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We study the electron spectral function of various zero-temperature spin-charge separated phases in two
dimensions. In these phases, the electron is not a fundamental excitation of the system, but rather “decays”
into a spin-1/2 chargeless fermidtie spinom and a spinless chargeboson(the chargon Using low-energy
effective theories for the spinorig-wave pairing plus possible eordey and the chargonéondensed or
guantum-disordered bosonsve explore three phases of possible relevance to the cuprate supercondlgtors:
AF*, a fractionalized antiferromagnet where the spinons are paired into a state with long-ramgjexidée
and the chargons are 1/2-filled afidott) insulating;(2) the nodal liquid, a fractionalized insulator where the
spinons ared-wave paired and the chargons are uncondensed(3rttie d-wave superconductor, where the
chargons are condensed and the spinons retalwave gap. Working within th&, gauge theory of such
fractionalized phases, our results should be valid at scales below the energy gap of the vison—the basic vortex
excitation in the theory. However, on a phenomenological level, our results should apply to any spin-charge
separated system where the excitations have these low-energy effective forms. Comparison with angle-resolved
photoemission spectroscopy data in the undoped, pseudogapped, and superconducting regions is made.
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[. INTRODUCTION state suggest a connection between the weight under the su-
perconducting quasiparticle peak and the condensate

Ideas of spin-charge separation have long been consider&@nsity” This result seems rather mysterious from a Fermi-

in relation to the cuprate highiz materials following Ander-  liquid point of view, but, as we later show, may have a
son's original suggestiors.Phenomenologically, the as- simple explanation in terms of separated spin and charge
sumption that the electron “breaks apart” leads to fairly 4e9rees of freedom. ARPES experiments on undoped com-
simple explanations for some otherwise puzzling aspects d{ounds also show broad spectral features rather than well-
these materials. Attempts to formulate this rather elegarf€ned quasiparticle peaks, which has led us to consider the

idea into a well-defined theory of electrons living in two or possibility of a fractionalized antiferromagnet, duble”.

more spatial dimensions have historically been plagued WitHowever, the spectral function does show signs of “sharp-

X ning up” as the system is overdoped, suggesting that there
problems. A recently mtroduqe?.’iz gauge thepry of strongly may be a quantum-confinement critical point in the cuprate
correlated electron systefsndeed contains both spin- phase diagram, as shown in Fig. 1.

charge separated and spin-charge confined phases, and Wee wish here to explore in more detail the consequences
work here within this formulation. _ _ of these spin-charge separation ideas for the single-electron
Among the host of puzzling experimental properties ofspectral function of the cuprate materials at low doping.
these materials, we wish to concentrate here on anglew/orking with a fairly simple theory of low-energy spin and
resolved photoemission spectroscd®RPES experiments, charge excitations in a fractionalized phase, we will find
which in recent years have reached an unprecedented level giialitative agreement with ARPES data in the pseudogap
resolution. With this increased clarity of data has come in-and superconducting phases, as well as in the undoped insu-
creased confusion in theoretical interpretation. In particularlator. Although the theory used here has been analyzed and
it seems quite difficult to explain the ARPES line shape inmotivated from a variety of standpoints elsewherewe
the pseudogap regime within Fermi-liquid theory. In fact,hope to make clear its reasonableness on purely phenomeno-
any conventional quasiparticle description would seem to
predict a sharp peak in the spectral functdfk,w) at w(k) T
for somek in the Brillouin zone. The data in the underdoped
compounds in their nonsuperconducting state, on the othet critical soup
hand, show only broad and sometimes steplike features. In- A
creased energy and momentum resolution has made the cor deconfined . P
trast with the superconducting state, where a sharp peak doe < confined
emerge, more striking, and has led to further doubts about . g
the quasiparticle description of the pseudogap state. As ar-
gued elsewher® this contrast between the pseudogap and
superconducting line shapes suggests that the pseudogap r
gion could be dominated by a zero-temperature fractional-
ized phase. In addition, recent results in the superconducting  FIG. 1. Schematic phase diagram for the higheuprates.
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logical grounds. We begin, then, from a zero-temperaturéglues together” spinons and chargons to form electrons. A
theory of d-wave paired spinons and chargéosons. The ‘“quantum-confinement critical point” separates these two
bosons can have a zero-temperature phase transition betwerero-temperature phases, as discussed elsewhsrdinite
condensed and quantum-disordered phases. We explore heéeenperatures above the fractionalized zero-temperature
guantitatively the single-electron spectral function in the phase, we expect vison excitations to exist in two dimen-
=0 spin-charge separated antiferromagA&*, the nodal sions, leading to interactions between the chargons and
liquid (to be identified with the pseudogap phasend the spinons. However, at temperatures much smaller than the
superconductor. vison gapT?'*°" (which in the simplest theories of the quan-
tum critical point(QCP would be of the same order as the
Il. THE MODEL pseudogap temperatuiie’), we expect the low-energy de-
grees of freedom to be those of the fractionalized phase:
We briefly recapitulate the phase diagram of the cuprategpinons and chargons weakly interacting through Doppler
in terms of theZ, gauge theory introduced elsewhéréhe  ghift terms, which we ignore.
theory contains spinon and chargon degrees of freedom, e briefly discuss the phases shown pictorially in Fig. 1.
coupled to aZ, gauge field in two spatial dimensions. We |n thex.<x<xqcp range, starting at temperatures much less

