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Electron spectral function in two-dimensional fractionalized phases

C. Lannert,1 Matthew P. A. Fisher,2 and T. Senthil3
1Department of Physics, University of California, Santa Barbara, California 93106

2Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030
3Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 16 January 2001; published 15 June 2001!

We study the electron spectral function of various zero-temperature spin-charge separated phases in two
dimensions. In these phases, the electron is not a fundamental excitation of the system, but rather ‘‘decays’’
into a spin-1/2 chargeless fermion~the spinon! and a spinless chargee boson~the chargon!. Using low-energy
effective theories for the spinons~d-wave pairing plus possible Ne´el order! and the chargons~condensed or
quantum-disordered bosons!, we explore three phases of possible relevance to the cuprate superconductors:~1!
AF* , a fractionalized antiferromagnet where the spinons are paired into a state with long-ranged Ne´el order
and the chargons are 1/2-filled and~Mott! insulating;~2! the nodal liquid, a fractionalized insulator where the
spinons ared-wave paired and the chargons are uncondensed; and~3! the d-wave superconductor, where the
chargons are condensed and the spinons retain ad-wave gap. Working within theZ2 gauge theory of such
fractionalized phases, our results should be valid at scales below the energy gap of the vison—the basic vortex
excitation in the theory. However, on a phenomenological level, our results should apply to any spin-charge
separated system where the excitations have these low-energy effective forms. Comparison with angle-resolved
photoemission spectroscopy data in the undoped, pseudogapped, and superconducting regions is made.
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I. INTRODUCTION

Ideas of spin-charge separation have long been consid
in relation to the cuprate high-Tc materials following Ander-
son’s original suggestions.1 Phenomenologically, the as
sumption that the electron ‘‘breaks apart’’ leads to fai
simple explanations for some otherwise puzzling aspect
these materials. Attempts to formulate this rather eleg
idea into a well-defined theory of electrons living in two
more spatial dimensions have historically been plagued w
problems. A recently introducedZ2 gauge theory of strongly
correlated electron systems2 indeed contains both spin
charge separated and spin-charge confined phases, an
work here within this formulation.

Among the host of puzzling experimental properties
these materials, we wish to concentrate here on an
resolved photoemission spectroscopy~ARPES! experiments,
which in recent years have reached an unprecedented lev
resolution. With this increased clarity of data has come
creased confusion in theoretical interpretation. In particu
it seems quite difficult to explain the ARPES line shape
the pseudogap regime within Fermi-liquid theory. In fa
any conventional quasiparticle description would seem
predict a sharp peak in the spectral functionA(k,v) at v(k)
for somek in the Brillouin zone. The data in the underdop
compounds in their nonsuperconducting state, on the o
hand, show only broad and sometimes steplike features
creased energy and momentum resolution has made the
trast with the superconducting state, where a sharp peak
emerge, more striking, and has led to further doubts ab
the quasiparticle description of the pseudogap state. As
gued elsewhere,3 this contrast between the pseudogap a
superconducting line shapes suggests that the pseudoga
gion could be dominated by a zero-temperature fraction
ized phase. In addition, recent results in the superconduc
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state suggest a connection between the weight under the
perconducting quasiparticle peak and the conden
density.4 This result seems rather mysterious from a Ferm
liquid point of view, but, as we later show, may have
simple explanation in terms of separated spin and cha
degrees of freedom. ARPES experiments on undoped c
pounds also show broad spectral features rather than w
defined quasiparticle peaks, which has led us to consider
possibility of a fractionalized antiferromagnet, dubbedAF* .
However, the spectral function does show signs of ‘‘sha
ening up’’ as the system is overdoped, suggesting that th
may be a quantum-confinement critical point in the cupr
phase diagram, as shown in Fig. 1.

