not restricted to a sin
site, as usually assumed in nonadiabatic studies.21 Using the
continuous approximation for the single-quantum energy
the anticontinuous limit for the many-quanta energy, an
curate analytical expression is obtained for the PtCl redsh
The physical mechanism underlying our model to explain
PtCl ILM’s is the formation of vibrational polarons~which
should not be confused with electronic polarons!. Possible
application of the results presented in this work to oth
halogen-bridged mixed valence transition metal compou
or quasi-one-dimensional molecular materials remains to
tested. A limitation of the proposed model is that it does n
take explicitly into account the electronic degrees
freedom—that are actually responsible for the result
strong nonlinearity—and consequently cannot predict e
tronic properties of the ILM’s. These can be approximate
provided through the electronic rearrangement involved
molecular vibrations and will be discussed elsewhere.
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