begin with the square-lattice Hamiltonian than the vison gap and lowering the temperature, the bosonic
chargons should go from a phase where they are phase inco-
H=>, (}iZj _tsfiTafjaJr Aij’fiT’fjl_tcE)rBj +H.c] herent to one where they are condensed. Below the chargon-
) condensation temperature, the system is superconducting;
. this is T;. Throughout, the spinons maintainrdavave pair-
+UD [N—(1—x)]2+ >, gN.éfT—h% (}ixj ing (presumably due to antiferromagnetic interactions of
i i ij

strengthJ) and experience no phase transition, but rather a
crossover at their pairing scal€f. Starting instead at zero-
—KE H (}izj , (1) temperature and zero doping, we are in a spin-charge sepa-
oo rated phase, which is also an antiferromagnetic Mott insula-

where the electron operator is a product of spinon and chafOr With long-range Nel order. Upon increasing the doping,
gon operatorsc;,,=b;f,,. The term with coupling is al- staying at zero temperature, we presumably enter a compli-

lowed by symmetry and can arise from integrating out thecated charge-ordered insulating state of the chargons and de-

very-high-energy chargons, making this an effective theorftroy the long-range N ord_er of the Sp".‘O”S- This is the
of the low-energy charge degrees of freedom. The Spinoﬁero—temperature phase believed to dominate the pseudogap
pairing A, is taken to bed wave region. We expect impurities and thermal fluctuations to de-

ij ’

stroy static charge-order, but inhomogeneous effects could

+A  alongx still be an important high-energy presence, leading to, e.qg,
Ajj= R 2 stripes. As the doping is further increased, the chargons pre-
—A alongy, sumably condense at zero temperature into a superconduct-

. ) ) ing state. After the destruction of Ekorder, the spinons are
and the spin operatoré’T:Eka wofk. N is the mean-field qualitatively the same in this doping range and maintain a
Neel order parameter and is nonzero only within the antifer-d-wave gap of ordefT*. Throughout this zero-temperature
romagnetic phase. THe term is a Hubbard-like interaction region, the chargons and spinons are decou(diedte we are
for (1—x) chargons per unit cell. At zero temperature and ago the left ofXxqcp). At X=Xgcp, the Ising gauge field be-
a function ofK/h, the gauge field has a transition betweencomes confining and the chargons and spinons are bound
confining and deconfining phase®eep within the decon- together to form electrons, presumably in a Fermi-liquid
fining phase, we may setizj =1 on all links and we are left phase.
with decoupled spinons and chargons, We turn our attention now to the spectral function defined

in terms of the electron Green function

H=> [—tflf +A,f . —tbib;+H.c] 1
- Sl T e Atk @)= =~ ImG(K.o). (4)
+UD [N (1-x)]%+ 2, I\Té,”. (3)  Since at temperatures well below the vison gap, we expect a
| I

description of the system in terms of free chargons and
Fluctuations ofo* can be taken into account by consider- SHF;nmo"Tjnit;n |Cr? pét:r(%) tf\:\(lahi::ohvvi:sege;g% g? )é?)licnso’nv;?\dus; art_he
ing vortices in the Ising gauge field that have been dubbe%on Hamiltonians.H(,cT ¢)=Hy(b',b)+H,(f',f). Within