We wish here to explore in more detail the consequen
of these spin-charge separation ideas for the single-elec
spectral function of the cuprate materials at low dopin
Working with a fairly simple theory of low-energy spin an
charge excitations in a fractionalized phase, we will fi
qualitative agreement with ARPES data in the pseudo
and superconducting phases, as well as in the undoped
lator. Although the theory used here has been analyzed
motivated from a variety of standpoints elsewhere,2,5 we
hope to make clear its reasonableness on purely phenom

FIG. 1. Schematic phase diagram for the high-Tc cuprates.
©2001 The American Physical Society18-1
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logical grounds. We begin, then, from a zero-temperat
theory of d-wave paired spinons and chargee bosons. The
bosons can have a zero-temperature phase transition bet
condensed and quantum-disordered phases. We explore
quantitatively the single-electron spectral function in thex
50 spin-charge separated antiferromagnetAF* , the nodal
liquid ~to be identified with the pseudogap phase!, and the
superconductor.

II. THE MODEL

We briefly recapitulate the phase diagram of the cupra
in terms of theZ2 gauge theory introduced elsewhere.2 The
theory contains spinon and chargon degrees of freed
coupled to aZ2 gauge field in two spatial dimensions. W
begin with the square-lattice Hamiltonian

H5(̂
i j &

ŝ i j
z @2tsf̂ ia

† f̂ j a1D i j f̂ i↑ f̂ j↓2tcb̂i
†b̂ j1H.c.#

1U(
i

@ n̂i2~12x!#21(
i

gNW •SŴ i
p2h(̂

i j &
ŝ i j

x

2K(
h

)
h

ŝ i j
z , ~1!

where the electron operator is a product of spinon and c
gon operators:cia5bi f ia . The term with couplingK is al-
lowed by symmetry and can arise from integrating out
very-high-energy chargons, making this an effective the
of the low-energy charge degrees of freedom. The spi
pairing D i j is taken to bed wave,

D i j 5H 1D along x̂

2D along ŷ,
~2!

and the spin operator isSŴ p5(k f̂ k1p
† sW f̂ k . NW is the mean-field

Néel order parameter and is nonzero only within the antif
romagnetic phase. TheU term is a Hubbard-like interaction
for (12x) chargons per unit cell. At zero temperature and
a function ofK/h, the gauge field has a transition betwe
confining and deconfining phases.2 Deep within the decon-
fining phase, we may sets i j

z 51 on all links and we are lef
with decoupled spinons and chargons,

H5(̂
i j &

@2tsf̂ ia
† f̂ j a1D i j f̂ i↑ f̂ j↓2tcb̂i

†b̂ j1H.c.#

1U(
i

@ n̂i2~12x!#21(
i

NW •SŴ i
p . ~3!

Fluctuations ofsz can be taken into account by conside
ing vortices in the Ising gauge field that have been dub
‘‘visons.’’ ~A plaquette that contains a vison has)hs i j

z

521.! The deconfining phase of theZ2 gauge field is char-
acterized by a gap to these vison excitations and, as we
above, the electron degrees of freedom are fractionalize
this phase. The zero-temperature confining phase of theZ2
gauge field is a condensate of these vison excitations
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‘‘glues together’’ spinons and chargons to form electrons
‘‘quantum-confinement critical point’’ separates these tw
zero-temperature phases, as discussed elsewhere.3 At finite
temperatures above the fractionalized zero-tempera
phase, we expect vison excitations to exist in two dime
sions, leading to interactions between the chargons
spinons. However, at temperatures much smaller than
vison gapTv ison ~which in the simplest theories of the qua
tum critical point~QCP! would be of the same order as th
pseudogap temperatureT* ), we expect the low-energy de
grees of freedom to be those of the fractionalized pha
spinons and chargons weakly interacting through Dopp
shift terms, which we ignore.

We briefly discuss the phases shown pictorially in Fig.
In thexc,x,xQCP range, starting at temperatures much le
than the vison gap and lowering the temperature, the bos
chargons should go from a phase where they are phase
herent to one where they are condensed. Below the char
condensation temperature, the system is superconduc
this is Tc . Throughout, the spinons maintain ad-wave pair-
ing ~presumably due to antiferromagnetic interactions
strengthJ! and experience no phase transition, but rathe
crossover at their pairing scale,T* . Starting instead at zero
temperature and zero doping, we are in a spin-charge s
rated phase, which is also an antiferromagnetic Mott insu
tor with long-range Ne´el order. Upon increasing the doping
staying at zero temperature, we presumably enter a com
cated charge-ordered insulating state of the chargons and
stroy the long-range Ne´el order of the spinons. This is th
zero-temperature phase believed to dominate the pseud
region. We expect impurities and thermal fluctuations to
stroy static charge-order, but inhomogeneous effects co
still be an important high-energy presence, leading to,
stripes. As the doping is further increased, the chargons
sumably condense at zero temperature into a supercond
ing state. After the destruction of Ne´el order, the spinons are
qualitatively the same in this doping range and maintain
d-wave gap of orderT* . Throughout this zero-temperatur
region, the chargons and spinons are decoupled~since we are
to the left ofxQCP). At x5xQCP , the Ising gauge field be
comes confining and the chargons and spinons are bo
together to form electrons, presumably in a Fermi-liqu
phase.