Ly g 12 H H z
visons.” (A plaquette that contains a vison h&,ojj s construction, it is possible to write the electron Green

=—1,) The deconfining phase of & gauge field is char-  f,tion as a product of chargon and spinon Green functions,
acterized by a gap to these vison excitations and, as we see

above, the electron degrees of freedom are fractionalized in G(r,r)=<TTc(r,~r)cT(O,0)> (5)
this phase. The zero-temperature confining phase oZthe
gauge field is a condensate of these vison excitations and =(T,b(r,7)b"(0,0))(T f(r,7)f7(0,0)) (6)
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=Gy(r,7)Gy(r,7), (7) is a Hartree-Fock-type spin density wave operator at momen-
_ _ o _ _ tum 77 appropriate to commensurate antiferromagnetic order
with 7=it, the imaginary time. The problem of calculating wjth sublattice magnetizatiohl,.® Note that whenN,=0,

the spectral line shape in spin-charge separated phases NQE Hamiltonian fora, is the same as the effective BCS

amiltonian for ad-wave superconductor. Indeed, when the
mchargons condense, these become the Bogoliubaave
quasiparticles.

At zero temperature, we have for the spinon correlation

functions. We consider these two degrees of freedom in tu
discussing values of various parameters in each phase.

A. Spinons function,
We briefly describe the phases of the spinon model. Con- 5
sider first theN=0 phase that describes spinons with a <f|‘£afkﬁ>:ﬂ(1_ﬂ>_ (18
d-wave paring amplitude\,. In this spin-charge separated 2 Ex

construction, superconductivity is dependent only on tth
charge degrees of freedom. When the bosonic chargons are ,= /2, as we would expect in the Nkstate, as well as

condensed «D#O.)’ we are in a BCSd-vyave SUPEreon- 4 4-wave gap whose maximum is\2. We expect this spinon
ductor and the spinons are simply neutralized BCS quasipar

ticles. When the chargons lack phase coherence, we are i heory to work qualitatively at all temperatures well below

vison ; ;
phase with no superconductivity, but withdawave gap to " andT , where the spinons are strongly paired and the

any excitation with spin 1/2, called elsewhere the no dacow-energy degrees of freedom are fractionalized. In particu-

N N : o _ ar, one should note that in the absence of chargon-spinon
liquid.> WhenN=# 0, spinon-antispinon pairs condense form'interactions, the spinons do not notite.

ing a state with long-range antiferromagnetic order, but still 1o parameter, andA can be set by the experimentally
containing free-spinon excitations above a gaporder J, determined ratio,
which are separated from the chargodise to the vison gap.
This spin-charge separated antiferromagnet has been dubbed te  vg
AF* 3 Ao (19

The spinon piece of the Hamiltonian in E) is qua- YA
dratic in the spinon operators, and we may diagonalize i{yhich ranges from-14 in YBCO (YBa,Cu;O,) to ~20 in
using a Bogoliubov-type transformation. Settig@zNoi BSCCO (BiSr,CaCyOg) near optimal doping§We expect
and working in units of the lattice constant, we obtain this ratio to be of this order throughout the pseudogap phase.

At zero doping|N| is on the order ofl.

e see that the spinon spectrum now has a gagqoét k,

H f= 2 Ekél,aék,a ' (8)
K B. Chargons
Once liberated from their fermionic statistics, the charge
_ N2 AZL 2 ;
Ex=VNo+Ai+ e, © degrees of freedom behave as bosons of chatggping on
a 2d square lattice, as in E€B). At half-filling and zero
€=~ ts(cosk,+ cosky), (10 temperature, we expect that in the lirhift.>1, the system
forms a Mott insulator, while in the limit./U>1, the
Ay=A(cosk,—cosky), (1) bosons form a superfluid. This can be described by the (2
. +1)-dimensional quantum XY model that has two phases, a
with . ) .
superconducting phase and a quantum disordered, Mott insu-
% —ud +avdl (12 Igtlng phase. Being cor_1cerned p_nmanly vylth norr_nal state
kia™ FkHka K —k—a> (i.e., nonsuperconductingroperties, consider the insulating
b 1 s 1 phase wherdJ/t;>1. Excitations of this phase are doubly
Ug=3 *3C0806, vi=37 —3C0Sb, (13)  occupied sites that are “massivefi.e., gappedl and may
propagate. These excitations as well as the excitations within
€x the superfluid phase are well described by the soft-spin con-
COS@kZW, (14 tinuum Landau-Ginzburg action, replacing the chargon op-
€T Sk erator with a complex field,
where R
b;—b(r), (20)
A o= Arficat @Bifics e (19
o=t b|2+v—2|Vb|2+ Bloru(b2z (20
AG=7 T3c0Sdy, Bg=3;—3cosdy,  (16) P2l 2 2 '
\/TAZ When ©>0, the bosons are quantum disordered and the
COSh = kT 2k ' (17)  chargon system is insulating. Wher<0 , the chargons con-
Ex dense, forming a superconductor witth)|?= u/4u=ny,
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whereng is the condensate density. Fluctuations around thi$21) and find for the chargon correlation functideetting
new minimum are describedo quadratic orderby the ac- w=m?>0 and ignoringu to lowest ordey,
tion

1
b(r,t)=(b)+Db(r,t), (22) <blbk>=w—k, (26)

b=b,+ib,, (23 wi=m+v2K[2. 27
1 . v’ 2 . ~
‘Cbzi(arbl)2+ ?(Vb1)2+ 7(b1)2+ 5((9rb2)2 We briefly discuss the parameters in the modehnduv.
In the underdoped regime near the critical poixt, we
v? ) expect the chargon gap to be quite small, while at half filling
+7(Vb2) ' (24 (in the parent insulatorthe chargon gap is rather large, the
charge gap for these materials being of the order of a few ev.
with Very little can be said about the velocity without a more
detailed microscopic theory. Working in units whesés a
M2=—2u. (25 dimensionless wavenumberjs an energy scale and we take

it to be moderately larger than the spinon kinetic sctje,

Starting in the superconducting phase and increasing th&)ut of the same ordgeffectively giving the charge excita-
chemical potential towarge=0, the order parametdand  igns a larger bandwidth than the spinons.

therefore the condensate dengitgnishes at the transition. In the ordered phasew<0), the bosons are supercon-

Away from half filling in the presence of long-range Cou- ,ting and aff=0 the chargon-chargon correlation func-
lomb interactions or disorder, we expect the unoccupied site§,, has the property

to form some crystal. Even in the case of zero disorder, the
underlying lattice makes characterization of this phase diffi- ) N L )
cult. One way to gain intuition for this regime is by refor- lim - (b'(r,)b(r’,t"))=[(b)[*=no, (28)
mulateigng the problem in terms of vortices in the chargon H=r—e

hase” On physical grounds, we expect that the strong cou- . ey .
gling of thepcr}:arge gegrees of freegom will lead to cogmpli—the condensate density. The quaniby is precisely the or-
cated charge-ordered states at zero temperature when g Parameter of the superconductor. At dopirgsx., as
number of bosons is incommensurate with the underlyind€MPerature increases within the superfluid phase, we expect
lattice, and that with increasing doping, the system should hase fluctuations to reduce this quantity, eventually causing

eventually pass into a zero-temperature superconductin'é to vanish atT =T(x). At zero temperature within the su-
state. The location of the transition,, and the nature of the Perfluid phase, as doping is decreased it will vanish at
exact ground state for<x. will depend sensitively on the ~Xc- As discussed above_, the d_etalls of e 0 transition
chargon interactions and lattice commensurability effects™ill P& governed by the universality class of the true doping-
Lacking a more detailed theory of chargon solidification9ePendent chargon theory.