We turn our attention now to the spectral function defin
in terms of the electron Green function

A~k,v!52
1

p
Im G~k,v!. ~4!

Since at temperatures well below the vison gap, we expe
description of the system in terms of free chargons a
spinons to capture the low-energy physics, we use
Hamiltonian in Eq.~3!, which is a sum of spinon and cha
gon Hamiltonians,H(c†,c).Hb(b†,b)1H f( f †, f ). Within
this construction, it is possible to write the electron Gre
function as a product of chargon and spinon Green functio

G~r,t!5^Ttc~r,t!c†~0,0!& ~5!

5^Ttb~r,t!b†~0,0!&^Tt f ~r,t! f †~0,0!& ~6!
8-2
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ELECTRON SPECTRAL FUNCTION IN TWO- . . . PHYSICAL REVIEW B 64 014518
5Gb~r,t!Gf~r,t!, ~7!

with t5 i t , the imaginary time. The problem of calculatin
the spectral line shape in spin-charge separated phases
becomes one of calculating the spinon and chargon G
functions. We consider these two degrees of freedom in t
discussing values of various parameters in each phase.

A. Spinons

We briefly describe the phases of the spinon model. C
sider first theNW 50 phase that describes spinons with
d-wave paring amplitudeDk . In this spin-charge separate
construction, superconductivity is dependent only on
charge degrees of freedom. When the bosonic chargons
condensed (̂b&Þ0), we are in a BCSd-wave supercon-
ductor and the spinons are simply neutralized BCS quasi
ticles. When the chargons lack phase coherence, we are
phase with no superconductivity, but with ad-wave gap to
any excitation with spin 1/2, called elsewhere the no
liquid.5 WhenNW Þ0, spinon-antispinon pairs condense form
ing a state with long-range antiferromagnetic order, but s
containing free-spinon excitations above a gap~of order J!,
which are separated from the chargonsdue to the vison gap
This spin-charge separated antiferromagnet has been du
AF* .3

The spinon piece of the Hamiltonian in Eq.~3! is qua-
dratic in the spinon operators, and we may diagonaliz
using a Bogoliubov-type transformation. SettinggNW 5N0ẑ
and working in units of the lattice constant, we obtain

H f5(
k

Ekâk,a
† âk,a , ~8!

Ek5AN0
21Dk

21ek
2, ~9!

ek52ts~coskx1cosky!, ~10!

Dk5D~coskx2cosky!, ~11!

with

âk,a5ukd̂k,a1avkd̂2k,2a
† , ~12!

uk
25 1

2 1 1
2 cosuk , vk

25 1
2 2 1

2 cosuk , ~13!

cosuk5
ek

Aek
21Dk

2
, ~14!

where

d̂k,a5Ak f̂ k,a1aBk f̂ k1p,a , ~15!

Ak
25 1

2 1 1
2 cosfk , Bk

25 1
2 2 1

2 cosfk , ~16!

cosfk5
Aek

21Dk
2

Ek
, ~17!
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is a Hartree-Fock-type spin density wave operator at mom
tum p appropriate to commensurate antiferromagnetic or
with sublattice magnetizationN0.6 Note that whenN050,
the Hamiltonian forâk is the same as the effective BC
Hamiltonian for ad-wave superconductor. Indeed, when t
chargons condense, these become the Bogoliubovd-wave
quasiparticles.

At zero temperature, we have for the spinon correlat
function,

^ f ka
† f kb&5

da,b

2 S 12
ek

Ek
D . ~18!