away from half filling in a fractionalized phase, we will use Within .the supercon.ductmg phlase, we may model the
the XY model defined above to describe the low-energy deP0SOns with Eq(24), which results in the following general
grees of freedom at low temperatures in the fractionalized®'™ for the chargon spectral function:

phases. Our main motivation is simplicity: the{2)D XY

model contains both a quantum-disordered and a supercon- (bT(r,)b(r' ,t"))=no(T)+(bT(r,t)b(r',t")). (29
ducting phase of bosons, as the more correct theory of the

x>0 boson system should. Although this description is ob-The fluctuations of the chargon field will be dominated by
viously inadequate to describe the zero-temperature phasgse detailed interactions between the chargons. In contrast to
away from half filling as well as the detailed critical proper- the Cooper pairs in a standard BCS superconductor, the
ties of the transition, we note that for a perfectly clean sysyosonic chargons should be strongly interacting, given that
tem, the physics at length scales shorter than the mean hojgeir uncondensed phase is controlled by Mott-insulating
spacing should be those of the half-filled system. At dopingghysics. However, we expect that at energies larger than the
of, say, 5% this length is about 5 lattice spacings. In th&ondensation temperatuife the chargon fluctuations should
corresponding energy range, the#(2) XY model should pe the same as in the pseudogap state.

capture the correct physics. We note that ARPES is an inter-

mediate energy probe, although the energies corresponding

to moderate dopings may still be too high. Since we are . SPECTRAL FUNCTION

concerned here with general features of the spectral function

in each phase, we work with this phenomenological Landau- Given the spinon and chargon correlation functions, we

Ginzburg model, hoping to capture the correct physics. can compute the electron spectral function, assuming no in-
Therefore, in the charge-disordergmbdal liquid phase at  teractions between chargons and spinons, using the relations

temperatures much smaller than the vison gap, we use Ein Egs.(4) and(5). The result at zero temperature is
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k gies, we need to avoid measuring mostly these Lorentzian
y tails. To this end, for the MDC'’s, we use instead a boxlike
Tt delta function,

5 lle for—el2<x<el2 o
. X)=
. x)=1, else, (32)

with e=10 meV. Values of various parametdsich asA
andv) will be given in each section. Some “Fermi surface”
properties of the spinons should be discussed. While the
pairing terms technically destroy any true Fermi surface, the
number of spinons at a given momentum still drops off for
€,.>0 and is sensitive to the minimum of the spinon disper-
sion, E,, which we can calk;. Along the (@, ) direction,

this minimum occurs at= (/2,7/2), while along the {,0)

o direction, the location of the minimum depends on the rela-
k tive values oftg andA and will be discussed in each phase.

/2 T

A. (Fractionalized) antiferromagnet

In this phase, the spinons are particle-hole paired into an
antiferromagnetwith single spinons above the gaand the
chargons are gapped into a Mott-insulating phase. However,
because these two particles propagate as separate excitations,
we expect an electron injected into the system to “decay” or
fractionalize into these two constituents. We therefore expect
the spectral function at temperatures much lower than the
Ak, w)= f [<qua><bk—qbl—q> 80— wy—qt Eq)+<fgfq> vison gap to be broad, without thfunction peak at somke

q and o which one finds when the underlying phase has elec-

FIG. 2. Momentum cuts used for plots Af (k, ), showing the
approximate location of the “Fermi surface” for our model. Cut
No. 1 (used for MDC'’s and EDC’sis along the linek, =k, near the
nodal point, cut No. Aused for EDC’$ is alongk,=0 near the
antinodal point.

+ tronlike elementary excitations.
(b oPic-g) o+ Wy Eg) ] (30) For the spinons, we expect that bathandN, are of the
A, (Ko)+A (ko). (31) order ofJ=t//2; we taket;=0.5 eV. The chargon gam is

expected to be fairly large, of the order of an eV. With this in
Because it measures electrons ejected from the sample, thaind, we plot the electron spectral function in Fig. 3 in the
ARPES intensity(up to matrix elemenjsmeasures the occu- AF* phase with Ny=A=0.25 eV, t;=05 eV, v

pied part of the spectral functioA,_(k, »).° At temperatures =2.5 eV, andm=1 eV. The shapes of the curves are not
far below the vison gap, the assumption of no chargonsensitively dependent on any of these parameters. For this
spinon interactions should be valid. At energietarger than  ratio oftg to A, the minimum of the spinon enerdy, along

the temperature, the use of zero-temperature results shouddit No. 2 occurs a,=2.2. We plot the MDC along cut No.

be valid. Most of the ARPES data of interest are done afl at the energyw=—1.30 eV. This is slightly larger than
temperatures below 100 K, which translates to an energy ahe minimum binding energy diil+m=1.25 eV.