We see that the spinon spectrum now has a gap ofN0 at kx
5ky5p/2, as we would expect in the Ne´el state, as well as
a d-wave gap whose maximum is 2D . We expect this spinon
theory to work qualitatively at all temperatures well belo
T* andTv ison, where the spinons are strongly paired and
low-energy degrees of freedom are fractionalized. In parti
lar, one should note that in the absence of chargon-spi
interactions, the spinons do not noticeTc .

The parametersts andD can be set by the experimental
determined ratio,

ts

D
5

v f

vD
, ~19!

which ranges from;14 in YBCO ~YBa2Cu3O7! to ;20 in
BSCCO (Bi2Sr2CaCu2O8) near optimal dopings.7 We expect
this ratio to be of this order throughout the pseudogap ph
At zero doping,uNW u is on the order ofJ.

B. Chargons

Once liberated from their fermionic statistics, the char
degrees of freedom behave as bosons of chargee hopping on
a 2d square lattice, as in Eq.~3!. At half-filling and zero
temperature, we expect that in the limitU/tc@1, the system
forms a Mott insulator, while in the limittc /U@1, the
bosons form a superfluid. This can be described by the
11)-dimensional quantum XY model that has two phase
superconducting phase and a quantum disordered, Mott i
lating phase. Being concerned primarily with ‘‘normal state
~i.e., nonsuperconducting! properties, consider the insulatin
phase whereU/tc@1. Excitations of this phase are doub
occupied sites that are ‘‘massive’’~i.e., gapped! and may
propagate. These excitations as well as the excitations wi
the superfluid phase are well described by the soft-spin c
tinuum Landau-Ginzburg action, replacing the chargon
erator with a complex field,

b̂i→b~r!, ~20!

Lb5
1

2
u]tbu21

v2

2
u“bu21

m

2
ubu21u~ ubu2!2. ~21!

When m.0, the bosons are quantum disordered and
chargon system is insulating. Whenm,0 , the chargons con
dense, forming a superconductor withu^b&u25m/4u5n0,
8-3
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wheren0 is the condensate density. Fluctuations around
new minimum are described~to quadratic order! by the ac-
tion

b~r,t !5^b&1b̃~r,t !, ~22!

b̃5b̃11 i b̃2 , ~23!

Lb5
1

2
~]tb̃1!21

v2

2
~¹b̃1!21

M2

2
~ b̃1!21

1

2
~]tb̃2!2

1
v2

2
~¹b̃2!2, ~24!

with

M2522m. ~25!

Starting in the superconducting phase and increasing
chemical potential towardm50, the order parameter~and
therefore the condensate density! vanishes at the transition.

Away from half filling in the presence of long-range Co
lomb interactions or disorder, we expect the unoccupied s
to form some crystal. Even in the case of zero disorder,
underlying lattice makes characterization of this phase d
cult. One way to gain intuition for this regime is by refo
mulating the problem in terms of vortices in the charg
phase.8 On physical grounds, we expect that the strong c
pling of the charge degrees of freedom will lead to comp
cated charge-ordered states at zero temperature when
number of bosons is incommensurate with the underly
lattice, and that with increasing doping, the system sho
eventually pass into a zero-temperature superconduc
state. The location of the transition,xc , and the nature of the
exact ground state forx,xc will depend sensitively on the
chargon interactions and lattice commensurability effe
Lacking a more detailed theory of chargon solidificati
away from half filling in a fractionalized phase, we will us
the XY model defined above to describe the low-energy
grees of freedom at low temperatures in the fractionali
phases. Our main motivation is simplicity: the (211)D XY
model contains both a quantum-disordered and a super
ducting phase of bosons, as the more correct theory of
x.0 boson system should. Although this description is o
viously inadequate to describe the zero-temperature ph
away from half filling as well as the detailed critical prope
ties of the transition, we note that for a perfectly clean s
tem, the physics at length scales shorter than the mean
spacing should be those of the half-filled system. At dopin
of, say, 5% this length is about 5 lattice spacings. In
corresponding energy range, the (211) XY model should
capture the correct physics. We note that ARPES is an in
mediate energy probe, although the energies correspon
to moderate dopings may still be too high. Since we
concerned here with general features of the spectral func
in each phase, we work with this phenomenological Land
Ginzburg model, hoping to capture the correct physics.

Therefore, in the charge-disordered~nodal liquid! phase at
temperatures much smaller than the vison gap, we use
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~21! and find for the chargon correlation function~setting
m5m2.0 and ignoringu to lowest order!,

^bk
†bk&5

1

vk
, ~26!

vk
25m21v2uku2. ~27!

We briefly discuss the parameters in the model,m andv.
In the underdoped regime near the critical point,xc , we
expect the chargon gap to be quite small, while at half filli
~in the parent insulator! the chargon gap is rather large, th
charge gap for these materials being of the order of a few
Very little can be said about the velocityv without a more
detailed microscopic theory. Working in units wherek is a
dimensionless wavenumber,v is an energy scale and we tak
it to be moderately larger than the spinon kinetic scale,ts ,
~but of the same order! effectively giving the charge excita
tions a larger bandwidth than the spinons.

In the ordered phase (m,0), the bosons are supercon
ducting and atT50 the chargon-chargon correlation fun
tion has the property

lim
r82r→`

^b†~r,t !b~r8,t8!&5u^b&u25n0 , ~28!

the condensate density. The quantity^b& is precisely the or-
der parameter of the superconductor. At dopingsx.xc , as
temperature increases within the superfluid phase, we ex
phase fluctuations to reduce this quantity, eventually caus
it to vanish atT5Tc(x). At zero temperature within the su
perfluid phase, as doping is decreased it will vanish ax
5xc . As discussed above, the details of theT50 transition
will be governed by the universality class of the true dopin
dependent chargon theory.

Within the superconducting phase, we may model
bosons with Eq.~24!, which results in the following genera
form for the chargon spectral function:

^b†~r,t !b~r8,t8!&5n0~T!1^b̃†~r,t !b̃~r8,t8!&. ~29!

The fluctuations of the chargon field will be dominated
the detailed interactions between the chargons. In contra
the Cooper pairs in a standard BCS superconductor,
bosonic chargons should be strongly interacting, given t
their uncondensed phase is controlled by Mott-insulat
physics. However, we expect that at energies larger than
condensation temperatureTc the chargon fluctuations shoul
be the same as in the pseudogap state.

III. SPECTRAL FUNCTION

Given the spinon and chargon correlation functions,
can compute the electron spectral function, assuming no
teractions between chargons and spinons, using the rela
in Eqs.~4! and ~5!. The result at zero temperature is
8-4
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A~k,v!5E
q
@^ f qf q

†&^bk2qbk2q
† &d~v2vk2q1Eq!1^ f q

†f q&

3^bk2q
† bk2q&d~v1vk2q1Eq!#, ~30!

5A1~k,v!1A2~k,v!. ~31!

Because it measures electrons ejected from the sample
ARPES intensity~up to matrix elements! measures the occu
pied part of the spectral function,A2(k,v).9 At temperatures
far below the vison gap, the assumption of no charg
spinon interactions should be valid. At energiesv larger than
the temperature, the use of zero-temperature results sh
be valid. Most of the ARPES data of interest are done
temperatures below 100 K, which translates to an energ
10 meV or less, close to the resolution of the instruments
certainly smaller than any features in the ‘‘normal stat
spectra. This justifies use of the zero-temperature spe
function in our low-energy model. We therefore compa
this A2(k,v) with the ARPES data in each of the followin
phases:AF* , nodal liquid ~pseudogap!, and d-wave super-
conductor. Although Eq.~30! is quite simple, it nevertheles
is not analytically integrable for arbitraryk and v. In the
following sections, we present the results of numerical in
grations of this function and plot the resultantA2(k,v) at
fixed k @energy distribution curve~EDC!# and at fixedv
@momentum distribution curve~MDC!#, along the momen-
tum cuts shown in Fig. 2. For the numerical integration,
approximate the delta function in Eq.~30! by a Lorentzian of
small width ~0.0125 eV! for the energy-distribution curves
This leads to small ‘‘tails’’ in these curves at small bindin
energies~near turnon!. Since we would like to explore the
momentum-distribution curves at these small turnon en