10 meV or less, close to the resolution of the instruments and A few features of these curves should be pointed out.
certainly smaller than any features in the “normal state” First, all EDC’s are quite smeared with no peaks. This in-
spectra. This justifies use of the zero-temperature spectraleed mimics one of the features of ARPES data on the un-
function in our low-energy model. We therefore comparedoped compound?. Detailed comparison with the binding
this A_(k,w) with the ARPES data in each of the following energies in the ARPES data for the undoped compound is
phasesAF*, nodal liquid (pseudogap and d-wave super- complicated by the fact that determining the “Fermi level”
conductor. Although Eq30) is quite simple, it nevertheless of these compounds is not as straightforward as in the doped
is not analytically integrable for arbitrark and w. In the  materials. In the case of our EDC plots, the binding energy
following sections, we present the results of numerical inteshould be used to note that the leading edge along cut No. 1
grations of this function and plot the resultait (k,w) at indeed has a smaller gap than that along cut No. 2. In fact,
fixed k [energy distribution curvéEDC)] and at fixedw the difference between the two is just the factor af. Zhat
[momentum distribution curvéMDC)], along the momen- this feature of the leading edge will tradk,, the d-wave

tum cuts shown in Fig. 2. For the numerical integration, wegap, can be seen from E(B0). This is consistent with the
approximate the delta function in E@O) by a Lorentzian of  experimentally determined “remnant Fermi surface” with a
small width (0.0125 eV for the energy-distribution curves. d-wave character found in the undoped compoufids.con-

This leads to small “tails” in these curves at small binding trast to the EDC’s, the MDC shows a sharp feature. The
energies(near turnon Since we would like to explore the detailed shape of the MDC may be influenced by the specif-
momentum-distribution curves at these small turnon enerics of the model used.
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(a) Cut #1 —— kx=ky=1.4

""""" kx=ky=1.5

- -~ kx=ky=pi/2
— — kx=ky=1.65
— - - kx=ky=1.75

e

s 5

-2 -19 -18 -1.7 -16 -15 —14 —13 -1.2 :11 -1
Binding Energy (eV)

(b) Cut #2 — kx=1.8
---------- kx=2.0
- - - Kx=2.2 (=kF)
e —— kx=24
A —-- kx=2.6

s M
-2 -19 -1.8 -1.7 —16 -1.5 -14 -1.3 -1.2 -11 -
Binding Energy (eV)

(c) Cut #1

1 1.2 1.4 1.6 1.8 2 2.2
loe=ky

FIG. 3. A_(k,w) at zero temperature in theF* phase. Plotted
are: EDC's alonga) cut No. 1, andb) cut No. 2 and an MDGc)

along cut No. 1 at energw=—1.30 eV. The momentum space

cuts are shown in Fig. 2.
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B. Pseudogap(nodal liquid)

Because this zero temperature phase is also fractionalized,
we expect broad spectral functions in this region. The
spinons are paired intd-wave singlets, leading to the spin
gap. To be precise, we calculate the spectral function at zero
temperature using th&Y model described earlier. We ex-
pect a low-energy theory of quantum-disordered chargons to
work qualitatively for the entire pseudogap region, provided
T<TV'S°" At finite temperatures, the zero-temperature spec-
tral function can only be expected to capture features at en-
ergies larger than T. We would therefore like to compare our
spectral function in this phase with ARPES data in the un-
derdoped compounds &*>T>T.. The chargons in this
region should be dominated by their zero-temperature critical
point. Here, we use the critical (21)D XY theory for the
chargons described previously, again noting that this will not
describe in detail the true finite-doping critical point but will
hopefully give an adequate effective theory for the low-
energy excitations.