FIG. 2. Momentum cuts used for plots ofA2(k,v), showing the
approximate location of the ‘‘Fermi surface’’ for our model. C
No. 1 ~used for MDC’s and EDC’s! is along the linekx5ky near the
nodal point, cut No. 2~used for EDC’s! is alongky50 near the
antinodal point.
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gies, we need to avoid measuring mostly these Lorentz
tails. To this end, for the MDC’s, we use instead a boxli
delta function,

d~x!5H 1/e for2e/2,x,e/2

0 else,
~32!

with e510 meV. Values of various parameters~such asD
andv) will be given in each section. Some ‘‘Fermi surface
properties of the spinons should be discussed. While
pairing terms technically destroy any true Fermi surface,
number of spinons at a given momentum still drops off
ek.0 and is sensitive to the minimum of the spinon disp
sion,Ek , which we can callkf . Along the (p,p) direction,
this minimum occurs atk5(p/2,p/2), while along the (p,0)
direction, the location of the minimum depends on the re
tive values ofts andD and will be discussed in each phas

A. „Fractionalized… antiferromagnet

In this phase, the spinons are particle-hole paired into
antiferromagnet~with single spinons above the gap! and the
chargons are gapped into a Mott-insulating phase. Howe
because these two particles propagate as separate excita
we expect an electron injected into the system to ‘‘decay’’
fractionalize into these two constituents. We therefore exp
the spectral function at temperatures much lower than
vison gap to be broad, without thed function peak at somek
andv which one finds when the underlying phase has el
tronlike elementary excitations.

For the spinons, we expect that bothD andN0 are of the
order ofJ.ts/2; we takets.0.5 eV. The chargon gapm is
expected to be fairly large, of the order of an eV. With this
mind, we plot the electron spectral function in Fig. 3 in t
AF* phase with N05D50.25 eV, ts50.5 eV, v
52.5 eV, andm51 eV. The shapes of the curves are n
sensitively dependent on any of these parameters. For
ratio of ts to D, the minimum of the spinon energyEk along
cut No. 2 occurs atkx.2.2. We plot the MDC along cut No
1 at the energyv521.30 eV. This is slightly larger than
the minimum binding energy ofN1m51.25 eV.

A few features of these curves should be pointed o
First, all EDC’s are quite smeared with no peaks. This
deed mimics one of the features of ARPES data on the
doped compounds.10 Detailed comparison with the bindin
energies in the ARPES data for the undoped compoun
complicated by the fact that determining the ‘‘Fermi leve
of these compounds is not as straightforward as in the do
materials. In the case of our EDC plots, the binding ene
should be used to note that the leading edge along cut N
indeed has a smaller gap than that along cut No. 2. In f
the difference between the two is just the factor of 2D. That
this feature of the leading edge will trackDk , the d-wave
gap, can be seen from Eq.~30!. This is consistent with the
experimentally determined ‘‘remnant Fermi surface’’ with
d-wave character found in the undoped compounds.10 In con-
trast to the EDC’s, the MDC shows a sharp feature. T
detailed shape of the MDC may be influenced by the spe
ics of the model used.
8-5



zed,
he
n
ero
-
s to
ed
ec-
en-

our
n-

ical

not
ill
w-

r-

all
l

tic

e

C. LANNERT, MATTHEW P. A. FISHER, AND T. SENTHIL PHYSICAL REVIEW B64 014518
FIG. 3. A2(k,v) at zero temperature in theAF* phase. Plotted
are: EDC’s along~a! cut No. 1, and~b! cut No. 2 and an MDC~c!
along cut No. 1 at energyv521.30 eV. The momentum spac
cuts are shown in Fig. 2.
01451
B. Pseudogap„nodal liquid …

Because this zero temperature phase is also fractionali
we expect broad spectral functions in this region. T
spinons are paired intod-wave singlets, leading to the spi
gap. To be precise, we calculate the spectral function at z
temperature using theXY model described earlier. We ex
pect a low-energy theory of quantum-disordered chargon
work qualitatively for the entire pseudogap region, provid
T!Tv ison. At finite temperatures, the zero-temperature sp
tral function can only be expected to capture features at
ergies larger than T. We would therefore like to compare
spectral function in this phase with ARPES data in the u
derdoped compounds atT* @T.Tc . The chargons in this
region should be dominated by their zero-temperature crit
point. Here, we use the critical (211)D XY theory for the
chargons described previously, again noting that this will
describe in detail the true finite-doping critical point but w
hopefully give an adequate effective theory for the lo
energy excitations.

As an illustrative calculation, we may analytically pe
form the convolution integral in Eq.~30! for k5(p/2,p/2)
and k5(p,0) at smallv, exactly at theXY critical point,
m50, of Eqs.~26! and ~27!. Eq. ~30! reads

A2~k,v!5E d2q

~2p!24vq
S 12

ek2q

Ek2q
D d~v1Ek2q1vq!.

~33!

At the node, the spinon spectrum may be linearized for sm
momentum and we find~after rotating to momenta paralle
and perpendicular to the nodal direction and settingts5D

5 v̄ for simplicity!

A2@k5~p/2,p/2!, v small#

.E d2q

~2p!2

1

4vq S 12
v̄qx

v̄q
D d~v1 v̄q1vq! ~34!

.
1

8pvE0

`

dqd@v1~v1 v̄ !q#5
1

8pv~v1 v̄ !
u~2v!.

~35!

At the antinode, the spinon spectral function is quadra

above the gap,Ek2q→Ẽq52DA12 1
2 q2, and we find

A2@k5~p,0!, v.D#

.E d2q

~2p!2

1

4vq S 11
vF@qx

22qy
2#

2Ẽq
D d~v1vq1Ẽq! ~36!

.
1

8pvE0

`

dqd@v1vq12D1O~q2!# ~37!

.
1

8pv2
u~2v22D!. ~38!
8-6
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We see that at these two particular points ink space, the
electron spectral function turns on like a step function, no
peak, in qualitative agreement with the ARPES results.

To obtain the electron spectral function at otherk andv,
we resort to numerical integration. In the underdoped reg
values ofts /D vary from compound to compound, but are
order ten. With this in mind, we setts50.5 eV, D
525 meV, andv52.5 eV. Also, for the purposes of pe
forming the integration with the Lorentziand function ap-
proximation~see discussion at the beginning of Sec. III!, we
regularize the chargon spectrum by adding a small masm
512.5 meV, for the energy distribution curves shown
Figs. 4~a! and 4~b!. For the momentum distribution curv
shown in Fig. 4~c!, the chargon mass is equal to zero. Aga
we find no sensitive dependence on the exact values of t
parameters. For this value ofts /D, the minimum value of the
spinon energyEk along cut No. 2 occurs atkx.3.0. For the
MDC along cut No. 1, we use a binding energy large enou
that the width of the approximated function does not influ-
ence the width of the curve,v5240 meV.

We wish to note the following features of the graphs
Fig. 4. Foremost, the EDC’s are indeed quite smeared, e
near the ‘‘Fermi surface’’ crossings of the spinons, but m
so in the (p,0) direction than in the nodal direction, whe
something peakish~though still quite broad! emerges nea
(p/2,p/2). Also, as we have seen analytically, the lead
edge in the (p,0) direction never gets to zero binding ener
but instead shows agap of 2D550 meV. It should also be
pointed out that as one moves along either cut, both set
EDC’s show the leading edge moving toward its minimu
binding energy and then losing weight and/or receding ab
kf . Of particular interest is the contrast between the ED
and MDC along cut No. 1~the nodal direction!, where the
MDC shows a very sharp peak at the node while the ED
are broad and often steplike. The noise at the top of the M
is a consequence of using a ‘‘boxlike’’d function for this
integration.

C. d-wave superconductor

At low dopings~whereTv ison@Tc) when we cool below
Tc , the bosonic chargons develop phase coherence and^b&
is nonzero. The single-electron correlation function in t
region then has two pieces, in accordance with Eqs.~5! and
~29!

G~r,t!5u^b&u2^ f ~r,t! f †~0,0!&1^b̃~r,t!b̃†~0,0!&

3^ f ~r,t! f †~0,0!&, ~39!

giving an occupied portion of the spectral function,

A2~k,v!5n0~T!^ f k
†f k&d~v1Ek!1E

q
^ f q

†f q&

3^b̃k2q
† b̃k2q&d~v1ṽk2q1Eq!. ~40!