As an illustrative calculation, we may analytically per-
form the convolution integral in Eq.30) for k= (7/2,7/2)
and k= (7,0) at smallw, exactly at theXY critical point,
m=0, of Egs.(26) and(27). Eq. (30) reads

oo 2
-(kw)= (2m) 4w, Ek q

) S(w+Ey gt wg).
(33

At the node, the spinon spectrum may be linearized for small
momentum and we findafter rotating to momenta parallel
and perpendicular to the nodal direction and settiggA

=v for simplicity)

A_[k=(7/2,7/2), o small|

zJ dq i(l V0 Sw+vq+vq) (34)
(27)% 4vq vQ
87va dq6[w+(v+v)q]—m0(—w).
(35

At the antinode, the spinon spectral function is quadratic
above the gapE,_—E,=2A1-30? and we find

A_[k=(m0), w=A]
:f ((zjquq)zﬁ(ﬂ%) S(w+vg+Ey (36)
Sm)f dgslw+vq+2A+0(g?)] (37)
=5 S0(—w—24). (39)
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We see that at these two particular pointskirspace, the
electron spectral function turns on like a step function, not a
peak, in qualitative agreement with the ARPES results.

To obtain the electron spectral function at otkeaind ,
we resort to numerical integration. In the underdoped region,
values oft;/A vary from compound to compound, but are of
order ten. With this in mind, we set;=0.5 eV, A
=25 meV, andv=2.5 eV. Also, for the purposes of per-
forming the integration with the Lorentziaf function ap-
proximation(see discussion at the beginning of Seq, e
regularize the chargon spectrum by adding a small nrass,
=125 meV, for the energy distribution curves shown in
Figs. 4a) and 4b). For the momentum distribution curve
shown in Fig. 4c), the chargon mass is equal to zero. Again,
we find no sensitive dependence on the exact values of these
parameters. For this value ©ff A, the minimum value of the
spinon energye, along cut No. 2 occurs &,=3.0. For the
MDC along cut No. 1, we use a hinding energy large enough
that the width of the approximaté function does not influ-
ence the width of the curvey=—40 meV.

We wish to note the following features of the graphs in
Fig. 4. Foremost, the EDC'’s are indeed quite smeared, even
near the “Fermi surface” crossings of the spinons, but more
so in the ¢r,0) direction than in the nodal direction, where
something peakisiithough still quite broademerges near
(w/2,712). Also, as we have seen analytically, the leading
edge in the {r,0) direction never gets to zero binding energy
but instead shows gap of 2A=50 meV. It should also be
pointed out that as one moves along either cut, both sets of
EDC'’s show the leading edge moving toward its minimum
binding energy and then losing weight and/or receding above
k;. Of particular interest is the contrast between the EDC'’s
and MDC along cut No. 1the nodal directiopy where the
MDC shows a very sharp peak at the node while the EDC'’s
are broad and often steplike. The noise at the top of the MDC

is a consequence of using a “boxliked function for this
integration.

C. d-wave superconductor

At low dopings(whereT'S°">T_) when we cool below
T, the bosonic chargons develop phase coherencel@nd
is nonzero. The single-electron correlation function in this

region then has two pieces, in accordance with Egsand
(29

G(r,7)=|(b)|%(f(r,n)f'(0,0))+(b(r,7)b'(0,0))

x(f(r,7)1(0,0)), (39
giving an occupied portion of the spectral function,
A_(k,®)=no(T){(ff)S(w+E)+ f (fify
q
X<’Bl,q5k,q> 5((1)+Z)k,q+ Eq) (40)
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(a) Cut #1 —— Kxzky=1.45
————————— kx=ky=1.5
- — - kx=ky=1.55
— —  kx=ky=pi/2
h\\ - —- - kky=1.6
B / ; \ )
7 \ -
‘__R\\\ 2\\::
RN o
N Y
‘\\ A
-06 -05 -04 -03 -02 -01 0.0 0.17 0.2
Binding Energy (eV)
(b) Cut #2 — kx=2.3
---------- kx=2.5
--- kx=2.8
— — ko=3.0(=kF)
T — - - kx=3.2
N
A
‘ ‘\\\\‘1
H \.\\
"l \\\
|
\\ \“
\\‘-\\».‘_\4‘_
-06 -05 -04 -03 -02 -01 00 OA1 0.2
Binding Energy (eV)
(c) Cut #1
1 1.2 1.4 1.6 1.8 2 22
kx=Ky

) ) ) ) FIG. 4. A_(k,») in the pseudogap phase. Shown are: EDC’s
Technically, this form is only valid at zero temperature. along(a) cut No. 1 andb) cut No. 2 and an MDGc) along cut No.