Technically, this form is only valid at zero temperatur
However, we can see from the electron Green function in
~39! ~which is valid at all temperatures much less th
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FIG. 4. A2(k,v) in the pseudogap phase. Shown are: EDC
along~a! cut No. 1 and~b! cut No. 2 and an MDC~c! along cut No.
1 at an energy ofv5240 meV. The momentum space cuts a
shown in Fig. 2.
8-7



low
ea

th
ng
e
r

he
tin
n
t
a
ic

nc

ar
n

t
th

o

-
d

e
r
e

th
t
d

e

in

rin
fo
gh
a
ro

ng

the
by

-

this
per-
the
e

se
m-
nal
ec-

eve
is-

the
8,

a
,
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Tv ison) that throughout the superconducting phase at
dopings, we expect a spectral function made up of a p
and a background.

The peak is a product of the condensate densityn0(T) and
the spinon spectral function. For a given value ofk, the peak
is located at the BCS quasiparticle energyEk . Indeed, for
noninteracting bosons at zero temperature,^b̃†b̃&50, and we
reproduce the BCS quasiparticle peak. In contrast with
bosons of BCS theory, we expect the chargons to be stro
interacting, leading to a nonzero background even at z
temperature.11 We note that the width of this peak in ou
simple theory is entirely determined by the width of t
spinon spectral function. Throughout the superconduc
state, we expect the spinons to act like a two-dimensio
Fermi liquid, leading to a weak12 temperature-dependen
width. To the extent that the peak and the background
distinguishable objects, the weight under this quasipart
peak should be proportional to the condensate density,

E
peak

A2~k,v!5n0~T!E
peak

d~v1Ek!5n0~T!, ~41!

and should vanish into the background asT→Tc from be-
low, without appreciable broadening.

A comment should be made here regarding the differe
between the condensate densityn0 and the superfluid stiff-
nessrs . While for noninteracting bosons these quantities
the same, for interacting bosons they are different eve
zero temperature. Besides the effect of chargon-chargon
teractions on these quantities, there is the important effec
the Doppler-shift coupling between the superfluid and
quasiparticles in the superconducting state. For ad-wave su-
perconductor, the coupling between quasiparticles and c
densate leads to the well-knownT-linear depletion of the
superfluid stiffness for smallT. The penetration depth, be
cause it measures the superfluid stiffness, manifests this
pendence nearT50. The condensate density, on the oth
hand, is not directly coupled to the quasiparticles and the
fore need not approachT50 in the same manner as th
superfluid stiffness.

The background in the spectral function comes from
second term in Eq.~40! and will be complicated by the exac
nature of chargon interactions. At energies large compare
the condensation temperature (.10 meV), we expect the
spectral function to be that of the ‘‘normal state’’ aboveTc .
At low energies, we have seen above that there will b
sharp~resolution-limited! peak in the spectral function, with
weight equal to the condensate density, located at the sp
gap. It is only at intermediate energies~1–10 meV! that the
detailed physics of the chargons at their charge-orde
critical point becomes important. In the superconductor
Tc!Tv ison, we therefore expect a sharp peak whose wei
is given by the condensate density, superimposed on a b
ground that does not change qualitatively as one moves f
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the superconductor to the pseudogap phase aboveTc . An
illustration of the spectral function in the superconducti
phase is given in Fig. 5.

IV. CONCLUSIONS

We have shown here that the following aspects of
ARPES data in the cuprate materials can be understood
assuming spin-charge separation:~1! the d-wave
‘‘pseudogap’’ seen aboveTc , ~2! the lack of sharp quasipar
ticle peaks in the pseudogap phase,~3! the emergence of a
very sharp quasiparticle peak belowTc , ~4! the qualitative
temperature and doping dependence of the weight under
quasiparticle peak as well as the existence within the su
conducting state of a background similar in shape to
pseudogap spectra, and~5! the lack of sharp features in th
undoped parent insulators as well as thed-wave character of
their ‘‘remnant Fermi surface.’’ We emphasize that the
results of ARPES in the undoped and underdoped co
pounds are rather hard to account for within a conventio
picture of quasiparticles with the quantum numbers of el
trons.
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FIG. 5. For illustrative purposes only, this figure shows
Lorentzian peak centered atEk superimposed on the nodal liquid
A2(k,v), for the ‘‘Fermi surface’’ crossing along cut No. 2 from
the previous section,k5(3.0,0).
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