However, we can see from the electron Green function in Eql at an energy ofv=—40 meV. The momentum space cuts are
(39) (which is valid at all temperatures much less thanshown in Fig. 2.
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Tvs°M that throughout the superconducting phase at low
dopings, we expect a spectral function made up of a peak
and a background.

The peak is a product of the condensate dengjy) and
the spinon spectral function. For a given valu&kpthe peak
is located at the BCS quasiparticle eneigy. Indeed, for

noninteracting bosons at zero temperat(ipéb)=0, and we
reproduce the BCS quasiparticle peak. In contrast with the
bosons of BCS theory, we expect the chargons to be strongly
interacting, leading to a nonzero background even at zero
temperaturé! We note that the width of this peak in our
simple theory is entirely determined by the width of the
spinon spectral function. Throughout the superconducting
state, we expect the spinons to act like a two-dimensional
Fermi liquid, leading to a wedk temperature-dependent
width. To the extent that the peak and the background are , , , . ,
distinguishable objects, the weight under this quasiparticle -0.5 -04 -03 -02 -0.1 0.0 0.1 0.2

peak should be proportional to the condensate density, Binding Energy (eV)
FIG. 5. For illustrative purposes only, this figure shows a
fpeakA(k,w): No(T) peak5(w+ Ew=no(T), (41)  Lorentzian peak centered i superimposed on the nodal liquid,

A_(k,w), for the “Fermi surface” crossing along cut No. 2 from
and should vanish into the background &s: T, from be-  the previous sectiork=(3.0,0).
low, without appreciable broadening.

A comment should be made here regarding the differencéhe superconductor to the pseudogap phase allgveAn
between the condensate dengityand the superfluid stiff- illustration of the spectral function in the superconducting
nessp.. While for noninteracting bosons these quantities argphase is given in Fig. 5.
the same, for interacting bosons they are different even at
zero temperature. Beside_s_ the effec@ of Ch_argon-chargon in- IV. CONCLUSIONS
teractions on these quantities, there is the important effect of
the Doppler-shift coupling between the superfluid and the We have shown here that the following aspects of the
guasiparticles in the superconducting state. Fdiveave su- ARPES data in the cuprate materials can be understood by
perconductor, the coupling between quasiparticles and corassuming spin-charge separationfl) the d-wave
densate leads to the well-knowflinear depletion of the ‘“pseudogap” seen abovE;, (2) the lack of sharp quasipar-
superfluid stiffness for small. The penetration depth, be- ticle peaks in the pseudogap pha&®, the emergence of a
cause it measures the superfluid stiffness, manifests this deery sharp quasiparticle peak beldw, (4) the qualitative
pendence neaf=0. The condensate density, on the othertemperature and doping dependence of the weight under this
hand, is not directly coupled to the quasiparticles and therequasiparticle peak as well as the existence within the super-
fore need not approachh=0 in the same manner as the conducting state of a background similar in shape to the
superfluid stiffness. pseudogap spectra, afs) the lack of sharp features in the

The background in the spectral function comes from theundoped parent insulators as well as therave character of
second term in Eq40) and will be complicated by the exact their “remnant Fermi surface.” We emphasize that these
nature of chargon interactions. At energies large compared tesults of ARPES in the undoped and underdoped com-
the condensation temperature=10 meV), we expect the pounds are rather hard to account for within a conventional
spectral function to be that of the “normal state” abovg. picture of quasiparticles with the quantum numbers of elec-
At low energies, we have seen above that there will be drons.
sharp(resolution-limited peak in the spectral function, with
weight equal to the condensate density, located at the spinon ACKNOWLEDGMENTS
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